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Abstract

For any given bacteriophage genome or phage sequences in metagenomic data sets, we are 

unable to assign a function to 50-90% of genes. Structural protein-encoding genes constitute a 

large fraction of the average phage genome and are among the most divergent and difficult-to-

identify genes using homology-based methods. To understand the functions encoded by 

phages, their contributions to their environments, and to help gauge their utility as potential 

phage therapy agents, we have developed a new approach to classify phage ORFs into ten 

major classes of structural proteins or into an “other” category. The resulting tool is named 

PhANNs (Phage Artificial Neural Networks). We built a database of 538,213 manually curated 
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phage protein sequences that we split into eleven subsets (10 for cross-validation, one for 

testing) using a novel clustering method that ensures there are no homologous proteins 

between sets yet maintains the maximum sequence diversity for training. An Artificial Neural 

Network ensemble trained on features extracted from those sets reached a test F1-score of 

0.875 and test accuracy of 86.2%. PhANNs can rapidly classify proteins into one of the ten 

classes, and non-phage proteins are classified as “other”, providing a new approach for 

functional annotation of phage proteins. PhANNs is open source and can be run from our web 

server or installed locally. 

Author Summary

Bacteriophages (phages, viruses that infect bacteria) are the most abundant biological entity on 

Earth. They outnumber bacteria by a factor of ten. As phages are very different within them and 

from bacteria, and we have comparatively few phage genes in our database, we are unable to 

assign function to 50%-90% of phage genes. In this work, we developed PhANNs, a machine 

learning tool that can classify a phage gene as one of ten structural roles, or “other”. This 

approach does not require a similar gene to be known. 

Introduction

Bacteriophages (phages) are the most abundant biological entity on the Earth (1). They 

modulate microbial communities by lysing specific components of microbiomes. Via 

transduction and/or lysogeny, they mediate horizontal transfer of genetic material such as 

virulence factors (2), metabolic auxiliary genes (3), photosystems and other genes to enhance 

photosynthesis(4), and phage production in general, by providing the host with immunity from 

killing by other phages. Temperate phages can become part of the host genome as prophages; 

most bacterial genomes contain at least one, and often multiple, prophages (5,6) . 
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Phage structures (virions) are composed of proteins that encapsulate and protect their 

genomes. The structural proteins (or virion proteins) also recognize the host, bind to it and 

deliver the phage’s genome into the host’s cell. Phage proteins, especially structural ones, vary 

widely between phages and phage groups, so much so that sequence identity-based methods 

to assign gene function fail frequently: we are currently unable to assign function to 50-90% of 

phage genes(7). Experimental methods such as protein sequencing, mass spectrometry, 

electron microscopy, or crystallography, in conjunction with antibodies against individual 

proteins, can be used to identify structural proteins but are expensive and time-consuming. A 

fast and easy-to-use computational approach to predict and classify phage structural proteins 

would be highly advantageous as part of pipelines for identifying functional roles of proteins of 

bacteriophage origins. The current increased interest in using phages as therapeutic agents 

(8,9)  demands annotations for as high as possible a fraction of each phage genome, even if 

they are only provisional.

Machine learning has been used to attack similar biological problems. In 2012, Seguritan et al.

(10) developed an Artificial Neural Network (ANN) that used normalized amino acid frequencies 

and the theoretical isoelectric point to classify viral proteins as structural or not structural with 

85.6% accuracy. These ANNs were trained with proteins of viruses from all three domains of 

life. They also trained two distinct ANNs to classify phage capsid versus phage non-capsid and 

phage “tail associated” versus phage “non-tail-associated” proteins. Subsequently, several 

groups have used different machine learning approaches to improve the accuracy of 

predictions. The resulting tools are summarized in Table 1.

Each of these previous approaches has important limitations: 1) The classification is limited to 

two classes of proteins (e.g., ”capsid” or “not capsid”). 2) Training and testing sets were small 

(only a few hundred proteins in some cases), limiting the utility of the approaches beyond those 
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proteins used in testing. 3) Methods that rely on predicting secondary structure (e.g., 

ViralPro(11))  are slow to run. In general, these newer methods have improved accuracy at the 

cost of lengthening the time required for training, or have used very small training and/or test 

sets. 

