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ABSTRACT 
 
Endometrial mesenchymal-like stem cells (eMSCs) are adult stem cells contributing to 
endometrial regeneration. One set of perivascular markers (CD140b+CD146+) have been 
widely used to enrich eMSCs. Although eMSCs are easily accessible for regenerative 
medicine and have long been studied, their cellular heterogeneity and molecular program 
controlling their expansion and differentiation in vitro remains largely unclear. In this study, 
we applied 10X genomics single-cell RNA sequencing to eMSCs cultured in vitro after 
microbeading from 7 donors to investigate cellular heterogeneity in an unbiased manner. 
Corresponding clonogenic progenies of eMSCs after culture for 14 days were also sequenced 
to construct the in vitro differentiation trajectory of eMSCs. Transcriptomic expression based 
clustering revealed several subpopulations in eMSCs. Each subpopulation manifested distinct 
functional characteristics associated with immunomodulation, proliferation, extracellular 
matrix organization and cell differentiation. Pseudotime trajectory analysis on eMSCs and 
their differentiated progenies identified in vitro differentiation hierarchy of eMSCs. Further 
ligand-receptor pair analysis found that WNT signaling, NOTCH signaling, TGF-beta 
signaling and FGF signaling were important regulatory pathways for eMSC self-renewal and 
differentiation. By comparing eMSCs to Wharton’s Jelly MSCs and adipose-derived MSCs, 
we found these 3 kinds of MSCs expressed largely overlapping differentiation (CD) genes 
and highly variable genes. In summary, we reveal for the first time high molecular and 
cellular heterogeneity in cultured eMSCs, and identify the key signaling pathways that may 
be important for eMSC differentiation. 
 
INTRODUCTION 
 
The uterine cavity is lined by the endometrium, which is shed off and regenerates in each 
menstrual cycle. This remarkable physiological remodeling occurs about 400 times in a 
woman’s reproductive life. Adult stem cells are undifferentiated cells found throughout the 
body after development. They proliferate and differentiate to replenish dying cells and to 
regenerate damaged tissues.  In endometrium, stromal stem cells was firstly identified as 
clonogenic cells with multiple lineage differentiation potential [1]. Endometrial stromal stem 
cells exhibited properties similar to that of mesenchymal stem cells (MSCs) in other tissues 
in terms of clonogenicity, fibroblast-like morphology, surface markers phenotype and 
multipotency. Thus they are called endometrium mesenchymal-like stem cells (eMSCs).  
 
MSCs, including eMSCs, exhibit great differentiation potential and immunomodulation 
ability enabling them for cell therapeutic use. Among MSCs, eMSCs are the only one that 
can easily be obtained from women each month without use of analgesics. A woman can use 
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her own eMSCs for therapy when needed. Therefore, eMSCs have been tested as an 
alternative source for cell therapies. Transplantation of human eMSCs to mouse and primate 
models of Parkinson’s disease significantly increases the dopamine level when compared to 
sham transplanted controls [2, 3]. In addition, eMSCs have been also studied for regenerative 
medicine in other diseases including diabetes, cardiac diseases and cartilage injury [4].  
 
Lessons from clinical trials of MSCs show that differences in preparation of MSCs such as 
culture and expansion method affect treatment efficacy of MSCs [5]. For instance, bone 
marrow derived MSCs exhibit cellular heterogeneity during expansion in vitro [6], and MSCs 
from different clones exhibited substantial variation in differentiation potential [7]. Previous 
studies on eMSC assumed that eMSCs were a homogenous population. Our recent study 
shows the presence of cellular heterogeneity in eMSCs. Apart from inter-donor variation in 
clonogenic ability of eMSCs, a higher proliferative ability is found in eMSCs from 
endometrium at the menstrual phase than those from other phases of the cycle, suggesting the 
presence of a quiescent subpopulation and an activated subpopulation [8]. Thus, knowledge 
on the cellular heterogeneity of in vitro expanded eMSCs is urgently needed for 
standardization before applying the cells in clinical therapy. 
 
The recent development of single-cell RNA sequencing (scRNA-seq), which combines 
single-cell isolation techniques with RNA-seq, creates an opportunity to study the 
transcriptomes of individual cells enabling clear distinctions between subpopulations, and 
thorough assessment of gene transcripts in an unbiased manner [9]. In this study, we aim to 
characterize the gene expression in the CD140b+CD146+ eMSC population at single cell 
resolution. We identified several subpopulations of cultured eMSCs and characterized the 
molecular programs in these subpopulations. In vitro differentiation trajectory analysis 
revealed the developmental states as well as key signaling pathways controlling the 
differentiation process from eMSCs to differentiated progenies. Our study for the first time 
fills the knowledge gap on understanding the cellular heterogeneity of eMSCs and provides 
guidance for future standardization of eMSCs in in vitro expansion. 
 
RESULTS 
 
Overview of single-cell transcriptomic data 
 
Endometrial aspirates from the menstrual phase of three women and four full-thickness 
endometrium from the secretory phase of four women were used in this study (Table S1). 
After enzyme dispersion of the tissues, the CD140b+CD146+ cells were obtained from 
endometrial stromal cells by serial magnetic microbeading [8, 10]. They were subjected to 
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scRNA-seq on a 10X genomics platform. In addition, single cell-derived colonies from the 
eMSCs of one secretory sample were also subjected to scRNA-seq (Table S1). ScRNA-seq 
libraries for each sample were constructed independently (Table S1). 
 
