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Abstract

Cereal grains, primarily composed of starch, protein, and fat, are major source of staple for human
and animal nutrition. Sorghum, a cereal crop, serves as a dietary staple for over half a billion people
in the semi-arid tropics of Africa and South Asia. Genomic prediction has enabled plant breeders to
estimate breeding values of unobserved genotypes and environments. Therefore, the use of genomic
prediction will be extremely valuable for compositional traits for which phenotyping is labor-intensive
and destructive for most accurate results. We studied the potential of Bayesian multi-output regressor
stacking (BMORS) model in improving prediction performance over single trait single environment
(STSE) models using a grain sorghum diversity panel (GSDP) and a biparental recombinant inbred
lines (RILs) population. A total of five highly correlated grain composition traits: amylose, fat, gross
energy, protein and starch, with genomic heritability ranging from 0.24 to 0.59 in the GSDP and 0.69
to 0.83 in the RILs were studied. Average prediction accuracies from the STSE model were within a
range of 0.4 to 0.6 for all traits across both populations except amylose (0.25) in the GSDP. Prediction
accuracy for BMORS increased by 41% and 32% on average over STSE in the GSDP and RILs,
respectively. Predicting whole environments by training with remaining environments in BMORS
yielded higher average prediction accuracy than from STSE model. Our results show regression
stacking methods such as BMORS have potential to accurately predict unobserved individuals and
environments, and implementation of such models can accelerate genetic gain.

Introduction 1

Cereal grains provide more than half of the total human caloric consumption globally and amount to 2

over 80% in some of the poorest nations of the world [1]. Sorghum [Sorghum bicolor (L.) Moench], a 3

drought-tolerant cereal crop, is a dietary staple for over half a billion people of semi-arid tropics which 4

is inhabited by some of the most food insecure and malnourished populations [2]. In industrialized 5

countries, such as United States and Australia, grain sorghum is primarily grown for animal feed. 6

But in recent years the uses of sorghum grain have expanded to baking, malting, brewing, and 7

biofortification [3–5]. Therefore, genetic improvement of sorghum grain composition is crucial to 8

mitigate the global malnutrition crisis, to increase efficiency of feed grains used in animal production, 9

and to serve evolving niche markets for gluten-free grains. 10

In the last two decades, the use of genome-wide markers in prediction of genetic merit of individuals 11

has revolutionized plant and animal breeding. Genomic prediction (GP) uses statistical models to 12

estimate marker effects in a training population with phenotypic and genotypic data which is then 13

used to predict breeding values of individuals solely from genetic markers [6, 7]. Training population 14
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size, genetic relatedness between individuals in training and testing population, marker density, span 15

of linkage disequilibrium and genetic architecture of traits are some of the factors that can affect the 16

predictive ability of the models [8–10]. Genomic prediction models are routinely studied and applied 17

by breeding programs around the world in several crops. Novel statistical methods that are capable 18

of incorporating pedigree, genomic, and environmental covariates into statistical-genetic prediction 19

models have emerged as a result of extensive computational research [11]. 20

One of the main advantages of GP is that breeders can use phenotypic values from some lines 21

in some environments to make predictions of new lines and environments. Genomic best linear 22

unbiased prediction (GBLUP) proposed by VanRaden [12] is probably the most widely used genomic 23

prediction model in both plant and animal breeding. Since then GBLUP model has been extended 24

to include G × E interactions resulting in improved prediction accuracy of unobserved lines in 25

environments [13, 14]. Burgueño et. al. [13] found an increase in prediction ability of unobserved 26

wheat genotypes by about 20% in multi-environment GBLUP model compared to single environment 27

model. Also an extension of the GBLUP model, Jarqúın et. al. [14] introduced a reaction norm model 28

which introduces the main and interaction effects of markers and environmental covariates by using 29

high-dimensional random variance-covariance structures of markers and environmental covariates. 30

