Genetic diversity of *Anopheles coustani* in high malaria transmission foci in southern and central Africa

3

Ilinca I. Ciubotariu^{1*}, Christine M. Jones², Tamaki Kobayashi³, Thierry Bobanga⁴, Mbanga
Muleba⁵, Julia C. Pringle², Jennifer C. Stevenson^{2,6}, Giovanna Carpi^{¶1}, and Douglas E.
Norris^{¶2} for the Southern and Central Africa International Centers of Excellence for Malaria
Research

⁹ ¹The Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA,

10 ²The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The

11 Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public

12 Health, Baltimore, Maryland, USA, ³The Department of Epidemiology, Division of

13 Infectious Disease Epidemiology, The Johns Hopkins Malaria Research Institute, Johns

14 Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA, ⁴The Department

15 of Parasitology and Tropical Medicine, School of Medicine, University of Kinshasa,

16 Kinshasa, Democratic Republic of Congo, ⁵Tropical Diseases Research Centre, Ndola,

17 Zambia, ⁶Macha Research Trust, Choma, Zambia

18

19 * Corresponding author, email: <u>iciubota@purdue.edu</u>

20 [¶]Equal contributors

21

22

23 Abstract

24

Despite ongoing malaria control efforts implemented throughout sub-Saharan Africa, 25 malaria remains an enormous public health concern. Current interventions such as indoor 26 27 residual spraying with insecticides and use of insecticide-treated bed nets are aimed at 28 targeting the key malaria vectors that are primarily endophagic and endophilic. While these 29 control measures have resulted in a substantial decline in malaria cases and continue to 30 impact indoor transmission, the importance of alternative vectors for malaria transmission 31 has been largely neglected. Anopheles coustani, an understudied vector of malaria, is a 32 species previously thought to exhibit mostly zoophilic behavior. However, recent studies 33 from across Africa bring to light the contribution of this and ecologically similar 34 anopheline species to human malaria transmission. Like many of these understudied 35 species, An. coustani has greater anthropophilic tendencies than previously appreciated, is 36 often both endophagic and exophagic, and carries Plasmodium falciparum sporozoites. 37 These recent developments highlight the need for more studies throughout the geographic range of this species and the potential need to control this vector. The aim of this study was 38 to explore the genetic variation of An. coustani mosquitoes and the potential of this 39 Anopheles species to contribute to malaria parasite transmission in high transmission 40 41 settings in Nchelenge District, Zambia, and the Kashobwe and Kilwa Health Zones in Haut-Katanga Province, the Democratic Republic of the Congo (DRC). Morphologically 42 43 identified An. coustani specimens that were trapped outdoors in these study sites were 44 analyzed by PCR and sequencing for species identification and blood meal sources, and malaria parasite infection was determined by ELISA and qPCR. Fifty specimens were 45

46	confirmed to be An. coustani by the analysis of mitochondrial DNA cytochrome c oxidase
47	subunit I (COI) and ribosomal internal transcribed spacer region 2 (ITS2). Further,
48	maximum likelihood phylogenetic analysis of COI and ITS2 sequences revealed two
49	distinct phylogenetic groups within this relatively small regional collection. Our findings
50	indicate that both An. coustani groups have anthropophilic and exophagic habits and come
51	into frequent contact with P. falciparum, suggesting that this potential alternative malaria
52	vector might elude current vector controls in Northern Zambia and Southern DRC. This
53	study sets the groundwork for more thorough investigations of bionomic characteristics and
54	genetic diversity of An. coustani and its contribution to malaria transmission in these
55	regions.
56	
57	Key words: malaria, Anopheles coustani, mosquito, transmission
57 58	Key words: malaria, Anopheles coustani, mosquito, transmission
	Key words: malaria, <i>Anopheles coustani</i> , mosquito, transmission Introduction
58 59	
58 59 60	Introduction
58 59 60 61	Introduction Malaria is transmitted to humans by the infectious bite of female mosquitoes of the
58 59 60 61 62	Introduction Malaria is transmitted to humans by the infectious bite of female mosquitoes of the <i>Anopheles</i> genus, and approximately 70 <i>Anopheles</i> species are potential vectors of malaria
58 59 60 61 62 63	Introduction Malaria is transmitted to humans by the infectious bite of female mosquitoes of the <i>Anopheles</i> genus, and approximately 70 <i>Anopheles</i> species are potential vectors of malaria that transmit the disease to humans effectively worldwide (Sinka et al. 2012). Species are
58 59 60 61 62 63	Introduction Malaria is transmitted to humans by the infectious bite of female mosquitoes of the <i>Anopheles</i> genus, and approximately 70 <i>Anopheles</i> species are potential vectors of malaria
58 59 60 61	Introduction Malaria is transmitted to humans by the infectious bite of female mosquitoes of the <i>Anopheles</i> genus, and approximately 70 <i>Anopheles</i> species are potential vectors of malaria that transmit the disease to humans effectively worldwide (Sinka et al. 2012). Species are
58 59 60 61 62 63 64	Introduction Malaria is transmitted to humans by the infectious bite of female mosquitoes of the <i>Anopheles</i> genus, and approximately 70 <i>Anopheles</i> species are potential vectors of malaria that transmit the disease to humans effectively worldwide (Sinka et al. 2012). Species are often characterized as primary or secondary vectors: primary vectors are those mosquitoes

68 Zambia, in sub-Saharan Africa, is a malaria-endemic country that has experienced 69 high mortality and morbidity from this disease for decades (Mukonka et al. 2014, Ministry of Health Zambia 2015). Significant strides have been made to reduce malaria transmission, 70 71 largely due to the implementation of vector control interventions (Bhatt et al. 2015). These interventions include vector control through the distribution of long-lasting insecticide-72 treated nets (LLINs), indoor residual spraying (IRS), treatment through intermittent 73 74 preventive treatment in pregnancy (IPTp), and case management through the use of rapid 75 diagnostic tests (RDTs) and artemisinin-combination therapy (ACT) (Chizema-Kawesha et al. 2010, Sutcliffe et al. 2012, MIS 2019, PMI 2019a). Despite successful reductions in 76 morbidity and mortality, malaria remains endemic with over 6 million reported cases in 77 78 2018 (MIS 2019, WHO 2019a). While the scaling-up of malaria interventions such as 79 widespread coverage by LLINS and IRS reduced transmission and parasitemia throughout many parts of Zambia, the disease continues to be a significant public health concern, 80 81 especially in the northern region where Nchelenge District, Luapula Province, is recognized 82 as a high transmission focus (Chanda et al. 2013, Mukonka et al. 2014, Nambozi et al. 83 2014, Hast et al. 2019). This region of Zambia reports over 350 confirmed cases per 1000 population (Moss et al. 2012, PMI 2019a, WHO 2019a). This has raised doubts about 84 85 whether the progress made across Zambia could be maintained and called for more 86 enhanced and targeted interventions, especially in northern Zambia (Kamuliwo et al. 2013). Like Zambia, the Democratic Republic of the Congo (DRC) is a malaria-endemic 87 country in the central region of sub-Saharan Africa, located northeast of Zambia, and in 88 which malaria is a leading cause of mortality and morbidity, accounting for approximately 89 12% of malaria cases and 11% of deaths worldwide (Messina et al. 2011, Stone et al. 2015, 90

