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ABSTRACT 1 

Circadian rhythms are oscillations of behavior, physiology, and metabolism in many 2 

organisms. Recent advancements in omics technology make it possible for genome-wide 3 

profiling of circadian rhythms. Here, we conducted a comprehensive analysis of seven 4 

existing algorithms commonly used for circadian rhythm detection. Using gold-standard 5 

circadian and non-circadian genes, we systematically evaluated the accuracy and 6 

reproducibility of the algorithms on empirical datasets generated from various omics 7 

platforms under different experimental designs. We also carried out extensive simulation 8 

studies to test each algorithm’s robustness to key variables, including sampling patterns, 9 

replicates, waveforms, signal-to-noise ratios, uneven samplings, and missing values. 10 

Furthermore, we examined the distributions of the nominal 𝑝-values under the null and 11 

raised issues with multiple testing corrections using traditional approaches. With our 12 

assessment, we provide method selection guidelines for circadian rhythm detection, 13 

which are applicable to different types of high-throughput omics data. 14 

 15 

Key words: biological rhythm; circadian rhythm detection; benchmarking; omics; 16 

precision and recall; reproducibility.  17 
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Key points 18 

• Various methods have been developed for circadian rhythm detection on a 19 

genome-wide scale using omics technologies, yet there has not been a 20 

comprehensive summary and evaluation of all existing methods to date. 21 

• Using gold-standard circadian and non-circadian genes, we systematically 22 

evaluated the accuracy and reproducibility of seven existing algorithms for 23 

circadian rhythm detection on empirical datasets generated from various omics 24 

platforms. 25 

• We carried out extensive simulation studies to test each algorithm’s robustness to 26 

key variables, including sampling patterns, replicates, waveforms, signal-to-noise 27 

ratios, uneven samplings, and missing values. 28 

• We examined the distributions of the nominal p-values under the null and raised 29 

issues with multiple testing corrections using the Benjamini-Hochberg procedure 30 

due to gene-gene correlation and testing being overly conservative. 31 

• We provide method selection guidelines for circadian rhythm detection, which are 32 

applicable to different types of high-throughput omics data.  33 
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BACKGROUND 34 

Circadian rhythms are approximately 24-hour oscillations of behavior, physiology, and 35 

metabolism that exist in almost all living organisms ranging from prokaryotes to mammals 36 

[1, 2]. Circadian rhythm is regulated by the circadian system, which consists of many 37 

“clock-controlled genes” that exhibit oscillatory patterns [1].  These oscillations provide 38 

organisms with an adaptive advantage by enabling them to predict and adjust to the 39 

variations within their environments [3]. Additionally, and perhaps more importantly, 40 

disruptions of circadian rhythms have shown to contribute to numerous diseases, 41 

including metabolic disorders, heart disease, and aging [4-7]. It is, therefore, of great 42 

importance and interest to perform genome-scale analysis of biological rhythms. 43 

Recent advances in omics technologies, including both microarrays and next-44 

generation sequencing, offer appealing platforms to identify circadian genes on a 45 

genome-wide scale. These have, indeed, led to the proposal of multifarious 46 

methodologies adopted from various fields including mathematics, statistics, astrophysics, 47 

etc. The earliest of the selected methods is Lomb-Scargle (LS) periodogram [8], an 48 

algorithm adapted from astrophysics that detects oscillations by comparing the data to 49 

sinusoidal reference curves of varying periods and phases [9, 10]. ARSER is an algorithm 50 

that employs autoregressive spectral estimation to predict periodicity and applies a 51 

harmonic regression model to fit the time-series [11]. Unlike the model-based LS and 52 

ARSER, JTK_CYCLE is a non-parametric method that detects oscillations by comparing 53 

the ranks of the measured values to a set of prespecified symmetric reference curves [3]. 54 

Both RAIN and eJTK_CYCLE build on the strengths of JTK_CYCLE: RAIN includes an 55 

additional set of asymmetric waveforms and examines the increasing and decreasing 56 

portions of the curve separately [12]; eJTK_CYCLE improves JTK_CYCLE by explicitly 57 

calculating the null distribution such that it accounts for multiple hypothesis testing and by 58 

including non-sinusoidal reference waveforms [13]. Based on the successes of the 59 

aforementioned methods, MetaCycle proposes an ensemble framework that integrates 60 

results from three different algorithms, LS, ARSER, and JTK_CYCLE [14]. Specifically, 61 

MetaCycle detects periodicity using the best of breed methods: its 𝑝-values are generated 62 

using Fisher’s method; its periods and phase estimations are integrated using arithmetic 63 

and circular means; and a new periodic model, formulated from ordinary least squares 64 
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method, is applied to recalculate the amplitude. The most recent method, BIO_CYCLE, 65 

is a deep neural network trained on both simulated and empirical circadian and 66 

noncircadian time-series [15]. More general information and characteristics of each 67 

method are summarized in Table 1. 68 

Multiple studies [10, 16, 17] have evaluated the performance of different methods 69 

for circadian rhythm detection, showing discrepancies among the methods, whose 70 

performances depend on multiple factors including experimental designs, waveforms of 71 

interest, etc. However, there has not been, to our best knowledge, a comprehensive 72 

summary and evaluation of all existing methods to date. Here, we systematically assess 73 

the performance of the seven aforementioned algorithms for circadian rhythm detection: 74 

LS, ARSER, JTK_CYCLE, RAIN, eJTK_CYCLE, MetaCycle, and BIO_CYCLE. 75 

Specifically, we demonstrated and benchmarked the algorithms using real 76 

datasets with gold-standard circadian and non-circadian genes. All empirical data were 77 

generated using the liver tissue from Mus musculus that had undergone two different 78 

experimental designs. Under the dark-dark experimental design (24-hour darkness), we 79 

focused on using data from gene expression microarrays to assess the accuracy and 80 

reproducibility of each algorithm; under the light-dark experimental design (12-hour light 81 

followed by 12-hour darkness), we adopted four different next-generation sequencing 82 

platforms and explored the robustness of each method in identifying circadian genes. 83 

Furthermore, to extend our assessment to non-transcriptomic datasets, we included a 84 

proteomic dataset in our evaluation. In addition, we carried out extensive simulation 85 

studies to study how key variables, including sampling patterns, replicates, waveforms, 86 

signal-to-noise ratios, uneven samplings, missing values, affect the performance of each 87 

method. Lastly, we point out the flaw with using the Benjamini-Hochberg procedure to 88 

control for false discovery rate. Through these, we offer guidelines on experimental 89 

designs as well as best practices and methods of choice to increase the rigor and 90 

reproducibility in the analysis of large-scale circadian rhythms. To assist with the 91 

comparison of future methods and datasets using our framework, we provide detailed 92 

vignettes on applications of existing methods and performance evaluations with source 93 

code available at  https://github.com/wenwenm183/Circadian_Genes_Benchmark.  94 

 95 
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RESULTS 96 

Performance assessment using empirical datasets with dark-dark design 97 

We first adopted three gene expression microarray datasets from Hughes et al. [18], 98 