After quality control of the raw sequencing tags, we obtained around 5x108 sequence reads 
for each sample (Figure S1B, Table S2), with 54.5-72.9% confidently and uniquely mapped 
to the human reference transcriptome GRCh38 (NCBI) (Table S2). In total, 29,438 cells 
were detected from the 7 samples with 1.29x105 mean reads, 2.9x104 mean unique molecular 
identifiers (UMIs) and 4,548 mean genes per cell (Figure S1B, Table S2). The variation 
observed in cell number might be due to differences in cell number loading and use of 
different reagent versions for single cell encapsulation and library preparation for samples 
(Figure S1B, Table S2). Despite differences in the number of cells per sample, there was 
little variation in the total number of genes detected per sample (Figure S1B, Table S2). 
These results suggested that the sequence depth in our data achieved approximately 
maximum total gene detection in the samples.  
 
Variation dominated by cell cycle and donor effect in eMSCs 
 
Based on the sequencing data, 7 eMSC samples were firstly aggregated with depth 
normalization and chemistry batch correction using the cellranger aggr pipeline. Median 
absolute deviation (MAD) quality control matrices were then applied to filter low quality 
cells and genes (Table S3). Finally, we got 20,646 cells expressing 13,406 genes from the 7 
eMSC samples for subsequent analysis (Table S3). Typical marker expression were checked 
in this cell population and the results showed high expression of stromal cell markers VIM 
and S100A4 in cells from each sample, absence of endothelial cell marker CD34, and little 
expression of epithelial cell marker EPCAM, immune cell markers PTPRC (CD45) and CD14 
(Figure 1A), confirming high purity of the isolated stromal cells with minimal contamination 
by other cells. Further inspection showed high expression of MSC markers ITGB1 (CD29), 
CD44, NT5E (CD73), THY1 (CD90) and ENG (CD105) in each sample validating the MSC 
identity of the studied population (Figure 1A). Expression of these markers varied across the 
samples indicating donor heterogeneity (Figure 1A). 
 
To further identify the major variance in the eMSC population at single cell level, we 
performed cell cycle classification and principal component analysis (PCA). Cell cycle 
phases (G1, G2M, S) were assigned to each cell using the Seurat package [11, 12]. The cell 
cycle phase distribution in each sample is shown in Figure 1B. At sample level, one 
menstrual phase sample (M1) and one secretory phase sample (S3) manifested 
quiescent/senescence characteristic with a high proportion of cells at the G1 phase, whereas 
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the remaining samples demonstrated a high proportion of cells in the proliferative phase 
(Figure 1B). From overview of all single cells, PCA results based on normalized gene 
expression matrix showed that variance of the first 3 principal components were mainly 
caused by cell cycle effect (Figure 1C) and batch/donor effect (Figure 1D), which were 
consistently observed in other single cell studies on MSCs [13-15]. The results indicated that 
unwanted major source of variation should be removed before investigation on the molecular 
heterogeneity of eMSCs.  
 
Identification and biological classification of distinct subpopulations in eMSCs 
 
To remove the cell cycle effect, we scaled the data and regressed out the cell cycle effect by 
linear regression method implemented in the Seurat package [11, 12]. The fastMNN [16] was 
used to remove the batch effect. After regression and correction, nonlinear dimensional 
reduction by Uniform Manifold Approximation and Projection (UMAP) of the data showed 
that both the cell cycle and the batch/donor effect were largely mitigated (Figure S2A, S2B).  
 
After removal of the unwanted source of variation, candidate population clustering by a 
shared nearest neighbor (SNN) graph-based approach revealed 8 subpopulations (SP1-SP8) 
for all the 20,646 cells (Figure S2C). Cell distribution in each subpopulation is shown in 
Table S4. Quality control post-clustering showed that cells in SP7 were mostly from sample 
S2, cell number in SP8 was less than 100, and UMI count (median = 877) and gene number 
(median = 595) of SP6 were extremely low when compared to the remaining subpopulations, 
suggesting unreliability of these three subpopulations (Figure S2C, Table S4). Further 
analyses were made on the remaining 5 high quality candidate subpopulations SP1-SP5 
(Figure 2A, Table S4). The composition of SPs for each sample was shown in Figure S2D. 
No menstrual phase-specific subpopulations were present. Pearson’s correlation analysis on 
average gene expression of the subpopulations showed that SP3 was a distinct subpopulation, 
while SP1 and SP4 were highly correlated (Figure 2B). The markers of MSC, stromal cells 
and pericytes were expressed at a relatively comparable level in all candidate subpopulations 
except SP2 which exhibited a relatively low expression of THY1 (CD90) and S100A4 (Figure 
S3A). A comprehensive analysis on individual cells was performed to assess the self-renewal, 
multiple lineage differentiation and immunomodulation ability for each subpopulation by 
calculating the mean expression of markers in each category as defined in Table S5, which 
were retrieved from STEMCELLTM TECHNOLOGIES website 
(https://stemcell.shinyapps.io/qpcr_tool/) and an online report [13]. The results demonstrated 
that all subpopulations expressed a high level of MSC markers. SP1 and SP3 expressed 
stemness markers (Figure S3B). Moreover, all subpopulations possessed a high potential to 
differentiate into chondrogenic, osteogenic and neurogenic lineages, but limited adipogenic 
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lineage differentiation capacity (Figure S3B). Expression of immunosuppression markers 
was highest in SP5 and minimal in SP1 and SP4 (Figure S3B, Table S5).  
 