91	WHO 2019a). Despite actions taken to scale-up interventions in the DRC, such as the
92	distribution of LLINs with over 50% household coverage throughout the country, malaria
93	transmission still remains high and progress appeared to have stalled according to the world
94	malaria health reports of 2017 and 2018 (Koukouikila-Koussounda and Ntoumi 2016,
95	WHO 2019a). This country was part of the launch of the WHO and RBM Partnership to
96	End Malaria in 2018 through a high burden to high impact country-led approach in the
97	hopes of continuing progress and reaching the 2025 goals of the Global technical strategy
98	for malaria (WHO 2015, 2019b). In 2018, the DRC was one of six countries that accounted
99	for more than half of all malaria cases, globally, and had an estimated 26 million cases of
100	malaria (WHO 2019a). Moreover, in this country, malaria remains the leading cause of
101	morbidity and mortality, and accounts for 19% of deaths among children under the age of 5
102	(Ferrari et al. 2016, PMI 2019b).
103	Zambia and the DRC exhibit seasonal transmission that follows rainfall patterns, in
104	which malaria peaks after the rains when mosquito populations increase (Masaninga et al.
105	2013). However, in Nchelenge District, malaria transmission is intense with limited
106	seasonal fluctuations (Mharakurwa et al. 2012). In Nchelenge, the primary vectors of

107 malaria in both the dry and wet seasons have been found to be *An. funestus* s.s. and

108 Anopheles gambiae s.s. (Das et al. 2016, Jones et al. 2018, Hast et al. 2019). Malaria is also

109 holoendemic in the DRC which borders Zambia to the north, but much less is known about

110 malaria vectors and their phenology, other than that An. funestus s.s., An. gambiae s.s., and

- 111 An. coluzzii are major vector species throughout the region, with the first two species
- exhibiting high biting rates (Bobanga et al. 2016, Nardini et al. 2017, Wat'senga et al.
- 113 2018). Vector control methods such as IRS and LLINs, which have been implemented

throughout all of Zambia, and to a much less extent in the DRC, are aimed at targeting
these vectors preferentially. In addition to a suboptimal coverage of vector control in
northern Zambia and southern DRC, malaria may remain intractable due to the presence of
alternative vector species that have largely remained unrecognized.

118 The focus on control and elimination methods for the well-recognized endophagic 119 vector species highlights the fact that alternative vectors are rarely considered in existing 120 malaria control programs, and are thought of as negligible because of their often zoophilic 121 behavior (Fornadel et al. 2011). However, it has been observed that after primary vectors 122 are reduced in a population, alternative vectors have the potential to sustain malaria transmission (Antonio-Nkondjio et al. 2006). Previous studies have indicated the presence 123 of P. falciparum parasites in these alternative vectors in Kenya, Ethiopia, Zambia, and 124 125 other regions in Africa (Stevenson et al. 2012, Degefa et al. 2015, Lobo et al. 2015, 126 Nepomichene et al. 2015a, St. Laurent et al. 2016, Stevenson et al. 2016a). One of these 127 alternative vectors, An. coustani, is a species previously reported to exhibit mostly zoophilic behavior (Gillies and DeMeillon 1968). However, recent studies from countries 128 129 in southern Africa are bringing to light the potential contribution of this species to malaria transmission. In Zambia, this species displays an unexpectedly high degree of 130 anthropophilic tendencies (Fornadel et al. 2011). In Kenya, this vector is both endophagic 131 and exophagic and is thought to play a major role in outdoor malaria transmission 132 (Mwangangi et al. 2013). In Madagascar, this vector has been shown to carry *P. falciparum* 133 134 infections in both indoors and outdoors collections, and more recently, to act as a major local vector even though it is was previously a suspected alternative vector (Nepomichene 135 et al. 2015b, Goupeyou-Youmsi et al. 2019). These findings emphasize that mosquito 136

species such as *An. coustani* may contribute more significantly to malaria transmission than
previously recognized. These findings warrant further study of these alternative vectors,
including foraging behaviors, ecology, genetics, and potential roles in the transmission of
malaria.

141	As anophelines commonly exist as species complexes, integrating molecular and
142	phylogenetic analysis to collections of An. coustani enable the confirmation of species
143	identification, and allow for further assessment of genetic diversity and relatedness within
144	and between species complexes. This study focused on assessing the potential role An.
145	coustani may play in P. falciparum transmission in northern Zambia and southern DRC by
146	analyzing phylogenetic relationships and human exposure. Improved species identification
147	and correct association of species with phenotypes relevant to vectorial capacity will allow
148	for the design of better control strategies.

149

150 Methods

151

152 Mosquito collection and handling

As part of the International Centers of Excellence for Malaria Research (ICEMR) in Southern and Central Africa, mosquito specimens were collected solely outdoors from Nchelenge District, northern Zambia, using standard Centers for Disease Control and Prevention (CDC) light traps, and from two villages (Kilwa and Kashobwe) in Haut-Katanga Province, southern DRC, using CDC light traps and pyrethrum spray catches (PSC) (Figure 1). In Nchelenge District, Zambia, CDC light traps were placed overnight in

159 the three following scenarios: outdoors where humans congregate, outdoors next to animal pens, and outdoors with a commercial human analogue bait (BG Lure[®], BioGents). 160 Households were selected using a similar sampling frame to that of other studies under the 161 162 ICEMR program (Pinchoff et al. 2015, Stevenson et al. 2016b). Collections were performed over a 2-week period in August 2016 at eight households (4 inland along a stream and more 163 than 3 km from Lake Mweru and 4 lakeside, close to Lake Mweru) for a total of 74 trap 164 165 nights. Using a Latin Square design, trap scenarios were rotated through each household, 166 such that each treatment occurred in each household at least once. Traps were activated at 167 6pm and tied shut and retrieved the following morning. In the DRC, the Kilwa Health Zone is located near Lake Mweru, across the lake 168 169 from Nchelenge, Zambia, and the Kashobwe Health Zone is located near the Luapula River 170 as it leaves the south end of Lake Mweru, providing abundant vector breeding sites 171 throughout the year. In the Kilwa and Kashobwe Health Zones, 60 study households (Kilwa 172 = 30 households, Kashobwe = 30 households) were randomly selected from village 173 household census. Mosquito collections were performed by one of three collection 174 scenarios: hanging CDC light traps indoors overnight next to a home occupant sleeping 175 under a LLIN, hanging CDC light traps outdoors overnight by a window, or PSC early in 176 the morning. 177 Anophelines collected in Nchelenge were killed by freezing, while those from the

DRC were left at room temperature before being packaged. Anophelines were identified by sex and morphology with the aid of a dissecting microscope and dichotomous key at all field sites (Gillies and Coetzee 1987). Mosquitoes were then each placed individually in 0.6 mL microcentrifuge tubes that contained silica gel desiccant and a cotton wool plug. They

- 182 were transported and stored at room temperature until processed in the laboratory at Johns
- 183 Hopkins Bloomberg School of Public Health in Baltimore, Maryland.
- 184

185 Isolation of DNA and Molecular Processing

In the laboratory, the abdomen of each collected anopheline was separated from the 186 head and thorax using sterile forceps, and then stored in separate tubes at -20°C. Genomic 187 188 DNA was extracted from the frozen mosquito abdomens with a salt extraction method as 189 previously described (Post et al. 1993, Norris et al. 2001, Das et al. 2016). A fragment of 190 the mitochondrial cytochrome c oxidase subunit I (COI) gene used for the Barcode of Life Database (BOLD), a molecular target that has been previously used for phylogeny 191 192 construction of anophelines, was amplified and sequenced from specimens that were 193 morphologically identified as An. coustani for a total of 50 specimens (Beebe 2018). The 194 698 bp BOLD fragment of the COI gene was amplified using LCO1490 and HCO2198 195 primers as previously published (Lobo et al. 2015). The 25 µl PCR mixture consisted of 2.5 µl of 10x buffer, 2.5 mM dNTP mixture, 30 pmol each of the forward and reverse primers, 196 2.0 U of Taq DNA polymerase (Invitrogen, Carlsbad, CA), and 1 µl of mosquito DNA 197 template. The thermocycler (MultiGene[™] OptiMax Thermal Cycler, Labnet International, 198 199 Inc., Edison, NJ) conditions were identical to the ones described by Lobo and colleagues (2015). 200

