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Abstract 

While making decisions, humans and other animals always need to balance the 

desire to gather sensory information (to make the best choice) with the urge to act, 

facing a speed-accuracy tradeoff (SAT). Given the ubiquity of the SAT across species, 

extensive research has been devoted to understanding the computational mechanisms 

allowing its regulation at different timescales, including from one context to another, 

and from one decision to another. However, in dynamic environments, animals often 

need to change their SAT on even shorter timescales – i.e., over the course of an 

ongoing decision – and very little is known about the mechanisms that allow such rapid 

adaptations. The present study aimed at addressing this issue. Human subjects 

performed a modified version of the tokens task, where an increase or a decrease in 

penalty occurring halfway through the trial promoted rapid SAT shifts, favoring 

speeded decisions either in the early or in the late stage of the trial. Importantly, these 

shifts were associated with stage-specific adjustments in the accuracy criterion 

exploited for committing to a choice and relatedly, with dynamic, non-linear changes in 

urgency. Those subjects who decreased the most their accuracy criterion at a given 

decision stage presented the highest gain in speed, but also the highest cost in terms 

of accuracy at that time. Altogether, the current findings offer a unique extension of 

former work, by revealing that dynamic changes in urgency allow the regulation of the 

SAT within the timescale of a single decision. 
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INTRODUCTION 

Humans and other animals are motivated to make choices that maximize their 

reward rate. Paradoxically, while decision accuracy increases the likelihood of getting 

rewards, the long deliberation time necessary to make accurate choices has a cost 

that can ultimately reduce the reward rate (Carland et al., 2019). Hence, animals 

always need to balance the desire to gather sensory information (to make the best 

choice) with the pressure to act quickly, facing a speed-accuracy tradeoff (SAT; Balci 

et al., 2011; Bogacz et al., 2010). Given the central role of the SAT in decision-making, 

extensive research is being devoted to understanding the computational mechanisms 

at the basis of its regulation (Schall, 2019).  

Models of decision-making have since long offered a theoretical account of how 

the brain may regulate the SAT (Ratcliff, 1985; Stone, 1960; Treisman & Williams, 

1984). Traditional models postulate that decision-making involves an accumulation of 

sensory evidence (Bahl & Engert, 2019; Zylberberg et al., 2016), which drives neural 

activity up to a fixed level; once this critical threshold is reached, an action is selected 

(Alamia et al., 2019; Derosiere et al., 2018; Derosiere & Duque, 2020). In this view, to 

achieve a desired decision policy, the brain controls the height of the threshold, which 

reflects the accuracy criterion aimed for a given decision. Fast decisions involve low 

criteria, reducing the amount of evidence required for neural activity to reach the 

threshold, while longer and accurate deliberations imply higher criteria. Such 

adaptations were shown to occur both from one SAT context to another (Forstmann et 

al., 2008; Herz et al., 2016, 2017) and from one decision to another within the same 

context (Desender et al., 2019; Fischer et al., 2018; Purcell & Kiani, 2016), providing a 

key mechanism to trade speed with accuracy at different time-scales. 

About a decade ago, different studies revealed that the amount of evidence 

required to commit to a choice decreases over the course of a decision, indicative of 

an accuracy criterion that wanes as time elapses (i.e., rather than being fixed over 

time; e.g., Cisek et al., 2009). To explain these data, some authors proposed to 

incorporate a time-dependent “urgency” signal in decision-making models, which – 

combined with sensory evidence – pushes neural activity upwards over time, 

effectively implementing a dropping accuracy criterion (Churchland et al., 2008; 

Ditterich, 2006; Drugowitsch et al., 2012; Standage et al., 2011; Thura et al., 2012). A 

given urgency signal is characterized by an initial state and a growing rate, which 

determine the initial height and the dropping rate of the criterion, respectively, and are 

thus central to the regulation of the SAT. In situations where speed is of essence, both 

the initial state (e.g., Steinemann et al., 2018; Thura, 2020; Thura et al., 2014) and the 

growing rate (e.g., Hanks et al., 2014; Murphy et al., 2016) of urgency are higher, 

implying a lower initial criterion that quickly decays over time, compared to when the 

emphasis is on accuracy.  

Making decisions in dynamic environments sometimes requires adjusting the SAT 

on very short timescales – i.e., not only from one context or decision to another but 

also during an ongoing decision (Gluth et al., 2012). For example, imagine a monkey 
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foraging for fruits in a tree, calmly evaluating which looks tastier when, all of a sudden, 

a more dominant monkey shows up. In such a scenario, the foraging animal will have 

to speed up its decision, which may lead it to commit to a choice that does not meet its 

initially high standards. This situation illustrates how animals sometimes need to 

quickly change their decision policy and expedite a decision as it unfolds. Yet, very 

little is known about the computational mechanisms that allow such rapid adjustments. 

Here, we address the hypothesis that human subjects can modify their SAT at 

specific stages of the deliberation process, by dynamically changing their accuracy 

criterion. As such, while the majority of former studies have conceptualized urgency as 

a signal that continuously and steadily grows over time within a trial, here we propose 

that individuals can in fact control the temporal dynamics of this growing signal and 

thus, of the criterion for committing to a choice. We tested this idea by assessing the 

behavior of 15 healthy participants in a modified version of the tokens task (Cisek et 

al., 2009), where penalty changes occurring halfway through the trial promoted rapid 

SAT shits, either in the early or in the late stage of the decision process. 