While most of the genomic prediction studies have been on individual traits, breeding programs use 31

selection indices based on several traits to make breeding decisions. To address those challenges, 32

expanded genomic prediction models that perform joint analysis of multiple traits have been studied 33

using empirical and simulated data [15,16]. Subsequent improvement in prediction accuracy from 34

multi-trait model over single-trait model depends on trait heritability and correlation between the 35

traits involved [15,17]. 36

Data generated in breeding programs span multiple environment and are recorded for multiple 37

traits for each individual. While multi-environment models and multi-trait models are implemented 38

separately, a single model to account for complexity of variance-covariance structure in a combined 39

multi-trait multi-environment (MTME) model was lacking until Montesinos-López et. al. [18] 40

developed a Bayesian whole genome prediction model to incorporate and analyze multiple traits and 41

multiple environments simultaneously. Montesinos-López et. al. [18] also developed a computationally 42

efficient Markov Chain Monte Carlo (MCMC) method that produces a full conditional distribution 43

of the parameters leading to an exact Gibbs sampling for the posterior distribution. Another MTME 44

model that employs a completely different method was proposed by Montesinos-López et. al. [19]. 45

This method, called the Bayesian multi-output regression stacking (BMORS), is a Bayesian version 46

of multi-target regressor stacking (MTRS) originally proposed by Spyromitros-Xioufis et. al. [20, 21]. 47

This method consists of training in two stages: first training multiple learning algorithms for the 48

same dataset and then subsequently combining the predictions to obtain the final predictions. 49

Genomic prediction for grain quality traits has previously been reported in crops such as wheat 50

[22–24], rye [25], maize [26], and soybean [27]. Hayes et. al. [28] and Battenfield et. al. [23] used 51

near-infrared derived phenotypes in genomic prediction of protein content and end-use quality in 52

wheat. Multi-trait genomic prediction models can simultaneously improve grain yield and protein 53

content despite being negatively correlated [24,29]. In sorghum, grain macronutrients have shown 54

to be inter-correlated among one another [30], which suggests the multi-trait models may increase 55

predictive ability of individual grain quality traits. The ability to assess genetic merit of unobserved 56

selection candidates across environments is promising for reducing evaluation cost and generation 57

interval in the sorghum breeding pipeline where parental lines of commercial hybrids are currently 58

selected on the basis of extensive progeny testing [31]. In order to extend capacities to performance 59

index selection for multiple environments, we need to study and effectively implement MTME genomic 60

prediction models in our breeding programs. In this study, we report the first implementation of 61

genomic prediction for grain composition in sorghum, and the objective was to assess potential for 62

improvement in prediction accuracy of multi-trait regressor stacking model over single trait model 63

for five grain composition traits: amylose, fat, gross energy, protein and starch. 64
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Materials and methods 65

Plant material 66

Grain sorghum diversity panel: 67

A grain sorghum diversity panel (GSDP) of 389 diverse sorghum accessions was planted in randomized 68

complete block design with two replications in 2013, 2014, and 2017 field seasons at the Clemson 69

University Pee Dee Research and Education Center in Florence, SC. The GSDP included a total of 70

332 accessions from the original United States sorghum association panel (SAP) developed by Casa 71

et. al. [32]. The details on experimental field design and agronomic practices are described in Boyles 72

et. al. [33] and Sapkota et. al. [34]. Briefly, the experiments were planted in a two row plots each 6.1 73

m long, separated by row spacing of 0.762 m with an approximate planting density of 130,000 plants 74

ha−1. Fields were irrigated only when signs of drought stress was seen across the field. 75

Recombinant inbred population: 76

A biparental population of 191 recombinant inbred lines (RILs) segregating for grain quality traits 77

was studied along with the GSDP. The parents of the RIL population were BTx642, a yellow-pericarp 78

drought tolerant line, and BTxARG-1, a white pericarp waxy endosperm (low amylose) line. The 79

population was planted in two replicated plots in randomized complete block design across two years 80

(2014 and 2015) in Blackville, SC and College Station, TX. Field design and agronomic practices 81

have previously been described in detail in Boyles et. al. [30]. 82

Phenotyping 83

The primary panicle of three plants selected from each plot were harvested at physiological maturity. 84

The plants from beginning and end of the row were excluded to account for border effect. Panicles 85

were air dried to a constant moisture (10-12%) and threshed. A 25g subsample of cleaned and 86

homogenized grain ground to 1-mm particle size with a CT 193 Cyclotec Sample Mill (FOSS North 87

America) was used in near-infrared spectroscopy (NIRS) for compositional analysis. 88