A 750 bp fragment of the ribosomal DNA internal transcribed spacer region 2 (ITS2), a nuclear gene located between the 5.8S and 28S large subunit RNA genes that is often used for species verification and identification in anophelines, was also targeted for sequencing (Mohanty et al. 2009, Norris and Norris 2015). The ITS2 region was amplified

205	from genomic DNA using ITS2A and ITS2B primers, and the 25 μl PCR mixture was
206	identical to that for the BOLD fragment amplification PCR (Lobo et al. 2015). The
207	thermocycler conditions were identical to the ones described by Lobo and colleagues
208	(2015).
209	The PCR-amplified products of all specimens were visualized by electrophoresis on
210	a 2% agarose gel. Resulting PCR products were then purified using the QIAquick [®] PCR
211	Purification Kit (Qiagen, Hilden, Germany) before Sanger sequencing by the Sequencing
212	Facility at the Johns Hopkins School of Medicine. A multiplexed PCR was performed on
213	DNA extracted from mosquito abdomens to detect multiple blood meals by a protocol that
214	differentiates between possible mammalian host blood in female mosquitoes as animal-
215	specific products (human, cow, dog, pig, goat) amplified from the cytochrome b
216	mitochondrial gene as described in detail elsewhere (Kent and Norris 2005).
217	
218	Species assignment and Phylogenetic Analyses
219	For both COI and ITS2 targets, forward and reverse sequences for each sample were
220	trimmed to remove ends with low Phred quality and then high-quality trimmed forward and
221	reverse sequences were aligned to generate a single consensus sequence for each individual
222	sample using Geneious (Biomatters, Auckland, New Zealand) version 11.1.5
222 223	sample using Geneious (Biomatters, Auckland, New Zealand) version 11.1.5 (<u>https://www.geneious.com</u>). Each COI and ITS2 consensus sequences was then queried
223	(<u>https://www.geneious.com</u>). Each COI and ITS2 consensus sequences was then queried

227	and a significant E-value $<1x10^{-5}$. Full consensus sequences for each sample were
228	submitted to GenBank and assigned accession numbers (Supplementary Table 1).
229	COI sequences that were confirmed as An. coustani after comparison with NCBI
230	BLASTn were combined to generate a multiple sequence alignment using the MUSCLE
231	algorithm and default parameters in the Geneious version 11.1.5 aligner. The multiple
232	sequence alignment of 50 An. coustani sequences was then trimmed to a final length of 552
233	bp for COI and 662 bp for ITS2. Furthermore, a multiple alignment was then created with
234	the confirmed An. coustani samples and other Anopheles species from the Hyrcanus and
235	Coustani groups from the NCBI database for the COI target, and with the confirmed An.
236	coustani samples and other An. coustani ITS2 sequences for the ITS2 target, as this latter
237	gene region is not highly conserved between species.
238	Phylogenetic analysis was conducted using maximum likelihood (ML) inference as
239	implemented in MEGA X (Kumar et al. 2018, Stecher et al. 2020). The evolutionary
240	history was inferred by the Maximum Likelihood method and General Time Reversible
241	model (Nei and Kumar 2000). One tree with the highest log likelihood for each target was
242	included in this manuscript. Brach support was included by bootstrap with 1000
243	replications. The same steps were performed for analysis of the ITS2 sequences from the 50
244	An. coustani mosquitoes.
245	

246 Detection of *Plasmodium falciparum*

Head and thoraces of female *An. coustani* mosquitoes were homogenized in a
phosphate-buffered saline based solution in 1.5 mL microcentrifuge tubes for enzyme-

249	linked immunosorbent assay (ELISA) and genomic DNA was extracted from half of the
250	homogenate using the Qiagen: DNeasy Blood and Tissue Kit protocol (Qiagen, Hilden,
251	Germany) (Beier 2002, Gomes et al. 2017). As quality control, genomic DNA
252	concentration of each extract was quantified using High Sensitivity double-stranded DNA
253	(dsDNA HS) assay on a Qubit 2.0 Fluorometer (Life Technologies, Grand Island, NY). All
254	female An. coustani head and thoraces were subjected to the ELISA assay which uses
255	monoclonal antibodies (CDC, Atlanta, USA) targeting the circumsporozoite protein (CSP)
256	of P. falciparum sporozoites (Burkot et al. 1984). In addition, the genomic DNA extracts
257	from the same individual mosquitoes were screened for <i>P. falciparum</i> DNA using a SYBR
258	Green qPCR assay that targets an 85 bp fragment of the <i>P. falciparum</i> lactate
259	dehydrogenase (<i>Pfldh</i>) gene using primers described elsewhere (Parr et al. 2016). The 25 μ l
260	PCR mixture consisted of 12.5 µl SYBR Green PCR Master Mix (Life Technologies,
261	Warrington, United Kingdom), 1 μ M each of the forward and reverse primers, and 4 μ l of
262	template DNA. Each reaction was performed in a StepOne Real-Time PCR System
263	(Applied Biosystems, Foster City, CA) and the cycling conditions were the following: 50°C
264	for 2 minutes, 95°C for 10 minutes, followed by 45 cycles of denaturation at 95°C for 15
265	seconds, and annealing at 60°C for 1 minute. All samples were replicated in each reaction
266	plate, no template controls (NTCs) were included and run alongside standard dilutions of
267	gDNA of <i>P. falciparum</i> NF54 strain (1-10 ⁵ <i>P. falciparum</i> genome equivalent/µl).
268	

269 Genetic Diversity

270	DNAsp (version 5.10.1) was used to assess diversity and polymorphism statistics on
271	the sequences obtained from the mosquito samples collected in Zambia and the DRC
272	(Librado and Rozas 2009). The number of polymorphic sites (S), the number of haplotypes,
273	average nucleotide diversity (nucleotide differences per site based on pairwise comparisons
274	among DNA sequences) (π), mean number of nucleotide differences (k), genetic diversity
275	(θ), and haplotype diversity (H _d) (probability that two samples randomly sampled are
276	unique) were all calculated for both COI and ITS2 sequences (Nei 1987).
277	
278	Results
279	
280	A total of 42 female (31 from northern Zambia and 11 from southern DRC) and 15
281	male (northern Zambia) morphological An. coustani were caught outdoors as part of this
282	study, representing less than 5% of all mosquitoes captured from these study sites as part of
283	a larger collection. Morphological identifications were conducted on all 57 of these
284	specimens at the field sites, and all species included in this study were identified as An.
285	coustani. Following extractions in the laboratory, both a 698 bp (BOLD) COI fragment and
286	a 750 bp ITS2 fragment were amplified from the abdomen of all samples. 100% of the
287	males successfully amplified with these PCRs, while 7 (16.7%) of the female mosquito
288	amplifications failed after multiple attempts; thus, 50 samples were included in the
289	remaining assays and analyses. Following Sanger sequencing and comparison to NCBI
290	databases, all 50 of these mosquitoes that were morphologically identified as An. coustani
291	were molecularly confirmed. All 50 An. coustani COI sequences matched (with at least

90% nucleotide identity and a significant E-value $<1x10^{-5}$) to previously reported An. 292 coustani sequences deposited in NCBI (as of January 18, 2020). For the ITS2 fragment, 29 293 (58%) of these samples did not yield any close matches (closest match of \sim 80% was 294 Anopheles yatsushiroensis, a member of the Hyrcanus Group that is widely distributed in 295 Oriental and Palaearctic areas) when their consensus sequences were blasted on the NCBI 296 297 databases, which is presumably due to the relative lack of data for this locus and species in 298 the database (Fang et al. 2017). There are over twenty An. coustani COI sequences publicly available (NCBI BLASTn, January 2020) and this gene is highly conserved, with little 299 300 interspecies variation (Margoliash 1963). In contrast, there are currently only three previously submitted sequences in NCBI GenBank for the less conserved ITS2 gene for An. 301 coustani (Coleman 2007). 302 Of the 35 female An. coustani samples, 4 (10.8%) had blood meals identified solely 303

as goat, 3 (8.6%) had blood meals identified solely as human, and 3 (8.6%) had mixed blood meals identified as goat and human. None of the 35 female anopheline samples were CSP ELISA positive. All 35 female *An. coustani* samples were also analyzed by qPCR for *Pfldh*. Six samples (17.1%, 95% CI 6.5-33.6%) yielded positive signals for *P. falciparum* (parasite load was in the range of 1 parasite/ μ l – 5 parasite/ μ l), of which 2 were blooded with human blood.

