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Abstract 

Humans automatically and unintentionally detect and remember regularities in the visual environment—a 

type of learning termed visual statistical learning (VSL). Many aspects of learning from reward resemble 

statistical learning in some respects, yet whether and how reward learning impacts VSL is largely 

unexamined. In two studies, we investigated the impact of reward on VSL and examined the neural basis 

of this interaction using fMRI. Subjects completed a risky choice task, in which they learned the values 

(high or low) of fractal images through a trial-and-error binary-choice task. Unbeknownst to subjects, we 

paired images so that some images always predicted other images on the following trial. This led to four 

types of pairings (High-High, High-Low, Low-High, and Low-Low). In a subsequent recognition task and 

reward memory task, we asked them to choose the more familiar of two pairs (a target and a foil) and to 

recall the value of images (high or low). We found better recognition when the first image of a pair was a 

high-value image, with High-High pairs showing the highest recognition rate. To investigate the neural 

basis of this effect, we measured brain responses to visual images that were associated with both varying 

levels of reward and sequential contingencies with event-related fMRI. Subjects completed the same risky 

choice task and then passively viewed a stream of the images with pairwise relationships intact. Brain 

responses to images during the risky choice task were affected by both value and statistical contingencies. 

When we compared responses between the first image of a pair that was high-value and the first image of 

a pair that was low-value, we found greater activation in regions that included inferior frontal gyrus, left 

anterior cingulate gyrus, middle temporal gyrus, superior temporal gyrus, hippocampus, orbitofrontal 

cortex, caudate, nucleus accumbens, hippocampus, and lateral occipital cortex. These findings are not 

driven solely by the value difference, but rather the interaction between statistically structured 

information and reward – the same value contrast yielded no regions for either second-image contrasts or 

for singletons. Our results suggest that the first images of pairs that were associated with high-value, in 

comparison to those associated with low-value, were involved in greater attentional engagement, 

potentially enabling better memory for statistically learned pairs and reward information. Additionally, 

we found neural evidence that when an image contains both statistical structure and reward information, 

the reward learning may be predicted by the type of the statistical structure it is associated with. We 

conclude that reward contingencies affect VSL, with high-value associated with stronger behavioral and 

neural signatures of such learning.  
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INTRODUCTION 

Reward motivation impacts human cognition in many contexts (Haber & Knutson, 2010). 

Value is linked to stimuli that are critical for individuals’ survival (e.g., primary reward; water or 

food), but learned associations between reward and neutral stimuli can also shape one’s behavior 

(e.g., secondary reward; money; Daw & Doya, 2006). There is vast literature demonstrating how 

secondary cues, especially monetary reward, guide an individual’s cognitive processes such as 

memory, attention, and decision making. Higher associated value facilitates stimulus-reward 

memory association (Adcock et al., 2006), and features and objects that are associated with 

higher value capture more attention than those with low- or no rewards (e.g., Anderson, 2013; 

Theeuwes & Belopolsky, 2012). Individuals’ decision-making tends to optimize action so that 

rewards are maximized and losses minimized (Tversky & Kahneman, 1979). However, the 

relationship between learning and reward is typically studied in the context of learning rewarding 

associations, specifically, or memory of individual stimuli that are explicitly or implicitly 

associated to reward (Miendlarzewska et al., 2016). In the present study, we examine how 

learning explicitly about rewarding associations modulates the undirected and uncued learning of 

visual statistical associations.  

Visual statistical learning (VSL) is a type of learning that reflects automatic and 

unsupervised extraction of statistical contingencies by the visual system (Fiser & Aslin, 2001, 

2002). Prior studies suggest that humans may, in part, accomplish efficient processing of 

complex visual environments by learning and exploiting knowledge of visual regularities (Fiser 

& Aslin, 2001, 2002; Turk-Browne et al., 2005). In two early VSL studies, Fiser and Aslin 

(2001, 2002) found that when particular visual items co-occurred with others, subsequent 

recognition rates of those regularities were above chance, even though those regularities were 
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task-irrelevant, no instructions to remember the associations were given, and the associations 

were not cued.  A typical VSL paradigm takes place in the context of passive viewing or simple 

cover tasks. How VSL occurs in the context of different task demands and contexts, as it must 

occur in everyday life, is underexplored. Since intentional seeking and learning about rewards is 

so foundational to behavior, it is natural to ask how learning about reward might impact 

incidental learning of regularities.  