Grain composition traits such as total fat, gross energy, crude protein, and starch content can be 89

measured using NIRS. Previous studies have shown high NIRS predictability of the traits used in 90

feed analysis [35,36]. We used a DA 7250TM NIR analyzer (Perten Instruments). The ground sample 91

was packed in a gradually rotating Teflon dish positioned under the instrument’s light source and 92

predicted phenotypic values was generated based on calibration curve for spectral measurements. The 93

calibration curve was built using wet chemistry values from a subset of samples. The wet chemistry 94

was performed by Dairyland Laboratories, Inc. (Arcadia, WI) and the Quality Assurance Laboratory 95

at Murphy-Brown, LLC (Warsaw, NC). The details on the prediction curves and wet chemistry can 96

be found in Boyles et. al. [30]. 97

Genotypic data 98

Genotyping-by-sequencing (GBS) was used for genetic characterization of the GSDP and RILs 99

populations [30, 33, 37]. Sequenced reads were aligned to the BTx623 v3.1 reference assembly 100

(phytozome) using Burrows-Wheeler aligner [38]. SNP calling, imputation and filtering was done 101

using TASSEL 5.0 pipeline [39]. The TASSEL plugin FILLIN for GSDP and FSFHap for RILs 102

population were used to impute for missing genotypes. Following imputation SNPs with minor allele 103

frequency (MAF)<0.01, and sites missing in more than 10% and 30% of the genotypes in GSDP and 104

RILs, respectively, were filtered. The number of genotypes studied for each population represent 105

those with at least 70% of SNP sites. The genotype matrix with 224,007 SNPs from GSDP and 106

56,142 SNPs from RILs population was used for whole genome regression. 107
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Statistical analysis 108

The statistical software environment ’R’ was used for model building and analysis [40]. The phenotypic 109

values of the traits were adjusted for random effects of replications within environment using ’lme4’ 110

package in R [41]. Principal component analysis was done using the R package ’factoextra’ [42]. 111

Marker-based estimates of narrow sense (genomic) heritabilities were calculated using the SNP 112

genotype matrix and phenotypic values using the R package ’heritability’ [43]. A matrix with dummy 113

variables ’1’ and ’0’ representing combinations of environmental variables (replication and year for 114

GSDP, and replication, year and location for RILs) was used as co-variate in heritability estimation. 115

Single-trait single-environment (STSE) model: 116

The following genomic best linear unbiased prediction (GBLUP) model was used to assess prediction 117

performance of an individual trait from a single environment: 118

yj = µ+ gj + ej (1)

where yj is a vector of adjusted phenotypic mean of the j th line (j = 1, 2,..., J ). µ is the overall 119

mean which is assigned a flat prior, gj is a vector of random genomic effect of the jth line, with 120

g = (g1, ..., gj)
T ∼ N(0,Gσ2

1), σ2
1 is a genomic variance, G is the genomic relationship matrix in the 121

order J × J and is calculated [12] as G = ZZT

2
∑

pjqj
, where qj and pj denote major and minor allele 122

frequency of j th line respectively, and Z is the design matrix for markers of order J × p (p is total 123

number of markers). Further, ej is residual error assigned the normal distribution e ∼ N(0, Iσ2
e) 124

where I is identity matrix and σ2
e is the residual variance with a scaled-inverse Chi-square density. 125

Bayesian multi-environment (BME) GBLUP model: 126

Considering genotype × environment interaction can contribute to substantial amount of pheno- 127

typic variance in complex traits, we fit the following univariate linear mixed model to account for 128

environmental effects in prediction performance: 129

yij = Ei + gj + gEij + eij (2)

where yj is a vector of adjusted phenotypic mean of the j th line in the ith environment (i = 1, 130

2,.., I, j = 1, 2,..., J ). Ei represents the effect of ith environment and gj represents the genomic effect 131

of the j th line as described in equation 1. The term gEij represents random interaction between the 132

genomic effect of j th line and the ith environment with gE = (gE11,..., gEIJ )T ∼ N (O, σ2
2 II ⊗ G), 133

where σ2
2 is an interaction variance, and eij is a random residual associated with the jth line in the 134

ith environment distributed as N(0, σ2
e) where σ2

e is the residual variance. 135

Bayesian multi-output regressor stacking (BMORS): 136

BMORS is the Bayesian version of multi-trait (or multi-target) regressor stacking method [19]. The 137

multi-target regressor stacking (MTRS) was proposed by Spyromitros-Xioufis et. al. [20,21] based on 138

multi-labeled classification approach of Godbole and Sarawagi [44]. In BMORS or MTRS, the training 139

is done in two stages. First, L univariate models are implemented using the multi-environment 140

