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Abstract

Genomic epidemiology is a tool for tracing transmission of pathogens based on
whole-genome sequencing. We introduce the mGEMS pipeline for genomic
epidemiology with plate sweeps representing mixed samples of a target pathogen,
skipping the colony pick step. The pipeline includes the novel mGEMS read binner
for probabilistic assignments of sequencing reads, and the scalable pseudoaligner
Themisto. We demonstrate the effectiveness of our approach using closely related
samples in a nosocomial setting, obtaining results that are comparable to those
based on colony picks. Our results lend firm support to more widespread
consideration of genomic epidemiology with mixed infection samples.
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Background

Public health epidemiology for bacterial infections has been transformed by the use
of high-throughput sequencing data to analyse and identify the source of an
outbreak and to trace circulating pathogenic strains based on routine surveillance
[1–5]. Standard genome-based epidemiological linking of cases requires accurate
genome sequences for the pathogens derived from high coverage sequencing data
for pure-colony isolates. The isolates are obtained by an enrichment and
separation step in the form of a plate culture and subsequent colony picks based
e.g. on morphology and colour. Typical workflow of genomic epidemiology may
thus necessitate multiple colony picks per sample and the corresponding DNA
library preparation and sequencing steps for each of them. Combined, these steps
require a significant amount of laboratory effort and time, and lead to increased
costs since the price of library preparation is becoming comparable to the cost of
sequencing itself [6]. This can act as a barrier to more widespread genomic
pathogen surveillance even in well-resourced public health laboratories, and
prevent application of genomic epidemiology altogether in poorer settings.

Whole-genome shotgun metagenomics has been proposed as a solution for getting
rid of the culturing step entirely. In this approach, sequencing is performed directly
on the DNA extracted from the original sample and the resulting reads
computationally binned or assembled. While tools capable of pangenome-based
analyses [7], metagenome assembly [8–11], or taxonomic binning [12–14] from
metagenomic short-read sequencing data have been developed, these methods
typically require that the samples do not contain many closely related organisms.
In particular, the strain-variation within a species is assumed to be large enough
not to be confused with sequencing errors or variation in the assembly graph [15].
When more complex strain-level diversity is present, benchmarking these tools
shows reduced performance in both taxonomic binning and metagenomic assembly
[16–19]. In practice, natural strain-level variation is harbored ubiquitously in
epidemiologically relevant samples [20–29] and it is reflected by the transmission
events occurring between individuals and their environment [30]. Although some
sample types may be dominated by one or two strains [31], direct sequencing of
clinical samples may result in an overabundance of host DNA [28,32–34], or lack
detection power for strains with low abundance in environments with high species
diversity [18,32,35]. These challenges are overcome in genomic epidemiology by
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enriching the target species through the use of plate cultures. Since established
protocols and growth media are available for most bacteria of clinical relevance
[36], enrichment provides an effective means to deplete the host DNA and increase
the sequencing depth for target organisms when working with well-characterized
species.

In this article, we introduce the mGEMS pipeline for performing genomic
epidemiology with mixed cultures from samples that may harbor multiple closely
related bacterial lineages. mGEMS requires only a single culturing and library
preparation step per sample, which can significantly reduce the cost of performing
genomic epidemiology in the standard public health setting and make the whole
process more streamlined. We demonstrate the effectiveness of our approach in
SNP calling and phylogenetic analyses by using in vitro mixed samples of
Escherichia coli and Enterococcus faecalis strains, as well as DNA reads synthetically
mixed from closely related samples obtained from previous genomic epidemiology
studies [29,37,38] tracking E. faecalis, E. coli and Staphylococcus aureus in public
health settings. Likewise, the E. coli and E. faecalis strains used in the in vitro
samples were hospital isolates and selected as representatives of clinically highly
relevant sequence types. Our results illustrate that accurate transmission and
case-linking analyses are possible at reduced cost levels by enabling sample
de-mixing and subsequent variant calling.

Key parts of our pipeline presented in this paper are the mGEMS binner for
short-read sequencing data, and the scalable pseudoaligner Themisto, which
provides an exact version of the kallisto pseudoalignment algorithm [39] for large
reference databases of single-clone sequenced bacterial pathogens. Together with
recent advances in both probabilistic modelling of mixed bacterial samples [40] and
genome assembly techniques [41], these methods form the mGEMS pipeline. A
central step in mGEMS is an application of the recent mSWEEP method [40], which
estimates the relative abundance of reference bacterial lineages in mixed samples
using pseudoalignment and Bayesian mixture modelling. While Themisto enables
upscaling of mSWEEP to significantly larger reference databases, the mGEMS
binner is a novel sequencing read binning approach. Our binner is based on
leveraging probabilistic sequencing read classifications to reference lineages from
mSWEEP, and notably allowing a single read to be assigned to multiple bins. Using
mGEMS to bin the reads in the original mixed samples produces sets of reads
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closely resembling standard isolate sequencing data and additionally acts as a
denoising step for removing possible contaminant DNA. These advances allow a
subsequent efficient use of the existing leading tools for genomic epidemiology in
the analysis of mixed culture samples, which can pave way to a more widespread
consideration of genomic epidemiology for public health applications.

Results

Read binning and genome assembly from mixed samples with mGEMS

Our mGEMS read binning algorithm, part of the mGEMS pipeline (Figure 1),
requires probabilistic assignments of sequencing reads to reference taxonomic
units (lineages or sequences) and an estimate of the relative sequence abundance
of these same references in the full set of reads. mGEMS then bins the reads by
assigning a read to a bin (corresponding to a target sequence from a given reference
lineage) if the read-level assignment probability of the lineage is greater than or
equal to the sequence abundance of that particular lineage in the full set of reads.
Notably, this algorithm allows a single sequencing read to be assigned to multiple
bins which is a crucial feature for considering strain-level variation. As shown in
the Methods section, this algorithm assigns reads to reference lineages only if the
sequence represented by a read is likely contained in a target sequence that belongs
to the reference lineage.

In the pseudoalignment part of the pipeline (Figure 1), we use our own more
efficient and accurate implementation of the pseudoalignment algorithm in
kallisto [39], called Themisto, to pseudoalign the sequencing reads against the
reference sequences. Themisto is based on using colored de Bruijn graphs to
represent the reference sequences and disk storage to control the amount of
memory required in constructing the pseudoalignment index. These choices lead to
Themisto aligning a similar number of reads per hour as kallisto, while being 70
times faster to load in an example pseudoalignment index consisting of 3682 E. coli
sequences (28 minutes for kallisto and 0.55 minutes for Themisto; Supplementary
Methods). Implementation of the method is described in more detail in
Supplementary Methods.
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Figure 1 Flowchart describing a genomic epidemiology workflow with the mGEMS pipeline.
The figure shows the various steps of the pipeline. Steps with program names in brackets
constitute the parts of the mGEMS pipeline. Presented values from mSWEEP and mGEMS binner
are the actual results of running the pipeline with the described input.