What mechanisms might drive impacts of reward on VSL? Given its known relationship 

with both reward learning and VSL, selective attention might play a key role. Selective attention 

is drawn to stimuli associated with high reward compared to low or no reward (e.g.,  Anderson et 

al., 2013; Theeuwes & Belopolsky, 2012) and is also required to process statistically structured 

information (Baker et al., 2004; Turk-Browne et al., 2005). Baker et al. (2004) found that visual 

regularities were not learned in the absence of selective attention. Turk-Browne et al. (2005) 

found the learning of regularities occurred only with an attended color stream when participants 

were exposed to an interleaved stream that composed of attended- and unattended-color (but see 

Musz et al., 2015). Selective attention may play a critical role in learning visual regularities, with 

the degree of selective attention modulating the strength of learning.  

Brain imaging studies provide further evidence of the possible role of selective attention 

in VSL. The lateral occipital cortex (LOC) is known for its role in object perception (Grill-

Spector et al., 2001; James et al., 2003), but previous studies also showed greater LOC activation 

to attended relative to distractor or ignored objects (Vuilleumier et al., 2005; Woolgar et al., 

2015). Considering prior evidence that attention modulates response patterns in higher visual 

areas (e.g., Murray & Wojciulik, 2004), LOC may be related to attentional processing during 

object perception (see also Stokes et al., 2009). In previous studies, greater LOC activity was 
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shown when exposed to visual regularity (Turk-Browne et al., 2009) and rewarded items 

(Anderson, 2017). As these findings imply that reward has an influence on the allocation of 

attention (Theeuwes & Belopolsky, 2012), and that VSL is enhanced by increased selective 

attention (Turk-Browne et al., 2005), we predict that reward might impact VSL via enhanced 

attentional processing of higher-reward items in comparison to low-reward items.  

We further predict that the effect of reward might be especially potent when the high 

reward item is in the first position in a temporally presented pair sequence. In VSL, the position 

of an item in a stereotyped sequence seems to determine the neural response profile to that item. 

In one of the earliest neural studies of VSL, researchers used face and scene stimuli to 

investigate implicit perceptual anticipation in the hippocampus (Turk-Browne et al., 2010). They 

examined anticipatory responses in the hippocampus while participants made a categorical 

response to face or a scene pictures that appeared one at a time. Unbeknownst to participants, 

each run was constructed from four pairs of images and four single random images. The right 

anterior hippocampus and medial temporal lobe showed enhanced responses when the first 

picture of a pair appeared (i.e. predicting the stimuli) as compared to novel singletons, which 

suggest that during the acquisition of statistical regularities, the first item of the structured 

information plays its role in predicting and evaluating subsequent items. Therefore, when reward 

is embedded in VSL sequences, reward may evoke different responses according to the position 

of the structured information it is associated with. We also predicted that higher reward that is 

specifically associated with early items in a temporal sequence would aid visual statistical 

learning. If attentional processing is involved in this interaction, greater activations may be found 

in brain regions in frontal and parietal areas, such as inferior frontal gyrus, precentral gyrus, and 

anterior cingulate gyrus, that are known for their roles in attentional capture (Beck & Vickery, 
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2019; Corbetta & Shulman, 2002; Fockert et al., 2004), in addition to the LOC. To clearly see 

the interaction between varying rewards (i.e., high vs. low) and the position of an item in a 

structured sequence, we used pairs presented in temporal succession to instantiate statistical 

regularities, but pairs were constructed with different reward variations (i.e., High-High, High-

Low, Low-High, and Low-Low).  

To our knowledge, Rogers et al. (2016) is the only work to examine the relationship 

between monetary reward and VSL directly. Despite finding evidence of visual statistical 

learning, the amount of reward associated with stimuli and sequences did not affect the strength 

of VSL in their studies, suggesting that reward processing and VSL were operating 

independently. However, the manipulation of reward, in that case, may have been too subtle for 

participants to process reward contingencies in a VSL paradigm. Therefore, to motivate learning 

and enhance participants’ performance, we employed a risky choice task (e.g., Clark et al., 

2009), which is more likely to lead to in-depth processing of reward information. With this 

manipulation, we expected that participants would be more engaged in the task, and enhanced 

learning would be observed for both reward and statistical information. 

