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ABSTRACT 
 

Rare genomic Copy Number Variants (CNVs) are major contributors to neurodevelopmental 

disorder. The vast majority of pathogenic CNVs reported back to patients are ultra-rare and 

their quantitative effects on traits such as intelligence are undocumented.  

Here, we identified all CNVs ≥ 50 kilobase in 24,092 individuals from unselected and autism 

cohorts. We developed statistical models to estimate the effect-size of CNVs on intelligence 

based on their coding and non-coding characteristics. 

Measures of intolerance to haploinsufficiency best explained the effect of any deletion or 

duplication on general intelligence. There was no heterogeneity across unselected and autism 

cohorts. Validation was performed using an intraclass concordance and showed that model 

estimates of general intelligence were 78% accurate with mean effect-sizes previously 

published for 47 CNVs. 

Inheritance data on 27,766 CNVs showed that deletions and duplications with the same large 

effect-size on intelligence occur de novo at the same frequency. 

Our first outline for the effect sizes of all coding genes on intelligence suggests that around 

10,000 genes affect this trait. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 5, 2020. ; https://doi.org/10.1101/2020.04.03.024554doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.03.024554


 3 

Introduction 
 

Copy Number Variants (CNVs) are deletions or duplications larger than 1000 base pairs. The 

contribution of CNVs to the etiology of intellectual disability (ID)1–3, autism4–6 and 

schizophrenia6–8 is well established. CNVs studies have mainly been conducted using a case-

control approach testing association with a categorical diagnosis1,9,10. As a result, 1) only the 

most recurrent CNVs are documented and 2) the interpretation of CNVs in research and 

medical diagnostics remains essentially binary: benign or pathogenic (contributing to mental 

illness). Their characteristics such as size, genes they encompass and de novo status are also 

used to classify them as benign or pathogenic11. The routine implementation of Chromosomal 

Micro-Arrays (CMAs) as a first-tier diagnostic test currently identifies “pathogenic” CNVs in 

10 to 15 % of children with neurodevelopmental disorders (NDD)12. A binary interpretation is 

however of limited use in the clinic where patients present a broad spectrum of cognitive 

symptoms ranging from severe ID to mild learning disabilities, or autism with IQ above 

population mean. The quantitative effects of CNVs are rarely documented even for commonly 

available cognitive dimensions such as general intelligence. For the most recurrent CNVs, this 

data may be available but it originates from patients ascertained in the clinic leading to 

potentially gross overestimation of effect-sizes. One study in an unselected population from 

Iceland showed that in aggregate, 12 recurrent CNVs associated with schizophrenia decrease 

IQ by 15 points (1 z-score)13. A second study in UK Biobank (UKBB) showed that 24 out of 

33 recurrent CNVs were associated with reduced performance on at least one cognitive test. 

Schizophrenia-associated CNVs were associated with larger impairments13,14. However, the 

vast majority of pathogenic CNVs reported back to patients are ultra-rare (non-recurrent) and 

there is no data to quantify their effect-size on cognitive function. 

There is significant genetic correlation between intelligence and psychiatric disorders and 

impairments in intelligence represent a major referral criterion to the NDD clinic. The 
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heritability of general intelligence is estimated at around 50 to 80%15, with the former 

estimate representing all age groups, and the latter referring to adults only. The heritability of 

variants in linkage disequilibrium with common SNPs is estimated to be around 22.7%, with 

variants in poor linkage disequilibrium with SNPs, including rare CNVs, explaining 31.3% of 

the phenotypic variation in intelligence16. Two recent GWAS, has identified over 200 loci 

associated with intelligence and education17,18 and these loci potentially implicate 1000 

candidate genes. The latter were largely non-overlapping with genes previously linked to ID 

or other NDD17. Contrary to the majority of non-coding SNPs studied in GWAS, there is no 

ambiguity in the molecular interpretation of a fully deleted or duplicated gene, which 

invariably decreases or increases transcription respectively. Therefore, CNVs represent a 

powerful tool to map the effect-sizes of genes (altered by gene dosage) on human traits. 

We propose a framework to estimate and predict the effect on intelligence of any CNVs 

including undocumented ones. We hypothesize that the effect-size of CNVs can be 

statistically estimated based on coding and non-coding characteristics of the affected genomic 

region. 

We have previously shown that linear models19 using the sum of the “probability of being 

loss-of-function intolerant” (pLI) scores20 of all genes included in a deletion can predict their 

effect-size on intelligence quotient (IQ) with a concordance of 75% with empirical measures. 