The pseudoalignments from Themisto are used as input to the mSWEEP method
[40] to estimate the probabilistic read assignments and whole-sample relative
sequence abundances. These values provide the necessary input to the mGEMS
binner which assigns the sequencing reads to the bins. Finally, we use the Shovill
[41] assembly optimizer for the SPAdes assembler [42,43] to assemble the bins. On
an example synthetic mixed sample (the E. coli sample with the most reads), the
full mGEMS pipeline took 112 minutes to run (Themisto 26 min, mSWEEP 4 min,
mGEMS binner 16 min, and Shovill 66 min) using two threads on a laptop computer
with two processor cores and 16 gigabytes of memory. C++ implementations of
both the mGEMS binner and the Themisto pseudoaligner are freely available on
GitHub (https://github.com/PROBIC/mGEMS, MIT license, and
https://github.com/algbio/themisto, GPLv2 license).

Overview of the experiments used in benchmarking mGEMS

We assessed the accuracy and effectiveness of mGEMS by considering data from
three genomic epidemiological studies [29,37,38] and by generating a
benchmarking dataset of in vitro mixed samples with measured DNA
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concentrations. The in vitro dataset was generated by first growing three strains of
E. coli and three strains of E. faecalis separately, resulting in six overnight cultures
in liquid medium. Next, the amount of DNA extracted from the overnight cultures
was measured and six mixtures, each consisting of three strains of either E. coli or
E. faecalis, with known concentrations of DNA for each isolate, were created. This
resulted in a benchmark dataset where the relative abundances of the different
strains in each mixture are known. We also generated two additional mixtures
where the E. coli or E. faecalis strains were mixed in 1:1:1 proportions from the
liquid culture without measuring the amount of DNA, and the DNA extraction was
then performed on these already-mixed bacterial samples. To our knowledge, these
benchmarking samples constitute the first published dataset where DNA from
three strains of the same species has been mixed with known concentrations,
providing an important resource for development of methods aimed at untangling
strain-level variation.

In the synthetic mixture experiments, we used sequencing reads from previously
published genomic epidemiological studies [29,37,38] as the basis for creating
synthetic mixture data. The synthetic mixtures were processed with the mGEMS
pipeline, and the output was compared against the benchmark of having
non-mixed data available by running the same epidemiological analyses on both
the mGEMS output and the non-mixed data. The synthetic experiments presented
are: 1) mixing reads from three clones of E. coli sequence type (ST) 131 sublineages
obtained from a study of multidrug-resistant E. coli ST131 strains circulating in a
long-term care facility in the UK [37], 2) mixing reads from seven E. faecalis STs
identified in a study of the population structure of hospital-acquired
vancomycin-resistant E. faecalis lineages in the UK and Ireland [38], and 3) mixing
reads from three S. aureus ST22 sublineages from a study of the transmission
network of methicillin-resistant S. aureus (MRSA) among staff and patients at an
UK veterinary hospital [29]. We also provide three different approaches to
constructing the reference datasets for the pseudoalignment step: 1) a national
(UK) collection of E. coli ST131 isolates associated with bacteremia [44], 2) a global
collection of all available E. faecalis genome assemblies from the NCBI as of 2
February 2020, and 3) a local collection of S. aureus sequencing data from the staff
members at the veterinary hospital at the earliest possible time point in the same
study [29]. A detailed description of the generated experiments and the accession
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numbers of the isolate sequencing and reference data used is presented in the
Methods section.

Evaluation of mGEMS and mSWEEP on the in vitro benchmark data

We first evaluated the accuracy of mGEMS and mSWEEP on the six in vitro
experimental samples, where the true relative abundances of the three strains in
each sample are known. In the E. faecalis samples each of the three strains
originated from a different multilocus sequence type (MLST) and the
measurements were accordingly performed on the level of the MLST grouping [45].
In the E. coli samples, the strains originated from sublineages within ST131 as
defined in a previous study [44], with one strain from sublineage ST131-A and two
from sublineage ST131-C2. In order to distinguish between the two strains from
ST131-C2, we further split the strains based on their accessory genomes using
PopPUNK [46], which provided us with a grouping where all three strains were split
into three separate groups (A-14, C2-4, and C2-6), enabling us to differentiate
between them with mSWEEP and mGEMS.

We assessed the accuracy of mGEMS by comparing the results of SNP calling from a
hybrid long+short-read assembly obtained from a single-colony derived sample of
the strains used in the in vitro mixed experiments with calling the SNPs from an
assembly obtained by processing the mixed experiment samples with the mGEMS
pipeline. The results of the SNP calling are highly similar in both datasets (Figure 2
panels a and b) with the exception of the E. coli ST131-C2-6 strain from the
experiment labelled "Exp 2 E. coli". In this experiment, the sample consisted of
equal amounts of DNA from the ST131 C2-4 and C2-6 strains and a small amount
of ST131-A-14, causing some confusion between the reads originating from the
closely related C2-4 and C2-6 strains which resulted in a difference between the
observed and expected SNP counts.
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Figure 2 Evaluating mGEMS and mSWEEP on the in vitro benchmark data. Panels a) E. coli
and b) E. faecalis compare the results of SNP calling from the isolate sequencing data
(horizontal axis) against the results of SNP calling from the mixed samples with the mGEMS
pipeline (vertical axis). The subplot in panel b) contains a zoomed-in view of the points around
the origin. Panels c) and d) compare the abundance estimates from mSWEEP to the ground
truth relative abundances. Panel c) shows the absolute difference between the estimates from
mSWEEP and the true abundance. The values shown are split into E. coli and E. faecalis
lineages truly present in the samples, and lineages truly absent. Panel d) shows the relative
error in the truly present lineages.

Similarly, the mSWEEP relative abundance estimates for both the E. coli and E.
faecalis samples correspond well with the true values when measured by both
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absolute and relative error (Figure 2 panels c and d, respectively). Slightly higher
errors were observed in the estimates for the E. coli ST131 C2-4 and C2-6 strains
when compared to the estimates for the E. coli ST131 A-14 strain and all three E.
faecalis strains. Akin to the results of SNP calling with mGEMS, these differences in
the relative abundance estimates are likely a result of using the highly detailed E.
coli within-ST clustering, which is significantly harder to differentiate than the
between-ST clustering used for E. faecalis. Regardless, in all cases, there are no
false positive or false negative detections of lineages reported in the mSWEEP
relative abundance estimates.