Artificial Neural Networks (ANN) are proven universal approximators of functions in ℝn,(12) 

including the mathematical function that maps features extracted from a phage protein 

sequence to its structural class. We have constructed a manually-curated database of phage 

structural proteins and have used it to train a feed-forward ANN to assign any phage protein to 

one of eleven classes (ten structural classes plus a catch-all class labeled "others"). 

Furthermore, we developed a web server where protein sequences can be uploaded for 

classification. The full database, as well as the code for PhANNs and the webserver, are 

available for download at http://edwards.sdsu.edu/phanns and https://github.com/Adrian-Cantu/

PhANNs

Methods

Database

In this work, we generated two complementary protein databases, "classes" and "others". The 

"classes" database contains curated sequences of ten phage structural roles (Major capsid, 

Minor capsid, Baseplate, Major tail, Minor tail, Portal, Tail fiber, Tail shaft, Collar, and Head-Tail 

joining). The "others" database contains all phage ORFs that do not encode proteins annotated 

as “structural” or as any of the 10 categories above.

The database of "classes" 

Sequences from the ten structural classes were downloaded from NCBI's protein database 
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using a custom search for the class title (the queries are in the “ncbi_get_structural.py” script in 

the GitHub repository). We manually removed all sequences whose description didn't fit the 

corresponding class. 

The "others" database

To generate a database for the "others" class, all available phage genomes (8,238) were 

downloaded from GenBank on 4/13/19. ORFs were found using the GenBank PATRIC(13) 

server with the phage recipe(14). Sequences annotated as structural or any of the ten classes 

were removed during manual curation. Furthermore, the remaining sequences were de-

replicated at 60% together with sequences in the “classes” database using CD-hit(15). Any 

phage ORF that clustered with a sequence from the "classes" database was removed from the 

"others" database. 

Training, test, and validation split

Each class was clustered at 40% using CD-hit and split into eleven sets (10 for cross validation 

and one for testing, as shown in Figure 1). Once the clusters were determined, to prevent loss 

of the sequence diversity available within the clusters, which is essential for optimal training, the 

clusters were expanded by adding back within each set all the representatives of that set 

(described in Figure 1). Subsequently, the sets corresponding to each structural class were 

merged. We named the generated sets 1D-10D and TEST. Splitting the database this way 

ensures that the different sets share no homologous proteins, yet recapture all the sequence 

diversity present in each class. Finally, 100% dereplication was performed to remove identical 

sequences (See Table 2). The effect of the cluster expansion on performance is explored in 

Figures S1 and S2.

Extraction of features

The frequency of each dipeptide (400 features) and tripeptide (8,000 features) was computed 
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for each ORF sequence in both the “classes” and “others” databases. As a potential time-saving 

procedure during neural net training while also permitting classification of more diverse 

sequences, each amino acid was assigned to one of seven distinct "side chain" chemical 

groups (Table S1). The frequency of the "side chain" 2-mers (49 features), 3-mers (343 

features), and 4-mer (2,401 features) was also computed. Finally, some extra features, namely 

isoelectric point, instability index(16) (whether a protein is likely to degrade rapidly), ORF length, 

aromaticity(17) (relative frequency of aromatic amino acids) , molar extinction coefficient (how 

much light the protein absorbs) using two methods (assuming reduced cysteins or disulfide 

bonds), hydrophobicity, GRAVY(18) index (average hydropathy)  and molecular weight, were 

computed using Biopython(19). All 11,201 features were extracted from each of 538,213 protein 

sequences. The complete training data set can be downloaded from the web server 

(https://edwards.sdsu.edu/phanns).

ANN architecture and training

We used Keras(20) with the TensorFlow(21) back-end to train eleven distinct ANN models using 

a different subset of features. We named the models to indicate which feature sets were used in 

training:  composition of 2-mers/dipeptides (di), 3-mers /tripeptides (tri) or 4-mer/tetrapeptide 

(tetra),  or side chain groups (sc) (as shown in Table S1), and whether we included the extra 

features (p) or not. A twelfth ANN model was trained using all the features (Table S2).