Our initial study, performed in 2 unselected populations, was not sufficiently powered to 

measure the effects size of duplications and investigate the effect of alteration of individual 

genes. It was also unknown whether results would generalize to patients with NDD referred to 

the clinic. The pLI score (ranging from 1 to 0) is a measure of a gene’s intolerance to 

haploinsufficiency based on lower-than-expected rates of protein-loss-of-function (pLoF) 

variants in the general population. Genes with high pLI scores (≥0.9) are intolerant to pLoF, 

whereas genes with low pLI scores (≤0.1) are tolerant or there may be insufficient data to 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 5, 2020. ; https://doi.org/10.1101/2020.04.03.024554doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.03.024554


 5 

assess their tolerance. However, the pLI is mainly a binary variable and new continuous 

measures such as the LOEUF21 (Loss-of-function Observed/Expected Upper bound Fraction) 

may better reflect the full spectrum of intolerance to pLoF. LOEUF range from 0 to 2, and 

values below 0.35 are suggestive of intolerance.  

Our present aims are 1) to replicate effect sizes estimates of deletions on general intelligence, 

in a large dataset including unselected and NDD populations, 2) to estimate the effect size on 

general intelligence of genomic duplications, 3) to estimate effect sizes of all individual 

protein-coding genes on intelligence (using categories of constraint scores), and 4) to 

investigate the quantitative relationship between effect size on general intelligence and de 

novo events. 

We identified and annotated CNVs in 24,092 individuals from five general populations and 

two autism cohorts. We then scored CNVs using genetic annotations to identify variables that 

contribute the most to variation in general intelligence. We also investigated the inheritance of 

27,766 CNVs in unselected populations, autism, and clinical samples. After model validation, 

we implemented an online tool to help clinicians and researchers estimate the effect size of 

any CNVs on general intelligence.  
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RESULTS 

1) The effect-size of haploinsufficiency on measures of general intelligence is similar 

regardless of assessment and ascertainment. 

We identified 18,860 autosomal deletions and 18,799 autosomal duplications larger than 50 

kb in 24,092 individuals. General intelligence was assessed using different neurocognitive 

tests across cohorts: measures of non-verbal intelligence quotient (NVIQ) were available in 

five samples and general intelligence factor (g-factor)22 was computed in three samples using 

cognitive tests, primarily assessing fluid non-verbal reasoning (Table1, Supplementary figure 

1). The concordance between z-scored NVIQ and g-factor available for three cohorts ranged 

from 60 to 77% (Supplementary table 1). 

We sought to replicate our previous estimates for the effect-size of deletions 

(measured by pLI) on general intelligence19. We computed the sum of pLI of all coding genes 

with all transcripts fully encompassed within CNVs. This sum was used as the main 

explanatory variable in a linear model estimating the effect-size of CNVs on general 

intelligence. The meta-analysis performed on 20,151 individuals from unselected populations 

showed that one deleted point of pLI decreases NVIQ or g-factor by 0.18 z-score (95% CI: -

0.23 to -0.14, which is equivalent to 2.7 points of NVIQ, Figure 1a, Supplementary table 2). 

Since genomic variants with large effects on general intelligence (e.g. deletions occurring 

de novo) are thought to be removed from the general population as a result of negative 

selective pressure. This may have led to an underestimation of the effect size of CNVs in 

unselected populations. To examine this possibility, we analyzed 3,941 individuals from two 

autism cohorts, which include individuals with ID and de novo deletions. The effect size on 

general intelligence of intolerance to pLoF measured by pLI was the same (-0.17 z-score, 

95% CI: -0.22 to -0.12) and we did not observe heterogeneity across autism and unselected 

populations (Figure 1A, supplemental table 2). Of note, the effect size of pLI was essentially 
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identical for NVIQ and g-factor, which were both available in three cohorts (Supplementary 

table 3). 

 

2) The effect size of duplications on general intelligence is 3-fold smaller than 

deletions 

Our previous study15 was unable to estimate the effect size of duplications on general 

intelligence, likely due to insufficient power. We fit a linear model using the sum of pLI of all 

coding genes encompassed in duplications per individual as the explanatory variable of 

general intelligence. The meta-analysis combining all samples shows a decrease of 0.05 z-

score (95% CI: -0.07 to -0.04), of general intelligence per duplicated point of pLI which is 

equivalent to 0.75 points of general intelligence. Again, estimates are similar across autism 

and unselected populations. (Figure 1b, Supplemental table 2). 

 

3) Mega-analysis suggests additive effects of constraint scores on general intelligence 

Given the homogeneity across cohorts, we pooled samples after adjusting for specific 

nuisance variables (including cognitive test and cohorts, Supplementary methods) to perform 

a mega-analysis of 24,092 individuals. We selected 13,001 deletions and 15,856 duplications 

that could potentially be detected by all arrays used in the mega-analysis (encompassing ≥10 

probes for any array). These CNVs encompassed 36% (NCNVs gene=6,315, NDel. gene=2,282, 

NDup. gene=5,223) of the coding genome (Figure 2a, Supplementary Figure 2a). The mean 

effect of one point of pLI on general intelligence corresponded to an estimated decrease of 

0.175 z-score (SE=0.016, P=1.45×10-28) and 0.054 z-score (SE=0.009, P=1.90×10-9) for 

deletions and duplications, respectively (Supplementary table 4). All analyses only accounted 

for genes with all transcripts fully encompassed in CNVs. Including different categories of 
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partially deleted or duplicated genes did not improve the model (Supplementary methods, 

Supplementary table 5 to 7). 