Hughes et al. [19], and Zhang et al. [20]. For all three studies, mouse liver samples were 99 

collected in every hour or every two-hour under the dark-dark experimental design for 48 100 

hours. We named these three datasets after the first author's last name and the year of 101 

publication as Hughes 2009, Hughes 2012, and Zhang 2014, respectively. In addition, we 102 

generated a new downsampled dataset from the Hughes 2009 dataset by keeping the 103 

even time-points only, and named it “Downsampled Hughes 2009”. Refer to Table 2A for 104 

details of the data. Figure 1 shows the scaled gene expression levels of four known 105 

circadian and four non-circadian genes. The circadian genes, including the well-studied 106 

Clock, Cry1, Npas2, and Per1 [10], show oscillatory patterns that can be well reproduced 107 

across studies, while the non-circadian genes exhibit only noisy signals. 108 

We set out to apply the seven algorithms to these four datasets to detect 109 

significantly cyclic genes and evaluate their performances using 104 circadian [10] and 110 

113 non-circadian genes [21] from previous studies (Supplementary Table 1). The 111 

accuracy of each method in Hughes 2009, Downsampled Hughes 2009, Hughes 2012, 112 

and Zhang 2014 was first assayed with the precision and recall rates for each algorithm 113 

given three 𝑝-value thresholds, 0.000005 (Bonferroni), 0.00005, 0.0005, and one 𝑞-value 114 

threshold 0.05 (Benjamini-Hochberg). Due to the tradeoff between sensitivity and 115 

specificity, with more relaxed thresholds of significance, the precision rates of all methods 116 

decrease while the recall rates increase – the 0.05 𝑞-value threshold achieves the lowest 117 

precision rate yet the highest recall rate for any given method (Figure 2A). While there 118 

does not exist a single method that consistently achieves the highest precision or recall 119 

rate, JTK_CYCLE and BIO_CYCLE are more effective in controlling for false positives 120 

while still detecting true circadian genes. For the other methods, however, there is a much 121 

higher variability in precision, especially in the Zhang 2014 dataset (Figure 2A). RAIN and 122 

MetaCycle tend to have the highest sensitivity/recall, but this can come with significant 123 

sacrifice on precision (Figure 2A). 124 

In addition, we find that higher sampling frequency can significantly improve the 125 

recall rates of all methods. While MetaCycle and RAIN achieve the apparently higher 126 
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recall rate under different thresholds in dataset sampled at a lower frequency (2 h/2 days), 127 

all methods, except for LS, produce comparable recall rates when applied to the Hughes 128 

2009 dataset, which is sampled at 1 h/2 days (Figure 2A). Notably, when analyzing the 129 

three datasets with lower sampling frequencies, LS failed under all circumstances with 130 

recall rates less than 0.1 (Figure 2A). This is due to the extreme 𝑝-value distribution of 131 

the method with a spike at one, which we will discuss in more detail under “Correlated 132 

multiple testing and non-uniform distribution of 𝑝-values under the null”. 133 

We further computed with the receiver operating characteristic (ROC) curves with 134 

a varying threshold on the nominal 𝑝-values returned by each method (Figure 2B). The 135 

area under the curve (AUC) values serve as a joint measure of sensitivity and specificity 136 

and are above 0.80 across all benchmark results, suggesting that all methods achieve 137 

good sensitivities while controlling for false positive rates. BIO_CYCLE, the deep-138 

learning-based method, achieves the best performance with the highest AUC across all 139 

datasets (Figure 2B). 140 

 141 

Reproducibility assessment using empirical datasets with dark-dark design 142 

Reproducibility is one of the core principles for any bioinformatic tools and yet it remains 143 

a challenge in the field of circadian rhythm detection, which has not been fully explored. 144 

To evaluate the reproducibility of the methods, we first compared and contrasted the 145 

significantly cyclic genes returned by each method across the four datasets. To make the 146 

input dimensions compatible, we selected a total of 7,570 common genes that are shared 147 

across datasets and adopted a 𝑞-value threshold of 0.05 for significance. The Venn 148 

diagrams in Figure 3A show the overlapping relationships of the significant genes 149 

returned by each method. While the experimental designs are the same and the observed 150 

gene expression measurements are highly concordant (Figure 1), significant 151 

discrepancies of the calling results are observed. Of the seven benchmarked methods, 152 

ARSER resulted in 721 overlapping significant genes, which is the highest. This is 153 

followed by RAIN, eJTK_CYCLE, MetaCycle, BIO_CYCLE, JTK_CYCLE, and LS with 154 

613, 528, 485, 296, 204, and 0 mutually identified positives, respectively. As mentioned 155 

previously, LS failed in detecting any significant oscillations for three out of the four 156 

datasets. 157 
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 To further assess the reproducibility of the methods, we computed the Jaccard 158 

index and the Sorensen index to measure the similarities among the results from each 159 

method. Details of these metrics are included in the Materials and Methods section. As a 160 

result, RAIN achieves one of the highest Jaccard indices for any pair of comparisons and 161 

ARSER achieves the highest overall Sorensen index across all datasets (Figure 3B). On 162 

the other hand, our results indicate that JTK_CYCLE, eJTK_CYLE, and BIO_CYCLE 163 

produce the lowest similarity metrics across all comparisons (Figure 3B). 164 

 165 

Performance assessment using empirical datasets with light-dark design 166 

Next, we adopted four datasets that underwent light-dark experimental design using 167 

different next-generation sequencing platforms (i.e., RNA-seq [22], Nascent-seq [22], 168 

GRO-seq [23], and XR-seq [24]) and named each one after its sequencing protocol (Table 169 

2B). The four datasets have much fewer numbers of time-points compared to the datasets 170 

from the dark-dark design, yet three of the four datasets have technical replicates (Table 171 

2B). More details of the data can be found in the Materials and Methods section. The 172 

oscillatory patterns of known circadian genes are apparent and similar among the various 173 

sequencing technologies (Figure 4A), indicating good data quality.  174 

ARSER, despite its high reproducibility, cannot handle replicates, and previous 175 

studies have shown that data should never be concatenated [17]. Therefore, we focused 176 

on assessing the performance of the other six methods. We first examined the distribution 177 

of the nominal 𝑝-values of the 104 gold-standard circadian genes returned by each 178 

method, visualized as beehive plots in Figure 4B, where LS is significantly underpowered 179 

in the detection of circadian genes compared to the other methods, given any of the 180 

sequencing platforms. This result can be attributed to LS’s inability to effectively detect 181 

circadian rhythms in datasets with low sampling resolution, which is concordant with our 182 

previous results. We observe that JTK_CYCLE, RAIN, eJTK_CYCLE, MetaCycle, and 183 