 

 

MATERIALS AND METHODS 

Participants 

We tested 15 participants for this study (11 women; 24 ± 4.1 years old). All subjects 

were right-handed according to the Edinburgh Questionnaire (Oldfield, 1971) and had 

normal or corrected-to-normal vision. None of the participants had any neurological 

disorder or history of psychiatric illness or drug or alcohol abuse, or were on any drug 

treatments that could influence performance. Participants were financially 

compensated for their participation and earned additional money depending on their 

performance on the task (see below). The protocol was approved by the institutional 

review board of the Université catholique de Louvain, Brussels, Belgium, and required 

written informed consent. 

 

Experimental setup 

Experiments were conducted in a quiet and dimly lit room. Subjects were seated 

at a table in front of a 21-inch cathode ray tube computer screen. The display was 

gamma-corrected and its refresh rate was set at 100 Hz. The computer screen was 

positioned at a distance of 70 cm from the subject’s eyes and was used to display 

stimuli during a decision-making task. Left and right forearms were placed on the 

surface of the table with both hands on a keyboard positioned upside-down. Left and 

right index fingers were located on top of the F12 and F5 keys, respectively (Figure 

1.A). 
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Task 

The task used in the current study is a variant of the “tokens task” (Cisek et al., 

2009; Thura & Cisek, 2017) and was implemented by means of LabView 8.2 (National 

Instruments, Austin, TX). The sequence of stimuli is depicted in Figure 1.A. In between 

trials, subjects were always presented with a default screen consisting of three empty 

circles (4.5 cm diameter each), placed on a horizontal axis at a distance of 5.25 cm 

from each other. The central and lateral circles were light blue and dark blue, 

respectively, and were displayed on a white background for 2500 ms. Each trial started 

with the appearance of fifteen randomly arranged tokens (0.3 cm diameter) in the 

central circle. After a delay of 800 ms, the tokens began to jump, one-by-one every 

200 ms from the center to one of the two lateral circles (i.e., 15 token jumps; Jump1 to 

Jump15). The subjects were instructed to indicate by a left or right index finger keypress 

which lateral circle they thought would ultimately receive the majority of the tokens 

(F12 or F5 key-presses for left or right circle, respectively). They could respond as 

soon as they felt sufficiently confident, as long as it was after Jump1 had occurred and 

before Jump15. Once a response was provided, the tokens kept jumping every 200 ms 

until the central circle was empty. At this time, the selected circle was highlighted either 

in green or in red depending on whether the response was correct or incorrect, 

respectively, providing the subjects with a feedback of their performance; the feedback 

also included a numerical score displayed above the central circle (see below, Reward, 

penalty and block types section). In the absence of any response before Jump15, the 

central circle was highlighted in red and a “Time Out” (TO) message appeared on top 

of the screen, together with a “0” (score) above the central circle. The feedback screen 

lasted for 500 ms and then disappeared at the same time as the tokens did (the circles 

always remained on the screen), denoting the end of the trial. Each trial lasted 6600 

ms. 

One key feature of the tokens task is that it allows one to compute, in each trial, 

the subject’s accuracy criterion, based on the amount of sensory evidence that was 

available when the subject committed to her/his choice (i.e., at decision time [DT]). To 

do so, the sum of log-likelihood ratios (SumLogLR) of individual token movements (i.e., 

a first order estimate of sensory evidence) is usually calculated (Cisek et al., 2009). 

Based on the temporal profile of the accuracy criterion (i.e., of the SumLogLR at DT), 

it is then possible to extract an urgency function, characterized by an initial level and a 

changing rate (i.e., the intercept and the coefficients of the function, respectively). 

Hence, the tokens task provides us with the possibility to estimate how the accuracy 

criterion, as well as the initial level and the changing rate of urgency varies from one 

experimental condition to another. Further details regarding the computation of the 

accuracy criterion and of the urgency function are provided later, in the Data analyses 

section. 
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Reward, penalty and block types 

As mentioned above, subjects received a feedback score at the end of each trial, 

which depended on whether they had selected the correct or the incorrect response. 

Correct responses led to positive scores (i.e., a reward) while incorrect responses led 

to negative scores (i.e., a penalty). Subjects knew that the sum of these scores would 

turn into a monetary reward at the end of the experiment.  

In correct trials, the reward was equal to the number of tokens remaining in the 

central circle at the time of the response (in € cents). Hence, the potential reward for a 

correct response gradually decreased over time (Figure 1.B). For instance, a correct 

response provided between Jump5 and Jump6 led to a gain of 10 cents (10 tokens 

remaining in the central circle). However, it only led to a gain of 5 cents when the 

response was provided between Jump10 and Jump11 (5 tokens remaining in the central 

circle). The fact that the reward dropped over time produced an increasing urge to 

respond over the course of a trial, as evidenced from the urgency functions obtained 

in such a task (Derosiere et al., 2019).  