SNPs from synthetic mixtures match SNPs called from isolate data

In the first synthetic mixture benchmark, we compared the accuracy of SNP calling
with the snippy software (v4.4.5) [47] from the bins obtained by processing the
abundance estimation results from the mixed samples with the mGEMS binner
with the results of the same analyses from the isolate sequencing data (Figure 3).
In the E. coli and E. faecalis experiments (Figure 3 panels a and b, respectively), the
SNPs were called from assembled contigs while in the S. aureus experiment (Figure
3 panel c), we called the SNPs directly from the sequencing reads because calling
the SNPs from the contigs resulted in poorer performance (Supplementary Figure
1). In all experiments, the SNPs called from the mixed samples closely resemble the
results of isolate sequencing data in both the samples that are similar and
dissimilar to the reference sample. Although in the E. coli experiment mGEMS
produced slightly more SNPs on average, the results were consistently higher for all
samples and did not affect the results of the analyses presented further in this
article.

We suspected that the observed differences in the SNP counts may have been
caused by issues in the sequence assembly due to mGEMS allowing a read to belong
to multiple bins, which results in variable coverage between the regions with and
without the clade-specific SNPs. We tested this assumption by replacing the Shovill
assembler in the mGEMS pipeline with metagenomic assemblers, which naturally
handle variable coverage. Using the metagenomic assemblers marginally improved
the results in some of the experiments (Figure 3 panel d, Supplementary Figure 2).
However the improvements were not drastic enough to decisively confirm our
suspicions about the accuracy of the SNP calling being limited by the choice of
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assembler. We did observe that when measured by reference-independent assembly
statistics (sum of all contig lengths, total number of contigs, sequence length of the
shortest contig at 50% genome length N50, and the smallest number of contigs
whose sum is at least 50% of the genome length L50), the statistics obtained from
the standard configuration of mGEMS with the Shovill assembler resemble those
from isolate sequencing data.

Figure 3 Comparing mGEMS and synthetic mixtures with isolate sequencing data. Panels a,
b, and c compare the results of SNP calling from mixed samples with the mGEMS pipeline
against the results from isolate sequencing data. Panel d compares reference-free assembly
statistics from mGEMS pipeline with different assemblers against the results from assembling the
isolate sequencing data with Shovill. The results in panel a are for the E. coli ST131 isolates, panel
b the E. faecalis isolates, and panel c the S. aureus ST22 isolates. In panels a and b, SNPs were
called from contigs after assembling the reads. In panel c, the SNPs were called directly from the
reads. Points are colored according to the lineage within the species. The dashed gray line
represents a hypothetical perfect match between the binned and isolate reads. The blue line is the
posterior mean while the shaded area contains the 95% posterior credible region calculated from
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10 000 posterior samples from a Bayesian regression model with the SNPs from the binned reads
as the response and the SNPs from the isolate sequencing data as the sole explanatory variable.
In panel d, the boxes are colored according to the type of assembly. The presented statistics are
the summed lengths of all contigs (total length), the number of contigs, the sequence length of the
shortest contig at 50% genome length (N50), and the smallest number of contigs whose sum of
lengths is at least 50% of the genome length (L50).

We further assessed the accuracy of the called SNPs by fitting a Bayesian linear
regression model to the same SNP data with the isolate results as the sole
explanatory variable and the results from the bins or the metagenomic assemblers
as the response variable (Figure 3 and Supplementary Figure 2) using the brms R
package [48–50]. In both the E. coli ST131 sublineage and the E. faecalis
experiments, the 95% posterior credible interval for the slope from mGEMS with all
assembler choices except metaSPAdes contains the correct value of 1.0. The S.
aureus experiments produce worse 95% credible intervals for the slope compared to
the E. coli and E. faecalis experiments with none of the intervals containing the
correct value. However, the regression model is not well suited to analysing the S.
aureus samples since the number of SNPs between the strains is minimal (0-10 SNP
differences within the lineages) and there are only three lineages, which translates
poorly to finding a linear relationship.

Split-k-mer comparison between isolate reads and mGEMS bins in
synthetic mixtures

We also examined the accuracy of the mGEMS binner without assembling by using
the split k-mer analysis provided by the SKA software (v1.0, [51]). In a split-k-mer
analysis, each nucleotide in the read is flanked by two k-mers. The nucleotide in
the middle position plus the flanking k-mers constitute a single split-k-mer. If the
split-k-mers are calculated for all nucleotides in two samples, they can be used to
compare the samples on the basis of matching or mismatching split-k-mers or to
call SNPs by comparing two split-k-mers where the flanking k-mers match but the
nucleotide in between does not.

We first used SKA to call split-15-mer-SNPs in the three reference sequences from
the binned sequencing reads, and calculated the difference in the count of SNPs
called in the reference sequence between the isolate and the binned reads
(Supplementary Figure 3). Since the results in Figure 3 for S. aureus were obtained
without assembly, there is no notable difference when compared to the SKA results.
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However, the SKA results for E. coli and E. faecalis contain fewer SNPs called from
the binned reads, implying that binning with mGEMS acts as filtering for the
sequencing data, since the results from the assemblies display no stark differences.

In our next assessment, we performed pairwise comparisons within the separate
sets of 1) all isolate reads, and 2) the binned reads. First we called the split-15-mer
SNPs pairwise between all samples containing the isolate reads, and pairwise
between all samples containing the binned reads. We then calculated the
differences in the pairwise SNP counts obtained from the isolate reads and the
binned reads. Secondly, we performed the same pairwise analysis but instead of the
split-15-mer SNP counts we looked at the numbers of split-15-mers that either
were the same (matching) or different (mismatching) between each pair of
samples. The results from these two comparisons (Supplementary Figure 4) show
more discrepancy than the earlier results considering only SNPs called in the
reference genome (Figure 3), but the pairwise SNP counts are still relatively well
preserved in all three species.