BIO_CYCLE can withstand the sparse sampling and result in overall good performance. 184 

 To further assess the performance of the methods, we examined the number of 185 

significant genes identified by each method with a false discovery rate (FDR) of 0.05. Of 186 

the 9,481 mutual genes in the four datasets, LS did not identify any significant genes in 187 

any of the datasets. This result aligns with the results from the previous analysis, where 188 
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we observed LS as being underpowered. JTK_CYCLE and MetaCycle detected a 189 

relatively small number of significant genes by RNA-seq and XR-seq. eJTK_CYCLE 190 

identified 2,623 significant genes by RNA-seq, and RAIN and BIO_CYCLE identified 191 

2,262 and 1,970 significant genes by XR-seq, respectively. When comparing across 192 

different sequencing platforms, we observe that the number of detected significant genes 193 

from RNA-seq and XR-seq data is much higher than that of the GRO-seq and Nascent-194 

seq data. This implicates a potential deficiency in detecting gene expression rhythmicity 195 

by measuring nascent transcripts. 196 

 With the identified significant genes, we further carried out a gene set enrichment 197 

analysis using the DAVID web server [25, 26] with the default options. Results from the 198 

KEGG pathway enrichment analysis are shown in Supplementary Table 2. We find that 199 

circadian rhythm is significantly enriched by various algorithms, which are marked with 200 

asterisks in Figure 4B. Specifically, we find that of the five methods that were able to 201 

identify statistically significant genes from RNA-seq data, all have enriched circadian 202 

rhythm pathway. Circadian rhythm is also enriched in the three lists of genes that were 203 

identified by eJTK_CYCLE and RAIN as well as two of the three lists of genes identified 204 

by BIO_CYCLE. 205 

 206 

Performance assessment using empirical proteomic dataset of dark-dark design 207 

To assess performance of the various methods on non-transcriptomic data, we adopted 208 

a proteomic dataset of mouse livers under dark-dark experimental design from Robles et. 209 

al [27]. Refer to the Materials and Methods section for details. Since this dataset consists 210 

of replicates and missing values, only LS, JTK_CYCLE, RAIN, and MetaCycle were 211 

directly applicable. eJTK_CYCLE was not included due to its inefficiency in handling 212 

random missing values across different genes/proteins. We calculated the number of 213 

significant proteins identified by each method using an FDR threshold of 0.05 214 

(Supplementary Figure 1A). LS identified the least number of oscillatory proteins. 215 

JTK_CYCLE and MetaCycle returned a moderate number of significant proteins. RAIN 216 

identified the largest number of oscillatory proteins, 582, exceeding that of other methods 217 

by more than 300. Heatmaps of scaled measurements of oscillatory proteins identified by 218 

at least two methods are shown in Supplementary Figure 1B, where the proteins are 219 
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ordered based on their inferred phases. With the identified oscillatory proteins, we 220 

conducted a gene set enrichment analysis using the DAVID web server. While the results 221 

did not indicate that circadian rhythm was significantly enriched by any of the algorithms, 222 

KEGG metabolic pathways were significantly enriched by all algorithms but LS 223 

(Supplementary Table 3).  224 

 225 

Performance assessment using synthetic datasets 226 

To provide guidelines for method selection, we evaluated the performance of the seven 227 

methods in detecting circadian rhythm by simulations with known ground truths. 228 

Examples of waveforms generated for the simulated datasets are shown in 229 

Supplementary Table 4. We generated six groups of simulated datasets to investigate 230 

how key factors affect the performance, including sampling patterns, replicates, 231 

waveforms, signal-to-noise ratios (SNRs), uneven samplings, and missing values. 232 

Supplementary Table 5 outlines the six groups of simulations and we leave the detailed 233 

setup in the Materials and Methods section. Within each simulation group, we repeated 234 

each assessment with three different sampling frequencies to determine whether 235 

increasing sampling frequency may have an effect on the aforementioned factors. The 236 

three sampling frequencies include 4 h/1 day (six time-points), 3 h/1 day (eight time-237 

points), and 2 h/1 day (twelve time-points) and the results are shown in Figure 5A, 5B, 238 

and 5C, respectively.  239 

Sampling patterns 240 

To determine whether increasing the sampling frequency or lengthening the time-window 241 

is more important for each method, we first evaluated the results under the sampling 242 

pattern of 4 h/1 day versus 8 h/2 days, 3 h/1 day versus 6 h/2 days, and 2 h/1 day versus 243 

4 h/2 days. We did not find strikingly different results within each pair of comparison, 244 

indicating that when the total number of data points are fixed, having a denser sampling 245 

density and enlarging the sampling time-window tend to have similar impact on 246 

performance. However, when we increase the number of data points, the performances 247 

of all methods are improved, which is concordant with existing studies [16, 17]. 248 

BIO_CYCLE generally outperforms the other methods, especially in datasets with lower 249 
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sampling frequency and shorter time-window, while JTK_CYCLE is the most sensitive to 250 

fewer observations. 251 

Replicates 252 

To investigate the trade-off between replicates and sampling frequency, we compared 253 

the results of higher sampling frequency without replicates to those of lower sampling 254 

frequency with replicates. We first compared the dataset sampled at 4 h /1 day X1 to the 255 

dataset sampled at 8 h/1 day X2. LS, JTK_CYCLE, RAIN, eJTK_CYCLE, and MetaCycle 256 

show better performance with replicates, while BIO_CYCLE performs significantly better 257 

on densely sampled datasets without replicates. Similar results are seen when we applied 258 

the methods to the dataset at 3 h/1 day without replicates and the dataset at 6 h/1 day 259 

with replicates. As expected, further increasing the sampling resolution offsets the 260 

existing preferences that the methods have for inclusion of replicates or higher sampling 261 

density.  262 

Waveforms 263 

Supplementary Table 4 outlines the different types of periodic waveforms that we 264 

generated in silico in three broad categories: stationary, non-stationary, and asymmetric 265 

ones. Through our simulations, we find that all of the algorithms perform the best in 266 

detecting non-stationary waveforms. Additionally, all methods, with the exception of 267 

eJTK_CYCLE, perform better on stationary waveforms, compared to asymmetric 268 

waveforms. eJTK_CYCLE and RAIN are the top two methods for identifying asymmetric 269 

waveforms, which are expected due to their design. This is followed by LS, BIO_CYCLE, 270 

MetaCycle, and ARSER. JTK_CYCLE is the least effective in identifying asymmetric 271 

waveforms regardless of sampling frequency. 272 

Signal-to-noise ratios (SNRs) 273 

To test the effects of different noise levels on method performance, we generated various 274 

datasets with signal-to-noise ratios of 3, 2, 1, and 0.5. For all methods, our results suggest 275 

that the larger the SNRs, the higher the accuracy, as expected. LS, MetaCycle, and 276 