Incorrect responses led to a negative score but here, the size of this penalty was 

not linearly proportional to the RT. Importantly, it differed in three block types (see 

Figure 1.B). The penalty for an incorrect response always equaled 7 cents in the first 

half of the trial (i.e., up to Jump8), regardless of the block type. However, in the second 

half of the trial (i.e., after Jump8), it could then either increase to 13 cents (PenaltyIncrease 

blocks), remain constant at 7 cents (PenaltyConstant blocks) or decrease to 1 cent 

(PenaltyDecrease blocks). The passage from the first half of the trial (called early-stage) 

to the second half (late-stage) was indicated to the subjects by a change in the color 

of the central circle, which always turned black at Jump8.  

We expected that the penalty shift would induce stage-specific adjustments of the 

SAT in the PenaltyIncrease and PenaltyDecrease blocks, compared to the PenaltyConstant 

condition. Particularly, in the PenaltyIncrease blocks, we expected that the prospect of a 

higher penalty at a late stage would promote faster decisions at the early stage, at the 

cost of accuracy. Hence, we expected subjects to trade accuracy for speed specifically 

when making early-stage decisions in the PenaltyIncrease blocks. Inversely, in the 

PenaltyDecrease blocks, we predicted a tendency to make fast but less accurate 

decisions at a late-stage of the trial, after the drop in penalty. 

 

Experimental procedure 

Subjects performed three experimental sessions (one for each block type) 

conducted on separate days at a 24-h interval. Testing always occurred at the same 

time of the day for a given subject, to avoid variations that could be due to changes in 

chronobiological states (Derosière et al., 2015; Schmidt et al., 2006). The order of the 

sessions was counterbalanced across participants. 

The three sessions always started with two short blocks of a simple RT task (SRT). 

In this task, subjects were presented with the same display as in the tokens task 
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described above. However here, instead of jumping one by one, the 15 tokens jumped 

simultaneously into one of the two lateral circles (always the same one in a given block) 

and subjects were instructed to respond as fast as possible by pressing the appropriate 

key (i.e., F12 and F5 for left and right circles, respectively). Because the target circle 

was known in advance of the block, this task did not require any choice to be made 

and was exploited to determine the subject’s mean SRT for left and right index finger 

responses. We obtained this SRT by computing the difference between the key-press 

and the time at which the 15 tokens left the central circle (Cisek et al., 2009). 

Next, subjects performed training blocks to become acquainted with the tokens 

task. In a first training block (20 trials, only run on the first session), we ran a version 

of the tokens task in which the feedback was simplified; the lateral circle turned either 

green or red, depending on whether subjects had provided a correct or incorrect 

response; no reward or penalty was provided here. Then, we ran two training blocks 

(20 trials each) in the condition subjects would be performing next during the whole 

session (PenaltyIncrease, PenaltyConstant or PenaltyDecrease). 

The actual experiment involved 8 blocks of 80 trials (640 trials per session; 1920 

trials per subject). Each block lasted about 8.5 minutes and a break of 5 minutes was 

provided between each of them. Each session lasted approximatively 120 minutes. 
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Figure 1: A. Schematic of the tokens task. In each trial, 15 tokens jumped one-by-one every 
200 ms from the central circle to one of the lateral circles. The subjects had to indicate by a 
left or right index finger keypress (i.e., F12 and F5 keys, respectively) which lateral circle they 
thought would receive more tokens at the end of the trial. For a correct response, the subjects 
won, in € cents, the number of tokens remaining in the central circle at the time of the response. 
Hence, the reward earned for a correct response decreased over time, as depicted in B. The 
example presented on upper inset at the right of panel A represents a correct response 
provided between Jump5 and Jump6 – i.e., the score indicates that 7 tokens remained in the 
central circle at the moment the right circle was chosen. In contrast, as illustrated on the middle 
inset of A, subjects lost money if they chose the incorrect lateral circle: they received a negative 
score that depended on the block type, as indicated in B. In the absence of any response 
(“Time Out” trial, bottom inset), subjects were neither rewarded, nor penalized (score = 0). For 
representative purposes, the “Time Out” message is depicted below the circles in this example, 
while it was presented on top of the screen in the actual experiment. B. Block types. Incorrect 
responses led to a negative score, which differed in three block types. The penalty for an 
incorrect response always equaled 7 cents in the first half of the trial (i.e., up to Jump8), 
regardless of the block type. However, in the second half of the trial (i.e., after Jump8), it could 
then either increase to 13 cents (PenaltyIncrease blocks; magenta, left), remain constant at 7 
cents (PenaltyConstant blocks; yellow, center) or decrease to 1 cents (PenaltyDecrease blocks; blue, 
right). The passage from the first half of the trial (called early-stage) to the second half (late-
stage) was indicated to the subjects by a change in the color of the central circle, which always 
turned black at Jump8 (see A). 
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Data analyses 

Data were collected by means of LabView 8.2 (National Instruments, Austin, TX), 

stored in a database (Microsoft SQL Server 2005, Redmond, WA), and analyzed with 

custom Matlab scripts (MathWorks, Natick, MA). Detailed methods to analyze 

behavioral data from the tokens task have been described previously (Thura et al., 

2014). 