Phylogenetic analysis of E. coli ST131 sublineages in a long-term care
facility with synthetic mixtures

We used a set of 30 multidrug-resistant E. coli ST131 strains sequenced from the
residents of a long-term care facility in the UK [37] to produce a total of 10
synthetic mixed samples. Each sample was the result of mixing isolate sequencing
data from three E. coli ST131 sublineages (one from each of the main lineages A, B,
or C) together. We attempted to preserve the potential sequencing errors and
biases by using all available reads from each of the isolate samples.
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Figure 4 Midpoint-rooted maximum likelihood trees from core SNP alignment of E. coli
ST131 strains. The phylogeny in panel a was constructed from isolate sequencing data from 30
E. coli ST131 strains, and the phylogeny in panel b with the mGEMS pipeline from 10 synthetic
plate sweep samples, each mixing three isolate samples from the three main ST131 lineages (A,
B, and C; one strain from each per sample). Both phylogenies were inferred with RAxML-NG.
Numbers below the edges are the branch support values from RAxML-NG for the next branch.
Leaves are coloured according to the E. coli ST131 sublineage (A, B, B0, C1, or C2), and branch
lengths in the tree scale with the mean number of nucleotide substitutions per site on the
respective branch (GTR+G4 model). Leaves are labelled with the ENA accession number and the
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leaf labelled NCTC13411 corresponds to the reference strain used in calling the core SNPs.

We applied the mGEMS pipeline to the 10 synthetic mixed samples with a national
(from the UK) collection of E. coli ST131 strains as the reference data [44], and used
RAxML-NG (v0.8.1) [52] to infer a phylogenetic tree from both assemblies obtained
from the isolate sequencing data (ground truth) and the assemblies from the
mGEMS pipeline. Comparisons of these two trees (Figure 4), show that the overall
structure of the trees is highly similar, with the deep branches within the tree well
reconstructed and differences in the tree topology appearing only at the very
recent short branches.

Population structure of nosocomial E. faecalis infections in the UK from
synthetic mixtures

Our next experiment was performed on sequencing data from
bloodstream-infection-associated E. faecalis strains with a high prevalence of
vancomycin resistance circulating in hospitals in the UK [38]. In this experiment,
we mixed isolate sequencing data from seven distinct E. faecalis STs [45], producing
a total of 12 synthetic mixed samples with seven lineages present in each. Each
synthetic mixed sample included all sequencing reads from the mixed isolate
sequencing data similarly to the E. coli experiment. We used a global collection of
E. faecalis strains (all E. faecalis genome assemblies submitted to the NCBI as of 2
February 2020) as the reference data for the mGEMS pipeline, and again inferred
the phylogenies for assemblies from both the isolate sequencing data and the
results of the mGEMS pipeline. The more complex structure of these phylogenies
was compared by plotting the two phylogenies against each other in a tanglegram
(Figure 5). Apart from a few structural mismatches in branches with poor bootstrap
support values in both phylogenies (indicating uncertainty in the structure to begin
with), the tree structure is strikingly well-recovered from the binned reads.
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Figure 5 Tanglegram of two midpoint-rooted maximum likelihood trees from core SNP
alignment of E. faecalis strains. The phylogeny labelled Isolate samples (left side of the tree)
was inferred with RAXML-NG from assembling the isolate sequencing data from 84 E. faecalis
strains. The phylogeny labelled Mixed samples (right side of the tree) was inferred from 12
synthetic mixed samples, each containing sequencing data from seven different E. faecalis STs
randomly chosen from the isolate sequencing data. Numbers below the edges indicate
bootstrap support values from RAxML-NG for the next branch towards the leaves of the tree.
Only support values less than 90 are shown. Branches are coloured according to the E. faecalis
STs, and branch lengths in the tree scale with the mean number of nucleotide substitutions per
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site on the respective branch (GTR+G4 model). Leaves are labelled with the strain name from
NCBI and the leaf labelled V583 corresponds to the reference strain for calling the core SNPs.

In fact, the tree inferred with the mGEMS pipeline has better bootstrap support
values in the lower parts of the tree, suggesting that using mGEMS provides a
better phylogeny than using the isolate sequencing data alone. We suspect this
improvement in the bootstrap support values was caused by contamination in the
isolate sequencing data for BSAC ec750, which produces an assembly 5.8Mb long —
nearly twice the length of the reference E. faecalis strain V583 (3.2Mb). Similar
changes in the bootstrap support values and additional structural changes occur in
the parts of the tree containing the isolates BSAC ec294 and BSAC ec655 which
both produce abnormally long assemblies (4.8Mb and 4.4Mb, respectively). The
assembly lengths for both the isolate and mGEMS-binned sequencing reads are
provided in Supplementary Table 1.

Methicillin-resistant S. aureus transmission patterns among staff and
patients at a veterinary hospital from synthetic mixtures

In our last experiment, we used a dataset containing three S. aureus ST22
sublineages (called clade 1, clade 2, and clade 3) circulating among the staff and
patients at a veterinary hospital in the UK [29] and separated by less than 150
SNPs. Because of the minimal differences between the clades, and a lack of isolates
from these specific clades in published sources, we decided to use the isolates from
the temporally first sample from the staff members as the reference data
(representing a local reference collection). We separated the reference isolates from
our experiment cases, which consist of all samples sequenced after the reference
isolates, and proceeded to mix the remaining isolate sequencing data together. We
generated a total of 312 synthetic mixed samples, each containing the sequencing
data from three isolate samples from each of the three clades. Because the numbers
of samples in each clade were not equal, the data from some of the isolate samples
were included in multiple mixed samples. Since we wanted to represent each
isolate with only a single instance in the phylogeny, we randomly chose one
corresponding bin from mGEMS as the representative for an isolate that was
included in multiple mixed samples.
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Figure 6 Midpoint-rooted maximum likelihood tree from core SNP alignment of S. aureus
ST22 showing strains from a single lineage within the sequence type. The phylogeny was
inferred from a combined set of assemblies from 60 isolate sequencing samples (leaves labelled
Staff A-G 1 A-T, corresponding to the temporally first samples from each staff member) and 312
assemblies obtained from the mGEMS pipeline applied to synthetic mixed samples of sequencing
data from each of the three different S. aureus ST22 clades (1, 2, and 3). Only strains from clade 1
are displayed in the tree, with the branch labelled Outgroup leading to the collapsed clades 2 and
3. The mixed samples were produced from the isolate sequencing data collected from the
patients, or from the staff members after the first sampling time. Branch labels are coloured
according to the plate the isolate sequencing data was picked from. Branch lengths in the
phylogeny scale with the mean number of SNPs obtained by multiplying the mean nucleotide
substitutions per site on the respective branch (GTR+G4 model) with the total number of
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alignment sites. Leaves are labelled with the format: staff or patient, a letter indicating the donor,
plate number (ascending in time), and a letter indicating the colony pick id.