In the present study, we examined how reward modulates VSL with behavioral and 

neural approaches. We asked how reward variations affect the learning of statistical regularities 

and probed the underlying neural mechanisms of our finding that reward associations do, in fact, 

shape VSL. In Experiment 1, we found higher recognition rates for pairs when the first image of 

a pair had a high-value, which suggested the high value of the first item in a pair enhances 

learning (or low-reward impairs learning). Neural evidence from Experiment 2 supported this 

finding such that when the high reward was associated with the first item, as compared to when 

the low reward was associated with the first item, greater activation was observed in inferior 
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frontal gyrus, left anterior cingulate gyrus, middle temporal gyrus, hippocampus, OFC, and LOC, 

among other regions. This difference was not observed for second items of a pair, nor for 

singleton items unassociated with other images. This may be interpreted as comparatively more 

attentional resources being recruited to high reward items, leading to enhanced learning in both 

value information and visual regularity.  Thus, reward may play a role similar to selective 

attention in VSL, or it may affect VSL by shaping selective attention. 

EXPERIMENT 1 

The aim of Experiment 1 was to examine the influence of learned value on VSL by 

embedding different amounts of reward into structured pairs (i.e., High-High, High-Low, Low-

High, and Low-Low reward pairs) that always co-occurred temporally in a sequence of 

decisions. After subjects learned the value in a temporally structured sequence, we tested 

recognition for each type of pair, allowing us to examine how the high- or low-reward 

association might interact with the location of reward (i.e., first or second) in structured pairs.  

Method 

Participants 

All procedures were approved by the University of Delaware Institutional Review Board. 

Thirty-three University of Delaware students who were 18-40 years of age (23 Female) 

participated for course credit or cash. At the last phase of Experiment 1, participants’ memory 

for the image value was measured. Pilot data suggested that reward memory recognition judged 

by the third phase was almost always above chance levels. Since it was crucial for participants to 

have a memory of reward associated with constituent items to judge reward effects on VSL, we 
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established exclusion criteria based on last-phase performance. Two participants were excluded 

because they did not show above chance (50%) reward memory recognition rate.  

Stimuli and Apparatus 

Experiment 1 was run on Windows 10 with a 24-inch LCD monitor with a resolution of 

1920 x 1080. The experiment was programmed in MATLAB with Psychophysics Toolbox v. 3 

(Brainard, 1997; Kleiner et al., 2007). We used 32 fractal images as novel visual stimuli. Images 

were randomly assigned into structured sequences (i.e. pairs) between participants. Stimuli were 

200 pixels x 200 pixels, and participants sat approximately 57 cm from the monitor (images 

subtended approximately 5° of visual angle). 

Procedure 

The experiment consisted of three phases. Participants performed 1) a learning phase 

followed by 2) a surprise pair recognition phase. In the last phase, they completed 3) a reward 

memory test, which asked participants to explicitly recall the value of each image (i.e., high or 

low; 2AFC). Before the experiment began, participants were given instructions about the 

learning task. However, no information was provided to participants about the subsequent 

memory-test phases prior to completing the learning phase.  

During the learning phase (Fig 1A), images were presented at the center of the screen, 

sequentially. Participants were instructed to do a risky choice task, in which they learned the 

values (high or low) of fractal images through trial-and-error. For each image, participants 

needed to make a choice (phrased as a “gamble”) of “Yes” or “No.” If they chose "Yes” (press 

the Z button on the keyboard), they had a 50% chance of winning nothing (0 points) and a 50% 

chance of winning points. Importantly, "high-reward" images were associated with a 50% chance 
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to win 10 points, while "low-reward" images were associated with a 50% chance to win 2 points. 

If they chose "No" (pressed the M button on the keyboard), they always got 1 point and, 

importantly, were able to see what they could have gained (i.e., 0, 2, or 10) if they chose "Yes" 

on that trial. This way, they were still able to learn 1) the associated value (if 2 or 10 points were 

assigned on that trial) and 2) whether they won by not choosing “Yes” on that trial (if 0 was 

assigned on that trial). Participants were told that the points added up over time and they would 

get money based on their point totals. At the end of the experiment, the points were converted to 

maximum of $10 (i.e., total points (maximum of 3200) were divided by 320). Subjects were 

informed beforehand that points would be converted to money at the end of the experiment, but 

not of the exact conversion rate. If they could not choose within 2 seconds, it was counted as 

"Miss." 