Comparing 11 variables, pLI and 1/LOEUF best explained (based on AIC) the variance of 

general intelligence (Supplementary table 4). There was no effect of the interaction between 

age or sex and either constraint scores on general intelligence (Supplementary Table 8 to 11). 

Non-linear models including polynomial function of order 2 and a kernel method did not 

improve model fit (Supplementary Table 12 and 13), suggesting an additive effect of 

constraint scores. For the remainder of the study, we transitioned to using LOEUF because it 

is a continuous variable (the pLI is essentially binary) and is now recommended as the 

primary constraint score by gnomAD. Analyses using pLI are presented in supplemental 

results.  

 

4) Genes encompassed in recurrent neuropsychiatric CNVs and non-recurrent CNVs 

have the same effect sizes on intelligence 

We asked if the mean effect-size of 1/LOEUF is influenced by recurrent neuropsychiatric 

CNVs. Therefore, we removed 608 individuals carrying any of the 121 recurrent CNV 

previously associated with neuropsychiatric conditions19. This sensitivity analyses 

demonstrate that the effect size of 1/LOEUF on general intelligence remains the same and 

highly significant for deletions and duplications (Supplementary table 14). It has been posited 

that the deleteriousness of large psychiatric CNVs may be due to interactions between genes 

encompassed in CNVs. We therefore asked if the effect-size of 1/LOEUF is the same for 

CNVs encompassing small and large numbers of genes. We recomputed the linear model 6 

times after incrementally excluding individuals with a total sum of 1/LOEUF ≥60, 40, 20, 10, 

4 and 2.85 (2.85 corresponds to 1/0.35, the cut-off for intolerance to pLoF gnomAD) for 

deletions and duplications separately. The effect of each unit of 1/LOEUF remains similar 
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whether deletions encompass >10 or >60 points of 1/LOEUF (Figure 2b, results are similar 

with pLI Supplementary figure 2b). 

 

5) Gene dosage of 1% of coding genes shows extreme effect size on general 

intelligence.  

Our ability to capture extreme effect size genes is likely limited by the properties of LOEUF. 

Intolerance can be robustly inferred only if the number of expected pLOF variants (size of the 

coding region) is large enough. To improve model accuracy for extreme and large effect size 

genes, we used a list of 256 ID-genes2,23, previously identified with an excess of de novo 

mutations in NDD cohorts. We identified 66 CNVs encompassing at least one ID-gene in 

ASD cohorts (31 deletions and 35 duplications) and 60 in the general population (13 deletions 

and 47 duplications) (Figure 3, supplementary methods). 

We recomputed the model by integrating 4 explanatory variables: the sum of 1/LOEUF for ID 

and non-ID-genes encompassed in deletions and duplications. The mean effect-size on 

intelligence of 1 point of 1/LOEUF for ID-genes was a decrease of 0.174 z-score in deletions 

(SE=0.035; P= 9.2×10-7) and 0.076 in duplications (SE=0.026; P= 3.7×10-3), 7 to 11-fold 

higher than the mean effect of 1/LOEUF for non-ID genes (Supplementary table 15). As an 

illustration, the mean effect on IQ of ID-genes intolerant to pLoF (LOEUF<0.35) was 20 

(ranging from 8 to 70) for deletions and 9 (from 3 to 31) for duplications (Supplementary 

table 16). The effect of 1/LOEUF for non-ID-genes remained unchanged (Supplementary 

table 15). Conclusions are the same using pLI (Supplementary table 15 and 16, 

Supplementary figure 3). 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 5, 2020. ; https://doi.org/10.1101/2020.04.03.024554doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.03.024554


 10 

6) Replicating model estimates in the neurodevelopmental disorder clinic 

We asked if the estimates of our model can generalize to cases (282 individuals from 75 

families) carrying large deleterious CNVs ascertained in the neurodevelopmental disorder 

clinic and rarely observed in the general population or in autism cohorts (Table 1). Using a 

kinship matrix, IQ measured in relatives with or without a CNV provided information to 

account for genetic and environmental background present in families. Results are very 

similar to those observed in the mega-analysis for deletions (estimate 1/LOEUF = -0.024, P= 

5.3×10-8) and duplications (estimate 1/LOEUF =-0.009, P=1.8×10-3, Supplementary table 17). 

There were too few observations in this dataset to provide significant estimates for ID-genes. 

 

7) Model validation using clinical series and the UK Biobank.  

To investigate the performance of our model for non-pathogenic and pathogenic recurrent 

CNV we compared model estimates to published observations. We identified a total of 47 

recurrent CNVs with sufficient data on general intelligence reported in clinical series and in 

the UKBB17 (Supplementary table 18). When cognitive data was available from both clinical 

and the UKBB (13 of the 47 recurrent CNVs), we used the mean of both effect sizes (Figure 

4). Concordance between the 1/LOEUF-ID-gene model and previously published measures 

was 0.78 for all deletions and duplications (95% CI, 0.66-0.86, P= 4.3×10-11, Figure 4). 