The phylogenies in Figures 5 and 6 were inferred with RAxML-NG (v0.8.1, [52])
from the results of the mGEMS pipeline. We plotted the subtrees of the overall
phylogeny separately for the clade 1 isolates (Figure 6) and clade 2 and 3 isolates
(Figure 7) without changing the underlying tree structure. Phylogenies inferred
from the isolate sequencing data using the same pipeline are available in
Supplementary Figure 5 and Supplementary Figure 6. In the original study [29],
Staff member A was inferred as having introduced the MRSA strain from Clade 1
into the veterinary hospital. In our phylogeny (Figure 6), Staff member A's initial
samples (timepoints labels 1 and 2) are indeed contained at the root of the tree
inferred from the mGEMS pipeline, although the placement of the strains further
up the tree vary when compared to the results presented in the original study. The
original study performed manual quality control of the SNP data by removing
transposable elements which was not replicated in our experiment, possibly
explaining some of the observed differences between the tree structures. The
phylogenies for clades 2 and 3 (Figure 7) follow the results of the original study
more closely with most subclades found in both the isolate and the mixed sample
phylogenies. Importantly, in all three clades no assembly from the mGEMS pipeline
was assigned to the wrong clade in the phylogeny despite the minimal distances
between the clades.
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Figure 7 Midpoint-rooted maximum likelihood trees from core SNP alignment of S. aureus
ST22 showing clade 2 and clade 3 strains. The underlying phylogeny is the same as in Figure 6.
The phylogeny in panel a contains the clade 2 strains, and panel b the clade 3 strains. Branches
leading to clade 1 and clade 3 (panel a), or clade 1 and clade 2 (panel b), labelled Outgroup in
both panels, were collapsed. Branch labels are coloured according to the plate the isolate
sequencing data was originally picked from with darker shades indicating later sampling times.
Branch lengths in the phylogeny scale with the mean number of SNPs obtained by multiplying the
mean nucleotide substitutions per site on the respective branch (GTR+G4 model) with the total
number of alignment sites. Leaves are labelled with the format: staff or patient, a letter indicating
the donor, plate number (ascending in time), and a letter indicating the colony pick id.

Discussion

Adopting a plate-sweep approach, where DNA from the individual bacteria growing
on the same plate is prepared and sequenced as a single library, shows clear
promise in reducing the amount of manual and costly laboratory work that has
been identified as an emerging bottleneck for epidemiological analyses at many
public health laboratories [6]. In this article, we have introduced the mGEMS
pipeline, which includes novel pseudoalignment and read binning methods, for
genomic epidemiological analyses of plate sweeps. Our pipeline provides means to
accurately recover the genomes, or corresponding sequencing reads, from mixed
samples with extremely closely related strains separated by less than a few dozen
SNPs. In these settings, where the differences between the strains are at or under
the sequence type level, isolate sequencing is traditionally required to draw
epidemiological conclusions.

Using both samples based on synthetically mixed reads, as well as experimentally
generated benchmark samples mixing bacterial DNA and strains, we have shown
that with mGEMS we can robustly infer the same conclusions from plate sweeps
that can be inferred from single-isolate sequencing data. Additionally, since
mGEMS relies on modelling counts of pseudoalignments against grouped reference
sequences, the inclusion of the alignment step causes the pipeline to also acts as
quality control for sequencing reads from samples that inadvertently contain
multiple lineages or contamination, which can disrupt downstream analyses like
SNP calling [53]. In analysing sequencing data from closely related mixed samples
our pipeline reaches accuracy levels likely constrained by technical variation in the
sequencing data and limitations in assembling sequencing data with variable
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coverage. To our knowledge, mGEMS is the first tool capable of reliable recovery of
the full strain variety in complex mixed samples.

mGEMS demonstrates the power of plate sweep sequencing in genomic
epidemiology and enables a change in the currently dominant framework that
confers multiple benefits over both whole-genome shotgun metagenomics and
isolate sequencing. Studies of the population structures of opportunistic pathogens
have revealed extensive strain-level within-host variation [20,22,26,54,55] with
adverse implications for transmission analyses relying solely on isolate sequencing
[30,56] and colony pick based longitudinal studies reporting the absence or
re-emergence of strains in a host [29,37,57] or antimicrobial profiles [27,58]. While
whole-genome shotgun metagenomics solves these issues to some extent [34,59],
the culture-free nature suffers from issues with both bacterial and host DNA
contamination particularly affecting the sensitivity for detecting strains in low
abundance [28,32,33,60,61]. Using mGEMS in conjunction with plate sweep
sequencing data avoids these issues altogether, paving way for more representative
studies of pathogen population structure and providing higher-resolution data for
more complex models of transmission dynamics incorporating within-host
variation and evolution [62–64].

Since our method relies on available single-clone genomic reference data and plate
cultures of the bacteria to sequence them at a sufficient depth for assembly, it
obviously cannot be applied to the study of uncharacterized or unculturable
species. However, culture media do exist for most human pathogens of public
health relevance [36] or can be developed for some of the until recently
unculturable bacteria [65–67]. Moreover, the availability of single-clone bacterial
genome sequences is still increasing at a high rate, such that for many species or
lineages plenty of sufficiently representative reference sequences would be
available [68,69]. In these cases, the drastic reduction in the costs of library
preparation, and the better capture of the underlying genomic variation between
closely related bacteria in a set of mixed samples provided by mGEMS is extremely
valuable. We hope that by enabling significant streamlining of the process of
producing data for public health genomic epidemiology, our approach inspires both
applications and further method development within this exciting research area.
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Conclusions

We have developed the mGEMS pipeline for performing genomic epidemiological
analyses from mixed samples containing multiple closely related bacterial strains.
The two crucial novel enabling aspects introduced in this paper are the mGEMS
read binner and the Themisto pseudoaligner. The mGEMS binner is a binning
method based on turning probabilistic assignment of sequencing reads to reference
lineages, while the Themisto pseudoaligner is a high-throughput exact
pseudoaligner for short-read sequencing data that features external memory
construction for compressed coloured de Bruijn graphs for scalability, providing
significant runtime savings over conventional pseudoalignment. mGEMS addresses
several major issues related to the cost, applicability, and sensitivity of the current
approach in genomic epidemiology and enables entirely new types of analyses
using mixed samples without sacrificing accuracy.