BIO_CYCLE are overall the most robust to noises regardless of sampling frequency, 277 

while JTK_CYCLE has the poorest performance given high noise levels. 278 
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Uneven samplings 279 

To understand how well the methods deal with uneven samplings, we focus on the results 280 

of datasets with one or more uneven time-points. Our results suggest that BIO_CYCLE 281 

and LS/MetaCycle outperform the other two compatible methods. Under a sparse 282 

sampling design, RAIN and eJTK_CYCLE suffer significantly from an increasing number 283 

of uneven samplings; a dense sampling design, on the other hand, rescues the 284 

aforementioned methods. 285 

Missing values 286 

We generated datasets that contain 1%, 5%, and 10% missing data, and benchmarked 287 

the four methods that allow missing values. The performances of eJTK_CYCLE and RAIN 288 

degrade with an increasing proportion of missing values, while the performances of LS, 289 

JTK_CYCLE, and MetaCycle are comparably invariant, especially under dense sampling 290 

design. We note that eJTK_CYCLE does not handle missing values efficiently, unless the 291 

same sampling time points are missing across all genes, which reduces to uneven 292 

sampling. When there is not a shared missing pattern across different genes, the dataset 293 

needs to be split into multiple uneven sampling cases, and eJTK_CYCLE needs to be 294 

applied separately, followed by results integration. Note that BIO_CYCLE can be applied 295 

to datasets with missing values only if there are replicates and the missingness only 296 

pertains to part of the replicates. We therefore did not include it in the benchmark.  297 

Computational efficiency 298 

Last but not least, we evaluated the computational efficiency across all benchmarked 299 

methods. For dataset with low sampling resolution, the execution times among the 300 

methods are approximately the same (Supplementary Table 6). However, when analyzing 301 

data of larger sizes, RAIN requires significantly more time compared to the other methods. 302 

The running time for LS, ARSER, and BIO_CYCLE does not change much with varying 303 

sampling frequency. The running time for MetaCycle, which integrates results from LS, 304 

JTK_CYCLE, and ARSER, is calculated as the total running time of the three methods. 305 

 306 

Correlated multiple testing and non-uniform distribution of 𝒑-values under the null  307 

To detect circadian rhythm across thousands of genes, multiple hypothesis testing 308 

corrections are needed [28]. A common FDR threshold of 0.05 is recommended by most 309 
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methods and adjusted 𝑝-values (𝑞-values) are returned by all methods except for RAIN. 310 

In the previous sections, we adopted both Bonferroni and Benjamini-Hochberg 311 

procedures for corrections. Here, we more carefully examine such procedures and point 312 

out a potential drawback resulted from both correlated multiple testing and non-uniform 313 

distributions of the nominal 𝑝 -values under the null. We started with the observed 314 

expression measurements from the Hughes 2009 dataset and generated a “null” dataset 315 

by randomly permuting the time labels for each gene (Figure 6A). Such permutations not 316 

only deplete each gene’s rhythmic signals but also disrupts any gene-gene correlations 317 

as observed in the raw data, which are high between genes in the same pathways (Figure 318 

6B). As such, all genes upon permutations are under the true null and additionally all 319 

gene-level testing is independent. 320 

Figure 6C shows the distributions of nominal 𝑝-values for each method when 321 

applied to the dataset before and after permutation. The “U-shaped” histograms of the 𝑝-322 

values for LS, JTK_CYCLE, MetaCycle, and RAIN using the original data indicate that 323 

there is dependence among the variables in the data. This violates the underlying 324 

assumption of uniformity and raises a red flag for using Bonferroni or FDR for error control 325 

[28]. A few methods have been developed for 𝑝-value adjustment when the tests are 326 

correlated [29-31] and such issue has been specifically pointed out by Hutchison and 327 

Dinner [32] for circadian rhythm detection. 328 

We further applied the methods to the permuted data without gene-gene 329 

correlations. The hypothesis testing by LS, JTK_CYCLE, RAIN, and MetaCycle are still 330 

overly conservative, while the testing procedures for ARSER and BIO_CYCLE are biased 331 

with an overabundance of 𝑝 -values around 0.3 and 0.1, respectively. eJTK_CYCLE 332 

empirically calculates the null distribution of the 𝑝 -values via permutations and its 333 

enhanced version, booteJTK, speeds up this calculation by approximating the null 334 

distribution of the Kendall’s tau using a Gamma distribution [33]. This indeed leads to a 335 

𝑝-value distribution closest to the null. However, neither eJTK_CYCLE nor booteJTK 336 

handles missing values efficiently, as explained previously. As a summary, there is still 337 

room for method development to yield 𝑝 -values that better match the underlying 338 

assumption of a uniformly distributed 𝑝-values under the null. 339 

 340 
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DISCUSSION 341 

Here, we propose a benchmark framework to systematically evaluate the performance of 342 

seven circadian rhythm detection methods, using high-throughput omics data. The 343 

empirical datasets that we adopted in this paper were from microarray [18-20] and RNA-344 

seq [22] to measure gene expression, Nascent-seq [22] and GRO-seq [23] to measure 345 

nascent RNA, and XR-seq [24] to measure transcription-coupled repair. While these 346 

omics data were generated from different platforms, they focus on directly or indirectly 347 

profiling transcription. It has been well studied that biological rhythm goes beyond the 348 

transcriptomic transcript-level oscillations [34]. For example, post-translational protein 349 

acetylation has been linked to circadian rhythm via mass spectrometry [35, 36]. Moreover, 350 

it has been shown that a large number of metabolites and proteins exhibit circadian 351 

oscillations [27, 37, 38]. The methods and the evaluation procedures are not limited to 352 

transcriptomic studies, but can also be applied to acetylomic, metabolomic, and proteomic 353 

experiments. 354 

 Given the assessment results from both simulations and empirical dataset anaylsis, 355 

as well as literature review of the seven methods, we have summarized the strengths and 356 

weaknesses of each method in Table 3. In general, LS, RAIN, eJTK_CYCLE, and 357 

MetaCycle are more versatile in that they can be applied to datasets with replicates, 358 

uneven samplings, or missing values. eJTK_CYCLE and BIO_CYCLE generally 359 

outperform the other methods under most situations except for handling missing values. 360 

