Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Rapid in silico design of antibodies targeting SARS-CoV-2 using machine learning and supercomputing

Thomas Desautels, Adam Zemla, Edmond Lau, Magdalena Franco, Daniel Faissol
doi: https://doi.org/10.1101/2020.04.03.024885
Thomas Desautels
Lawrence Livermore National Laboratory
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Adam Zemla
Lawrence Livermore National Laboratory
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Edmond Lau
Lawrence Livermore National Laboratory
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Magdalena Franco
Lawrence Livermore National Laboratory
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel Faissol
Lawrence Livermore National Laboratory
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: dfaissol@llnl.gov
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Article Information

doi 
https://doi.org/10.1101/2020.04.03.024885
History 
  • April 10, 2020.
Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.

Author Information

  1. Thomas Desautels,
  2. Adam Zemla,
  3. Edmond Lau,
  4. Magdalena Franco and
  5. Daniel Faissol2
  1. Lawrence Livermore National Laboratory
  1. ↵2Correspondence to: dfaissol{at}llnl.gov
Back to top
PreviousNext
Posted April 10, 2020.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Rapid in silico design of antibodies targeting SARS-CoV-2 using machine learning and supercomputing
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Rapid in silico design of antibodies targeting SARS-CoV-2 using machine learning and supercomputing
Thomas Desautels, Adam Zemla, Edmond Lau, Magdalena Franco, Daniel Faissol
bioRxiv 2020.04.03.024885; doi: https://doi.org/10.1101/2020.04.03.024885
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Rapid in silico design of antibodies targeting SARS-CoV-2 using machine learning and supercomputing
Thomas Desautels, Adam Zemla, Edmond Lau, Magdalena Franco, Daniel Faissol
bioRxiv 2020.04.03.024885; doi: https://doi.org/10.1101/2020.04.03.024885

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4857)
  • Biochemistry (10802)
  • Bioengineering (8046)
  • Bioinformatics (27314)
  • Biophysics (13987)
  • Cancer Biology (11130)
  • Cell Biology (16062)
  • Clinical Trials (138)
  • Developmental Biology (8788)
  • Ecology (13298)
  • Epidemiology (2067)
  • Evolutionary Biology (17364)
  • Genetics (11689)
  • Genomics (15926)
  • Immunology (11034)
  • Microbiology (26114)
  • Molecular Biology (10655)
  • Neuroscience (56596)
  • Paleontology (418)
  • Pathology (1733)
  • Pharmacology and Toxicology (3005)
  • Physiology (4551)
  • Plant Biology (9644)
  • Scientific Communication and Education (1615)
  • Synthetic Biology (2690)
  • Systems Biology (6979)
  • Zoology (1510)