 

Decision time, accuracy and percentage of time outs 

For each block type and each subject, we computed the average decision time 

(DT) and accuracy (% Correct choices), as well as the percentage of “time out” trials 

(%TO). To estimate the DT, we first calculated the reaction time (RT) during the tokens 

task by computing the difference between the time at which the subject pressed the 

key and the time of Jump1. We then subtracted from this RT the mean simple reaction 

time (SRT) obtained for each subject. This procedure allowed us to remove from the 

individual RT obtained in the tokens task, the sum of the delays attributable to sensory 

processing of the stimulus display as well as to response initiation and muscle 

contraction, providing us the DT (Cisek et al., 2009; Derosiere et al., 2019).  

For the analysis of DT and accuracy data, the dataset was split into two subsets 

according to whether decisions were made during the early stage (between Jump1 and 

Jump8; DTs ranging from 0 and 1400 ms) or during the late stage of the trial (between 

Jump8 and Jump15; DTs ranging from 1400 and 2800 ms). This allowed us to test for 

the effect of the block on the subjects’ decision speed and accuracy, separately for 

responses provided either during the early- or late-stage of the trial. We predicted that, 

compared to the PenaltyConstant condition, subjects’ accuracy would be particularly low 

for responses provided during the early-stage in PenaltyIncrease blocks and during the 

late-stage in PenaltyDecrease blocks, reflecting a propensity to trade decision accuracy 

for speed when the penalty is the lowest within a trial.  

 

Accuracy criterion 

As mentioned above, the tokens task allows us to estimate the subject’s accuracy 

criterion, based on the amount of evidence that was available for the chosen circle in 

each trial at DT (i.e., the SumLogLR at DT). As such, high (low) accuracy criteria imply 

the necessity to accumulate a large (small) amount of evidence before committing to 

a choice, and thus, high (low) SumLogLR at DT values. The SumLogLR of individual 

token movements was calculated as follows:  

𝑆𝑢𝑚𝐿𝑜𝑔𝐿𝑅(𝑛) = ∑ 𝑙𝑜𝑔
𝑝(𝑒𝑘|𝑆)

𝑝(𝑒𝑘|𝑁𝑆)

𝑛

𝑘=1

 

(1) 
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Where p(ek|S) is the likelihood of a token event ek (a token jumping into either the 

selected or non-selected lateral circle) during trials in which the selected target S is 

correct, and p(ek|NS) is its likelihood during trials in which the non-selected circle NS 

is correct. Hence, the SumLogLR at DT is proportional to the difference in the number 

of tokens that have moved in each direction at the time of commitment. To characterize 

the changes in accuracy criterion from one block condition to another during the early- 

and the late-stage of the trial, we split the SumLogLR at DT dataset into two subsets 

according to whether decisions were made in the former or in the latter stage. In 

accordance with previous studies (e.g., Cisek et al., 2009; Murphy et al., 2016), we 

expected that the accuracy criterion would drop as the deadline to respond 

approached, thus leading to globally lower values in the late- relative to the early-stage 

of the trial. However, we predicted that, compared to the PenaltyConstant condition, the 

criterion would be particularly low during the early-stage in PenaltyIncrease blocks and 

during the late-stage in PenaltyDecrease blocks, reflecting the subjects’ ability to adjust 

their criterion to a desired level at specific stages of the decision process.  

 

Estimation of urgency functions 

Models of decision-making incorporating an urgency signal posit that choices 

result from the combination of signals that reflect the available sensory evidence and 

the level of urgency that grows over time (e.g., Ditterich, 2006; Drugowitsch et al., 

2012). For instance, in a minimal implementation of the urgency-gating model (Cisek 

et al. 2009; Thura et al., 2014), evidence is multiplied by a linearly increasing urgency 

signal and then compared to the accuracy criterion. The result can be expressed as 

follows: 

𝑦𝑖 = (𝑁𝑖 −  𝑁𝑗≠𝑖) ∙ [𝑚𝑡 + 𝑏]+ < 𝐴𝐶 

(2) 

Where yi is the “neural activity” for choices to target i, Ni is the number of tokens in 

target i, t is the number of seconds elapsed since the start of the trial, m and b are the 

slope and y-intercept of the urgency signal, and [ ]+ denotes half-wave rectification 

(which sets all negative values to zero). When yi for any target crosses the accuracy 

criterion AC, that target is chosen. 

A direct prediction of such urgency-based models is that decisions made with low 

levels of sensory evidence (i.e., involving low accuracy criteria) should be associated 

with high levels of urgency and vice versa. That is, one core assumption is that a high 

urgency should push one to commit to a choice even if evidence for that choice is 

weak, effectively implementing a low accuracy criterion. Hence, the accuracy criterion 

values (SumLogLR at DT) can be exploited to estimate the level of urgency at DT (e.g., 

Thura et al., 2014; Thura, 2020).  