To further investigate the biological processes underlying the transcriptional classification of 
the cell subpopulations, we identified the upregulated genes (UGs) in each subpopulation by 
comparing it to the remaining clusters with the Wilcoxon Rank Sum test. The UGs with an 
average log2 fold-change greater than 0.25 and a Bonferroni-corrected P-value threshold (P < 
3.73x10-6) were subjected to downstream analysis. In total, we identified 46, 100, 206, 183 
and 100 UGs for SP1, SP2, SP3, SP4 and SP5, respectively (Table S6). Interestingly, typical 
proliferative markers HMGB2 and MKI67 were highly expressed in SP4 (Figure 2C), 
implying a high proliferative potential of this population. Consistently, cell cycle analysis 
showed a low percentage of G1 phase cells (16%) in SP4 (Figure 2D). SP1, a population 
correlated to SP4, also expressed high level of CCNB1, a gene essential for control of cell 
cycle at the G2/M (mitosis) transition (Figure 2C). In silico gene ontology (GO) enrichment 
analysis of UGs in SP1 and SP4 identified pathways associated with regulation of mitosis/cell 
cycle and DNA replication (Figure 3A, 3D, Table S7). Additionally, SP1 contained less G1 
cells when compared to SP2, SP3 and SP5 (Figure 2D).  
 
Unlike SP1 and SP4, SP3 and SP5 showed medium proliferation ability (Figure 2C, 2D) but 
high immunomodulation capacity. Among the UGs in SP5, the top ones were all 
inflammatory cytokines such as CCL2, CSF3, IL6, and different CXCLs (Figure 2C, Table 
S6). GO analysis on the UGs revealed that the SP5 cells manifested biological functions 
relating to immunomodulation like regulation of T cell proliferation and B cell differentiation 
(Figure 3E, Table S7). We speculated that the SP5 cells could interact with the immune 
system, thus could be a promising population for therapeutic use. GO analysis of SP3 also 
showed superior immunomodulation activities including regulation of inflammatory 
responses and complement activation (Figure 3C, Table S7). We noted that SP3 highly 
expressed the gene MGP (Figure 2C), an inhibitor of bone morphogenic proteins (BMPs) 
signaling known to immunomodulate functions of a subpopulation of mouse MSCs [17]. 
Intriguingly, the UGs of SP3 are enriched in biological processes including tissue 
morphogenesis, extracellular matrix (ECM) organization, and cell differentiation (Figure 3C, 
Table S7). SP2 possessed the highest proportion of G1 cells (Figure 2D), expressed genes 
related to responses to cellular unfolded protein or endoplasmic reticulum stress (ERS) and 
underwent activities involving cellular response to glucose starvation and oxidative stress 
(Figure 3B, Table S7), implying discounted proliferation ability and high mitochondrial 
activity in this subpopulation.  
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Next the linkage of the identified subpopulations with primary endometrial cell lineage was 
investigated. We collected and analyzed single cell data from a primary endometrial sample. 
Unsupervised clustering analysis revealed stromal cells, epithelial cells, endothelial cells, 
macrophages and other subpopulations in the primary endometrium (Figure S4A). 
MetaNeighbor analysis linked SP1 and SP4 to the epithelial cell lineage, SP2 and SP3 to the 
stromal cell lineage, and SP5 to the macrophages (Figure S4B). The results not only 
supported the superior immunomodulation ability of SP5, but also revealed the differentiation 
potential of SP2 and SP3 into stromal cells, and the trans-differentiation potential of SP1 and 
SP4 into epithelial cells. 
 
In summary, we identified 5 subpopulations in cultured eMSCs unbiasedly, and highlighted 
their unique properties in terms of proliferation, immunomodulation, mitochondrial activity, 
cell differentiation and extracellular matrix organization. 
 
 
Construction of in vitro differentiation trajectory for eMSC 
 
Similar to MSCs, eMSCs also show a finite proliferation period followed by senescence or 
differentiation. We studied the differentiation of eMSCs by culturing the sample S3 for an 
additional 14-day and performed scRNA-seq on their clonogenic progenies (S3C) (Table S1, 
Figure S1B). In this paired samples, the expressions of all MSC markers (ITGB1, CD44, 
NT5E, THY1, ENG) in cells from S3C were lower than that from S3 (Figure S5A). Notably, 
the eMSC isolation markers (CD140b, CD146) used in the study were dramatically decreased 
in the S3C cells when compared to their parental S3 cells (Figure S5A), suggesting the loss 
of eMSC identity in S3C.  
 
After quality control processing as described above (Table S8), 3,928 cells and 13,967 genes 
were obtained from the 2 samples for analysis. The number of genes and the number of total 
UMIs per cell were comparable between the two samples (Figure S5B). Cell cycle phase 
distribution in each sample was shown in Figure S5C. Similar cell cycle effect and donor 
effect existed in the samples (Figure S5D, S5E), and the same strategy was applied to 
remove the unwanted source of variation (Figure S5F). There was little overlap between the 
S3 and the S3C cells because majority of the S3C cells had lost their expression of eMSC 
markers (Figure S5G).  
 