GBLUP model given in equation 2, then instead of using these models for prediction, MTRS performs 141

the second stage of training using a second set of L meta-models for each of the L traits. The 142

following model is used to implement each meta-model: 143

yij = β1Ẑ1ij + β2Ẑ2ij + ...+ βLẐLij + eij (3)

where the covariates Ẑ1ij , Ẑ2ij ,..., ẐLij represent the scaled prediction from the first stage training 144

with the GBLUP model for L traits, and β1, ..., βL are the regression coefficients for each covariate 145

in the model. The scaling of each prediction was performed by subtracting its mean (µlij) and 146
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dividing by its corresponding standard deviation (σlij), that is, Ẑlij= (ŷlij - µlij)σ
−1
lij , for each l = 147

1,..., L. The scaled predictions of its response variables yielded by the first-stage models as predictor 148

information by the BMORS model. Simply put, the multi-trait regression stacking model is based 149

on the idea that a second stage model is able to correct the predictions of a first-stage model using 150

information about the predictions of other first-stage models [20,21]. 151

Performance of prediction model: 152

All prediction models were fit using Bayesian approach in statistical program ’R’. The STSE model 153

(1) was fit using the R package ’BGLR’ [45], BME model (2) and BMORS model (3) were fit using 154

the R package ’BMTME’ [19]. A minimum of 20,000 iterations with 10,000 burn-in steps was used 155

for each Bayesian run. 156

The evaluation of prediction performance of models was done using a five-fold cross validation 157

(CV), which means 80% of the samples were used as training set and testing was done on the 158

remaining 20% for each cross-validation fold. The individuals were randomly assigned into five 159

mutually exclusive folds. Four folds were used to train prediction models and to predict the genomic 160

estimated breeding values (GEBVs) of the individuals in fifth fold (validation/test set). The accuracy 161

of prediction for each fold was calculated as Pearson’s correlation coefficient (r) between predicted 162

values and adjusted phenotypic means for the individuals in validation set. Each cross validation run, 163

therefore, resulted in five estimates of prediction accuracy. The same set of individuals were assigned 164

to training and validation across different traits and models tested by using set.seed() function in R. 165

In order to avoid bias due to sampling, we performed 10 different cross-validation runs to calculate 166

the mean and dispersion of the prediction accuracies. 167

Results 168

Phenotypic variation 169

A single calibration curve for NIRS was used for both populations studied. Table 1 outlines the 170

summary statistics of NIRS predictions and phenotypic distribution and heritability of the grain 171

composition traits. The cross validation accuracy (R2) of the NIRS calibration curve was moderately 172

high to high, except for fat which had a moderate R2 value (0.41). We had a total of three 173

environments (three years in one location) for the GSDP and four environments (two years in two 174

locations) for the RILs. Traits were normally distributed except amylose in two 2014 environments 175

in the RILs which had bimodal distribution (S1 Fig, S2 Fig). All traits showed significant variation 176

in distribution across the environments, except starch in GSDP. 177

Table 1. Summary statistics of NIRS calibration and phenotypic distribution. R2 is the
prediction accuracy and SECV is the standard error of cross validation for the NIRS calibration
curve. Mean represents the phenotypic mean of the trait with its standard deviation (SD). h2 is the
estimate of genomic heritability.