The Maximum Likelihood analysis was performed for both the COI and ITS2 fragments. The resulting phylogenetic tree that was constructed for the COI fragment (Figure 2) revealed that all specimens that were morphologically identified as *An. coustani* clustered together. The COI clustering revealed two well-supported molecular groups

314	(hereafter "An. coustani group A" and "An. coustani group B") with 74% and 99%
315	bootstrap support, respectively, among the An. coustani samples. An. coustani group A
316	encompasses 21 samples from the field and previously described An. coustani sequences
317	from Zambia (KR014841 and KR014843), Mali (MK585958), and the Republic of Guinea-
318	Bissau (KM097027). Within group A, there is substructure that does not reflect geography,
319	with samples from both Zambia and the DRC grouping closely with the aforementioned
320	samples published from other parts of Africa. An. coustani group B, which has 100%
321	bootstrap support, contains the remaining 29 newly reported sequences from this collection,
322	and has two well-supported groups.
323	Similarly, the phylogenetic tree that was created for the ITS2 fragment (Figure 3)
324	showed that all of the specimens morphologically identified as An. coustani clustered
325	together. Moreover, the structuring revealed two groups (hereafter "An. coustani group A"
326	and "An. coustani group B") with 94% and 99% bootstrap support, respectively. An.
327	coustani group A contained the same 21 sequences from field mosquitoes as An. coustani
328	group A from the COI clustering, and the same was observed for the samples in the group
329	B clusters for both genetic targets, providing a topological concordance between mtDNA
330	COI and nuclear ITS2 phylogenetic trees. As observed for the COI target, previously
331	published sequences of An. coustani clustered into An. coustani group A, even though they
332	were from different geographical areas (KR014826 and KR014824 from Zambia,
333	MK129245 from Madagascar, and KJ522815 from Kenya).
334	Genetic diversity parameters were calculated for each gene and An. coustani groups
335	(Table 1). The mean haplotype diversity was higher for the An. coustani A groups of both
336	targets (0.943 \pm 0.033 for COI and 0.762 \pm 0.050 for ITS2) when compared to the An.

337	coustani B groups (0.860±0.038 for COI and 0.655±0.041 for ITS2). Nucleotide diversity
338	was also higher for the An. coustani A groups according to both genetic targets (0.011 for
339	COI and 0.052 for ITS2) when compared to the An. coustani B groups (0.007 for COI and
340	0.002 for ITS2) (Table 1). The low frequency of unique haplotypes in the An. coustani B
341	groups is supported visually by both phylogenetic trees which generally show less
342	clustering when compared to the A groups. Overall, haplotype and nucleotide diversity did
343	not differ greatly between the two groups identified by the Maximum Likelihood
344	phylogenies.
345	
346	Discussion
347	
348	All of the female An coustant mosquitoes included in this study were caught
348	All of the female An. coustani mosquitoes included in this study were caught
348 349	All of the female <i>An. coustani</i> mosquitoes included in this study were caught outdoors, and some were found to be blooded either with human, goat, or a mixed blood
349	outdoors, and some were found to be blooded either with human, goat, or a mixed blood
349 350	outdoors, and some were found to be blooded either with human, goat, or a mixed blood meal of these two mammals. Although the sample size is small, these findings support
349 350 351	outdoors, and some were found to be blooded either with human, goat, or a mixed blood meal of these two mammals. Although the sample size is small, these findings support reports that <i>An. coustani</i> is primarily exophagic (Nepomichene et al. 2015a, Degefa et al.
349 350 351 352	outdoors, and some were found to be blooded either with human, goat, or a mixed blood meal of these two mammals. Although the sample size is small, these findings support reports that <i>An. coustani</i> is primarily exophagic (Nepomichene et al. 2015a, Degefa et al. 2017). While none of the female <i>An. coustani</i> mosquitoes in this study had a positive signal
349 350 351 352 353	outdoors, and some were found to be blooded either with human, goat, or a mixed blood meal of these two mammals. Although the sample size is small, these findings support reports that <i>An. coustani</i> is primarily exophagic (Nepomichene et al. 2015a, Degefa et al. 2017). While none of the female <i>An. coustani</i> mosquitoes in this study had a positive signal from CSP ELISA assays, six samples were qPCR-positive for <i>P. falciparum</i> . The qPCR is a
349 350 351 352 353 354	outdoors, and some were found to be blooded either with human, goat, or a mixed blood meal of these two mammals. Although the sample size is small, these findings support reports that <i>An. coustani</i> is primarily exophagic (Nepomichene et al. 2015a, Degefa et al. 2017). While none of the female <i>An. coustani</i> mosquitoes in this study had a positive signal from CSP ELISA assays, six samples were qPCR-positive for <i>P. falciparum</i> . The qPCR is a more sensitive assay than ELISA, but the pitfall of this approach is that although it can
349 350 351 352 353 354 355	outdoors, and some were found to be blooded either with human, goat, or a mixed blood meal of these two mammals. Although the sample size is small, these findings support reports that <i>An. coustani</i> is primarily exophagic (Nepomichene et al. 2015a, Degefa et al. 2017). While none of the female <i>An. coustani</i> mosquitoes in this study had a positive signal from CSP ELISA assays, six samples were qPCR-positive for <i>P. falciparum</i> . The qPCR is a more sensitive assay than ELISA, but the pitfall of this approach is that although it can specifically detect <i>P. falciparum</i> DNA, it cannot determine if it was from infectious

cannot be excluded (Carpi, unpublished). While this does not characterize the mosquitoes
as infectious, finding human blood meals in 6 of 35 (3 solely human and 3 in combination
with goat blood meal), and detection of *P. falciparum* DNA in 6 of 35 female *An. coustani*suggest that this mosquito feeds on human hosts frequently. Two of the samples that tested
human-positive by PCR also tested qPCR-positive for *P. falciparum*.