Clustering of the corrected dataset revealed 7 primary clusters (Figure 4A, Table S9). Post-
clustering quality control abandoned 2 clusters with low gene numbers and UMI counts 
(Figure S6A). The Pearson’s correlation on average gene expression in the remaining 5 
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clusters is shown in Figure 4B. We compared the clusters from S3 and S3C to the 
subpopulations of the 7 eMSCs samples described above using MetaNeighbor [18].  The 
results revealed that cluster 3 was similar to SP3 with an AUROC score 0.85, while cluster 4 
was similar to SP2 with an AUROC score 0.86. Marker expression analysis showed that 
cluster 0, 2, 4 expressed lower levels of MSC markers ITGB1, NT5E and ENG, and pericyte 
markers PDGFRB, MCAM and ACTA2 when compared to cluster 1 and 3 (Figure S6B). To 
construct the in vitro lineage differentiation of eMSCs, we performed cell trajectory and 
pseudotime inference analysis on clusters 0-4 using the Monocle 2 [19]. The results revealed 
that majority of the cells from cluster 3 and a proportion of cells from cluster 1 were located 
at the root, while majority of the cells from cluster 0 and 2 were distinctly at the terminations 
representing more differentiated cells (Figure 4C-4E). Cells along the trajectory were mostly 
from cluster 1 and 4, indicating their roles as intermediates (Figure 4C-4E).  
 
To quantitatively estimate the proportion of cells with potential to transit from one cluster to 
another, we utilized scGPS (nbootstrap = 100) (https://github.com/IMB-Computational-
Genomics-Lab/scGPS) to perform the transitional analysis. The result showed that cells in 
cluster 3 possessed great potential to progress to cells in cluster 4 and 1; cluster 4 had the 
potential to transit to cluster 0 and 2; and cluster 1 could also transit to cluster 2 (Figure 4F, 
Table S10). In addition, possibilities of inter-conversion of cells between cluster 3 and 1 and 
between cluster 0 and 2 were noted (Figure 4F, Table S10).   
 
The findings from Pearson’s correlation, pseudotime trajectory inference and scGPS 
transitional potential evaluation indicated that eMSCs in cluster 3 developed into 
differentiated eMSCs in cluster 0 and 2 through intermediates in cluster 1 and cluster 4 
during in vitro differentiation, 
 
Molecular signatures involved in in vitro differentiation of eMSC  
 
To systematically study interactions between different subpopulations identified during in 
vitro differentiation, we applied the CellPhoneDB [20] to identify significant subpopulation-
specific ligand-receptor pairs (Table S11) and found wide existence of ligand-receptor 
interactions involving FGF signaling, WNT-signaling, NOTCH signaling and TGF-beta 
signaling among the cell clusters (Figure 5A, Table S11). For example, WNT5A was highly 
expressed in cluster 3 and 1, and could interact with the other clusters through PTPRK, FZD2 
and FZD6 (Figure 5A). In addition, cluster 3 and 1 also expressed NOTCH3, which could 
interact with DLL3 expressed in cluster 0-2. TGFB1 was expressed highly in clusters 0 and 2 
and could act through its receptor TGFB receptor 1 and 2 expressed in other clusters (Figure 
5A). Interestingly, TGFB1 induces differentiation of human bone marrow-derived MSCs [21]. 
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We further checked the dynamic expression of molecules of WNT and NOTCH signalings 
during pseudotime development. Decreasing expression of FN1, NOTCH2, NOTCH3, 
WNT5A, FZD3, FZD4, and the increasing expression of DLL3 and TGFB1 were observed 
with differentiation (Figure 5B), supporting their involvement in eMSC differentiation. More 
interaction pairs are summarized in Table S11. 
 
Transcriptomic comparison of eMSCs to MSCs of other sources 
 
Endometrium is an easy-to-access source for MSCs. Previous studies demonstrated 
heterogeneity of MSCs from other sources [13, 15, 22, 23]. Here for the first time, we 
compared the transcriptomes among eMSCs, adipose-derived MSCs (ADMSCs), and 
umbilical cord-derived (Wharton’s Jelly) MSCs (WJMSCs) at single cell level.  
 
We firstly identified the top 50 cluster of differentiation (CD) genes (ranked by average 
expression) expressed in the whole population of 7 eMSCs samples (Figure 6A). Although 
ITGB1, CD44, NT5E, THY1 and ENG were widely accepted to be used as markers for MSC, 
their expression were not the highest in eMSCs (Figure 6A). Thirty-seven of the CD genes 
shared with the top 50 CD genes for ADMSCs and WJMSCs retrieved from a pre-published 
study [13] (Figure 6B, Table S12). The correlation coefficient is 0.72 between eMSCs and 
ADMSCs, 0.57 between eMSCs and WJMSCs, and 0.44 between ADMSCs and WJMSCs 
according to the Spearman’s ranking correlation analysis based on the top 50 CD genes. We 
used Seurat to identify the highly variable genes (HVG), which represent the molecular 
heterogeneity within a studied cell population. We could see that majority of the HVGs 
(544/770) of WJMSCs were present in HGVs of eMSCs (Figure 6C). High overlap of HVGs 
from WJMSCs and ADMSCs have been reported [13]. The overlapping HVGs of different 
MSCs indicated their critical roles in functioning of MSCs; meanwhile, the unshared HGVs 
might serve as regulators which mark the differences between different types of MSCs. 
 
Several surface markers have been used to isolate subpopulations of MSCs. For example, 
LEPR, NES, and CSPG4 (NG2) are marker for the subtypes of bone marrow MSCs (BMSCs) 
[24-27] while PDGFRA, CD24, DPP4, and ICAM1 are markers for subpopulations of 
ADMSCs [23, 28, 29]. These markers had different expression patterns in eMSC 
subpopulations (SP1-SP5) identified from our 7 eMSC samples (Figure 6D, Table S13). 
High percentage of eMSCs expressed BMSC subtype marker NES (73%) and ADMSC 
subtype marker PDGFRA (69%) (Figure 6D, Table S13). Although less (34%) eMSCs 
expressed the BMSC subtype marker CSPG4, it is expressed in all eMSC subpopulations 
except SP2 (Figure 6D, Table S13). ADMSC subtype markers CD24, DPP4 were rarely 
expressed in eMSCs (Figure 6D, Table S13). Interestingly, a BMSC subtype marker LEPR 
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was highly expressed only in SP3, while an adipose MSC subtype marker ICAM1 were 
expressed only in SP3 and SP5 (Figure 6D, Table S13). The expression of another eMSC 
marker SUSD2 was negligible in our eMSCs, suggesting little overlap between 
CD140b+CD146+ eMSCs and SUSD2+ eMSCs (Figure 6D, Table S13) consistent with a 
previous report [30]. The functional implications of different expression patterns of MSC 
subtype markers in CD140b+CD146+ eMSCs subpopulations remain to be determined.  
 