Methods

mGEMS workflow

Our pipeline for performing genomic epidemiology with short-read sequencing
data from mixed samples, mGEMS, requires as input the sequencing reads and a
reference database representing the clonal variation in the organisms likely
contained in these reads. The reference database must additionally be grouped
accordingly into clonal groups representing lineages within the species. We used
either the multilocus sequence types (E. faecalis experiments) or sublineages within
the sequence types (E. coli and S. aureus experiments) as the clonal grouping. With
these pre-processing steps performed, the first step in the mGEMS pipeline is to
pseudoalign [39] the sequencing reads against the reference database using our
scalable implementation of (exact) pseudoalignment with the Themisto software
(in this article we used v0.1.1 with the optional setting to also align the reverse
complement of the reads enabled). The pseudoalignments and the clonal grouping
are then supplied as input to the mSWEEP software (v1.3.2; doi:
10.5281/zenodo.3631062, [40], with default settings) which estimates the relative
sequence abundances of the clonal groups in the mixed sample. Consequently,
mSWEEP produces a probabilistic assignment of the sequencing reads to the
different reference clonal groups. This tentative assignment is subsequently
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processed by the mGEMS binner (v0.1.1, default settings), which assigns the
sequencing reads to bins that correspond to a single reference clonal group — with
a possibility for a sequencing read to belong to multiple bins. As the last step, the
bins are (optionally) assembled with the shovill (v0.9.0, with default settings, [41])
assembly pipeline. mGEMS and Themisto are freely available on GitHub
(https://github.com/PROBIC/mGEMS and https://github.com/algbio/themisto).

Reference data for mSWEEP and mGEMS

We used assemblies of three different sets of sequencing data as the reference for
the three different experiments presented. The three different reference datasets
represent a local (S. aureus experiment, [29]), a national (E. coli, [44]), and a global
collection (E. faecalis downloaded from the NCBI) of strains from these species.
Accession numbers and multilocus sequence types for the reference data are
available in Supplementary Table 2 accompanied with rudimentary assembly
statistics from both the isolate sequencing data and the assemblies from the
mGEMS pipeline. In each experiment, we only aligned against the reference
sequences from the relevant species.

In the E. coli experiments, our collection of 218 E. coli ST131 isolates originated
from the British Society for Antimicrobial Chemotherapy's bacteraemia resistance
surveillance program and were originally isolated from 11 hospitals across England
[44]. These isolates were assigned to six ST131 sublineages (A, B0, B, C0, C1, or C2)
as described in a previous study [44]. As the reference sequence for calling the SNPs
in building the phylogeny, we used the ST131 strain NCTC13441 (European
Nucleotide Archive [ENA] sequence set UFZF01000000).

For the E. coli experiment where the six sublineages were further split, the split was
generated by clustering the sequences with PopPUNK (v2.3.0, [46]) with the BGM
model using four components and then performing the subsequent refinement
step. The resulting PopPUNK clustering was combined with the sublineage
numbering by concatenating the two together. This clustering is included in
Supplementary Table 2.

The global collection of E. faecalis reference data was obtained by downloading all
available E. faecalis assemblies (1484 as of 2 February 2020) from the NCBI, which
were assigned to STs with the mlst software (v2.18.1) [45,70,71]. Sequence type
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could not be determined for 177 assemblies. These were discarded, leaving a total
of 1307 assemblies assigned to 203 distinct sequence types. We used the ST6 strain
V583 [72] as the reference for SNP calling (NCBI RefSeq sequences
NC_004668.1-NC_004671.1).

The S. aureus reference data were obtained from the same study as the experiment
data [29]. We used shovill (v0.9.0, [41], with default settings) to assemble the
isolate sequencing reads from the first sampling of the staff members at the
veterinary hospital, and assigned the assembled sequences to the ST22 sublineages
according to the information provided in original study [29]. The reference
sequence used in calling the SNPs was the ST22 strain HO 5096 0412 ([73], ENA
sequence HE681097.1)

If the reference sequence in any of the experiments consisted of multiple contigs,
we concatenated the contigs together by adding a 100-base gap between them. The
final reference file that was used as input for Themisto indexing was produced by
concatenating all reference sequences processed in this way together.

In vitro mixture experiment setup

We first generated reference genomes for the three E. coli and three E. faecalis
strains used in the in vitro benchmarking of mGEMS. In order to obtain as accurate
reference genomes as possible, we combined short-read Illumina sequencing data
(Supplementary Table 3) with long-read Oxford Nanopore sequencing data.

In the first mixture experiment, single colonies of each strain were grown up
overnight in liquid medium (LB broth [Sigma-Aldrich] for E. coli and brain heart
infusion broth [Fluka Analytical] for E. faecalis), and DNA extracted for short-read
sequencing. The DNA concentration was quantified using the Qubit system
(Invitrogen) and purified DNA, diluted to 30 ng/µL, from the three strains of E. coli
and the three strains of E. faecalis were used to prepare three different mixtures
with varying ratios (1:1:1, 1.4:1.4:0.2, and 2.2:0.4:0.4; Table 1). These mixtures
were then prepared for Illumina sequencing, and analysed as described earlier in
the manuscript. All sequencing data generated for these mixture experiments is
available under BioProject PRJNA720284.
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NORM7910041
E. coli
ST131-C2-4

NORM7911464
E. coli
ST131-C2-6

NORM7908673
E. coli
ST131-A-14

Exp. 1 E. coli
(1:1:1)

10 µL 10 µL 10 µL

Exp. 2 E. coli
(1.4:1.4:0.2)

14 µL 14 µL 2 µL

Exp. 3 E. coli
(2.2:0.4:0.4)

22 µL 4 µL 4 µL

51271926
E. faecalis ST6

51271052
E. faecalis ST40

51271223
E. faecalis ST28

Exp. 4 E. faecalis
(1:1:1)

10 µL 10 µL 10 µL

Exp. 5 E. faecalis
(1.4:1.4:0.2)

14 µL 14 µL 2 µL

Exp. 6 E. faecalis
(2.2:0.4:0.4)

22 µL 4 µL 4 µL

Table 1 Mixture concentrations in the six in vitro experiment samples. The column
labels contain the sample identifiers and lineages for the strains that were mixed in each of
the six experiments, represented by the rows of the table.

For the second experimental setup, the six reference strains were again grown in
single-clone cultures overnight as described above, and 1:1:1 mixtures of the liquid
cultures from the three strains per species were made, centrifuged, and used as
sample for DNA extraction for short-read sequencing. Unlike in the first
experimental setup, in this setup the concentrations of the different strains were
not measured with Qubit and thus are not available beyond the initial 1:1:1
mixture of the liquid cultures.
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DNA extraction

DNA was extracted using the MagAttract HMW kit (Qiagen) for Oxford Nanopore
sequencing, and the DNeasy Blood and Tissue kit (Qiagen) for short-read
sequencing.