Accuracy was similar for deletions (ICC=0.71 [0.5;0.84], P= 1.8×10-5, Figure 4) and 

duplications (ICC=0.85 [0.7;0.93], P= 3×10-7, Figure 4) as well as for small and extreme 

effect size CNVs including trisomy 21. The absence of any significant concordance between 

effect-sizes reported in UKBB and those reported in clinical case series highlighted the 

specific biases of these different ascertainment methods (Supplementary figure 4). pLI models 

provided the same level of concordance (Supplementary figure 5). 
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8) CNVs with the same impact on intelligence have the same de novo frequency. 

Because models including constraint scores explain equally well the effect sizes of deletions 

and duplications on intelligence, we investigated if the relationship between intelligence and 

de novo frequency is similar for both types of CNVs. We established inheritance for 26,437 

CNVs in 6 cohorts (Supplemental Table 19). There was a strong relationship between 

1/LOEUF for ID and non-ID genes and the frequency of de novo observations for deletions 

(P=1.9×10-65 and P <10-314 respectively) and duplications (P=4.6×10-24 and P=2.6×10-182 

respectively, Figure 5a).  

Deletions and duplications with the same impact on general intelligence show the same de 

novo frequency for large effect size CNVs (Figure 5a). CNVs with neutral estimated effects 

on general intelligence showed a much higher rate of de novo frequency in diagnostic 

databases (6.52 and 3.27% for deletions and duplications) compared to unselected populations 

(0.58 and 1.19%, Supplementary table 19). The concordance between the probability of 

occurring de novo estimated by the model (after removing recurrent CNVs) and de novo 

frequency reported in the DECIPHER database on 31 recurrent CNVs was 0.81 ([0.67-0.9]; 

P=8.2×10-8) (Figure 5b, Supplementary table 20, Supplemental figure 6). 

 

9) Estimating effect-sizes of individual genes using LOEUF 

Although models relying on the sum of pLI or 1/LOEUF provide accurate estimates of CNV 

effects on general intelligence, it is unlikely that they can properly estimate the effects of 

individual genes. Since we were vastly underpowered to perform a gene-based GWAS, we 

first divided all genes in 4 categories: highly intolerant genes (LOEUF<0.2; n=980), 

moderately intolerant genes (0.2≤LOEUF<0.35 n=1,762), tolerant genes (0.35≤LOEUF<1; 

n=7,442) and highly tolerant genes (LOEUF≥1; n=8,267). The sum of genes in each category 

was used as four explanatory variables to explain general intelligence in the same linear 
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model. For deletions, the three first variables showed negative effects on general intelligence 

(Figure 6, Supplementary table 21). For duplications only moderately intolerant genes showed 

negative effects (Supplementary figure 7 and table 21). 

We were underpowered to further subdivide these LOEUF categories, so as an exploratory 

analysis, we tested 38 overlapping sliding windows across LOEUF values in 38 linear 

models. Each model used 2 explanatory variables: number of genes within and outside the 

window (size = 0.15 LOEUF). Negative effects of deletions on general intelligence were 

observed for genes within 13 out of 38 windows and 2 showed positive effects (after 

corrected for FDR). For duplications, only 2 windows had negative effects (after corrected for 

FDR, Figure 6, Supplementary figure 7 and table 22). 

 

DISCUSSION 

Main findings 

The mean effect size associated with deleting one point of pLI is robust across cohorts, 

clinical diagnoses, general intelligence assessments, a broad age range and sex. It is similar 

for CNVs previously associated with psychiatric disorders and undocumented CNVs. The 

same robustness of effect size is also observed for duplications, with an effect size which is 3-

fold smaller than deletions. The linear sum of pLI or 1/LOEUF predicted the effect size of 

deletions and duplication on intelligence with over 78% of concordance with empirical 

measures. Using categories of LOEUF values, we provide the first estimates for the individual 

effect sizes of protein-coding genes. Results suggest that 1) the effect sizes of genes intolerant 

to pLoF increase sharply as their LOEUF values decrease and 2) over 7000 genes considered 

as tolerant to pLoF also impact cognitive ability with mild effect sizes. 
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Intolerance to altered gene dosage rather than just haploinsufficiency  

We show that scores measuring intolerance to pLoF explain equally the effect-size of 

deletions and duplications on intelligence. pLI and LOEUF may therefore be considered as 

measures of intolerance to altered gene dosage, regardless of whether gene expression is 

increased or decreased. This is consistent with observation of structural variants in 

gnomAD24. The 3:1 effect-size ratio between deletions and duplications may help estimate the 

effect-size of a duplicated gene when only information on its pLoF effect-size is available or 

vice versa. 