Trait NIRS GSDP RILs
R2 SECV Mean ± SD h2 Mean ± SD h2

Amylose 0.60 2.24 13.87 ± 2.98 0.24 11.49 ± 4.32 0.77
Fat 0.41 0.53 2.53 ± 0.57 0.54 3.07 ± 0.67 0.76
Gross energy 0.71 25.80 4108.33 ± 55.15 0.59 4124.56 ± 41.74 0.69
Protein 0.96 0.27 12.02 ± 1.45 0.39 11.43 ± 1.03 0.83
Starch 0.89 0.75 68.30 ± 2.44 0.44 68.37 ± 1.87 0.79

The genomic heritabilities of all traits except gross energy were significantly higher (p <0.05) 178

in the RILs than in the GSDP (Table 1). Trait heritabilities were high in the RILs, with protein 179

and gross energy having the highest and lowest heritabilities, respectively. In the GSDP, genomic 180
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heritability was moderately high for fat and gross energy, moderate for protein and starch, and low 181

for amylose. The poor genomic heritability (0.24) of amylose in the GSDP was expected because only 182

a very small proportion (1%) of accessions have low amylose as a result of waxy gene (Mendelian 183

trait). 184

Fig 1 shows correlation between the adjusted phenotypic means for trait and environment 185

combination. Starch was negatively correlated (p<0.001) with all other traits in both populations 186

except for amylose in the RILs. Fat, protein and gross energy were significantly positively (p<0.001) 187

correlated to each other across environments in both populations. The strongest positive correlation 188

was between gross energy and fat, whereas the strongest negative correlations were found between 189

starch ∼ gross energy and starch ∼ protein. Moderate to high positive correlation was observed 190

between years for all traits (Fig 1). We conducted a principal component analysis (PCA) of correlation 191

matrix for the traits in each environment. In both populations, the first component separated amylose 192

and starch from the other three traits, whereas, the second component separated amylose from starch 193

and gross energy from protein and fat (S3 Fig). The first component explained 78.8% and 75.9% 194

of variation, and second component explained 6.3% and 9.8% of variation in the GSDP and RILs, 195

respectively. The third principal component in the RILs separated proteins from fat and explained 196

about 7.6% of the variation. 197

Figure 1. Correlation between traits across year and location combination for the two
populations. Ams: amylose, GE: gross energy, Prt: protein, Sta: starch, SC: South Carolina, TX:
Texas, and numbers in x and y-axes represent the year.

Prediction performance in single and multiple environment 198

We first implemented GBLUP prediction model for single-trait single-environment (STSE). Predic- 199

tion accuracies of the STSE model varied across environments in both populations (Fig 2). The 200

environments 2014 in the GSDP and TX2014 in the RILs had highest average prediction accuracy 201

but were not always the best predicted environment for all traits. While poorly predicted for amylose, 202

the environments 2017 in the GSDP and TX2015 in the RILs had higher prediction accuracy for 203

starch compared to all or most environments. Despite variation across environments and populations, 204

the average prediction accuracies from the STSE were within the range of 0.4 to 0.6 for all traits 205

except amylose (0.25) in the GSDP. The average prediction accuracy of the STSE model in the GSDP 206

was positively correlated (r=0.86) with the genomic heritability of the traits. In the RILs, there 207

was a positive correlation (r=0.77) between average prediction accuracy and genomic heritability for 208

amylose, fat and gross energy, but the traits (protein and starch) with the highest heritabilities had 209
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relatively lower average prediction accuracies. 210

Figure 2. Prediction accuracy for single-trait single-environment model. Legend repre-
sents the environment/years. SC: South Carolina, TX: Texas. Pale blue dots represent the mean of
prediction accuracy.

We didn’t see substantial improvement in multi-environment (BME) model over the STSE 211

prediction accuracies (Fig 3). In the GSDP, the multi-environment models resulted in a decline 212

in average prediction accuracy compared to the STSE model for fat (21%), amylose (10%) and 213

protein (4%), however, no significant change was observed for gross energy and starch (S4 Fig, S1 214

Table). The prediction accuracy in the RILs increased by an average of 3% in the BME compared to 215

the STSE, however, the overall trend of prediction accuracy for traits and environments remained 216

unchanged (S4 Fig). The environment SC2014 showed consistent increase in accuracy for BME over 217

STSE model across all traits with about 10% increase for protein (S2 Tab). Amylose in TX2015 218

environment had the single greatest increase (12%) in average prediction accuracy in the BME among 219

all trait-environment combinations for the RILs. 220

Bayesian multi-output regression stacking 221

We tested two different prediction schemes in the BMORS prediction model using the two functions 222