Each ANN consists of an input layer, two hidden layers of 200 neurons, and an output layer with 

11 neurons (one per class). A dropout function with 0.2 probability was inserted between layers 

to prevent overfitting. ReLU activation (to introduce non-linearity) was used for all layers except 

the output, where softmax was used. Loss was computed by categorical cross-entropy and the 

ANN is trained using the "opt" optimizer until 10 epochs see no training loss reduction. The 

model at the epoch with the lowest validation loss is used. Class weights inversely proportional 

to the number of sequences in that class were used.
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10-fold cross-validation

Sets 1D to 10D (see Figure 1) were used to perform 10-fold cross-validation; ten ANNs were 

trained as described above sequentially using one set as the validation set and the remaining 

nine as the training set. The results are summarized in Figures 2, 3, and 4.

Web server

We developed an easy-to-use web server for users to upload and classify their own sequences. 

Although ANNs need substantial computational resources for training the model (between 

54,861 and 127,756,413 parameters need to be tuned, depending on the model), the trained 

model can make fast de novo predictions. Our web server can predict the structural class of an 

arbitrary protein sequence in seconds and assign all the ORFs in a phage genome to one of the 

11 classes in minutes. The application can also be downloaded and run locally for high-

throughput queries or if privacy is a concern.  

Results and discussion

We evaluated the performance of 120 ANNs (10 per model type) on their respective validation 

set. For each ANN, we computed the precision, recall, and F1-score of the 11 classes. A 

“weighted average” precision, recall and F1-score, where the score for each class is weighted by 

the number of proteins in that class (larger classes contribute more to the score) was computed. 

The weighted average is represented as a 12th class (see Table S3). This gives us ten 

observations for each combination of model type and class, which allows us to construct 

confidence intervals as those seen in Figures 2, 3, and 4.

Figure 2 shows that all the models follow the same trend as to which classes they predict with 

higher or lower accuracy. Some classes of proteins, for example major capsids, collars, and 
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head-tail joining proteins, are predicted with high accuracy. On the other hand, the minor capsid 

and tail fiber protein classes seem to be intrinsically hard to predict with high accuracy 

irrespective of the model type used (Figure 3). One reason for this is the limited size of the 

training set: the minor capsid protein set is the smallest class, with only 581 proteins available 

for inclusion in our database. Even if the classes were weighted according to their size during 

training, it appears we do not have enough training examples to correctly identify this class. 

Furthermore, “minor capsid” is often misclassified as “portal” (Figure 5). This is probably an 

annotation bias, as there were about 800 proteins annotated as “portal (minor capsid)” in the 

raw sequences. When the ~800 proteins are analyzed with PhANNs, over 90% are predicted to 

be portal proteins. Although these were removed during manual curation of the training data 

sets, some (small fraction of) minor capsid proteins in our database may have been annotated 

as “minor capsid” by homology to one of those 800 sequences. 

The predictive accuracy for a specific class of proteins is likely to be affected by the bias in the 

training datasets. The bias could be biological and/or due to a sampling bias. An example of the 

former is the tail fiber class: the tail fiber is one of the determinants of the host range of the 

virus, and is under strong evolutionary  selective pressure (22–27). On the other hand, sampling 

bias may be introduced due to oversampling of certain types of phages, such as the thousands 

of mycobacterial phages isolated as part of the SEA-PHAGES project(28); many of which are 

highly related to each other. 

Average validation F1-scores range from 0.664  for the “di_sc” model to 0.906 for the “all” model 

(Figure 4). Although the average validation F1-score for the top three models “tri_p” (0.897),  

“tetra_sc_tri_p” (0.901), and “all” (0.906) are not significantly different from each other, we 

decided to use “tetra_sc_tri_p” for the web server because, while it uses ~7% fewer features 

than “all” (10,409 vs 11,201), we expect that the tetra side chain features will be better than the 

tripeptide features at generalizing predictions and accessing greater sequence diversity. 
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Using the “tetra_sc_tri_p” ensemble, we predicted the class of each sequence in the test set 

(47,879) by averaging the scores of each of the ten ANNs. Results are summarized in Figure 5. 