 

Model validation and ascertainment biases 

Predictions from linear models using constraint scores show 78% of concordance with 

empirical data in estimation of the effect size of CNVs on IQ. Several CNVs show large 

discordances between model estimates and previous reports from the literature. This may be 

due to either 1) unidentified large effect size genes with unreliable LOEUF measures due to 

the small size of the protein coding region, and 2) ascertainment bias which is illustrated by 

the model’s trend toward underestimation and overestimation when compared to clinical and 

UKBB data respectively (Figure 4). However, biases from clinically referred individuals can 

be adjusted for using intrafamilial controls to account for additional factors present in the 

family25,26. This is confirmed by our results using the Ste Justine family genetic cohort which 

demonstrated effect-size estimates consistent with the other cohorts of the mega-analysis. Our 

results suggest that the effect size of pathogenic CNVs are underestimated in the UKBB25 

while those of small CNVs are largely overestimated in clinical series. Of note, the maximum 

effect size measured in UKBB was 0.4 z-scores including pathogenic CNVs such as 16p11.2 

deletions and CNVs containing an ID-gene (WDFY4) and genes highly intolerant to pLoF: 

SNRNP200, SEMA4C, KANSL3, ARID5A. On the other hand, mild effect size variants such as 
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the 16p13.11 duplications and 1q21.1 CNVs are likely overestimated in clinical series27. 

Currently, in the absence of unbiased CNV, cognitive and behavioral data collected in a 

systematic way28, statistical models using a variety of disease and unselected cohorts are 

likely to better account for biases and provide more accurate estimates. 

 

Individual effect of genes 

We propose a first interpretation of the effect size of individual genes based on categories of 

LOEUF values and groups of genes with an excess of de novo variants in NDD (ID-genes). 

Deleting or duplicating an ID-gene (1.3% of the coding genome) leads to a mean decrease of 

20 and 9 IQ points respectively. Other than this small group of ID-genes, the other genes 

intolerant to pLoF (15%) have effect sizes far below 1 SD (11 and 3 IQ points for deletions 

and duplications respectively). Given the sharp decrease in effect-size related to increasing 

LOEUF values, we speculate that it is unlikely that large numbers of additional genes with 

extreme effects on intelligence (when deleted or duplicated) remain to be identified.  

Based on our observed relationship between IQ and de-novo frequency, as well as our model, 

we speculate that new candidate ID-genes will likely have moderate effect sizes (far below 

1SD), which is important to acknowledge in the clinic or when designing animal models. 

Results based on categories of LOEUF values suggest that a large group of coding genes 

tolerant to pLoF (40%) also impact intelligence when deleted. A larger sample size will 

improve the characterization of these groups. 

 

Potential clinical application 

Models developed in this study provide a translation of gnomAD constraint scores into effect 

sizes on cognitive abilities. Model outputs are implemented in a prediction tool 

(https://cnvprediction.urca.ca/), which is designed to estimate the marginal or population-
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average effect-size of any given CNV on general intelligence, not the cognitive ability of the 

individual who carries the CNV. If the cognitive deficits of an individual are concordant with 

the effect size of the CNV they carry, one may conclude that the CNV contributes 

substantially to those deficits. When discordant, the clinician may conclude that most of the 

contribution lies in additional factors which should be investigated. This tool can assist in the 

interpretation of undocumented CNVs. 

 

The relationship between genetic fitness and cognitive abilities 

The reasons underlying the tight relationship between general intelligence and 

epidemiological measures of intolerance to pLoF, is unclear. Behavioral interpretations are 

intuitive for severe ID but do not apply for much milder effects: altering gene dosage of one 

intolerant gene may decrease NVIQ by only a few points, but nevertheless increases de novo 

frequency. This relationship is further highlighted by the fact that deletions and duplications 

with the similar impact on intelligence occur de novo with similar frequencies. Larger 

samples are required to investigate whether some genes that are not under constraint may 

affect IQ. Variables unrelated to genetic fitness but relevant to brain function, such as the 

topology of gene expression in the brain29, may shed light on such genes. 

 

Limitations 

Constraint scores are limited by the number and quality of pLoF variants observed in the 

gnomAD database and are unreliable for small coding genes. We were not able to observe 

CNVs encompassing genes with very large effects in our unselected and autism cohorts. Our 

estimates for ID genes may, therefore, reflect a less severe subgroup and model outputs 

should be interpreted with caution when CNVs encompass ID-genes with very low LOEUF 

values. LOEUF and pLI are epidemiological measures of genetic fitness in human 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 5, 2020. ; https://doi.org/10.1101/2020.04.03.024554doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.03.024554


 16 

populations, without any consideration of gene function20,21. It is likely that some genes 

decrease fitness (eg. genes involved in fertility) without affecting general intelligence. Further 

study combining intolerance scores with gene ontology categories are required to investigate 

this question. Models were limited to genes fully encompassed in CNV because we were 

unable to identify effects of genes partially deleted or duplicated. This was likely due to 

inaccurate CNV coordinates related to array resolution as well as a lack of power. Models 

were trained on CNVs encompassing at least once, 36% of the coding genome. Projections 

suggest that 500K individuals from an unselected population would increase coverage to 78% 

(Supplementary figure 8). Heterogeneous measures of general intelligence across the different 

cohorts may have introduced noise, affecting our estimates. We were also underpowered to 

analyze CNVs on the X-chromosome harbouring only a few CNVs. 