On the other hand, JTK is sensitive to high noise levels and low sampling resolutions, 361 

and LS cannot detect any significant genes when sampling resolution is lower than 2 h/2 362 

days with an FDR threshold of 0.05. The best detection algorithm depends on 363 

experimental designs and characteristics of the input data. Therefore, we have created 364 

two decision trees, one for low sampling resolution and the other for high sampling 365 

resolution, that outline the recommended method(s) under different scenarios 366 

(Supplementary Figure 2). 367 

 Recent advances of high-throughput technologies enable circadian rhythm 368 

detection on the genome-wide scale. As with all genomic data, the multi-time-point omics 369 

data for circadian rhythm detection bear both technical and biological variability, which 370 

can bias the analysis if not properly accounted. Data normalization and batch effect 371 
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correction are crucial to remove technical biases and artifacts [39]. Cross-subject 372 

variability in rhythmic profiles, especially for human subjects, is a non-negligible source 373 

of genetic variation that needs to be adjusted [14]. This is especially important in the case-374 

control setting where multiple subjects are involved. While we did not particularly focus 375 

on differential analysis since it is outside the scope of this paper, a few methods, including 376 

LimoRhyde [40] and DODR [12] have been made available for differential rhythmicity 377 

analysis under different conditions. 378 

 Increasingly more circadian omics data are being made available through existing 379 

studies and databases [34, 41]. We showed, from our empirical studies, that the rhythmic 380 

signals can be well recapitulated across different studies and/or different platforms 381 

(Figure 1, Figure 4A). Meta-analysis and multi-omics data integration remain an open-382 

ended question in circadian rhythm detection [42]. In addition, transfer learning has been 383 

applied to multiple genomic research domains in genomics [43] – to borrow information 384 

and to transfer knowledge from existing data deposited in public repositories remain one 385 

of the future directions. Similarly, across different methods, an ensemble framework, as 386 

implemented by MetaCycle, can potentially boost performance. However, as we have 387 

pointed out earlier, the instability issue needs to be addressed, especially when multiple 388 

drastically distinct results are to be integrated. 389 

 To our best knowledge, all existing studies for circadian rhythm detection resort to 390 

bulk-tissue omics data, which characterize an averaged profile across different cell types 391 

in a tissue. The inherent heterogeneity can bias the analysis with reduced power and/or 392 

inflated FDR. Single-cell sequencing circumvents the averaging artifacts associated with 393 

traditional bulk population data and has seen rapid technological developments over the 394 

past few years. To assess the feasibility of single-cell circadian rhythm detection, we in 395 

silico generated single-cell RNA sequencing profiles by downsampling bulk RNA-seq 396 

read counts. Gold-standard circadian and noncircadian genes were used to calculate the 397 

associated AUC values (Supplementary Table 7). All methods suffer from low sequencing 398 

depth – a characteristic of the single-cell data. With the decreasing cost and the 399 

increasing popularity of single-cell omics techniques, to profile circadian rhythmicity at the 400 

cellular level and to disentangle within tissue heterogeneity with regard to biological 401 

rhythm can be of great impact. 402 
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 403 

MATERIALS AND METHODS 404 

Empirical transcriptomic datasets 405 

Three datasets under the dark-dark experimental design including Hughes 2009 [18], 406 

Hughes 2012 [19], and Zhang 2014 [20] were downloaded from GEO, and all used 407 

microarrays to profile gene expressions (Table 2A). Additionally, we obtained four 408 

datasets under the light-dark experimental design from the different sequencing platforms, 409 

including Nascent-sequencing (Nascent-seq) [22], RNA-sequencing (RNA-seq) [22], 410 

Global Run-On sequencing (GRO-seq) [23], and eXcision Repair-sequencing (XR-seq) 411 

[24] (Table 2B). Nascent-seq sequence transcribed RNAs, obtained from the nuclei 412 

without formation of the 3’ end [44]. GRO-seq measures nascent RNAs by mapping, 413 

characterizing, and evaluating transcriptionally engaged polymerase [45]. GRO-seq and 414 

Nascent-seq differ from traditional RNA-seq, in which the reads map to predominantly 415 

introns, while RNA-seq mainly assays exons [44]. XR-seq profiles DNA excision repair 416 

on the genome-wide scale with single-nucleotide resolution [46]. Here, we focus on XR-417 

seq data from the transcribed strand only – it has been shown that the transcription-418 

coupled repair from the transcribed strand is positively correlated with expression [47].    419 

For quality control, we removed genes that had constant gene expression 420 

measurements in all datasets and further removed genes with more than half zero gene 421 

expression values in the light-dark datasets. In cases where multiple probes got mapped 422 

to the same RefSeq loci, we averaged the gene expression of the probes using the limma 423 

package [48], available in Bioconductor.  For data normalization, robust multi-array 424 

average (RMA) [49] and genechip RMA (GC-RMA) [50] were used to normalize the array 425 

data; transcript per million (TPM) and reads per kilobase per million reads (RPKM) [51] 426 

were used to normalize the transcriptomic sequencing data. We scaled the normalized 427 

data within each gene to make them compatible for visualization only, as shown in Figure 428 

1 and Figure 4A. 429 

 430 

Empirical proteomic dataset 431 

A proteomic dataset of Mus musculus liver tissues from Robles et. al [27] was adopted to 432 

detect oscillatory proteins. Mouse liver samples were collected from a total of 64 mice 433 
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that were released into constant darkness for one day after being entrained to a 12-12 434 

hour light-dark schedule for 10 days. Four mice were sacrificed every 3 hours for 2 days. 435 

Then, in vivo Stable Isotope Labeling by Amino acids in Cell culture (SILAC) [52, 53] in 436 

combination with mass spectrometry was performed to profile the proteome. For each 437 

time point, equal amount of protein liver extracts from the four mice were mixed together 438 

with equal amount of protein lysates, collected in anti-phase, from the liver samples of 439 

two SILAC mice. The pooled protein extracts were measured with Orbitrap mass 440 

spectrometer. The protein abundance was calculated by taking the ratio of the signal for 441 

the mice and the signal for the heavy SILAC mix. After assessing quantification values, a 442 

total of 3,132 proteins remained for downstream circadian rhythm analysis.  443 

 444 

Downsampled RNA-seq dataset 445 

We generated several downsampled RNA-seq datasets from the original RNA-seq 446 

dataset under the light-dark design to assess the robustness of the various methods to 447 

low sequencing depths. We obtained the raw sequencing data from GEO, performed read 448 

alignment to the mouse reference genome (mm10) using STAR [54], carried out quality 449 

control procedures on the aligned reads, and obtained integer-valued read counts using 450 

featureCounts [55]. We then generated downsampled RNA-seq data by multinomial 451 

sampling with index 5K, 10K, 50K, 100K, and 500K, and gene-specific probability 452 

parameters calculated from the raw data. RPKM was used to normalize the downsampled 453 