Phylogenetic analyses of both COI and ITS2 fragments reveal that An. coustani 364 365 from northern Zambia and southern DRC partition into two strongly supported groups, 366 herein defined as An. coustani group A and An. coustani group B. These groups have 100% 367 bootstrap support in the COI analysis and 99% bootstrap support in the ITS2 analysis (Figures 2 and 3). As "An. coustani" likely comprises an undescribed species complex in 368 369 which genetic structuring would not be unexpected, the biological significance of this 370 observed structure is currently unknown. Importantly, the tree topology for both genetic 371 targets which incorporates identical sample sets, strengthens the observed clustering of 372 these specimens. Moreover, female mosquitoes in both An. coustani groups A and B 373 (according to both targets) had taken human blood meals. It is of particular interest that two of the samples from An. coustani group B were found to have fed on human blood and/or 374 375 goat blood and were also found to be qPCR-positive for P. falciparum, illustrating the 376 convergence of human host, parasite and vector, although no causality can be proven here. 377 Moreover, the presence of the identical haplotypes for both genetic targets at low frequency 378 from northern Zambia and southern DRC (Figures 2 and 3) may suggest that inter-breeding 379 and migrations might be occurring between the An. coustani subpopulations. However, larger sample sizes and further genetic investigation are required to confirm this scenario. 380

381 Given that An. coustani has been linked to malaria transmission in other regions of Africa and that specimens within this limited sample set are associated both with biting 382 humans and acquiring *P. falciparum*, further studies in Zambia and the DRC are warranted 383 384 (St. Laurent et al. 2016, Stevenson et al. 2016a). More extensive investigations are necessary to truly understand the foraging behavior and malaria transmission potential of 385 An. coustani and other understudied vectors. Such vectors are easily overlooked and may 386 387 be behaviorally resistant to the indoor-based vector interventions deployed across sub-Saharan Africa (Afrane et al. 2016). Behavioral resistance that may result from genetic 388 adaptions or phenotypic plasticity in primary and alternative vectors (Govella et al. 2013). 389 390 For instance, in the Solomon Islands, the scale-up of ITNs and IRS has successfully 391 eliminated the primary vector An. koliensis and has left An. punctulatus with a fragmented 392 distribution, allowing an exophagic species (An. farauti) to emerge as the new sole primary vector as it changed its behavior to avoid insecticides (Bugoro et al. 2011, Russell et al. 393 394 2013). These findings highlight the urgency to expand entomological surveillance to 395 include other anopheline species, especially in transmission settings where primary 396 endophagic and endophilic vector populations have been mostly successfully controlled by 397 elimination strategies, but transmission still remains. In these regions, residual transmission 398 will be maintained by mosquito populations that preferentially bite outdoors and are clear 399 of indoor-based control measures. In these sub-Saharan settings, exophagic species such as An. coustani are ready to play a more significant role in transmission. 400

401

402

403 Acknowledgements

404	The authors kindly acknowledge the Southern and Central Africa ICEMR field teams in			
405	Nchelenge District in Zambia and Kashobwe and Kilwa Health Zones in the DRC for their			
406	logistical assistance and participation in field collections. The authors are very grateful to			
407	the communities in Zambia and the DRC from which household collections were drawn			
408	and the National Malaria Control/Elimination Programs under the Ministries of Health in			
409	both DRC and Zambia.			
410				
411	Financial Support			
412	This work was supported in part by funding from the National Institutes of Health			
413	International Centers of Excellence for Malaria Research (U19AI089680), Bloomberg			
414	Philanthropies and the Johns Hopkins Malaria Institute, and T32 grant support			
415	(T32AI0074717) to CMJ.			
416				
417	Competing Interests			
418	The authors affirm that there are no competing interests to be declared.			
419				
420	Author contributions			
421	DEN and IIC conceived and developed the study. JCS, MM, GC, CMJ, and TK carried out			
422	field collections and compiled collection data. Samples were processed by IIC, CMJ, and			
423	TK and phylogenetic trees constructed and analyzed by IIC, GC, DEN and CMJ. IIC and			
424	DEN drafted the manuscript. All authors read and reviewed the final manuscript.			

Tables and Figures

427 Table 1. Genetic diversity by genetic target and phylogenetic *An. coustani* group

	COI		ITS2	
	An. coustani	An. coustani	An. coustani	An. coustani
	group A	group B	group A	group B
no. sequences	21	29	21	29
S (no. polymorphic sites)	23	22	58	11
h (no. haplotypes)	14	17	7	7
H_d (haplotype diversity) \pm Std. dev	0.943 ± 0.033	$0.860{\pm}0.038$	0.762 ± 0.050	$0.655 {\pm} 0.041$
π (nucleotide diversity)	0.011	0.007	0.052	0.002
k (average no. nucleotide differences)	6.200	3.774	28.859	1.333
θ (per site from Eta)	0.012	0.009	0.024	0.004

429 DNAsp (v. 5.10.1) was used to calculate the number of polymorphic sites (S), the number

430 of DNA haplotypes (h), the haplotype diversity (H_d), the nucleotide diversity (π) among all

431 loci, the average number of nucleotide differences (k), and theta per site from Eta.

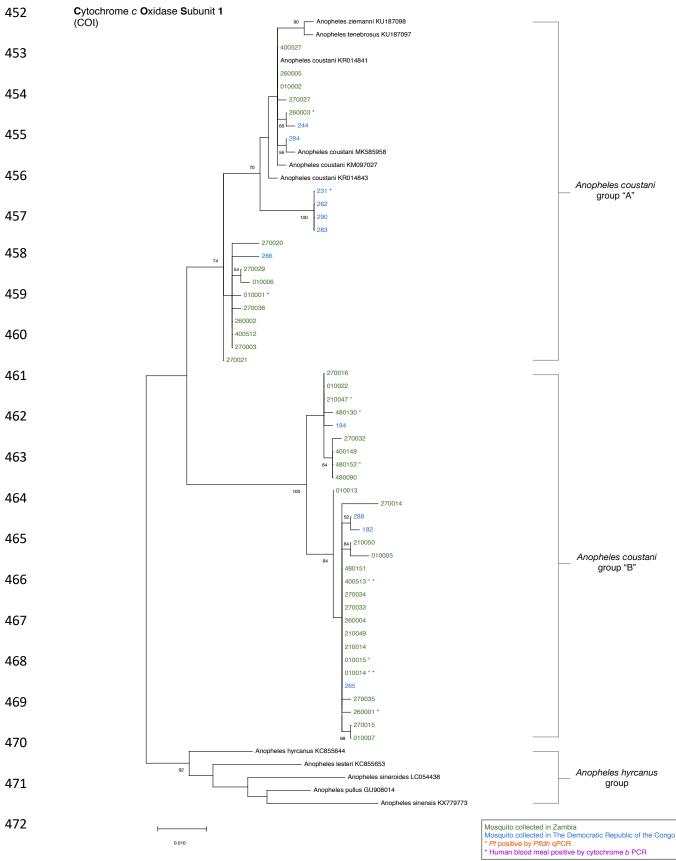
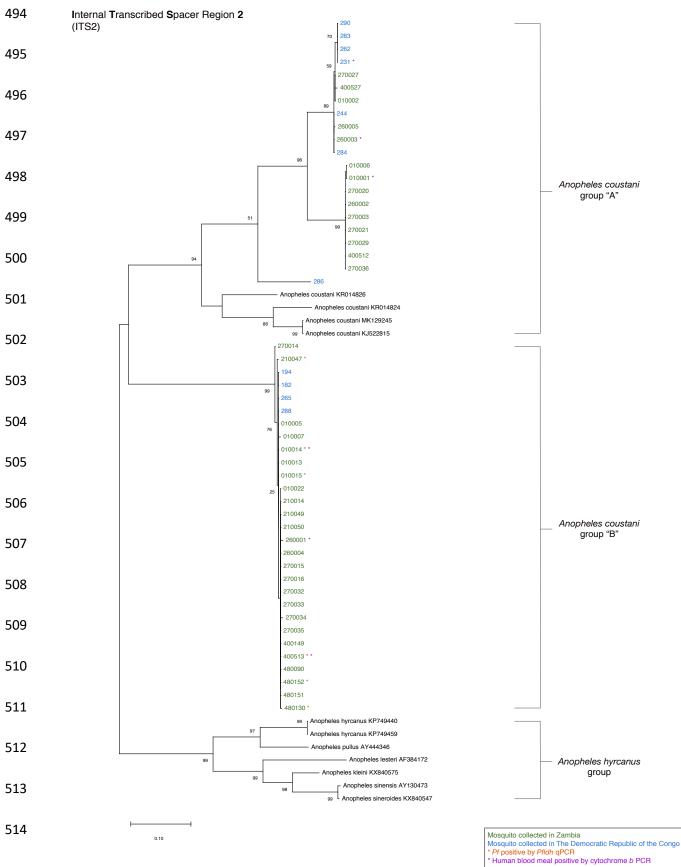


Figure 1. Distribution of caught mosquitoes over multiple sites in Zambia and the DRC.