 
DISCUSSION 
 
Endometrial MSCs play critical roles in the cyclic regeneration of human endometrium [31]. 
Two sets of markers can enrich for eMSCs [30, 32], and FACS analysis showed little overlap 
between these two eMSC populations [30], suggesting heterogeneity in the whole eMSC 
population. Heterogeneity was also observed within cultured eMSCs in terms of proliferative 
potential [32, 33]. Although the heterogeneity of eMSCs is widely recognized, little has been 
done to identify and characterize their subpopulations. To address this, we generated and 
analyzed a large single-cell transcriptomic dataset from cultured CD140b+CD146+ eMSCs of 
7 donors. Additionally, scRNA-seq data of differentiated eMSC progenies were also analyzed 
to study the in vitro differentiation trajectory of eMSCs.  
 
Utilizing high quality single cell data from 20,646 cells collectively expressing 13,406 genes, 
we revealed that the major sources of variation in our eMSC population were from cell cycle 
effect and donor/batch effect, consistent with other studies on MSCs. Cell cycle phase 
distribution differences were observed among different donors. Whether the differences were 
inherent across different individuals or caused by in vitro culture requires further 
investigation.  
 
We identified 5 subpopulations (SP1-SP5) of CD140b+CD146+ eMSCs with different 
potential in proliferation, immunomodulation, ECM organization and mitochondrial activity, 
and differentiation. An outstanding population, SP5, had superior immunomodulation 
abilities expressing a lot of cytokines including CXCL1, CXCL3, CXCL6, CXCL8, CCL2, 
CSF2, CSF3, IL6, IL1B, related to immunosuppression and angiogenesis [34-37]. Therefore, 
this subpopulation could be a promising cell source for therapeutic use.  
 
The subpopulation SP3 also showed immunomodulation activities such as complement 
activation. Interestingly, SP3 highly expressed MGP, which was also highly expressed in a 
subpopulation of mouse bone marrow MSCs [38]. MGP is an immunomodulator suppressing 
activated T cells in vitro [17]. The function of MGP in eMSCs required further investigation. 
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In addition to immunomodulation, SP3 was also related to other functions including ECM 
organization, tissue morphogenesis, and development. SP3 had a high stemness score and the 
potential to differentiate into stromal cells. When compared to the remaining subpopulations, 
SP3 contained most primary eMSC-specific genes identified in Barragan’s (data not shown) 
work [33]. Taken together, SP3 is a subpopulation possessing primary eMSC properties, and 
is the most undifferentiated cell subpopulation among the cultured CD140b+CD146+ eMSCs. 
However, whether SP3 exists in primary endometrium requires further validation. 
 
SP1 and SP4 are two related subpopulations with high proliferative capacity. They were 
identified as two independent subpopulations because SP4 expressed higher levels of 
proliferative markers (MKI67, TOP2A, HMGB2) than SP1. Intriguingly, the SP4 cells had the 
highest proliferation capacity and were enriched in the menstrual phase samples (chi-squared 
test, p < 0.0001). We have demonstrated that eMSCs from the menstrual phase have a higher 
proliferation ability than those from the secretory phase [8], and may be attributed to the 
enrichment of the SP4 cells in the menstrual phase. In addition, SP1 and SP4 showed a trans-
differentiation potential to the epithelial cell lineage (Figure S4B).  
 
SP2 showed limited proliferation but were associated with high unfolded protein responses 
and high metabolic activities. Relatively higher proportion of mitochondrial reads was 
observed in SP2 than in other subpopulations (Figure S2C, Table S4). High mitochondrial 
activities are observed in cancer cells [39]. Additionally, mitochondrial metabolism is a key 
regulatory mechanism in stem cell fate decision [40]. Samual and coworkers reported that 
mitochondrial metabolism is higher in endovascular progenitor cells than that in 
differentiated endothelial cells [41]. On the other hand, higher mitochondrial reads in 
scRNA-seq might be due to presence of cells of low quality resulting from damages during 
cell dispersion. MetaNeighbor analysis showed that SP2 was correlated with the 
differentiated cluster along the differentiation trajectory, suggesting that SP2 was likely to be 
a subpopulation undergoing senescence/dying rather than a progenitor subpopulation. 
However, further investigation on SP2 is still required to distinguish these two possibilities. 
 