Finally, all models imply additive effects and massive datasets will be required to test if 

CNVs have different effects sizes depending on genetic or environmental factors. However, 

the fact that very large CNVs (such as trisomy 21) are accurately estimated by the model 

suggests that genetic interactions within these large genomic segments or even chromosomes 

cannot be readily observed. 

 

Conclusions 

The effect size of deletions or duplications on intelligence can be accurately estimated with 

additive models using genetic constraint scores. Accuracy across a broad range of CNVs 

suggests that the same principles of gene dosage apply to small benign CNVs as well as 

extreme CNVs such as Down syndrome. We provide a map of effect sizes at the individual 

gene level but to move beyond this rough outline, much larger sample sizes are required. 

Nonetheless, these results suggest that a large proportion (56%), if not the entire genome, 

influences cognitive abilities. One may therefore view the genetic contribution to cognitive 
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difference as an emergent property of the entire genome not restricted to a set of variants 

affecting a limited number of biological pathways. 
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Tables and Figures 
 

Ascertainment Cohort Array 
type n= Females, n 

(%) 

Age in 
years  
Mean (SD)  

Type of intelligence 
measures 

Z-scored 
intelligence 
measure 
Mean (SD) 

U
ns

el
ec

te
d 

(n
=2

0,
15

1)
 

IMAGEN 610Kq; 
660Wq 1,744 891 (51%) 14.4 (0.4) 

WISC-IV (and g-factor, 
similarities score, vocabulary 
score, block design score, 
matrix reasoning score) 

0.44 (0.98) *** 

SYS 
children 

610Kq; 
HOE-12V 967 505 (52%) 15.0 (1.8) WISC-III  (and g-factor using 

63 cognitive measures†) 0.30 (0.87) *** 

SYS parents HOE-12V 602 321 (53%) 49.5 (4.9) g-factor, 12 cognitive 
measures‡ 0 (1) 

LBC1936 610Kq 504 247 (49%) 70.0 (-)* Moray House Test (and g-
factor) 0.05 (0.96) *** 

CaG-GSA GSA 2,074 1,094 
(53%) 54.3 (7.6) 

g-factor, Reasoning, Memory, 
Reaction time 

-0.02 (1.03) 

CaG-
Omni2.5 Omni2.5 515 281 (55%) 52.4 (8.6) -0.10 (1.02) 

CaG (all) GSA; 
Omni2.5 2,589 1,375 

(53%) 53.9 (7.8) -0.03 (1.03) 

G-Scot 610Kq 13,745 8,101 
(59%) 46.7 (15.0) 

g-factor, Logical Memory, 
Digit Symbol, Verbal fluency, 
Mill Hill Vocabulary 

0.00 (0.99) 

A
ut

is
m

 (n
=3

,9
41

) 

SSC-1Mv1 1Mv1 332 44 (13%) 9.5 (3.2) 
WISC-IV n=19; DAS-II E-Y 
n=96; DAS-II S-A n=179; 
Mullen n=12; WASI-I n=26 

-0.55 (1.59) 

SSC-1Mv3 1Mv3 1,182 157 (13%) 8.8 (3.5) 
WISC-IV n=16; DAS-II E-Y 
n=531; DAS-II S-A n=539; 
Mullen n=77; WASI-I n=19 

-0.98 (1.66) 

SSC-
Omni2.5 Omni2.5 1.048 140 (13%) 9.2 (3.7) 

WISC-IV n=10; DAS-II E-Y 
n=403; DAS-II S-A n=494; 
Mullen n=124; WASI-I n=17 

-1.25 (1.87) 

SSC (all) 
1Mv1; 
1Mv3; 
Omni2.5 

2,562 341 (13%) 9.03 (3.6) 

WISC-IV n=45; DAS-II E-Y 
n=1,030; DAS-II S-A 
n=1,212; Mullen n=213; 
WASI-I n=62 

-1.03 (1.75) 

MSSNG WGS 1,379 275 (20%) 9.2 (4.4) 

WISC-IV n=46; WASI-II 
n=338; Leiter n=372; Raven 
n=214; Standford Binet 
n=281; WPPSI n=128 

-0.47 (1.58) 

N
D

D
**

 (n
=2

82
) 

Ste-Justine-
probands 

Agilent 
180 K 
array 

75 29 (35%) 7.23 (4.46) 
WISC-V n=25; WASI-II n=5; 
WPPSI-IV n=23; Leiter-R 
n=11; Mullen n=19 

-1.34 (0.96) 

Ste-Justine-
siblings 37 17 (46%) 10.06 (6.62) 

WISC-V n=12; WASI-II n=9; 
WPPSI-IV n=11; Leiter-R 
n=2; Mullen n=3 

-0.26 (1.06) 