Here, we estimated the level of urgency based on the accuracy criterion values 

obtained for different DTs. We first grouped the trials in bins as a function of the DT, 
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and calculated the average accuracy criterion for each bin. Nine bins were defined, 

with the first bin including decisions made between 600 and 800 ms, the second bin 

including decisions made between 800 and 1000 ms, and so on, until the last bin 

covering the period between 2200 and 2400 ms. The accuracy criterion values 

preceding 600 ms or following 2400 ms were not considered for this analysis because 

many subjects did not respond at these times (59.5 ± 0.04 % of the bins were missing 

values for these very early and very late times). Considering a model in which evidence 

is multiplied by an urgency signal, we estimated urgency values based on the accuracy 

criterion obtained at each bin, in each subject and each block condition, as follows: 

𝑈(𝑡,𝑝,𝑠) =  
𝑇

𝐴𝐶(𝑡,𝑝,𝑠)
 

(3) 

Above, t is the DT bin, p is the penalty condition, s is the subject number, AC is the 

accuracy criterion value (i.e., SumLogLR at DT), T is a constant representing a fixed 

threshold (which we fixed to 1), and U is the estimated urgency value. We then fitted 

regression models over the obtained urgency values. A linear and a second-order 

polynomial model were fitted and the Akaike Information Criterion (AIC) was obtained 

for each subject and each block condition, allowing us to compare the two models to 

each other. We predicted that, compared to the PenaltyConstant condition, urgency would 

be particularly high during the early-stage in PenaltyIncrease blocks and during the late-

stage in PenaltyDecrease blocks, and that the polynomial model would thus better capture 

the dynamic changes in urgency in these two block conditions compared to the linear 

one (i.e., lower AIC values for polynomial fits). 

 

Statistical analyses 

Statistica software was used for all analyses (version 7.0, Statsoft, Oklahoma, 

United-States). The DT, accuracy and SumLogLR at DT data were analyzed using 

two-way repeated-measure ANOVAs (ANOVARM) with BLOCK (PenaltyIncrease, 

PenaltyConstant, PenaltyDecrease) and STAGE (early-stage, late-stage) as within-subject 

factors. The %TO data were analyzed using a one-way ANOVARM with BLOCK 

(PenaltyIncrease, PenaltyConstant, PenaltyDecrease) as a within-subject factor. Finally, the 

AIC values obtained from the urgency fits were analyzed using a two-way ANOVARM 

with BLOCK (PenaltyIncrease, PenaltyConstant, PenaltyDecrease) and MODEL (linear, 

polynomial) as a within-subject factors.  When appropriate, LSD post-hoc tests were 

used to detect paired differences. Results are presented as mean ± SE. 

 

RESULTS 

Decision time, accuracy and %TO 

The average DT was not significantly different in the PenaltyIncrease, the 

PenaltyConstant and the PenaltyDecrease blocks (1503 ± 32, 1527 ± 25 ms and 1505 ± 19 
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respectively), as indicated by the absence of main effect of BLOCK (F1,14 = 0.73, p = 

.489). Importantly though, the ANOVARM revealed a significant BLOCK*STAGE 

interaction on the DT data (F1,14 = 10.04, p = .0005; see Figure 2.A-B). In fact, the DT 

of responses provided during the early stage was significantly lower in the 

PenaltyIncrease (990 ± 43 ms) than in both the PenaltyConstant (1061 ± 37 ms; p = .004) 

and the PenaltyDecrease blocks (1063 ± 32 ms; p = .003). Conversely, the DT of 

responses provided during the late stage was significantly lower in the PenaltyDecrease 

(1946 ± 15 ms) than in both the PenaltyConstant (1994 ± 24 ms; p = .046) and the 

PenaltyIncrease blocks (2016 ± 30 ms; p = .005). Importantly though, DTs were similar 

for the PenaltyIncrease and the PenaltyConstant blocks during the late stage (p = .353); DTs 

were also comparable for the PenaltyDecrease and the PenaltyConstant blocks during the 

early-stage (p = .925). These findings indicate that subjects increased their decision 

speed at very specific stages during the trial in the PenaltyIncrease and PenaltyDecrease 

blocks: they made faster decisions specifically during the early-stage of the 

PenaltyIncrease blocks and during the late-stage of the PenaltyDecrease blocks compared 

to the PenaltyConstant block type.  

The average accuracy was not significantly different in the PenaltyIncrease, the 

PenaltyConstant and the PenaltyDecrease blocks (84.9 ± 1.8, 86.6 ± 1.0 % and 84.6 ± 1.2, 

respectively; no main effect of BLOCK: F1,14 = 1.48, p = .244), but here again, the 

BLOCK*STAGE interaction was significant (F1,14 = 5.83, p = .008; see Figure 2.C-D). 

As such, responses provided during the early stage were associated with a lower 

accuracy in the PenaltyIncrease (82.4 ± 2.5 %) than in both the PenaltyConstant (85.7 ± 1.7 

%; p = .027) and the PenaltyDecrease blocks (85.5 ± 1.8 %; p = .038). Furthermore, 

responses provided during the late stage were associated with a lower accuracy in 

PenaltyDecrease (83.6 ± 1 %) than in both the PenaltyConstant (87.6 ± 0.9 %; p = .009) and 

the PenaltyIncrease blocks (87.4 ± 1.4 %; p =.013). Importantly though, accuracy was 

similar for the PenaltyIncrease and the PenaltyConstant blocks during the late stage of trials 

(p = .878), while it was comparable for the PenaltyDecrease and the PenaltyConstant blocks 

during the early stage (p = .879). Hence, consistent with the DT findings, subjects 

decreased their decision accuracy at specific stages of the trial in the PenaltyIncrease 

and PenaltyDecrease blocks: compared to PenaltyConstant blocks, they made more errors 

during the early stage in the PenaltyIncrease blocks and during the late stage in the 

PenaltyDecrease blocks.  