BMORS() and BMORS Env() as described in [19]. While the BMORS() function was used for a 223

five-fold CV as described in the methods section, the BMORS Env() was used to assess the prediction 224

performance of whole environments while using the remaining environments as training. 225

Five-fold CV 226

The prediction accuracy from five-fold CV in BMORS increased by 41% and 32% on average over 227

the STSE model in GSDP and RILs, respectively. Fig 4 shows the prediction accuracy of BMORS 228

for each trait and environment combination across the two populations. While the percent change in 229

accuracy varied across environments, the BMORS model nonetheless had higher average prediction 230

accuracy than the STSE and BME models for all traits (Fig 3). The increase in average accuracy 231

ranged from 11% (amylose, 2014) to 66% (amylose, 2013) in the GSDP with exception of amylose in 232

2017 (13% decrease), and 15% (fat, SC2015) to 60% (protein, TX2014) in the RILs (S1 Table). The 233

increase in average prediction accuracy was higher (35%) for both locations in 2014 for the RILs, 234

whereas, the year 2013 in the GSDP increased the most (S1 Table, S2 Table). Among the traits, 235

protein (54%) had the greatest average increase in prediction accuracy in the GSDP, whereas in the 236

RILs, protein and starch (42%) both showed the greatest increase. 237
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Figure 3. Average prediction accuracy of traits for the three prediction methods in the
two populations.

Figure 4. Prediction accuracy of BMORS model using five-fold CV. Legend represents
the years/environment. SC: South Carolina, TX: Texas. Pale blue dots show mean of the prediction
accuracy.

Prediction of whole environment 238

Predicting a whole environment using the BMORS model usually yielded higher accuracy than the 239

mean prediction accuracy from the STSE model for each trait and environment combination (Fig 2, 240

5, Table 2). The distribution of prediction accuracy across trait and environment combination were, 241

however, similar to the results from the STSE model. In the GSDP, little variation in prediction 242

accuracies was observed across environments for gross energy, starch and protein, whereas, amylose 243

and fat showed greater variability in prediction accuracy between environments. In the RILs, 244

prediction accuracy for all traits except protein had high variability across the environments (Table 245

2). 246

In order to assess predictability by location or year in the RILs, we tested one location or year 247
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by training the BMORS model using the other location or year, respectively (Table 2). The Texas 248

location had higher accuracy of prediction for fat (+0.11) and gross energy (+0.1) compared to 249

South Carolina, but rest of the traits had similar prediction accuracy (difference <0.02). Prediction 250

accuracy of whole years varied across traits, amylose (+0.09) and fat(+0.04) were higher in 2014, 251

protein was higher (+0.05) in 2015, and starch and gross energy were similar. 252

Figure 5. Prediction accuracy of the test environments predicted using the
BMORS Env in the GSDP. Values on top of the bar represent the height of the bar.

Table 2. Prediction accuracy of the test environments predicted using the BMORS Env
in the RILs.

Trait Year × Location Location Year
SC2014 SC2015 TX2014 TX2015 SC TX 2014 2015

Amylose 0.79 0.80 0.88 0.60 0.76 0.74 0.74 0.65
Fat 0.69 0.49 0.78 0.74 0.60 0.71 0.64 0.60
Gross energy 0.56 0.49 0.62 0.66 0.48 0.58 0.56 0.56
Protein 0.65 0.66 0.66 0.70 0.59 0.58 0.61 0.66
Starch 0.64 0.52 0.68 0.60 0.55 0.56 0.56 0.55

Discussion 253

Phenotyping for grain compositional traits is: 1) challenging and labor-intensive, 2) destructive 254

for most accurate results, and 3) only performed after plants reach physiological maturity and are 255

harvested. The use of genomic prediction for compositional traits will be extremely valuable because 256

it increases selection intensity and decreases generational interval by overcoming the phenotyping 257

challenges. Moreover, these traits are complex and quantitatively inherited so will benefit from 258

genomic prediction’s ability to account for many small effect QTLs in estimating breeding values. 259

9/15

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.03.023531doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.03.023531
http://creativecommons.org/licenses/by/4.0/