Ste-Justine-
parents 170 100 (59%) 37.72 (6.88) WASI-II -0.12 (1.13) 

 
Table 1: Cohorts description 

Cohorts include 24,092 individuals, including 14,874 unrelated individuals. SSC and CaG 

cohorts were broken down into sub-samples based on array technology (Supplementary 

methods). †63 and ‡ 12 cognitive measures were respectively used to compute the g-factor in 

SYS children and parents (Supplementary methods). NDD: neurodevelopmental disorders, 

SYS: Saguenay Youth Study, CaG: CARTaGEN, LBC: Lothian Birth Cohort, SSC: Simons 

Simplex Collection; n=number of individuals remaining for analysis after quality control. The 
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mean and Standard Deviation (SD) for g-factor slightly deviate from 0 and 1 in some cohorts 

since it was computed on all available data (before the exclusion of some individuals for poor 

quality array) and summarized here only for individuals included in the analyses. *All 

individuals from LBC1936 were assessed at 70 years old explaining the absence of SD 

computation. **The NDD cohort was used only in the replication analysis and was not 

included in meta- or mega-analyses. *** We displayed the Z-scored of IQ, because IQ was 

preferred to g-factor for all analyses, even if results were similar (Supplementary table 1 and 

3). 

 

 

Figure 1: Effect of pLI on general intelligence measured for deletions and duplications.  

Meta-analysis estimating the effect of deletions a. and duplications b., measured by sum of 

pLI, on general intelligence (Supplementary table 2). X-axis values represent z-scores of 

general intelligence. Deleting one point of pLI decreases the general intelligence by 0.18 z-

scores (2.7 points of IQ). Duplicating one point of pLI decreases the general intelligence by 

0.05 z-scores (0.75 points of IQ). The squares represent the effect size computed for each 

sample. Their size negatively correlated to variance. Diamonds represent the summary effect 

across cohorts. Their lengths correspond to the 95% confidence intervals of the mean effect 

size. 
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Figure 2: Sensitivity analyses for models based on 1/LOEUF score. 

a. Estimated proportion of the coding genome within each category defined by LOEUF, 

encompassed in CNVs present in the mega-analysis according to sample size (randomly 

selected within the mega-analysis). b. Estimated effect of 1/LOEUF on general intelligence 

after removing individuals with a sum of 1/LOEUF larger than 60, 40, 20, 10, 4 and 2.85. n: 

number of individuals with a total sum of 1/LOEUF > 0.  
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Figure 3: Effect size of intellectual disability (ID) genes on general intelligence.  

a. Venn diagram of ID genes in ASD and in general population cohorts. Genes were 

previously defined as harboring an excess of de novo loss of function (bold) or missense 

mutations in neurodevelopmental cohorts: (a) DYNC1H1, PHF21A, SHANK3, TRA2B, 

FOXP1, SETD5, NR4A2, TCF7L2, SOX5, POU3F3, ARID1B, EBF3, HNRNPU; (b) SET, 

ZBTB18, DLG4, CHAMP1, CNOT3, U2AF2, HIST1H2AC, DNM1, RAI1, CREBBP, 

HIST1H1E, ASXL1, CABP7; (c) PRPF18, PPP2R1A, EEF1A2; (d) TRAF7, DEAF1, STC1, 

MYT1L, BRPF1, CBL, SPAST, WDR87, NFE2L3, STARD9, TCF20, KMT2C, FAM200B, 

KDM5B, CHD2, BTF3, ITPR1, HMGXB3. b. Effect-size of 1/LOEUF on general intelligence 

estimated in a model using two explanatory variables (sum of 1/LOEUF of deleted and 

dupliacted genes) or 4 explanatory variables (sum of 1/LOEUF of ID genes and non-ID genes 

for deletions and duplication). 
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Figure 4: Concordance between model predictions and published observations for CNV 

effects on general intelligence. 

a. and b. Concordance between model estimates (with 1/LOEUF and ID-genes) and literature 

of clinical data and UKBB reports for general intelligence loss observed in respectively 27 

and 33 recurrent CNVs for a total of ascertained carriers of 47 recurrent CNVs 

(supplementary table 15). X- and Y-values: effect size of CNVs on z-scored general 

intelligence. b. Zoom of the rectangle drawn in the lower left section of panel a. We 

represented values from clinical data by a circle and those from UKBB data by a square. The 

cross represents the mean value of z-scored IQ loss for the 13 recurrent CNVs observed both 

in literature and in UKBB. Deletions are in red and duplications in blue. Empty circles or 

square are CNVs encompassing ID-genes. The model uses 2 explanatory variables (1/LOEUF 

of non-ID-genes and ID-genes). ICC indicates intraclass correlation coefficient (3, 1). Each 

point represents a recurrent CNV: (1) TAR Deletion; (2) 1q21.1 Deletion; (3) 2q11.2 

Deletion; (4) 2q13 Deletion; (5) NRXN1 Deletion; (6) 2q13 (NPHP1) Deletion; (7) 3q29 