Doing this we reach a test F1-score of 0.875 and accuracy of 86.2% over the eleven classes.

The performance of any machine learning system is limited by the availability and cost of 

training examples (29). This has resulted in top performing image and audio classification 

systems invariably augmenting their training data with synthetic examples created by applying 

semantically orthogonal transformations to the training set (slightly rotating or distorting an 

image, adding background noise to audio) (30,31). In bioinformatics, the current practice of de-

replication moves us in exactly the opposite direction -- perfectly good samples cannot be used 

if their overlap with other samples is too high, leaving only one version of the biostring to learn, 

and thereby ignoring any variations. Our approach overcomes this failing by using all non-

redundant data. By splitting the dataset into the training, validation and test sets after first de-

replicating at 40%, we remove even slightly redundant samples and make sure that none of the 

performance is due to memorization rather than generalization. Augmenting the training set by 

expanding the clusters back out to all non-redundant samples is the novel idea we have 

introduced in the present paper as a way of increasing our training set size and hence our 

accuracy. 

Conclusion

ANNs are a powerful tool to classify phage structural proteins when homology-based alignments 

do not provide usable functional predictions, such as “hypothetical” or “unknown function”. This 

approach will get more accurate as more and better characterized phage structural protein 

sequences, especially more divergent ones, are experimentally validated and become available 

for inclusion in our training sets. This method can also be applied to predicting the function of 
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unknown proteins of prophage origin in bacterial genomes. In the future, we plan to expand this 

approach to more protein classes and to viruses of eukaryotes and archaea.
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Table 1. Summary of previous ML-based methods for classifying viral structural proteins

Reference Method Target proteins Database size Accuracy

Seguritan et al.
(10)

ANN structural (all 
viruses) versus non-
structural (all 
viruses) 

6,303 structural
7,500 non-structural

85.6%

Seguritan et al.
(10)

ANN capsid versus non-
capsid
(phages only)

757 capsid
10,929 non-capsid

91.3%

Seguritan et al.
(10)

ANN Tail-associated  
versus non-tail
(phages only)

2,174 tail
16,881 non-tail

79.9%

Feng et al.(32) Naïve 
Bayes

structural versus 
non-structural

99 structural
208 non-structural

79.15%

Zhang et al.(33) Ensemble 
Random 
Forest

structural versus 
non-structural

253 structural
248 non-structural

85.0%

Galiez et al.(11) SVM capsid versus non-
capsid

3,888 capsid
4,071 non-capsid

96.8%

Galiez et al.(11) SVM tail versus non-tail 2,574 tail
4,095 non-tail

89.4%

Manavalan et al.
(34)

SVM structural versus 
non-structural

129 structural
272 non-structural

87.0%

This work ANN Ten distinct phage 
structural classes 
plus “others”

168,660 structural
369,553 non-structural

86.2%

---
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Table 2. Database numbers - Raw sequences were downloaded using a custom script 

available at https://github.com/Adrian-Cantu/PhANNs. All datasets can be downloaded from the 

web server. *Numbers before and after removing sequences at least 60% identical to a protein 

in the classes database.

Class Raw sequences After manual 

curation

After de-

replication at 40 

%

After expansion and 

de-replication at 

100%

Major capsid 112,987 105,653 1,945 35,755

Minor capsid 2,901 1,903 261 1,055

Baseplate 75,599 19,293 401 6,221

Major tail 66,513 35,030 536 7,704

Minor tail 94,628 80,467 918 18,002

Portal 210,064 189,143 2,310 59,745

Tail fiber 29,132 18,514 1,222 7,256

Tail shaft 37,885 35,570 599 15,349

Collar 4,224 3,709 339 2,105

Head-Tail joining 60,270 58,658 1,317 15,468

Total structural 694,203 547,940 9,848 168,660

Others 733,006 643,735/643,

380*

106,004 369,553

---
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Figure 1 . Non homologous database split -  To ensure that no homologous sequences are 

shared between the test, validation, and training sets the sequences from each class (Major 

capsid proteins in this figure) were de-replicated at 40%. In the de-replicated set, no two 

proteins have more than 40% identity and each sequence is a representative of a larger cluster 

of related proteins. The de-replicated set is then randomly partitioned into eleven equal size 

subsets,  (1dMcp-10dMpc plus TestMpc). Those subsets are expanded by replacing each sequence 

with all the sequences in the cluster it represents (subsets 1DMpc-10DMpc plus TESTMpc). 