443 The size of the circle refers to the proportion of samples caught in a specific area relative to

the size of the collection, and the color represents the ratio of males/females in a specific


445 area.

473 **Figure 2.** Cytochrome *c* oxidase subunit I (COI) Maximum Likelihood tree.

474	This evolutionary analysis was performed using the Maximum Likelihood method and
475	General Time Reversible model, with 1000 bootstraps for branch support (Nei and Kumar
476	2000). The tree with the highest log likelihood (-1603.26) is shown. The tree is drawn to
477	scale, with branch lengths shown in the number of substitutions per site. This analysis
478	contains 61 samples, including 50 samples from this collection, and 11 sample sequences
479	obtained from NCBI BLASTn. Evolutionary analyses were conducted in MEGA X (Kumar
480	et al. 2018, Stecher et al. 2020).
481	
482	
483	
484	
485	
486	
487	
488	
489	
490	
491	
492	
493	

515	Figure 3. Ribosomal internal transcribed spacer region 2 (ITS2) Maximum Likelihood tree.
516	This evolutionary analysis was performed using the Maximum Likelihood method and
517	General Time Reversible model, with 1000 bootstraps for branch support (Nei and Kumar
518	2000). The tree with the highest log likelihood (-4723.20) is shown. The tree is drawn to
519	scale, with branch lengths shown in the number of substitutions per site. This analysis
520	contains 61 samples, including 50 samples from this collection, and 11 sample sequences
521	obtained from NCBI BLASTn. Evolutionary analyses were conducted in MEGA X (Kumar
522	et al. 2018, Stecher et al. 2020).
523	
524	
525	
526	
527	
528	
529	
530	
531	
532	
533	
534	
535	

References

537	
557	

538	Afrane, Y. A., M. Bonizzoni, and G. Yan. 2016. Secondary Malaria Vectors of Sub-
539	Saharan Africa: Threat to Malaria Elimination on the Continent? In A. J. Rodriguez-
540	Morales (ed.), Current Topics in Malaria. IntechOpen.
541	Altschul, S. F., T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J.
542	Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein
543	database search programs. Nucleic Acids Res 25: 3389-3402.
544	Antonio-Nkondjio, C., Kerah CH, Simard F, Awono-Ambene P, Chouaibou M,
545	Tchuinkam T, and F. D. 2006. Complexity of the malaria vectorial system in
546	Cameroon: contribution of secondary vectors to malaria transmission. Journal of
547	Medical Entomology 43: 1215-1221.
548	Beebe, N. W. 2018. DNA barcoding mosquitoes: advice for potential prospectors.
549	Parasitology 145: 622-633.
550	Beier, J. 2002. Vector incrimination and entomological inoculation rates, pp. 3-11. In D.
551	D.L. (ed.), Malaria methods and protocols, vol. 72. Humana Press, Methods in
552	molecular medicine.
553	Bhatt, S., D. J. Weiss, E. Cameron, D. Bisanzio, B. Mappin, U. Dalrymple, K. E.
554	Battle, C. L. Moyes, A. Henry, P. A. Eckhoff, E. A. Wenger, O. Briët, M. A.
555	Penny, T. A. Smith, A. Bennett, J. Yukich, T. P. Eisele, J. T. Griffin, C. A.
556	Fergus, M. Lynch, F. Lindgren, J. M. Cohen, C. L. J. Murray, D. L. Smith, S.
557	I. Hay, R. E. Cibulskis, and P. W. Gething. 2015. The effect of malaria control on
558	Plasmodium falciparum in Africa between 2000 and 2015. Nature 526: 207-211.

559	Bobanga, T., S. E. Umesumbu, A. S. Mandoko, C. N. Nsibu, E. B. Dotson, R. F. Beach,
560	and S. R. Irish. 2016. Presence of species within the Anopheles gambiae complex
561	in the Democratic Republic of Congo. Transactions of The Royal Society of
562	Tropical Medicine and Hygiene 110: 373-375.
563	Bugoro, H., C. Iro'ofa, D. O. Mackenzie, A. Apairamo, W. Hevalao, S. Corcoran, A.
564	Bobogare, N. W. Beebe, T. L. Russell, CC. Chen, and R. D. Cooper. 2011.
565	Changes in vector species composition and current vector biology and behaviour
566	will favour malaria elimination in Santa Isabel Province, Solomon Islands. Malaria
567	Journal 10: 287.
568	Burkot, T. R., J. L. Williams, and I. Schneider. 1984. Identification of Plasmodium
569	Falciparum-Infected Mosquitoes by a Double Antibody Enzyme-Linked
570	Immunosorbent Assay*. The American Journal of Tropical Medicine and Hygiene
571	33: 783-788.
572	Chanda, E., M. Kamuliwo, R. W. Steketee, M. B. Macdonald, O. Babaniyi, and V. M.
573	Mukonka. 2013. An Overview of the Malaria Control Programme in Zambia.
574	ISRN Preventive Medicine 2013: 8.
575	Chizema-Kawesha, E., J. M. Miller, R. W. Steketee, V. M. Mukonka, C. Mukuka, A.
576	D. Mohamed, S. K. Miti, and C. C. Campbell. 2010. Scaling up malaria control in
577	Zambia: progress and impact 2005-2008. The American journal of tropical
578	medicine and hygiene 83: 480-488.
579	Coleman, A. W. 2007. Pan-eukaryote ITS2 homologies revealed by RNA secondary
580	structure. Nucleic Acids Res 35: 3322-3329.

581	Das, S., M. Muleba, J. C. Stevenson, D. E. Norris, and T. for the Southern Africa
582	International Centers of Excellence for Malaria Research. 2016. Habitat
583	Partitioning of Malaria Vectors in Nchelenge District, Zambia. The American
584	Journal of Tropical Medicine and Hygiene 94: 1234-1244.
585	Degefa, T., D. Yewhalaw, G. Zhou, MC. Lee, H. Atieli, A. K. Githeko, and G. Yan.
586	2017. Indoor and outdoor malaria vector surveillance in western Kenya:
587	implications for better understanding of residual transmission. Malaria journal 16:
588	443-443.
589	Degefa, T., A. Zeynudin, A. Godesso, Y. H. Michael, K. Eba, E. Zemene, D. Emana, B.
590	Birlie, K. Tushune, and D. Yewhalaw. 2015. Malaria incidence and assessment of
591	entomological indices among resettled communities in Ethiopia: a longitudinal
592	study. Malaria Journal 14: 24.
593	Fang, Y., WQ. Shi, and Y. Zhang. 2017. Molecular phylogeny of Anopheles hyrcanus
594	group members based on ITS2 rDNA. Parasites & Vectors 10: 417.
595	Ferrari, G., H. M. Ntuku, S. Schmidlin, E. Diboulo, A. K. Tshefu, and C. Lengeler.
596	2016. A malaria risk map of Kinshasa, Democratic Republic of Congo. Malaria
597	journal 15: 27-27.
598	Fornadel, C. M., L. C. Norris, V. Franco, and D. E. Norris. 2011. Unexpected
599	Anthropophily in the Potential Secondary Malaria Vectors Anopheles coustani s.l.
600	and Anopheles squamosus in Macha, Zambia. Vector Borne and Zoonotic Diseases
601	11: 1173-1179.