RNA-seq read counts, followed by circadian rhythm detection. 454 

 455 

Evaluation metrics 456 

To evaluate the performance of the benchmarked methods, we adopted a list of 104 457 

circadian [10] and 113 non-circadian genes [21] in mouse liver as positive and negative 458 

controls, respectively. See Supplementary Table 1 for a full list of these gold-standard 459 

genes. With these gold-standard genes, we calculated metrics including the precision and 460 

recall rates given a 𝑝-value or 𝑞-value significance threshold (Figure 2A). We further 461 

calculated the AUC values of the ROC curves, as joint measures of sensitivity and 462 

specificity (Figure 2B). 463 
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To assess the reproducibility of each method, we compared the results from the 464 

four dark-dark datasets by calculating the number of overlapping genes, as well as the 465 

Jaccard and Sorensen index as metrics for similarity (Figure 3). Venn diagrams are used 466 

to display the number of overlapping cycling genes identified across different datasets by 467 

each method. The Jaccard index measures the pairwise similarities of the significant 468 

genes detected between each pair of datasets. Let  𝐴! and 𝐴" be the set of significant 469 

genes from dataset 𝑖 and 𝑗. The Jaccard similarity index is defined as  470 

𝐽(𝐴! , 𝐴"* = 	
|$!∩$"|
|$!∪$"|

.                                                                    471 

The Sorensen Index is used to characterize similarity across all datasets [56]:  472 

𝑆(𝐴! , 𝐴" , 𝐴' , … * = 	
(

()*
0
∑ |$!∩$"|!#" )∑ |$!∩$"∩$$|!#"#$ ,∑ |$!∩$"∩$$∩$%|)⋯!#"#$#%

∑ |$!|!
1                                                   473 

where 𝑇 is the number of sets compared. Larger number of overlapping genes and larger 474 

Jaccard/Sorensen index values indicate higher reproducibility of the methods. 475 

 476 

Simulation setup 477 

Each simulated dataset consists of 6,000 circadian and 6,000 non-circadian gene profiles. 478 

Stationary circadian profiles with a period of 24 hours are used in each simulation group, 479 

as outlined below. Note that when running the methods, we set the period range from 20 480 

to 28 h for all methods except for eJTK_CYCLE and JTK_CYCLE, which either has a 481 

fixed period of 24 h or adjusts the period on the fly. The amplitude of the waveforms is 482 

sampled from a uniform distribution between 1 and 6; the phase shift is sampled from a 483 

uniform distribution between 0 and 24 h; and the noise term is sampled from a standard 484 

normal distribution. Flat waveforms are used to generate non-circadian profiles in all 485 

simulation groups except for testing against non-stationary waveforms where linear lines 486 

are used. 487 

We first aimed to investigate whether higher sampling frequency or longer 488 

sampling time-window is more beneficial for each method. In this simulation group, we 489 

generated two datasets with different sampling frequencies and sampling time-windows. 490 

With six time-points, we generated one dataset at 4 h/1 day and another at 8 h/2 days; 491 

with eight time-points, we generated one dataset at 3 h/1 day and another at 6 h/2 days; 492 

with 12 time-points, we generated one dataset at 2 h/1 day and another at 4 h/2 days.  493 
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Next, we assessed whether the inclusion of replicates can offset the effect of low 494 

sampling frequency in methods’ ability of detecting oscillations. Replicates are defined as 495 

multiple measurements taken at the same time-point. Specifically, we generated two 496 

datasets consisting of the same number of observations, with or without replicates: one 497 

at 4 h/1 day X1 and the other at 8 h/1 day X2. The sampling design of the other two pairs 498 

of datasets are 3 h/1 day X1 v.s. 6 h/1 day X2, and 2 h/1 day X1 v.s. 4 h/1 day X2.  499 

Since biological rhythms can take on various waveforms, we generated three types 500 

of waveforms via simulation: stationary, non-stationary, and asymmetric curves. 501 

Supplementary Table 4 includes models that we adopted in silico to generate the 502 

corresponding waveforms. Specifically, the stationary waveforms include cosine, cosine 503 

2, and cosine peak curves; the non-stationary waveforms include cosine damp, trend 504 

exponential, and trend linear curves; the asymmetric subgroup consists of only the saw-505 

tooth waveform. We assessed the performance of the methods in identifying each 506 

category of the circadian waveforms. 507 

The next three groups of simulations aimed to determine which methods are more 508 

robust to different levels of signal-to-noise ratios, uneven samplings, and missing values. 509 

Specifically, we generated four datasets with SNRs of 0.5, 1, 2, and 3. Signal-to-noise 510 

ratio is defined by taking the ratio of the empirical variance of cosine function and the 511 

variance of the noise, the latter of which is fixed at one. Uneven samplings are defined 512 

as designs whose time-points are not equally spaced. To investigate the effect of uneven 513 

samplings on performance, we generated datasets with one, two, or four uneven 514 

samplings. With six time-points, datasets with four uneven samplings cannot be 515 

generated as it would only have two time-points. For missing data, we generated three 516 

levels of missing data (1%, 5%, and 10%) at three fixed, randomly selected time-points. 517 

Lastly, we generated three datasets with sampling patterns of 1 h/2 days, 2 h/2 518 

days, and 4 h/2 days to compute the execution times for each method. We seek to identify 519 

the differences in computational efficiency among the methods and to explore the effect 520 

of increasing sampling resolution on the execution time. Each dataset consists of a total 521 

of 6,000 genes. All execution times are  reported by running on a Macbook Pro (15-inch, 522 

2019) with 2.3 GHz 8-Core Intel Core i9 and 16 GB memory.  523 

 524 
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DATA AND SOFTWARE AVAILABILITY 525 

MetaCycle is an open-source R package available at 526 

https://github.com/gangwug/MetaCycle and is also used for individual analysis for LS, 527 

JTK_CYCLE, and ARSER. RAIN is a Bioconductor R package available at 528 

https://bioconductor.org/packages/rain/. eJTK_CYCLE was downloaded from 529 

https://github.com/alanlhutchison/empirical-JTK_CYCLE-with-asymmetry. BIO_CYCLE 530 

was downloaded from http://circadiomics.igb.uci.edu/BIO_CYCLE. All empirical datasets 531 

were downloaded from the NCBI Gene Expression Omnibus 532 

(https://www.ncbi.nlm.nih.gov/geo/). The accession numbers for dark-dark datasets are 533 

GSE11923, GSE30411, and GSE54652, respectively. The accession numbers for light-534 

dark datasets are GSE59486, GSE36872, GSE36871 and GSE109938, respectively. The 535 

proteomic dataset was downloaded from the BioStudies database with accession number 536 

S-EPMC3879213. 537 
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 678 

FIGURE & TABLE LEGENDS 679 

Figure 1. Examples of circadian and non-circadian benchmark gene expressions 680 

among three datasets with dark-dark experimental design. Scaled gene expressions 681 

from selected (A) circadian genes including Clock, Cry1, Npas2, and Per1 and (B) non-682 

circadian genes including Utp6, Mtf1, Cln3, Abcd4. 683 

 684 

Figure 2. Evaluation of seven methods by precision, recall rates and ROC curves. 685 