Sequencing

DNA libraries for long-read sequencing were prepared using the Ligation
Sequencing Kit SQK-LSK109 (Oxford Nanopore) in combination with the native
barcoding kits EXP-NBD104 and EXP-NBD114 (both Oxford Nanopore) according
to the manufacturer’s instruction. DNA was sequenced using an Oxford Nanopore
GridION on a R9.4.1 flow cell with an input of 337.5 ng. For short-read sequencing,
DNA libraries were prepared using the Nextera XT DNA library kit (Illumina) and
sequenced on an Illumina NextSeq550 using a mid-output flow cell, 300 cycles and
2x150 bp paired-end set-up.

Reference genome assembly for the in vitro mixed experiments

We performed hybrid assembly from the long and short reads by first assembling
only the long-reads and then using the short-reads for error correction. The initial
long-read only assembly was created from the raw long-read sequencing data with
Flye (v2.8.2, [74]) and polished with quality controlled long reads (QC'd with
filtlong v0.2.0; https://github.com/rrwick/Filtlong) using medaka (v1.2.1,
https://github.com/nanoporetech/medaka/). The short reads were used for error
correction by first quality controlling them with fastp (v0.21.0, [75]) and then using
pilon (v1.23, [76]) to perform the error correction on the long-read assembly. This
procedure resulted in closed chromosome and plasmid sequences for all six
reference strains. The short reads, long reads, and the produced genomes have
been submitted and made available in standard repositories (Supplementary Table
3).

Synthetic mixture generation

We produced our three synthetic mixture sets by synthetically mixing together the
isolate sequencing data from distinct lineages in each of the three studies
[29,37,38]. In the E. coli experiments, we produced 10 mixed samples with one
strain from each of the three main ST131 lineages (A, B, or C) in each sample. In
the E. faecalis experiments, we mixed together seven strains from seven different
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sequence types to produce a total of 12 mixed samples. The strains included in
each sample were chosen at random without replacement in the E. coli and E.
faecalis experiments. The S. aureus mixed samples were produced by randomly
mixing together one strain from each of the three sublineages with replacement
while ensuring that each strain appears at least once. The sequencing data that
were used in the reference dataset were not included in any of the experiments. In
all three experiment sets, we used all available sequencing data in the mixed
samples, resulting in 8-15 million reads in the experiments. Supplementary Table 1
contains the accession numbers and lineage assignments of the isolate sequencing
data in each sample, as well as the assembly statistics from both isolate sequencing
and the synthetic mixed samples processed with mGEMS.

Pseudoalignment

We used Themisto (v0.1.1) with the default settings. Themisto is a k-mer-based
pseudoalignment tool which encodes sets of k-mers as a succinct coloured de
Bruijn graph. A read is considered to pseudoalign against a reference sequence if at
least one k-mer of the read is found in the reference, and each k-mer of the read is
either found in the reference or not found at all in the database of all references.
This can be seen as an exact version of the pseudoalignment algorithm
implemented by the tool kallisto [39].

The index was constructed using 31-mers. Themisto does not distinguish between
paired-end reads and single reads, so we decided to consider a paired-end read as
pseudoaligned only when both fragments pseudoaligned. We have included this
functionality for supporting paired-end reads in both the mSWEEP and mGEMS
software implementations.

Abundance estimation and probabilistic read assignment

We used the mSWEEP [40] software (v1.3.2; doi: 10.5281/zenodo.3631062) with
default settings. The program was altered to support pseudoalignments from
Themisto, and to output the read-level probabilistic assignments to the reference
lineages. We also improved the scalability of mSWEEP by parallelizing the
abundance estimation part and reducing memory consumption. These alterations
have been included in versions v1.3.2 (Themisto and mGEMS support) and v1.4.0
(parallelization and memory usage improvements) of the software.
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Read binning

In order to collect all reads in a mixed sample that likely originate from the same
target lineage, we consider a binning strategy that allows associating the same read
with multiple reference lineages. We assume that each reference lineage is
represented by, at most, only one target sequence in the mixed sample, and that
the sets of reference sequences capture the variation in the reference lineages
sufficiently to use them as a substitute for the target sequence which may not be
included in the reference sequences. In our formal treatment of the task of binning
a set of sequencing reads, we define the task in terms of finding subsets (bins),𝐾
one for each reference lineage , of the full sets of reads𝑘 =  1,..., 𝐾 𝑅 =  {𝑟

1
,..., 𝑟

𝑁
}

denoted by that contain reads likely originating from the target sequence𝐺
𝑘
⊂𝑅

belonging to the reference lineage . The reads assigned to each subset are𝑘 𝐺
𝑘

determined based on read-level probabilities toγ
𝑛, 𝑘

,  
𝑘 = 1

𝐾

∑ γ
𝑛,𝑘

 =  1,  𝑛 = 1,..., 𝑁

assign the read into the reference lineage by defining the subsets such that𝑟
𝑛

𝑘 𝐺
𝑘

,𝐺
𝑘
 =  𝑟

𝑛
 : γ

𝑛,𝑘
 ≥ 𝑞

𝑘{ }
Equation 1

holds for some threshold which may vary between the lineages . The𝑞
𝑘 

 ∈ [0,  1] 𝑘

formulation in Equation (1) has the benefit of allowing the read to possibly𝑟
𝑛

belong to several subsets , which is an important property for dealing with𝐺
𝑘

multiple closely related lineages in the same mixed sample.

In order to find a suitable value for the threshold , and to determine the𝑞
𝑘

corresponding assignment rule, we consider two binary events: 1) : the reference𝐼
𝑛, 𝑘

lineage generated the read , and 2) : the true nucleotide sequence𝑘 𝑟
𝑛

𝐽
𝑛, 𝑘

represented by the read is part of the target sequence belonging to the reference𝑟
𝑛

lineage . Knowing the probability of the event would directly enable us to𝑘 𝐽
𝑛, 𝑘

assess the plausibility of assigning the read to the reference lineage but its value𝑟
𝑛

𝑘

is difficult to estimate directly. However, we can determine and write down the
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values of the conditional probabilities and𝑃[𝐼
𝑛, 𝑘

 =  1 | 𝐽
𝑛, 𝑘

 =  0]

as𝑃[𝐼
𝑛, 𝑘

 =  1 | 𝐽
𝑛, 𝑘

 =  1]

= 0, and𝑃[𝐼
𝑛, 𝑘

 =  1 | 𝐽
𝑛, 𝑘

 =  0]