Unbeknownst to participants, we paired images so that some images always predicted 

other images on the following trial. This led to four types of pairings (High-High, High-Low, 

Low-High, and Low-Low) (Fig. 1B).  All structured pairs were pseudo-randomized within the 

stream such that no immediate repetition of a pair (e.g., ABAB) or two sets of pairs (e.g., 

ABEFABEF) could occur. The 32 fractal images (16 pairs) were repeated four times within each 

block. With a total of 5 blocks, each image/pair appeared a total of 20 times. The 16 pairs were 

equally divided into four of each of the pairing conditions. 
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Following the learning phase, the recognition phase began. Participants were given on-

screen instructions before they began the recognition phase. This phase involved a two-

alternative forced-choice task in which participants were asked to choose which of two two-

image sequences was more familiar (Fig. 2A). One of the sequences was a sequence of a target 

pair, and the other one was a sequence of a foil pair. The target pair was a structured pair that 

was presented multiple times during the learning phase (e.g., AB, CD, EF, etc.). Foil pairs were 

recombined from pairs constructed from using the first image of one target pair and the second 

image of another target pair (e.g., AD). Each target and foil pair were presented four times 

during the test phase. We constrained each target pair type (in terms of reward) to match with all 

types of foil pairs (e.g., High-High (target) vs. High-High (foil); High-Low (foil); Low-High 

(foil); Low-Low(foil)) in each presentation. No feedback was given during this phase, and 

participants had unlimited time to respond. 

Figure 1. A) General procedure of the learning phase in Experiment 1. B) Pairs were equally 

divided into four reward variations (High-High, High-Low, Low-High, and Low-Low). 
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After the recognition phase, participants were asked to remember the value of all images 

that they saw during the learning phase and choose whether they had high or low-values in a 

two-alternative forced-choice paradigm. All 32 images were presented one by one in a random 

order (Fig. 2B), with no time constraints and no feedback provided. 

 

RESULTS 

A two-way repeated measures ANOVA (value of image x block) on risky choice 

proportion (i.e., choosing yes) showed a significant main effect of value of image, F (1, 30) = 

48.04, p < .001, ηp² = .616 (but not with blocks, F <1) and an interaction between them, F (4, 

120) = 12.48, p < .001, ηp² =.3.  Proportion of making a risky choice to high-value images 

gradually increased across blocks, and the opposite was observed with low-value images (Fig 3). 

Figure 2. General procedure of the memory tests. (A) Example of the recognition test. (B) 

Example of the reward memory test. 
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In regards to the recognition phase, a one-sample t-test against chance (50%) yielded 

significant learning only for the High-High condition, t(30)= 2.71, p =.01, d=.49. In addition, 

with a 2 (value of first image, high or low) x 2 (value of second image, high or low) repeated 

measures ANOVA, we only found a significant main effect of the first image such that there was 

better recognition when the first image of a pair was a “High” image, F(1, 30)=6.41, p = .01, ηp² 

= .17 (Fig. 4). To ensure that results were not impacted by foil pair value, we conducted a 2 

(value of first image, high or low) x 2 (value of second image, high or low) repeated measures 

ANOVA based on foil type, which resulted in no significant main effects and no interaction of 

foil value on recognition accuracy, all F <1.  

In the last reward memory phase, the mean proportion correct of reward memory was 0.75 

(SD: 0.01, t(30)=12.49, p < .001, Cohen’s d=2.24 ; one-sample t-test against chance (50%)). A 2 

(first image of a pair or second image of a pair) x 2 (high reward or low reward) repeated 

Figure 3. Proportion of making a risky choice throughout blocks. In this and all other figures, 

error bars represent standard error of the mean. 
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measures ANOVA did not reveal any significant main effects or interaction between image 

position and value (all p>.5) in the last reward memory phase.  

 

 

DISCUSSION 

Previous research found no differences in VSL amongst no-, low-, or high-reward 

conditions (Rogers et al., 2016). However, previous efforts did not explicitly draw attention to 

value during exposure to statistical associations. In the current study, using a risky choice task, 

the subjects’ task was to learn the value of images, which drew attention explicitly to reward 

during exposure. Under these constraints, we found better recognition for pairs when the first 

image of the pair was a high-reward image.  

A number of mechanisms might explain this finding, with variations in attention caused 

by associated value being one candidate. In VSL, the first item of structured pairs plays an 

important role in predicting and evaluating subsequent outcomes during the acquisition of 

statistical regularities (Turk-Browne et al., 2010). Reward could impact VSL by drawing intense 

Figure 4. Accuracy at choosing target pairs over foil pair in four reward variations. 
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attention to the high-reward image that was located in the first position of a pair. As we do not 

see any benefit for pairs where the high-reward image appeared second (i.e., Low-High pairs), 

we speculated that value information might interact with VSL because attention is engaged with 

greater frequency and/or intensity when the first image of a pair is associated with high-reward, 

in advance of the predictable second image. This in turn enables learning of the association. On 

the other hand, if the first image of a pair did not receive such priority (i.e., the low value first 

image), VSL may not be fully engaged. In Experiment 2, we conducted an fMRI study to 

uncover the neural correlates of the interaction between reward (i.e., high vs. low) and the 

position of an image in a structured sequence (first vs. second vs. non-structured information), 

and how this interaction is modulated by attentional processing.  