(A) A 𝑝-value threshold of 0.000005 (Bonferroni threshold), 0.00005, 0.0005, and a 𝑞-686 

value threshold of 0.05 (FDR threshold) are adopted for each of the seven methods 687 

applied to the four dark-dark empirical datasets. A more relaxed threshold results in a 688 

higher recall rate, with FDR being the most sensitive, yet this also leads to a higher 689 

number of false positives with a lower precision rate. (B) ROC curves and AUC values 690 

using gold-standard circadian and non-circadian genes. Each method is evaluated across 691 

four dark-dark empirical datasets. Sensitivity and specificity are calculated using the 692 

nominal 𝑝-values by each method with varying threshold. BIO_CYCLE returns the highest 693 

AUC. 694 

 695 

Figure 3. Evaluation of method reproducibility. (A) Venn diagrams display the number 696 

of cyclic genes that are significant by each method among the four dark-dark datasets. 697 

(B) Jaccard index and the Sorensen index are used as metrics for reproducibility for each 698 

method across the four datasets with the same experimental design. 699 

 700 

Figure 4. Circadian rhythm detection under light-dark experimental design by GRO-701 

seq, Nascent-seq, RNA-seq, and XR-seq. (A) Gene-specific measurements of nascent 702 
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RNA, RNA, and transcription-coupled repair of four circadian benchmark genes, Clock, 703 

Npas2, Cry1, and Per1 by four different sequencing platforms. The solid and dotted lines 704 

are used for the first and second replicates respectively. (B) Beehive plots of negative log 705 

𝑝-values of base 10 of circadian genes as positive controls. The number of significant 706 

genes detected by each method with an FDR threshold of 0.05 are shown in parenthesis. 707 

The asterisks denote significant GO enrichments of circadian rhythm pathway. The 708 

nominal 𝑝-values by JTK_CYCLE, MetaCycle, and BIO_CYCLE are the most significant, 709 

while LS and RAIN tend to be underpowered. ARS is not included in the analysis because 710 

it cannot be applied to datasets with replicates. 711 

 712 

Figure 5. Performance assessment via simulation studies. Seven circadian rhythm 713 

detection methods are evaluated under different experimental designs to explore how 714 

sampling patterns, replicates, waveforms, signal-to-noise ratios (SNRs), uneven 715 

samplings, and missing values affect performance. Simulations under each design are 716 

carried out with different sampling frequencies: (A) 4 h/1 day, (B) 3 h/1 day, and (C) 2 h/1 717 

day. AUC values calculated from ground truths are used as metrics. 718 

 719 

Figure 6. Existing methods return non-uniformly distributed 𝒑-values under the null, 720 

partially due to non-independent testing due to gene-gene correlations.  (A) Gene 721 

expression values for the benchmark circadian gene Cry1 before and after random 722 

permutations of the time labels. (B) Heatmaps of pairwise correlation coefficients among 723 

the top 200 highly variable genes from the Hughes 2009 dataset. The top illustrates the 724 

gene-gene correlation coefficients calculated from raw data input, and the bottom shows 725 

the gene-gene correlations after permutation. (C) The distributions of nominal 𝑝-values 726 

for each method when applied to the dataset before and after permutation. Gene-gene 727 

correlations, which are accounted for by eJTK_CYCLE, partially lead to the systematic 728 

deviations from the null distributions. The hypothesis testing by LS, JTK_CYCLE, RAIN, 729 

and MetaCycle are overly conservative, while ARSER’s and BIO_CYCLE’s testing 730 

procedures are biased with an overabundance of 𝑝 -values around 0.3 and 0.1, 731 

respectively, under the null. 732 

 733 
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Table 1. Summary of seven existing methods for circadian rhythm detection. a 734 

BIO_CYCLE can be applied to datasets with missing values only if there are replicates 735 

and the missingness only pertains to part of the replicates. 736 

 737 

Table 2. High-throughput mouse liver datasets adopted for circadian rhythm 738 

detection. (A) Dark-dark experimental design. (B) Light-dark experimental design. 739 

 740 

Table 3. Pros and cons of circadian rhythm detection methods.  741 

 742 

SUPPLEMENTARY FIGURE & TABLE LEGENDS 743 

Supplementary Table 1. Circadian and non-circadian genes in Mus muculus liver 744 

as gold standard. The 104 circadian gene list is extracted from Supplementary Table 4 745 

in Wu et al. Wu G, Zhu J, Yu J, Zhou L, Huang JZ and Zhang Z [10] and the 113 non-746 

circadian gene list is obtained from Supplementary Table 2 in Wu et al. Wu G, Zhu J, He 747 

F, Wang W, Hu S and Yu J [21].  748 

 749 

Supplementary Table 2. Pathway enrichment analysis of significantly cyclic genes 750 

from the light-dark datasets. Functional annotations (KEGG pathway mapping) of the 751 

significant genes (𝑞-values ≤ 0.05) are carried out using the the DAVID Bioinformatics 752 

Resources (https://david.ncifcrf.gov/). The list only contains significantly enriched 753 

pathways with a 0.05 cutoff of the 𝑝-values adjusted by Benjamini Hochberg. 754 

 755 

Supplementary Table 3. Pathway enrichment analysis of significantly cyclic 756 

proteins. Functional annotations (KEGG pathway mapping) of the significant proteins (𝑞-757 

values ≤ 0.05) are carried out using the the DAVID Bioinformatics Resources 758 

(https://david.ncifcrf.gov/). The list only contains significantly enriched pathways with a 759 

0.05 cutoff of the 𝑝-values adjusted by Benjamini Hochberg. KEGG metabolic pathways 760 

were enriched by all three methods.  761 

 762 

Supplementary Table 4. In silico generated periodic v.s. non-periodic gene profiles. 763 

Three types of periodic waveforms are included: stationary, non-stationary, and 764 
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asymmetric. The stationary and non-stationary subgroups consist of three forms of cosine 765 

curves. The asymmetric subgroup consists of a saw-tooth waveform. Flat or linear lines 766 

are adopted to generate non-periodic waveforms. The waveforms shown are constructed 767 

without noise. ‘Amp’, ‘pha’, and ‘per’ represent amplitude, phase and period, respectively. 768 