(DLG1) Deletion; (8) 7q11.23 (William-Beuren) Deletion; (9) 8p23.1 Deletion; (10) 

10q11.21q11.23 Deletion; (11) 13q12.12 Deletion; (12) 13q12 (CRYL1) Deletion; (13) 
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15q13.3 (BP4-BP5) Deletion; (14) 15q11.2 Deletion; (15) 16p11.2-p12.2 Deletion; (16) 

16p13.3 ATR-16 syndrome Deletion; (17) 16p11.2 Deletion; (18) 16p11.2 distal Deletion; 

(19) 16p13.11 Deletion; (20) 16p12.1 Deletion; (21) 17p11.2 (Smith-Magenis) Deletion; (22) 

17q12 Deletion; (23) 17q21.31 Deletion; (24) NF1-microdeletion syndrome Deletion; (25) 

17p12 (HNPP) Deletion; (26) 22q11.2 Deletion; (27) TAR Duplication; (28) 1q21.1 

Duplication; (29) 2q21.1 Duplication; (30) 2q13 Duplication; (31) 2q13 (NPHP1) 

Duplication; (32) 7q11.23 Duplication; (33) 10q11.21q11.23 Duplication; (34) 13q12.12 

Duplication; (35) 15q11q13 (BP3-BP4) Duplication; (36) 15q11.2 Duplication; (37) 15q13.3 

Duplication; (38) 15q13.3 (CHRNA7) Duplication; (39) 16p11.2 Duplication; (40) 16p11.2 

distal Duplication; (41) 16p13.11 Duplication; (42) 16p12.1 Duplication; (43) 17p11.2 

Duplication; (44) 17q12 (HNF1B) Duplication; (45) 17p12 (CMT1A) Duplication; (46) 

Trisomic 21 Duplication; (47) 22q11.2 Duplication. 
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Figure 5: Concordance between estimates and literature reports for de novo frequency. 

a. Probability of de novo estimated by our de novo model (Y-axis) according to the loss of IQ 

estimated by a model using 1/LOEUF for ID and non-ID genes as two explanatory variables 

(X-axis). The de novo model was fitted on 13,114 deletions (red) and 13,323 duplications 

(blue) with available inheritance information observed in DECIPHER, CHU Sainte-Justine, 

SSC, MSSNG, SYS and G-Scot. b. Concordance between de novo frequency observed in 

DECIPHER (X-axis) and the probability of being de novo estimated by models when 

excluding recurrent CNVs of the training dataset (Y-axis) 1/LOEUF for ID and non-ID genes 

as an explanatory variable for 27 recurrent CNVs. The first bisector represents the perfect 

concordance. ICC indicates intraclass correlation coefficient (3, 1). Each point corresponds to 

a known recurrent CNV: (1) TAR Deletion; (2) 1q21.1 Deletion; (7) 3q29 (DLG1) Deletion; 

(8) 7q11.23 (William-Beuren) Deletion; (9) 8p23.1 Deletion; (13) 15q13.3 (BP4-BP5) 

Deletion; (14) 15q11.2 Deletion; (15) 16p11.2-p12.2 Deletion; (16) 16p13.3 ATR-16 

syndrome Deletion; (17) 16p11.2 Deletion; (18) 16p11.2 distal Deletion; (19) 16p13.11 

Deletion; (20) 16p12.1 Deletion; (21) 17p11.2 (Smith-Magenis) Deletion; (22) 17q12 

Deletion; (23) 17q21.31 Deletion; (24) NF1-microdeletion synd. Deletion; (25) 17p12 

(HNPP) Deletion; (26) 22q11.2 Deletion; (32) 7q11.23 Duplication; (36) 15q11.2 
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Duplication; (39) 16p11.2 Duplication; (41) 16p13.11 Duplication; (43) 17p11.2 Duplication; 

(44) 17q12 (HNF1B) Duplication; (46) Trisomic 21 Duplication; (47) 22q11.2 Duplication. 

 

 

 

Figure 6: Effect size of individual genes included in deletion on z-scores measuring the 

general intelligence. 

The light grey histogram represents the distribution of LOEUF values for 18,451 autosomal 

genes. The blue line represents the estimates for a gene in each of the 4 categories of LOEUF 

included in the model (Supplementary methods): highly intolerant genes (LOEUF <0.2, 

n=980), moderately intolerant genes (0.2≤LOEUF<0.35 n=1,762), tolerant genes 

(0.35≤LOEUF<1, n=7,442) and genes highly tolerant to pLoF (LOEUF≥1, n=8,267). The 

orange line represents the estimated effect size of 37 categories of genes based on their 

LOEUF values (sliding windows=0.15) in the model (Supplementary methods). Genes with a 

LOEUF below 0.35 (vertical red line) are considered to be intolerant to pLoF by gnomAD. 

Left Y-axis values: z-scored general intelligence (1 z-score is equivalent to 15 points of IQ) 

for deletion. Right Y-axis values: number of genes represented in the histogram.  
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