Trait architecture and prediction accuracy 260

While the accuracy of NIRS calibration for traits in this study ranged from moderate to high, there 261

was prediction error associated with NIRS prediction. However, it is unclear if and what effects NIRS 262

prediction error had on genomic prediction. No direct correlation was observed between the genomic 263

prediction accuracy and NIRS statistics for the traits studied. The trait with the lowest NIRS R2, 264

fat, was predicted as well as or better than starch, protein and gross energy, which had NIRS R2
265

>0.7. Despite varying strength of correlations between traits across the two populations studied, the 266

nature of relationship was similar for a given pair of traits, which is also in agreement with previous 267

studies [30,46,47]. The strong negative relationship of starch and amylose to protein, fat and gross 268

energy was further elucidated by the PCA analysis of phenotypic correlation matrix (S3 Fig). Since 269

starch, protein and fat were measured on a percent dry matter basis, the strong correlation between 270

them is expected. 271

Genetic relatedness and trait architecture are known to affect the accuracy of genomic prediction 272

[8, 48]. The genetic relatedness between individuals and heritability of the traits were higher in 273

the RILs than in GSDP (S3 Fig, Table 1 ). Those factors could be contributing to higher average 274

prediction accuracy in the RILs. However, the average prediction accuracies for gross energy and 275

starch were comparable between GSDP and RILs (Fig 3). Prediction accuracy in the GSDP could 276

have been boosted by greater genetic diversity despite lower genetic relatedness [34]. Heffner et. 277

al. [22] observed a prediction accuracy of 0.5-0.6 for wheat flour protein in two biparental populations. 278

Guo et. al. [26] reported prediction accuracies of 0.44 and 0.8 for protein and amylose in rice diversity 279

panel. Similar results were observed in our STSE models for protein content (Fig 2). Whereas, 280

lower prediction accuracy of amylose in our diversity panel is probably due to the lack of sufficient 281

low-amylose lines with the waxy gene [30]. While we couldn’t find any previous genomic prediction 282

studies on starch, fat and gross energy, these traits are nutritionally one of the most important traits 283

in cereal grains. The moderate to high prediction accuracy observed suggests implementation of 284

genomic selection can improve genetic gain for these grain quality traits. 285

Multi-trait regressor stacking 286

One of the daunting tasks of genomic prediction is estimating the effects of unobserved individuals 287

and environments. As multiple traits are analyzed across several environments, the ability to 288

combine information from multiple traits and environments can be crucial in increasing accuracy of 289

prediction [13, 15, 16]. When the correlations among traits are high, prediction accuracies of complex 290

traits can be increased by using multivariate model that takes this correlation into account [15,18]. 291

We fit a Bayesian multi-environment (BME) model (2) that takes the genotype × environment effects 292

into consideration. In the GSDP, where environments were three years at the same location, the 293

BME model showed a slight decline (7%) in average prediction accuracy which was mostly due to the 294

two traits, amylose and fat (Supplementary Table S1). The RILs showed slight increase (2-3%) in 295

prediction accuracy of traits when averaged over the environments, but there was variability across 296

the environments (S2 Table). 297

We implemented two functions [BMORS() and BMORS Env()] which are not only used to 298

evaluate prediction accuracy but are also computationally efficient [19]. The BMORS model (3) 299

performs two-stage training by stacking the multi-environment models from all the traits. The 300

five-fold cross validation conducted for BMORS was similar to the CV1 strategy of Montesinos-López 301

et. al. [18]. The use of multi-trait models has been consistently shown to increase prediction accuracy 302

over single-trait models across different crops and traits [15–17, 49]. The multi-target regressor 303

stacking increased average prediction accuracy by 41% and 32% in the GSDP and RILs, respectively, 304

as compared to the STSE prediction accuracy. Average prediction accuracy of all traits improved 305

in BMORS over STSE and BME across both the populations (Fig 3). Consistent improvement in 306

accuracy of BMORS is a result of the ability to use not only correlation between traits but also 307

between environment in the model training [18,19]. The ability to accurately estimate genetic merit of 308

lines in unobserved environments is of tremendous value in plant breeding. Our results show potential 309
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of BMORS Env() function for predicting the whole environment. Testing a whole environment 310

by training BMORS model using all other environments resulted in higher prediction accuracy for 311

that trait-environment combination than using STSE or BME model. Prediction accuracy of all 312