In summary, these behavioral observations indicate that subjects traded decision 

accuracy for speed specifically at times where the penalty was lowest relative to the 

rest of the trial (see Figure 2.E-F). In PenaltyIncrease blocks, the perspective of a rise in 

penalty promoted faster but less accurate decisions specifically in the first half of the 

trial, while in PenaltyDecrease blocks, the penalty drop promoted faster but less accurate 

decisions in the second half of the trial.  

Consistent with a constant trade-off between decision speed and accuracy, we 

observed a significant correlation between the block-related shift in DT and in accuracy 

(R = .66, p < .0001; Figure 2.G), when considering together early-stage (i.e., [100-

(PenaltyIncrease/PenaltyConstant*100)]) and late-stage decisions ([100-
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(PenaltyDecrease/PenaltyConstant*100)]). That is, the more subjects favored speed in one 

block type with respect to the PenaltyConstant condition, the more they lost in accuracy 

in that block, regardless of the stage of the decision process.  

Finally, the ANOVARM revealed a significant effect of BLOCK on the timeout (%TO) 

data (F2,28 = 15.95, p < .0001; see Figure 2.H). The %TO was indeed higher in the 

PenaltyIncrease (7.2 ± 1.3 %) than in both the PenaltyConstant (4.1 ± 0.8 %; p = .004) and 

the PenaltyDecrease blocks (1.5 ± 0.2 %; p < .0001). In addition, it was lower in the 

PenaltyDecrease than in the PenaltyConstant blocks (p = .016).  Hence, the lower the penalty 

was during the late-stage of the trial, the less the subjects were inclined to be cautious 

and to avoid responding, consistent with the reduced decision accuracy observed in 

the late-stage of PenaltyDecrease blocks.  
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Figure 2: A. Decision Time (DT). Cumulative distribution of subjects and mean DT measured 
at the early stage of the trial in the PenaltyIncrease (magenta traces), the PenaltyConstant (yellow 
traces) and the PenaltyDecrease blocks (blue traces). B. Same as A. for the late stage. C. 
Accuracy (% of correct choices). Cumulative distribution of subjects and mean accuracy 
measured at the early stage of the trial in the PenaltyIncrease (magenta traces), the PenaltyConstant 
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(yellow traces) and the PenaltyDecrease blocks (blue traces). D. Same as C. for the late stage.  E 
and F. Shift in DT (x-axis) and accuracy (y-axis). The graphs summarizes the effects 
represented in A and C, and B and D, respectively. A decrease in DT and in accuracy is 
observed specifically in the early stage of the PenaltyIncrease block (magenta dot) and in the late 
stage of the PenaltyDecrease block (blue dot). G. Relationship between the shift in DT (x-axis) 
and accuracy (y-axis). A significant correlation was found between the block-related shift in 
DT (i.e., [100-(DTPenaltyIncrease/DTPenaltyConstant*100)] for early-stage decisions and [100-
(DTPenaltyDecrease/DTPenaltyConstant*100)] for late-stage decisions, magenta and blue circles, 
respectively) and the block-related shift in accuracy. Both early-stage and late-stage data are 
shown, leading to an n of 30 points. As apparent on the graph, the relationship was especially 
present for early-stage data. H. Percentage of time out trials (%TO). Cumulative distribution 
of subjects and mean %TO in the PenaltyIncrease (magenta traces), the PenaltyConstant (yellow 
traces) and the PenaltyDecrease (blue traces) blocks. * Between-block difference at p < .05. Error 
bars represent SE. I. Example of individual data. DT and accuracy data are represented for 
the three block conditions and each stage  

 

Accuracy criterion 

The accuracy criterion based on which subjects made their decision was estimated 

using the SumLogLR at DT: the higher the SumlogLR at DT, the higher the accuracy 

criterion. Overall, decisions made during the early stage were based on a higher 

accuracy criterion than those made during the late stage of trials (1.50 ± 0.08 and 1.27 

± 0.07 a.u., respectively), as confirmed by the ANOVARM showing a main effect of the 

factor STAGE on the SumLogLR at DT (F1,14 = 76.34, p < .0001). Hence, subjects’ 

accuracy criterion decreased over the course of the decision process, putatively 

indicating an increasing urge to respond as the central circle was emptying, in 

agreement with previous studies (e.g., Gluth et al., 2012; Thura and Cisek, 2014, 

2017).  

Interestingly, the accuracy criterion also depended on the BLOCK under 

consideration, as revealed by a significant BLOCK*STAGE interaction (F2,28 = 3.46, p 

= .045). For early-stage decisions, it was lower in the PenaltyIncrease (1.40 ± 0.13 a.u.) 

than in the PenaltyConstant blocks (1.57 ± 0.09 a.u.; p = .014), with a drop of 10.15 ± 7.56 

% (Figure 3.A). For late-stage decisions, the criterion tended to be lower in the 

PenaltyDecrease (0.85 ± 0.02 a.u.) than in the PenaltyConstant blocks (0.96 ± 0.02 a.u.; p = 

.128), with a significant drop of 10.15 ± 2.4 % (i.e., t-test against 0: t14 = 4.23 p = .0008; 

Figure 3.B). These effects were stage-specific: the criterion was comparable in the 

PenaltyDecrease (1.51 ± 0.13 a.u.) and PenaltyConstant blocks for early-stage decisions 

(1.57 ± 0.09 a.u.; p = .369), as well as in the PenaltyIncrease (0.97 ± 0.04 a.u.) and 

PenaltyConstant blocks for late-stage decisions (0.96 ± 0.02 a.u.; p = .814). Altogether, 

these findings indicates that subjects were able to lower their criterion for committing 

to a choice at specific stages of the trial, in a dynamic way. 