 769 

Supplementary Table 5. Details of simulation setup and parameters used to in silico 770 

generate periodic and non-periodic profiles. Each simulation run consists of 6,000 771 

periodic and 6,000 non-periodic gene profiles. All simulated waveforms have a period 772 

length of 24, a phase shift that is uniformly distributed between 0 and 24, and a noise 773 

term with standard normal distribution. The amplitude is uniformly distributed between 1 774 

and 6 for all groups except when testing for different signal-to-noise ratios (SNRs), which 775 

we define as the ratios of the empirical variances of the cosine function and the variances 776 

of the noise. Non-periodic profiles are sampled from a flat/linear function. “X 1” indicates 777 

no replicate and “X 2” indicates two replicates. 778 

 779 

Supplementary Table 6. Evaluation of computational efficiency with different 780 

sampling rates. Each method is run on a dataset with a total of 6,000 genes. All 781 

programs are run on a Macbook Pro (15-inch, 2019) with 2.3 GHz 8-Core Intel Core i9 782 

and 16 GB memory. Running time for MetaCycle is the sum of the runing time for LS, 783 

ARSER, and JTK_CYCLE. Running time for BIO_CYCLE does not include the time used 784 

to fit the deep neural network. 785 

 786 

Supplementary Table 7. Performance assessment of downsampled RNA-seq data. 787 

AUC values of downsampled RNA-seq datasets with varying sequencing depths were 788 

calculated. Existing methods suffer from low sequencing depths. The performance of 789 

RAIN exceeds that of all other methods in all sequencing depths with an exception at 5K, 790 

due to its large number of significant genes detected in general. BIO_CYCLE consistently 791 

ranks the lowest at all but the highest sequencing depth. The performances of LS, 792 

JTK_CYCLE, eJTK_CYCLE, and MetaCycle are comparable. 793 

 794 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2020. ; https://doi.org/10.1101/2020.04.04.024729doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.04.024729
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Figure 1. Circadian rhythm detection of Mus musculus liver 795 

protemoic dataset. (A) Bar plot of the number of significant proteins detected by each 796 

method using an FDR threshold of 0.05. Only methods that are able to handle both 797 

replicates and missing values were applied and evaluated. (B) Heatmap of scaled 798 

measurements of oscillatory proteins identified by at least two methods. Proteins (rows) 799 

are ordered based on their inferred phases. 800 

 801 

Supplementary Figure 2. Decision tree as user guidance on method selection. The 802 

decision tree has decision rules for sampling resolutions, uneven samplings, replicates, 803 

and missing values.  804 
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Package
Method

Key Words
Method 

Type
Reference Availability Language Replicates

Missing 
Values 

Uneven 
Sampling 

Lomb-Scargle
(LS)  

Periodogram Parametric Bioinformatics 
(2006)

https://www.iiap.res.in/astrostat/tuts/Lomb-Sc
argle.html R

ARSER
(ARS)

Harmonic 
Regression Parametric Bioinformatics 

(2010) http://bioinformatics.cau.edu.cn/ARSER Python &  R

JTK_CYCLE
(JTK)

Kendall’s 
Tau

Non-
parametric

J Biol Rhythms 
(2010)

https://openwetware.org/wiki/HughesLab:JTK
_Cycle R

RAIN  
Asymmetric 
waveforms

Non-
parametric

J Biol Rhythms 
(2014) http://bioconductor.org/packages/rain R

eJTK_CYCLE
(eJTK) 

Empirical 
p-values

Non-
parametric

PLOS Comp. Bio.
(2015)

https://github.com/alanlhutchison/empirical-J
TK_CYCLE-with-asymmetry Python

MetaCycle
(MC)

Integration Parametric Bioinformatics
(2016) https://cran.r-project.org/package=MetaCycle R

BIO_CYCLE  
(BC)

Deep Neural 
Network Parametric Bioinformatics

(2016) http://circadiomics.igb.uci.edu R /

Table 1

a
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Design Name Reference
Accession 
Number

Tissue 
Type

Sequencing 
Platform

Number of Time 
Points & 

Replicates

Number of 
Genes

Time Points

(A) Dark-Dark

Hughes et al.
PLOS Genetics 

(2009)
GSE11923 Liver Microarray 48 x 1 13,029 CT18, 19, 20, …, 65

Hughes et al. 
(downsampled)

PLOS Genetics
(2009)

GSE11923 Liver Microarray 24 x 1 12,506 CT18, 20, 22, …, 64

Hughes et al.
PLOS Genetics 

(2012)
GSE30411 Liver Microarray 24 x 1 14,413 CT0, 2, 4, …, 46

Zhang et al.
PNAS
(2014)

GSE54652 Liver Microarray 24 x 1 20,307 CT18, 20, 22, …, 64

(B) Light-Dark

Fang et al.
Cell

(2014)
GSE59486 Liver GRO-seq 8 x 1 17,463 ZT1, 4, 7, 10, 13, 16, 19, 22

Menet et al.
eLIFE
(2012)

GSE36872 Liver Nascent-seq 6 x 2 17,917 ZT0, 4, 8, 12, 16, 20

Menet et al.
eLIFE
(2012)

GSE36871 Liver RNA-seq 6 x 2 17,222 ZT2, 6, 10, 14, 18, 22

Yang et al.
PNAS
(2018)

GSE109938 Liver XR-seq (TS) 6 x 2 17,652 ZT0, 4, 8, 12, 16, 20

Table 2
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Table 3 

Methods Pros Cons 
LS x Effective in handling missing values  

x Not restricted by input data structure (i.e. can be applied to 
datasets with replicates, uneven samplings, or missing values) 

x Rapid degradation in detectability when applied to datasets with 
low sampling resolution 

x U-shaped p-values distribution  
x Sensitive to outliers 

ARSER x High reproducibility x Cannot handle replicates, uneven samplings, or missing values  
JTK_CYCLE  x High precision 

x Robust to outliers 
x Incapable of detecting asymmetric waveforms 
x U-shaped p-values distribution  
x Sensitive to high level of noise 
x High false negative rates 
x Low reproducibility  

RAIN x High recall  
x Effective in detecting asymmetric waveforms 
x High reproducibility 
x Not restricted by input data structure  

x High false positive rates 
x U-shaped p-values distribution  
x Computationally intensive with increasing sampling resolution  

eJTK_CYCLE x Uniform distribution of nominal p-values 
x Most effective in detecting asymmetric waveforms 

x Unable to test different periods simultaneously 
x Inefficient in handling missing values 
x Sensitive to high level of uneven samplings 

MetaCycle x High recall  
x Not restricted by input data structure 
x Offset the disadvantages of one method with the other two 

among LS, ARSER and JTK_CYCLE 
x Directly return calling results from three perspective methods 

and perform ensemble  

x P-values generated with Fisher’s integration require 
independence assumption 

BIO_CYCLE  x Most effective in controlling for false positive rates 
x Most robust to data with high noise, uneven samplings, and 

low sampling resolutions. 
x High precision 
x High computational efficiency with pre-trained model 

x Require extensive time to train the DNN model 
x Handle missing values only if data have replicates and the 

missingness only pertains to part of the replicates. 
x Low reproducibility  
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