602	Gillies, M. T., and B. DeMeillon. 1968. The Anophelinae of Africa south of the Sahara
603	(Ethiopian Zoogeographical Region). Publications of the South African Institute for
604	Medical Research 54.
605	Gillies, M. T., and M. Coetzee. 1987. A Supplement to the Anophelinae of Africa South
606	of the Sahara. Johannesburg: South African Institute for Medical Research.
607	Gomes, F. M., B. L. Hixson, M. D. W. Tyner, J. L. Ramirez, G. E. Canepa, T. L. Alves
608	e Silva, A. Molina-Cruz, M. Keita, F. Kane, B. Traoré, N. Sogoba, and C.
609	Barillas-Mury. 2017. Effect of naturally occurring Wolbachia in Anopheles
610	gambiae s.l. mosquitoes from Mali on Plasmodium falciparum malaria
611	transmission. Proceedings of the National Academy of Sciences 114: 12566-12571.
612	Goupeyou-Youmsi, J., T. Rakotondranaivo, N. Puchot, I. Peterson, R. Girod, I. Vigan-
613	Womas, M. O. Ndiath, and C. Bourgouin. 2019. Differential contribution of
614	Anopheles coustani and Anopheles arabiensis to the transmission of Plasmodium
615	falciparum and Plasmodium vivax in two neighboring villages of Madagascar.
616	bioRxiv: 787432.
617	Govella, N. J., P. P. Chaki, and G. F. Killeen. 2013. Entomological surveillance of
618	behavioural resilience and resistance in residual malaria vector populations. Malaria
619	Journal 12: 124.
620	Hast, M. A., J. C. Stevenson, M. Muleba, M. Chaponda, JB. Kabuya, M. Mulenga, J.
621	Lessler, T. Shields, W. J. Moss, D. E. Norris, f. t. Southern, and C. A. I. C. o. E.
622	i. M. Research. 2019. Risk Factors for Household Vector Abundance Using Indoor
623	CDC Light Traps in a High Malaria Transmission Area of Northern Zambia. The
624	American Journal of Tropical Medicine and Hygiene 101: 126-136.

625	Jones, C. M., Y. Lee, A. Kitchen, T. Collier, J. C. Pringle, M. Muleba, S. Irish, J. C.
626	Stevenson, M. Coetzee, A. J. Cornel, D. E. Norris, and G. Carpi. 2018.
627	Complete Anopheles funestus mitogenomes reveal an ancient history of
628	mitochondrial lineages and their distribution in southern and central Africa.
629	Scientific Reports 8: 9054.
630	Kamuliwo, M., E. Chanda, U. Haque, M. Mwanza-Ingwe, C. Sikaala, C. Katebe-
631	Sakala, V. M. Mukonka, D. E. Norris, D. L. Smith, G. E. Glass, and W. J.
632	Moss. 2013. The changing burden of malaria and association with vector control
633	interventions in Zambia using district-level surveillance data, 2006–2011. Malaria
634	Journal 12: 437.
635	Kent, R. J., and D. E. Norris. 2005. Identification of mammalian blood meals in
636	mosquitoes by a multiplexed polymerase chain reaction targeting cytochrome B.
637	The American journal of tropical medicine and hygiene 73: 336-342.
638	Koukouikila-Koussounda, F., and F. Ntoumi. 2016. Malaria epidemiological research in
639	the Republic of Congo. Malaria Journal 15: 598.
640	Kumar, S., G. Stecher, M. Li, K. Christina, and K. Tamura. 2018. MEGA X:
641	Molecular Evolutionary Genetics Analysis across computing platforms. Molecular
642	Biology and Evolution 35: 1547-1549.
643	Librado, P., and J. Rozas. 2009. DnaSP v5: a software for comprehensive analysis of
644	DNA polymorphism data. Bioinformatics 25: 1451-1452.
645	Lobo, N. F., B. S. Laurent, C. H. Sikaala, B. Hamainza, J. Chanda, D. Chinula, S. M.
646	Krishnankutty, J. D. Mueller, N. A. Deason, Q. T. Hoang, H. L. Boldt, J.
647	Thumloup, J. Stevenson, A. Seyoum, and F. H. Collins. 2015. Unexpected

648	diversity of Anopheles species in Eastern Zambia: implications for evaluating
649	vector behavior and interventions using molecular tools. Scientific Reports 5:
650	17952.
651	Margoliash, E. 1963. Primary Structure and Evolution of Cytochrome C. Proc Natl Acad
652	Sci U S A 50: 672-679.
653	Masaninga, F., E. Chanda, P. Chanda-Kapata, B. Hamainza, H. T. Masendu, M.
654	Kamuliwo, W. Kapelwa, J. Chimumbwa, J. Govere, M. Otten, I. S. Fall, and O.
655	Babaniyi. 2013. Review of the malaria epidemiology and trends in Zambia. Asian
656	Pacific journal of tropical biomedicine 3: 89-94.
657	Messina, J. P., S. M. Taylor, S. R. Meshnick, A. M. Linke, A. K. Tshefu, B. Atua, K.
658	Mwandagalirwa, and M. Emch. 2011. Population, behavioural and environmental
659	drivers of malaria prevalence in the Democratic Republic of Congo. Malaria Journal
660	10: 161-161.
661	Mharakurwa, S., P. E. Thuma, D. E. Norris, M. Mulenga, V. Chalwe, J. Chipeta, S.
662	Munyati, S. Mutambu, P. R. Mason, and I. T. Southern Africa. 2012. Malaria
663	epidemiology and control in Southern Africa. Acta tropica 121: 202-206.
664	Ministry of Health Zambia, M. 2015. Zambia National Malaria Indicator Survey. Lusaka,
665	Zambia: Ministry of Health., http://www.makingmalariahistory.org/wp-
666	content/uploads/2017/06/Zambia-MIS2015_Jan20-nosigs.pdf.
667	MIS. 2019. Zambia National Malaria Indicator Survey PATH; National Malaria
668	Elimination Centre.
669	Mohanty, A., S. Swain, S. K. Kar, and R. K. Hazra. 2009. Analysis of the phylogenetic
670	relationship of Anopheles species, subgenus Cellia (Diptera: Culicidae) and using it

671	to define the relationship of morphologically similar species. Infection, Genetics
672	and Evolution 9: 1204-1224.
673	Moss, W. J., D. E. Norris, S. Mharakurwa, A. Scott, M. Mulenga, P. R. Mason, J.
674	Chipeta, and P. E. Thuma. 2012. Challenges and Prospects for Malaria
675	Elimination in the Southern Africa Region. Acta Tropica 121: 207-211.
676	Mukonka, V. M., E. Chanda, U. Haque, M. Kamuliwo, G. Mushinge, J. Chileshe, K.
677	A. Chibwe, D. E. Norris, M. Mulenga, M. Chaponda, M. Muleba, G. E. Glass,
678	and W. J. Moss. 2014. High burden of malaria following scale-up of control
679	interventions in Nchelenge District, Luapula Province, Zambia. Malaria Journal 13:
680	153.
681	Mwangangi, J. M., E. J. Muturi, S. M. Muriu, J. Nzovu, J. T. Midega, and C. Mbogo.
682	2013. The role of Anopheles arabiensis and Anopheles coustani in indoor and
683	outdoor malaria transmission in Taveta District, Kenya. Parasites & Vectors 6: 114-
684	114.
685	Nambozi, M., P. Malunga, M. Mulenga, JP. Van Geertruyden, and U. D'Alessandro.
686	2014. Defining the malaria burden in Nchelenge District, northern Zambia using the
687	World Health Organization malaria indicators survey. Malaria journal 13: 220-220.
688	Nardini, L., R. H. Hunt, Y. L. Dahan-Moss, N. Christie, R. N. Christian, M. Coetzee,
689	and L. L. Koekemoer. 2017. Malaria vectors in the Democratic Republic of the
690	Congo: the mechanisms that confer insecticide resistance in Anopheles gambiae and
691	Anopheles funestus. Malaria Journal 16: 448.
692	Nei, M. 1987. Molecular evolutionary genetics, pp. 512. New York: Columbia University
693	Press.