Analogous subsets are generated for the remaining ten classes and corresponding subsets are 

combined to generate the subsets used for 10-fold cross-validation and testing (1D-10D and 

TEST).
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Figure 2. Model-specific F1 score - F1 scores (harmonic mean of precision and recall) for each 

model/class combination. All models follow similar trends as to which classes are more or less 

difficult  to classify correctly. Error bars represent the 95% confidence intervals.

---

270

271

272

273

274

275

276

277

278

14

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.03.023523doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.03.023523
http://creativecommons.org/licenses/by/4.0/


Figure 3. Class-specific F1 score - F1 scores (harmonic mean of precision and recall) for each 

model/class combination. Some classes, such as minor capsid, tail fiber, or minor tail, are 

harder to classify correctly irrespective of the model used. Error bars represent the 95% 

confidence intervals.
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Figure 4. Model-specific weighted average scores - Precision, recall, and F1 scores for all

Models. Precision is higher in all models as the “others” class is the largest and easiest to 

classify correctly. Error bars represent the 95% confidence intervals.
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Figure 5. Confusion matrix using the  “tetra_sc_tri_p” model - Each row shows the 

proportional classification of test sequences from a particular class. A perfect classifier would 

have 1 on the diagonal and 0 elsewhere. In general, a protein that is misclassified is predicted 

as “others”.   
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Table S1 - Side chain groupings

Hydrophobic A,I,L,M,V

Hydrophilic N,Q,S,T

Small turn G,P

Disulfide C

Positive charge H,K,R

Negative charge D,E

Aromatic F,W,Y
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Table S2 - Feature types included in each of the 12 models. di - 2-mer/dipeptide 

composition; tri - 3-mer/tripeptide composition; tetra - 4-mer/tetrapeptide composition; sc - side-

chain grouping; p - plus all the extra features [isoelectric point, instability index (whether a 

protein is likely to be degraded rapidly), ORF length, aromaticity (relative frequency of aromatic 

amino acids), molar extinction coefficient (how much light a protein absorbs) using two methods 

(assuming reduced cysteines or disulfide bonds), hydrophobicity, GRAVY index (average 

hydropathy), and molecular weight, as computed using Biopython].

Model di tri di_sc tri_sc tetra_sc p

di_sc x

di_sc_p x x

tri_sc x

tri_sc_p x x

tetra_sc x

tetra_sc_p x x

di x

di_p x x

tri x

tri_p x x

tetra_sc_tri_p x x x

all x x x x x x

—-
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Figure S1 - Comparison of the validation weighted average F1-score of three models on 

the same feature sets - We compared our ANN ensemble trained on 1D-10D sets against a 

logistic regression trained on the 1D-10D sets and an ANN ensemble trained on the 1d-10d sets 

(40% dereplication, without cluster expansion --see Methods). The ANN ensembles perform 

significantly better than the logistic regression. Error bars represent 0.95 confidence intervals. 

---

319

320

321

322

323

324

325

326

20

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.03.023523doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.03.023523
http://creativecommons.org/licenses/by/4.0/


Figure S2 Per class comparison of the validation F1-score of three models on the 

“tetras_sc_tri_p feature” set - In the structural classes, the 1D-q0D ANN ensemble performs 

slightly better than the logistic regression and significantly better than the 1d-10d ANN 

ensemble. In the “others” class (by much the largest), 1D-10D ANN ensemble performs as well 

as 1d-10d ANN and better than logistic regression. Error bars represent 0.95 confidence 

intervals. 
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