,𝑃[𝐼
𝑛, 𝑘

 =  1 | 𝐽
𝑛, 𝑘

 =  1] =
θ

𝑘

𝑐 :𝐽
𝑛,𝑐

 = 1
∑ θ

𝑐

Equation 2

where is the proportion of reads from the reference lineage , and is theθ
𝑘

𝑘
𝑐 :𝐽

𝑛,𝑐
 = 1

∑ θ
𝑐

proportion of reads from any reference lineages which contain the{𝑐 :  𝐽
𝑛,𝑐

 =  1}

sequence represented by the read . The conditional probabilities in Equation (2)𝑟
𝑛

allow us to write the unconditional probability as𝑃[𝐼
𝑛, 𝑘

 =  1]

 𝑃[𝐼
𝑛, 𝑘

 =  1] =  𝑃[𝐼
𝑛, 𝑘

 =  1 | 𝐽
𝑛, 𝑘

 =  0]𝑃[𝐽
𝑛, 𝑘

 =  0 + 𝑃[𝐼
𝑛, 𝑘

 =  1 | 𝐽
𝑛, 𝑘

 =  1]𝑃[𝐽
𝑛, 𝑘

 =  1]

⇔ 𝑃[𝐼
𝑛, 𝑘

 =  1] =
θ

𝑘

𝑐 :𝐽
𝑛,𝑐

 = 1
∑ θ

𝑐

 𝑃[𝐽
𝑛, 𝑘

 =  1].

Equation 3

Using the formulation in Equation (3) and the fact that we can approximate

if we assume that the mixed sample is mostly composed of closely
θ

𝑘

𝑐 :𝐽
𝑛,𝑐

 = 1
∑ θ

𝑐

≈ θ
𝑘

related organisms (the denominator approaches ), we can rewrite

𝑐 :𝐽
𝑛,𝑐

 = 1
∑ θ

𝑐
 1

Equation (3) as

.𝑃[𝐼
𝑛, 𝑘

 =  1] ≈ θ
𝑘
𝑃[𝐽

𝑛, 𝑘
 =  1]

Equation 4

Equations (4) and (3) together imply that if the value of the probability 𝑃[𝐼
𝑛, 𝑘

 =  1]

that the read was generated from the lineage exceeds the relative abundance𝑟
𝑛

𝑘 θ
𝑘

of that lineage in whole sample ( ), then the value of the probability𝑃[𝐼
𝑛, 𝑘

 =  1] ≥ θ
𝑘

that the nucleotide sequence represented by the read is contained in𝑃[𝐽
𝑛, 𝑘

 =  1] 𝑟
𝑛
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the target sequence from the reference lineage must be "large" ( ).𝑘 𝑃[𝐽
𝑛, 𝑘

 =  1] → 1

This statement about the magnitude of derives from our assumption𝑃[𝐽
𝑛, 𝑘

 =  1]

that the denominator in Equation (3) is close to .1

Since we have an estimate of the probabilities available in the form of𝑃[𝐼
𝑛, 𝑘

 =  1]

the read-level probabilistic assignments , we can plug theseγ
𝑛, 𝑘

 ≈ 𝑃[𝐼
𝑛, 𝑘

 =  1]

values in Equation (4) and use the result to derive the assignment rule

if , assign the read toγ
𝑛, 𝑘

≥ θ
𝑘

𝑟
𝑛

𝐺
𝑘
.

Equation 5

The assignment rule in Equation (5) gives us a way to assess the validity of the
statement contained in the probability which we could not estimate𝑃[𝐽

𝑛, 𝑘
 =  1]

directly.

Because of computational accuracy, we cannot obtain meaningful relative

abundance estimates for lineages with a relative abundance less than (lessθ
𝑘

1
𝑁

than one read from the lineage in the sample). Since there are lineages in total,𝑘 𝐾

in the worst-case scenario units of the relative abundance fall into this𝐾 1
𝑁

meaningless range. Therefore, only a fraction of the total relative abundance of 1
can be considered to be accurately determined when using computed values of ,θ

𝑘

and this fraction is determined in the worst-case scenario through the formula𝑑

.𝑑 =  1 −  𝐾 1
𝑁

Equation 6

Equation (6) means that when evaluating the validity of the assignment rule
presented in Equation (5) with computed values, we have to replace with theθ

𝑘

value which depends on the value of in Equation (6). Merging the result from𝑑θ
𝑘

𝑑

Equations (5) and (6) leads us to the final assignment rule (Equation 7) of

if , assign the read toγ
𝑛, 𝑘

> 𝑑θ
𝑘

𝑟
𝑛

𝐺
𝑘
.

Equation 7

In practice, reads which pseudoalign to exactly the same reference sequences have

identical values . The reads can thus be assigned to equivalence classes definedγ
𝑛, 𝑘

by their pseudoalignments, which enables a speedup in the implementation of the
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binning algorithm by considering each equivalence class as a single read. Due to

this speedup and the computational simplicity of evaluating the assignment rule in

Equation (7), the memory footprint of the mGEMS binner is determined by the

number of equivalence classes and reference lineages in the input pseudoalignment

and the runtime limited by disk I/O performance.

Genome assembly from mGEMS bins

After binning the sequencing reads in our experiments with the aforementioned
assignment rule, we assembled the sequencing reads assigned to the bins using the
shovill (v0.9.0, [41], with default settings) assembly optimizer for the SPAdes
assembler [42,43]. This step concludes what we in this article call the mGEMS
pipeline.

SNP calling and phylogeny reconstruction

We used snippy (v4.4.5, [47]) to produce a core SNP multiple-sequence alignment
from the assembled contigs. Since the E. coli and S. aureus strains used were from
the same sequence type, the core alignment for these two species contained almost
the whole genome. After running snippy, we used snp-sites (v2.5.1, [77]) to remove
sites with ambiguous bases or gaps from the alignment (E. coli experiments only)
and then ran RAxML-NG (v0.8.1, [52]) to infer the maximum-likelihood phylogeny
under the GTR+G4 model. Since some of the S. aureus strains from the same clade
were identical, we changed the default value of the minimum branch length
parameter in RAxML-NG to 10-10 in the S. aureus experiments and printed the
branch length with eight decimal precision to identify branches of length zero. In
all experiments, we ran RAxML-NG with 100 random and 100 maximum parsimony
starting trees, and performed 1000 bootstrapping iterations to infer bootstrap
support values for the branches. We used the phytools R package (v0.6-99, [78]) to
perform midpoint rooting for the tree, and the ape R package (v5.3, [79]) to create
the visualizations.
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