Cell distribution across SPs (Figure S2D, Table S4) showed that no menstrual cycle stage-
specific subpopulation was identified. However, different proportion of SPs in each sample 
was observed in this study (Figure S2D). Specifically, menstrual phase samples M1, M2 and 
secretory sample S2 contained more SP4 cells, while menstrual sample M1 and secretory 
sample S3 contained more SP3 cells when compared to the remaining samples. This 
observation suggested that our samples individually undergo clonal selection and each 
sample in our study might be on different stages of clonal selection, a phenomenon reported 
in MSCs in a previous study [42].  
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To obtain large amount MSCs for clinical use requires in vitro expansion because of limited 
supply of primary MSCs. However, in vitro expansion has large inter-sample variations and 
causes functional loss of the cells [43-46]. Thus, understanding of in vitro differentiation is 
critical. In this study, we investigated the in vitro differentiation of eMSCs at single-cell level. 
Through clustering and trajectory analysis, we for the first time demonstrated the 
differentiation path of eMSCs: different clusters of cells were differentiated from the parental 
eMSCs through less differentiated intermediates. Further ligand-receptor analysis identified 
important signaling pathways regulating the differentiation. For example, the WNT signaling 
pathway was identified in the undifferentiated/less differentiated clusters. Recently, we 
demonstrate that WNT5A is a niche factor that promotes self-renewal of eMSCs through 
FZD4 and canonical WNT-signaling [10]. Here other WNT receptors like FZD3 were 
identified, highlighting the importance of dissecting the heterogeneity of eMSCs. In addition 
to WNT signaling pathway, NOTCH signaling, TGF-beta signaling and FGF signaling 
pathways were also identified. They are all important pathways regulating MSC self-renewal 
and differentiation [47-49]. The interactive molecules of the pathways among clusters 
identified here could guide future studies investigating the regulatory mechanisms of eMSC 
differentiation.  
 
Several studies compared transcriptomes between different types of MSCs [13, 50, 51]. We 
compared for the first time the mRNA profile of eMSCs to other types of MSCs at single-cell 
level. MSCs are defined by a combination of surface markers [52]. Thus, we firstly compared 
the top 50 expressed CD genes among eMSCs, ADMSCs and WJMSCs, since they are all 
cultured primary MSCs and processed in a 10X genomics platform. Although a majority of 
the top expressed CD genes were shared among them, the expression ranking was different. 
Interestingly, the typical CD genes that define MSCs were not expressed highest in all the 
three groups, indicating that a new marker set for identifying MSCs could be considered. 
Similarities and differences in HVGs were also observed among different types of MSCs. We 
found that the eMSC subpopulations relating to proliferation and immunomodulation were 
also found in the WJMSCs [13]. However, the subpopulation with high mitochondrial 
activity (SP2) was unique to eMSCs.  
 
In the past years, MSCs marked by specific markers were studied. Through investigation on 
the expression of bone marrow MSC subtype markers LEPR, NES, CSPG4 (NG2) [24-27], 
adipose MSC subtype markers PDGFRA, CD24, DPP4, ICAM1 [23, 28, 29] and eMSC 
subtype marker SUSD2 [30], we found that these markers exhibited different expression 
patterns among the CD140b+CD146+ subpopulations. Some were widely expressed in each 
subpopulation (PDGFRA, NES, and CSPG4); some were expressed at a minimal level (CD24, 
DPP4, and SUSD2); while some of them expressed only in distinct subpopulations (LERP 
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and ICAM1). The results further indicated the differences and similarities among different 
types of MSCs.  
 
Here we report the first single cell sequencing study on eMSCs based on a large offset of 
cells. In addition, cells were obtained from several donors at different menstrual phases, 
ensuring the comprehensiveness. Undoubtedly, this large cell atlas of human cultured 
CD140b+CD146+ eMSCs provides an essential resource for a better understanding into the 
nature of eMSCs and guidance for the production of homogenous eMSCs for cell therapy. In 
the future, more work should be done to determine the generalizability of the present 
observations by including more samples in the analyses of eMSC differentiation and 
expanding to other eMSC population. 
 
METHODS 
 
Human tissues 
Ethical approval was obtained from the Institutional Review Board of The University of 
Hong Kong/Hospital Authority Hong Kong West Cluster (IRB reference number UW15-128). 
Each woman signed a written informed consent after fully counselled. Menstrual phase 
samples were collected by endometrial aspiration from four women with regular menstrual 
cycles (median age 32; range 31-40 years) attending the infertility clinic on day 2-3 of their 
menstrual cycle.  Full thickness endometrial samples were collected from women with 
regular menstrual cycles (median age: 50; range: 49-52 years) who underwent total 
abdominal hysterectomy for benign non-endometrial pathologies. They had not taken 
hormonal therapy in the past three months before the surgery. The endometrial samples (n = 
4) were found to be at the secretory phase of the menstrual cycle assessed by experienced 
pathologists based on histology of endometrial sections. 
 
Isolation of endometrial cells 
Endometrial tissues were minced into 1 mm3 pieces and dissociated in phosphate-buffered 
saline (PBS) containing collagenase type III (0.3 mg/ml, Worthington Biochemical 
Corporation, Freehold, NJ, USA) and deoxyribonuclease type I (40 μg/ml, Worthington 
Biochemical Corporation) in a shaking water bath for 60 minutes at 37oC  [53]. After two 
rounds of digestion, the dispersed cells were filtered through 40μm sieves (BD Bioscience, 
San Jose, CA, USA), loaded onto Ficoll-Paque (GE Healthcare, Uppsala, Sweden) for 
removal of red blood cells, cell debris and cell clumps by centrifugation. Anti-CD45 antibody 
coated Dynabeads (Invitrogen, Waltham, MA, USA) were used to eliminate leukocytes. 
Stromal cells were negatively selected using microbeads coated with antibody against 
epithelial cell marker CD368 (EpCAM) (Miltenyi Biotech, Bergisch Gladbach, Germany). 
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Freshly purified stromal cells were plated onto 100 mm dishes coated with fibronectin (1 
mg/ml, Invitrogen) containing growth medium containing 10% FBS (ThermoFisher 
Scientific, Waltham, MA, USA), 1% penicillin (ThermoFisher Scientific) and 1% L-
glutamine (ThermoFisher Scientific) in DMEM/F12 (Sigma-Aldrich, St Louis, MA, USA). 
The stromal cells were expanded in culture for 7–14 days in a humidified carbon dioxide 
incubator at 37oC. The culture medium was changed every 7 days.  
 