These stage-specific adjustments in accuracy criterion appeared to have a 

significant impact on decision speed and accuracy. Indeed, we observed a positive 

correlation between the block-related adjustments in criterion and the block-related 

shift in DT (R = .68, p < .0001; Figure 3.C) as well as in the actual accuracy (R = .93, 

p < .0001; Figure 3.D), when considering together early-stage (i.e., [100-
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(PenaltyIncrease/PenaltyConstant*100)] and late-stage decisions [100-

(PenaltyDecrease/PenaltyConstant*100)]). That is, the subjects who decreased the most 

their criterion in one block type with respect to the PenaltyConstant condition were those 

who presented the highest gains in decision speed, but also the highest costs in terms 

of accuracy. 

 

Urgency functions 

A direct prediction of urgency-based models is that decisions made with a low 

accuracy criterion are associated with a high level of urgency and vice versa. Hence, 

we used the temporal profile of the accuracy criterion, obtained for decisions made 

between 600 and 2400 ms (presented in Figure 3.D), to estimate urgency functions. 

Linear and polynomial models were fitted over the rectified SumLogLR at DT values 

and Akaike Information Criterion (AIC) were obtained for each model (Figure 3.E and 

F). 

Interestingly, the AIC values were lower for polynomial than for linear models (-

0.41 ± 1.44 and 0.90 ± 1.5, respectively; ΔAIC = -1.31 ± 0.54), as revealed by a 

significant effect of the factor MODEL (F1,14 = 6.51, p = .029). Thus, on average, the 

polynomial model better captured the changes in urgency that occurred over the time 

course of a trial. Importantly though, the superiority of the polynomial model (with 

respect to the linear one) was not ubiquitous across all block conditions, as suggested 

by the BLOCK*FIT interaction (F2,28 = 2.83, p = .005; Figure 3.G). Indeed, post-hoc 

tests revealed lower AIC values for polynomial than linear fits for the PenaltyIncrease data 

(-0.63 ± 3.17 and 2.45 ± 3.15, respectively; p = .00005; ΔAIC = -3.08 ± 1.02), but not 

for the PenaltyConstant (-2.85 ± 2.32 and -1.84 ± 2.53, respectively, p = .128; ΔAIC = -

1.01 ± 0.69) or the PenaltyDecrease data (2.26 ± 3.25 and 2.1 ± 3.51, respectively, p = 

.799; ΔAIC = 0.16 ± 0.43).  

In a final analysis, we extracted the urgency value predicted by the polynomial 

model for DTs of 600 and 2400 ms (i.e., corresponding to decisions made in the early 

and in the late stage of the trial, respectively). This approach allowed us to confirm the 

observations made on the accuracy criterion. Indeed, an ANOVA revealed a significant 

BLOCK*STAGE interaction on the estimated urgency values (F2,28 = 8.33,  p= .001). 

At 600 ms, urgency was significantly higher in the PenaltyIncrease (1.05 ± 0.31 a.u.) than 

in both the PenaltyConstant (0.60 ± 0.09 a.u.; p = .019), and the PenaltyDecrease blocks 

(0.57 ± 0.11 a.u.; p = .013; Figure 3.H), while at 2400 ms, it was higher in the 

PenaltyDecrease (1.71 ± 0.14 a.u.) than in the PenaltyConstant (1.36 ± 0.10 a.u.; p = .066) 

and the PenaltyIncrease blocks (1.16 ± 0.08 a.u.; p = .004; Figure 3.I). Importantly, the 

effects were again stage-specific: urgency was comparable in the PenaltyDecrease and 

PenaltyConstant blocks for early-stage decisions (p = .873), as well as in the PenaltyIncrease 

and PenaltyConstant blocks for late-stage decisions (p = .262).  
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Figure 3: A. Decision Time (DT). Cumulative distribution of subjects and mean accuracy 
criterion values measured at the early stage of the trial in the PenaltyIncrease (magenta traces), 
the PenaltyConstant (yellow traces) and the PenaltyDecrease blocks (blue traces). B. Same as A. for 
the late stage. C. Relationships between the shift in accuracy criterion (x-axis) and the 
shift in DT and accuracy (y-axes; left and right, respectively). A significant positive 
correlation was found between the block-related adjustments in criterion (i.e., [100-
(CriterionPenaltyIncrease/CriterionPenaltyConstant*100)] for early-stage decisions and [100-
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(CriterionPenaltyDecrease/CriterionPenaltyConstant*100)] for late-stage decisions) and the block-related 
shift in DT and accuracy. Both early-stage and late-stage data are shown, leading to an n of 
30 points. D. Temporal evolution of the accuracy criterion as a function of DT. E and F. 
Urgency functions, obtained using a linear and polynomial model, respectively. G. 
Comparison of the Akaike Information Criterion (AIC) for linear and polynomial models. 
The graphs show that the AIC value was significantly higher for polynomial fits when applied 
on the PenaltyIncrease data (magenta bars), but not for PenaltyConstant and PenaltyDecrease data 
(yellow and blue, respectively). The cumulative distribution of subjects obtained for the ΔAIC 
(i.e., ΔAIC = AICPolynomial - AICLinear) is presented on the right, highlighting that the polynomial 
model outperformed the linear one for most of the single-subject data (magenta trace). H. 
Cumulative distribution of subjects and mean urgency estimated in the early stage (i.e., 
at 600 ms) using the polynomial fit. I. Same as H for the late stage (i.e., estimation made 
at 2400 ms). * = Between-block significant difference at p < .05. Error bars represent SE. J. 
Example of individual data. Accuracy criterion values data are represented for the three block 
conditions and each stage. 