environments were 0.5 or higher with exception of amylose in GSDP, the reason for which we have 313

discussed above (Fig 5, Table 2). 314

Application for breeding 315

Grain quality traits such as starch and protein content have been under selection since the inception 316

of phenotypic selection in modern breeding practices. More recently, total energy supplement of 317

grain has gained attention for increasing feed efficiency in animal production, and a need exists 318

for increasing total calories for human nutrition in the wake of global malnutrition crisis. Despite 319

high correlations among these traits, the genetic variation underlying starch, protein and fat can be 320

decoupled. [30] have shown major and minor effect QTLs underlying the three traits are distributed 321

across the genome and are segregating in biparental populations. However, in practice, selection 322

would be conducted simultaneously for these traits using a selection index rather than for individual 323

traits. Velazco et. al. [31] observed an increase in predictive ability by using a multi-trait model for 324

grain yield and stay green in sorghum, and argue that such an exercise would allow for using selection 325

index for implementation of genomic selection for correlated traits. Increased prediction accuracy, 326

improved selection index, and estimation of precise genetic, environmental and residual co-variances 327

makes multi-trait multi-environment models preferable over univariate models [18]. The multi-trait 328

regression stacking model we tested shows large scale improvement in model prediction and can 329

be used in tandem with Bayesian multi-trait multi-environment (BMTME) model for parameter 330

estimation and assessing prediction accuracy. The ability to estimate genetic effects and breeding 331

values of unobserved environments will be of great advantage to predict performance in diverse 332

environments and for implementation of selection theory. 333

Conclusion 334

Phenotyping of grain compositional traits using near-infrared spectroscopy is labor-intensive, generally 335

destructive, and time limiting. Therefore, the use of genomic selection for these traits will be 336

extremely valuable. This study establishes the potential to improve genomics-assisted selection of 337

grain composition traits by using multi-trait multi-environment model. The phenotypic measurements 338

obtained from NIRS prediction were amenable to genomic selection as shown by moderate to high 339

prediction accuracy for single trait prediction. While multi-environment model alone didn’t lead to 340

much improvement over single environment model, stacking of regression from multiple traits showed 341

substantial improvement in prediction accuracy. The prediction accuracy increased by 32% and 342

41% in the RILs and GSDP, respectively, when using the Bayesian multi-output regressor stacking 343

(BMORS) model compared to a single trait single environment model. The ability to predict line 344

performance in an unobserved environment is of great importance to breeding programs, and results 345

show high accuracy for predicting whole environments using BMORS. 346

Supporting information 347

S1 Fig. Phenotypic distribution of grain composition traits in the RILs. In the x-axes, 348

SC: South Carolina, TX: Texas, numbers represent years. Values are percentage dry basis for protein, 349

fat and starch; gross energy is in KCal/lb; and amylose is in percent of starch. 350

S2 Fig. Phenotypic distribution of grain composition traits in the GSDP. Numbers in 351

x-axes represent years. Values are percentage dry basis for protein, fat and starch; gross energy is in 352

Cal/g; and amylose is in percent of starch. 353
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S3 Fig. PCA analysis of correlation matrix between traits. a. GSDP, and b. RILs. Ams: 354

amylose, GE: gross energy, Prt: protein, Sta: starch, SC: South Carolina, TX: Texas. The numbers 355

in the text represent years of the environment. 356

S4 Fig. Prediction accuracy using five-fold CV in Bayesian multi-environment (BME) 357

model. a. GSDP, and b. RILs. Legend represents the environment/years. SC: South Carolina, TX: 358

Texas. Pale blue dots represent the mean of prediction accuracy. 359

S5 Fig. Heatmap for genomic relationship matrix calculated using vanRaden (2008). 360

a. GSDP, b. RILs. Trees show hierarchical clustering using Euclidean distance. 361

S1 Table. Percent change in prediction accuracy over the single trait single environ- 362

ment model (STSE) model in the GSDP. BME: Bayesian multi-environment, and BMORS: 363

Bayesian multi-output regressor stacking. 364

S2 Table. Percent change in prediction accuracy over the single trait single environ- 365

ment model (STSE) model in the RILs. BME: Bayesian multi-environment, and BMORS: 366

Bayesian multi-output regressor stacking. 367
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