Magnetic bead selection of endometrial mesenchymal stem-like cells 
Isolation of eMSCs (CD140b+CD146+ cells) was conducted with two separate positive 
magnetic bead selections [8]. Stromal cells were incubated with Phycoerythrin (PE)-
conjugated anti-CD140b antibody at 4oC for 45 minutes. The cells were then incubated with 
anti-mouse IgG1 magnetic microbeads (Miltenyi Biotech) at 4oC for 15 minutes. The 
CD140b+ cells were collected using the Miltenyi columns with a magnetic field, and cultured 
for 7 to 10 days in growth medium to allow degradation of the microbeads during cell 
expansion. The CD140b+ cells were then trypsinized and incubated with anti-CD146 
microbeads (Miltenyi Biotech) at 4oC for 15 minutes. The CD140b+CD146+ cells were 
collected and used for single-cell RNA sequencing and clonogenic culture. For clonogenic 
assay, 500 CD140b+CD146+ cells were seeded onto fibronectin coated 10 cm plates and 
cultured for 14 days.  
 
Single-cell RNA sequencing 
Single-cell RNA sequencing (scRNA-seq) was performed at the Genomics Core, Centre for 
PanorOmic Sciences (CPOS), The University of Hong Kong. Single cell encapsulation and 
cDNA libraries were prepared by Chromium™ Single Cell 3’ Reagent Kits v2/v3 and 
Chromium™ Single Cell A/B Chip Kit. Libraries were sequenced on an Illumina NovaSeq 
6000 instrument using paired-end 151 bp. 
 
Mapping of sequencing reads to human transcriptomes and original cells 
High quality sequencing reads for each sample were separately mapped to the human 
reference genome and transcriptome (GRCh38-3.0.0) using the STAR aligner [54] in the 10X 
Genomics cellranger pipeline (v3.0.2). Aligned reads were filtered for valid cell barcodes and 
unique molecular identifier (UMI) during cellranger count process. Gene expression matrix 
for all samples was generated after between-sample depth normalization using the cellranger 
aggr.  
 
Preprocessing of scRNA-seq data 
The aggregated single-cell gene expression data was input for the Seurat package [11, 12]. 
Expression levels for each transcript were determined using the number of UMIs assigned to 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 4, 2020. ; https://doi.org/10.1101/2020.04.03.004523doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.03.004523


the transcript. Quality control and filtering steps were performed to remove outlier cells and 
genes. Cells were discarded if their library size or number of expressed genes, or percentage 
of mitochondrial reads exceeded the 3x Median Absolute Deviation (MAD). Genes were 
removed if they were expressed in less than 1% of total cells. In addition, mitochondrial 
genes and ribosomal genes were also excluded. 
 
Cell cycle phase classification and cell cycle effect removal 
To classify the cell cycle phase of each cell, we firstly assign a score to each cell based on its 
expression of G2/M and S phase markers [55] using the CellCycleScoring function in Seurat 
package. Cells were predicated to the G2/M or S phase based on their expression score, while 
cells expressing neither were likely not cycling and were assigned to the G1 phase. To 
remove the cell cycle effect, the S scores and G2/M scores were used to regress out cell cycle 
effect. 
 
Defining highly variable genes 
To define highly variable genes (HVGs), we firstly normalized the data using the Seurat 
function NormalizeData with method ‘logNormalize’. We then applied the method ‘vst’ of 
Seurat function FindVariableGenes to identify the top 3000 HVGs for subsequent analysis. 
 
Dimensionality reduction 
Dimensionality reduction was performed after batch correction. We first used the 
FindVariableFunction of Seurat package to select the top 3000 variable genes. Effects of cell 
cycle, gene number, total UMIs and percentage of mitochondrial reads were then regressed 
out when scaling the data. Next, principal component analysis (PCA) was performed to 
reduce the data to the top 50 PCA components.  
 
Batch correction 
Fast mutual nearest neighbors (fastMNN) [16] correction was performed to remove batch 
effect among the individuals. Briefly, output PC matrix were input to the fastMNN function 
implemented in the Seurat package. The data slot ‘mnn’, which contained the corrected 
matrix were used for downstream clustering analysis. 
 
Clustering 
We conducted a graph-based clustering approach. First, a K-nearest neighbor (KNN) graph 
was constructed based on the Euclidean distance in mnn space, with refined edge weights 
between any two cells based on Jaccard similarity using the FindNeighbors function of the 
Seurat package. Next, the Louvain algorithm was applied to cluster the cells using the 
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FindClusters function of the Seurat package. We visualized the clusters on a 2D map 
produced with t-distributed stochastic neighbour embedding (t-SNE) or UMAP. 
 
Differential expression of gene signatures 
For each cluster/subpopulation, we used the Wilcoxon Rank-Sum Test to find gene that had 
significantly different expression when compared to the remaining clusters using the 
FindAllMarkers function in the Seurat package. Only positive markers were considered. 
Genes with log fold change larger than 0.25 and Bonferroni correction p values less than 
3.73xe-6 were retained and used for further analysis. 
 