 

DISCUSSION 

In dynamic environments, humans and other animals often need to change their 

choice SAT while a decision is ongoing. Yet, very little is known about the 

computational mechanisms that allow these rapid changes of decision policy. In the 

present study, we addressed the hypothesis that human subjects can shift their SAT 

at specific stages of the deliberation process, by dynamically adjusting their accuracy 

criterion. Participants performed a modified version of the tokens task (Cisek et al., 

2009), where an increase or a decrease in penalty occurring halfway through the trial 

promoted rapid SAT shifts, either in the early or in the late decision stage. Our results 

reveal that subjects traded accuracy for speed specifically at times where the penalty 

was the lowest within a trial. Interestingly, these changes were accompanied by stage-

specific adjustments in accuracy criterion; in fact, those who decreased the most their 

criterion presented the highest gains in decision speed, but also the highest costs in 

terms of accuracy. 

Several studies have now revealed the flexibility with which humans can adapt 

their choice SAT at different time-scales, including from one context to another 

(Forstmann et al., 2008; Herz et al., 2016, 2017) and from one decision to another 

(Desender et al., 2019; Fischer et al., 2018; Purcell & Kiani, 2016). The current findings 

offer a unique extension of this work, by showing that the SAT can be modulated on 

an even shorter time-scale – i.e., over the course of a single decision. In PenaltyIncrease 

blocks, decisions were faster but less accurate in the first half of the trial (i.e., compared 

to the PenaltyConstant condition), while in PenaltyDecrease blocks, such SAT shifts occurred 

in the second half of the trial. The occurrence of a shift in the first half of the trial in 

PenaltyIncrease blocks indicates the operation of a proactive, anticipatory process, 

through which the prospect of a future rise in penalty determined the decision policy to 

adopt for early-stage decisions. As such, in the current task, subjects likely chose a 

policy for modifying their SAT before the trial had even started (or before the block of 

trials). Given that each block (and even each session) always involved the same type 

of penalty change, subjects could determine what decision policy they should adopt in 
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this specific setting and apply it during deliberation. Whether rapid shifts in SAT can 

occur reactively (e.g., following online, unpredictable cues) remains an open question, 

worthy of future investigation. 

Individuals’ accuracy criterion dropped over time in all block conditions, consistent 

with the idea of an urgency signal pushing subjects towards commitment as time 

elapses (Derosiere et al., 2019; Murphy et al., 2016; Thura et al., 2014). Moreover, the 

temporal dynamics of this drop depended on whether the penalty increased or 

decreased halfway through the decision process. In the PenaltyIncrease blocks, subjects 

lowered their accuracy criterion specifically in the early decision stage (i.e., relative to 

PenaltyConstant blocks) while in PenaltyDecrease blocks, they did so in the late decision 

stage. In fact, the adjustment of the accuracy criterion and of urgency was more 

pronounced in the early decision stage (i.e., in the PenaltyIncrease relative to the 

PenaltyConstant blocks), than in the late one (i.e., in the PenaltyDecrease relative to the 

PenaltyConstant blocks, where differences were marginally significant). This idea is 

substantiated by the finding that a polynomial model captured more variance of the 

changes in urgency when considering the PenaltyIncrease data (i.e., compared to a linear 

model), but not when considering the PenaltyDecrease data. Hence, participants seemed 

more effective at adjusting their level of urgency (and, relatedly, their accuracy 

criterion) for early- compared to late-stage decisions. One possible explanation for this 

is that urgency was inherently lower for early decisions than for late ones, leaving more 

room for volitional regulation. Alternatively, it may be the case that the incentive to 

adjust urgency was stronger in the early stage of PenaltyIncrease blocks than in the late 

stage of PenaltyDecrease ones. As such, because of the natural aversion of humans to 

risk (Weber et al., 2004; Zhang et al., 2014), the prospect of a future rise in penalty 

might have been more salient than the sudden drop in penalty, thus leading to stronger 

changes in urgency in the former block condition. 

In conclusion, the present study builds on former work on the computational 

mechanisms underlying the SAT policy. Consistent with past research, we show that 

the accuracy criterion progressively drops over time during the decision process, in 

line with an increased urge to commit as the time left to respond diminishes. Most 

importantly, we provide evidence that rapid shifts in SAT can occur over the course of 

an ongoing decision and that these changes are related to dynamic adjustments of the 

accuracy criterion and, relatedly, of urgency. Future work is needed to extend the 

current observations to situations involving reactive SAT shifts, which may emerge in 

response to online sensory cues. 
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