694	Nei, M., and S. Kumar. 2000. Molecular Evolution and Phylogenetics, Oxford University
695	Press, New York.
696	Nepomichene, T. N. J. J., E. Tata, and S. Boyer. 2015a. Malaria case in Madagascar,
697	probable implication of a new vector, Anopheles coustani. Malaria journal 14: 475-
698	475.
699	Nepomichene, T. N. J. J., E. Tata, and S. Boyer. 2015b. Malaria case in Madagascar,
700	probable implication of a new vector, Anopheles coustani. Malaria Journal 14: 475.
701	Norris, D. E., A. Shurtleff, Y. T. Touré, and G. C. Lanzaro. 2001. Microsatellite DNA
702	polymorphism and heterozygosity among field and laboratory populations of
703	Anopheles gambiae ss (Diptera: Culicidae). Journal of Medical Entomology 38(2):
704	336-340.
705	Norris, L. C., and D. E. Norris. 2015. Phylogeny of anopheline (Diptera: Culicidae)
706	species in southern Africa, based on nuclear and mitochondrial genes. Journal of
707	vector ecology : journal of the Society for Vector Ecology 40: 16-27.
708	Oaks SC Jr., M. V., Pearson GW, et al., editors. 1991. Vector Biology, Ecology, and
709	Control. In I. o. M. U. C. f. t. S. o. M. P. a. Control (ed.), "Malaria: Obstacles and
710	Opportunities", vol. 7. National Academies Press (US).
711	Parr, J. B., C. Belson, J. C. Patel, I. F. Hoffman, P. Kamthunzi, F. Martinson, G.
712	Tegha, I. Thengolose, C. Drakeley, S. R. Meshnick, V. Escamillia, M. Emch,
713	and J. J. Juliano. 2016. Estimation of Plasmodium falciparum Transmission
714	Intensity in Lilongwe, Malawi, by Microscopy, Rapid Diagnostic Testing, and
715	Nucleic Acid Detection. The American Journal of Tropical Medicine and Hygiene
716	95: 373-377.

717	Pinchoff, J., H. Hamapumbu, T. Kobayashi, L. Simubali, J. C. Stevenson, D. E.
718	Norris, E. Colantuoni, P. E. Thuma, and J. M. f. t. S. A. I. C. o. E. f. M. R.
719	William. 2015. Factors Associated with Sustained Use of Long-Lasting Insecticide-
720	Treated Nets Following a Reduction in Malaria Transmission in Southern Zambia.
721	The American Journal of Tropical Medicine and Hygiene 93: 954-960.
722	PMI. 2019a. Zambia Malaria Operational Plan FY 2019. USAID: U.S. President's Malaria
723	Initiative.
724	PMI. 2019b. FY 2019 Democratic Republic of Congo Abbreviated Malaria Operational
725	Plan. USAID: U.S. President's Malaria Initiative.
726	Post, R. J., P. K. Flook, and A. L. Millest. 1993. Methods for the preservation of insects
727	for DNA studies. Biochemical Systematics and Ecology 21: 85-92.
728	Russell, T. L., N. W. Beebe, R. D. Cooper, N. F. Lobo, and T. R. Burkot. 2013.
729	Successful malaria elimination strategies require interventions that target changing
730	vector behaviours. Malaria Journal 12: 56.
731	Sinka, M. E., M. J. Bangs, S. Manguin, Y. Rubio-Palis, T. Chareonviriyaphap, M.
732	Coetzee, C. M. Mbogo, J. Hemingway, A. P. Patil, W. H. Temperley, P. W.
733	Gething, C. W. Kabaria, T. R. Burkot, R. E. Harbach, and S. I. Hay. 2012. A
734	global map of dominant malaria vectors. Parasites & vectors 5: 69-69.
735	St. Laurent, B., M. Cooke, S. M. Krishnankutty, P. Asih, J. D. Mueller, S. Kahindi, E.
736	Ayoma, R. M. Oriango, J. Thumloup, C. Drakeley, J. Cox, F. H. Collins, N. F.
737	Lobo, and J. C. Stevenson. 2016. Molecular Characterization Reveals Diverse and
738	Unknown Malaria Vectors in the Western Kenyan Highlands. The American
739	Journal of Tropical Medicine and Hygiene 94: 327-335.

740	Stecher, G., K. Tamura, and S. Kumar. 2020. Molecular Evolutionary Genetics Analysis
741	(MEGA) for macOS. Molecular Biology and Evolution.
742	Stevenson, J., B. St. Laurent, N. F. Lobo, M. K. Cooke, S. C. Kahindi, R. M. Oriango,
743	R. E. Harbach, J. Cox, and C. Drakeley. 2012. Novel Vectors of Malaria Parasite
744	in the Western Highlands of Kenya. Emerging Infectious Diseases 18: 1547-1549.
745	Stevenson, J. C., L. Simubali, S. Mbambara, M. Musonda, S. Mweetwa, T. Mudenda,
746	J. C. Pringle, C. M. Jones, and D. E. Norris. 2016a. Detection of Plasmodium
747	falciparum Infection in Anopheles squamosus (Diptera: Culicidae) in an Area
748	Targeted for Malaria Elimination, Southern Zambia. Journal of Medical
749	Entomology 53: 1482-1487.
750	Stevenson, J. C., J. Pinchoff, M. Muleba, J. Lupiya, H. Chilusu, I. Mwelwa, D.
751	Mbewe, L. Simubali, C. M. Jones, M. Chaponda, M. Coetzee, M. Mulenga, J.
752	C. Pringle, T. Shields, F. C. Curriero, and D. E. Norris. 2016b. Spatio-temporal
753	heterogeneity of malaria vectors in northern Zambia: implications for vector
754	control. Parasites & Vectors 9: 510.
755	Stone, W., B. Grabias, K. Lanke, H. Zheng, E. Locke, D. Diallo, A. Birkett, M. Morin,
756	T. Bousema, and S. Kumar. 2015. A comparison of Plasmodium falciparum
757	circumsporozoite protein-based slot blot and ELISA immuno-assays for oocyst
758	detection in mosquito homogenates. Malaria Journal 14: 451.
759	Sutcliffe, C. G., T. Kobayashi, H. Hamapumbu, T. Shields, S. Mharakurwa, P. E.
760	Thuma, T. A. Louis, G. Glass, and W. J. Moss. 2012. Reduced Risk of Malaria
761	Parasitemia Following Household Screening and Treatment: A Cross-Sectional and
762	Longitudinal Cohort Study. PLOS ONE 7: e31396.

763	Wat'senga, F., E. Z. Manzambi, A. Lunkula, R. Mulumbu, T. Mampangulu, N. Lobo,
764	A. Hendershot, C. Fornadel, D. Jacob, M. Niang, F. Ntoya, T. Muyembe, J.
765	Likwela, S. R. Irish, and R. M. Oxborough. 2018. Nationwide insecticide
766	resistance status and biting behaviour of malaria vector species in the Democratic
767	Republic of Congo. Malaria journal 17: 129-129.
768	WHO. 2015. Global technical strategy for malaria 2016–2030. Geneva: World Health
769	Organization.
770	WHO. 2019a. World malaria report 2019. Geneva: World Health Organization.
771	WHO. 2019b. High burden to high impact: a targeted malaria response. Geneva: World
772	Health Organization.
773	