Correlation analysis 
We quantified the correlation of single-cell clusters based on average gene expression and 
ankings of common CD genes among eMSCs, ADMSCs and WJMSCs using the cor (method 
pearson) function in R (3.6.0).  
 
MetaNeighbor analysis 
MetaNeighbor analysis was performed using the the R function MetaNeighbor with default 
settings [18]. The AUROC (Area under the Receiver Operating Characteristic) scores 
produced by the MetaNeighbor analysis indicate the degree of correlation between cell 
groups. An AUROC score of 0.5 means that the probability of correct assignment of a cell’ 
identity in a binary classification is the same as random guessing. 
 
Cell trajectory and pseudotime analysis 
For pseudotime analysis, we used the Monocle 2 to order cells across the subpopulations 
based on the HVGs that are used for clustering. The scGPS was used to calculate the 
percentage of transitional cells between different subpopulations. The top 200 significant 
differentially expressed genes in each subpopulation identified by the Findmarkers function 
of the scGPS package were input to scGPS for transitional prediction analysis. 
 
Cell-cell communication analysis 
To systematically analyze the cell-cell communication molecules between different 
subpopulations in our single-cell data, we performed the CellPhoneDB (a python package) 
analysis [20]. Briefly, a pairwise comparison between all subpopulations was conducted with 
1000 permutations. Significant ligand-receptor interaction pairs were generated and relevant 
ones were manually selected for presentation. 
 
Gene ontology and pathway enrichment analysis 
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The significant expressed genes in each subpopulation or group were subjected to gene 
ontology analysis (http://geneontology.org/) for overrepresentation enrichment test by the 
PANTHER TM. Significant terms (FDR < 0.05) were selected out. 
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FIGURE TITLES AND LEGENDS 
Figure 1. Overview of single-cell RNA sequencing 
(A) Violin plots for expression of MSC markers, stromal cell markers, epithelial cell marker, 
immune cell markers in 7 eMSC samples.  
(B) Phases of cell cycle distribution in each sample. 
(C) PCA plot on the first two principal components showing the separation of cells by cell 
cycle phase. 
(D) PCA plot on the first and third principal components showing the separation of cells by 
donor/batch. 
 
Figure 2. Identification of subpopulations in eMSCs 
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(A) A t-SNE plot for 20,646 cells colored by subpopulation assignment. In total, 5 
subpopulations were identified. 
(B) Pearson’s correlation between the average gene expression profiles of 5 subpopulations. 
(C) Violin plots for the expression of top differentially expressed genes (DEGs) in different 
subpopulations including HMGB2 and MKI67  in SP4, CCNB1 in SP1, MGP, SOX4, and 
MMP11 in SP3, and CCL2, CSF3 and IL6 in SP5.  
(D) Phases of cell cycle distribution in each subpopulations.   
 
Figure 3. Gene ontology analysis of differentially expressed genes in each subpopulation 
(A-E) Top significant enriched biological processes from PANTHER gene ontology analysis 
based on UGs identified in (A) SP1, (B) SP2, (C) SP3, (D) SP4, and (E) SP5. 
 
Figure 4. Clustering and trajectory analysis of single cells from eMSC sample S3 and its 
paired colonogenic sample S3C 
(A) A t-SNE plot for 3,928 cells colored by cluster assignment. In total, 7 primary clusters 
were identified. 
(B) Pearson’s correlation between the average gene expression profiles of 5 clusters of high 
quality. 
(C-E) Pseudotime analysis of single cells using Monocle 2 identified cells on the tree colored 
by (C) cluster assignment, (D) pseudotime and (E) state. HVGs used for clustering were used 
to construct the pseudotime tree. The cells on the right side (dark blue) of the pseudotime tree 
are less differentiated, while those on the left side (light blue) are more differentiated. 
Overlaying cluster information (C) shows cells from cluster 3 are eMSCs and cells from 
cluster 0 and 2 are differentiated eMSCs. Cell states (E) are cells on the same branch with 
similar pseudotime values. Cell distribution across clusters (columns) in each state (rows) 
were listed. 
(F) Transitional potential between different clusters identified from scGPS analysis. The 
weight of the arrows is relative to the percentage summarized in Table S10 (thicker indicates 
higher percentage). 
 
Figure 5. Multiple regulatory pathways identified during in vitro eMSC differentiation. 
(A) Overview of selected ligand-receptor interactions among clusters representing eMSCs 
and differentiated eMSCs. P values indicated by circle size, scale on right. The means of the 
average expression level of interacting molecules are indicated by color. In the interaction 
pair, the former molecule expressed in the first subpopulation while the latter molecule 
expressed in the second subpopulation (x-axis, e.g 0|1). 
(B) Dynamic expression of genes from  different signaling pathways during pseudotime. 
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Figure 6. Comparing eMSCs to reported MSCs at single-cell level. 
(A) Boxplot showing the top 50 CD genes ranked by average normalized expression in the 
whole eMSCs population. 
(B) Venn diagram showing the overlap relationship among top 50 CD genes for cultured 
eMSCs, ADMSCs and WJMSCs. 
(C) Venn diagram showing the top 2000 highly variable genes (HVGs) in eMSCs overlap 
with published HVGs identified for WJMSC. Majority of HVGs in WJMSC were present in 
that of eMSCs. 
(D) Violin plots showing expression of reported MSC subpopulation markers in 
subpopulations identified in eMSCs. Percentage represented the ratio of total positive cells 
expressing that marker with UMI greater than 0 among total cells of eMSCs. 
 
SUPPLEMENTARY INFORMATION 
Supplementary Information includes thirteen tables and six figures. 
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