EXPERIMENT 2 

Experiment 1 showed better recognition for pairs when the first image of a pair was 

associated with high-value. To investigate the neural basis of the findings in Experiment 1, we 

measured brain responses to visual images that were associated with both varying levels of 

reward and sequential contingencies, using event-related fMRI. We examined the neural 

activation of the first and the second image in pairs, and how it differed according to the amount 

of reward (high vs. low). We also compared images with structural information (i.e., pairs) and 

without such information (i.e., singletons) in each of high and low-value (e.g., high paired 

images vs. high singleton; low paired images vs. low singleton), and asked how the varying level 

of reward affected the processing of statistically structured information. 

METHOD 

Participants 
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Thirty University of Delaware students who were 18-40 years of age each participated in 

one 2-hour long experimental session (mean age: 21.6; 22 females). One participant did not show 

above chance levels of learning in the last reward memory phase, so that participant was 

excluded. All participants were right-handed, reported having normal color vision, and were 

compensated $20/hour. All procedures were approved by the University of Delaware 

Institutional Review Board. 

Stimuli, Apparatus, and Procedure 

Stimuli were the same as Experiment 1 except that we added 16 more fractal images as 

singletons, so a total of 48 fractal images were used in Experiment 2 (32 images assigned to 16 

pairs, and 16 singleton images). There were 4 runs of the risky choice task (i.e., learning phase) 

and in each run, a new set of 4 pairs and 4 singletons were presented, with each repeating six 

times within the block. We chose six repetitions based on prior studies showing evidence of 

learning even with a small number of repetitions (Turk-Browne et al., 2010). The added 

singletons allowed us to directly compare the differences in neural activity for images that 

contained statistical structure information and images that do not.    

The procedure was similar to Experiment 1, but participants performed the risky choice 

task inside of the scanner. We included jittered intervals between 1) the choice phase and 

feedback phase of the trial and 2) the feedback phase of the trial and the next image presentation 

(Fig. 5). Jittered intervals consisted of 2s, 3s, 4s, or 5s., and they were evenly divided across 

conditions and randomly presented. During the risky choice task phase, participants responded 

with an MRI-compatible button box. The rules of the task were identical to Experiment 1. 

Following the four learning runs, a passive viewing run was performed. In this run, all 48 images 

were presented one more time, with each of the 16 pairs presented in pair-wise order and 16 
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singletons randomly presented in between pairs. Participants were asked to focus on each image 

but otherwise passively view them. Each image was presented for 1 s followed by a jittered 

interval [2s, 3s, 4s, or 5s] 1. After all runs, participants completed the recognition test and reward 

memory test outside of the scanner. The procedures for the recognition and reward memory tests 

were the same as Experiment 1, and all 48 images (including singletons) were shown in the 

reward memory test.  The incentive was provided based on the points participants earned during 

the risky choice task, and points were converted to a maximum of $15 (i.e., total points 

(maximum of 900) were divided by 60). Participants were informed at the beginning of the 

experiment of the possible reward and that points would be converted to cash rewards. 

 

                                                             
1 Due to time constraints, twenty-one participants performed one run of passive viewing, and eight participants 

performed three runs of passive viewing. 
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Data acquisition 

Neuroimaging data were acquired on a 3T Siemens Prisma system using a 64- channel 

head/neck coil. One high-resolution T1-weighted MPRAGE structural image was collected (0.7 

mm isotropic voxels). Functional scans consisted of a T2*-weighted Siemens Multiband 

(multiband factor of 8) EPI sequence with 80 slices acquired in an interleaved manner, and with 

an oblique axial orientation (approximately 25° from anterior commissure/posterior commissure 

line). The in-plane resolution was 2.0 mm x 2.0 mm, and slice thickness was 2.0 mm with no 

skip (TR=1 s, TE = 32 ms, flip angle 61°), resulting in isotropic voxels. Each learning run 

consisted of 784 volumes and lasted 13 minutes and 4 seconds, and the passive viewing run 

contained 237 volumes and lasted 3 minutes and 57 seconds. 

Figure 5. General procedure of the learning phase in Experiment 2. 
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Structural and Functioning Processing 

Data analyses were performed using fMRIB Software Library (FSL, 

www.fmrib.ox.ac.uk/fsl) version 5.0.9, FMRI Expert Analysis Tool (FEAT) version 6.0 

(Jenkinson et al., 2012), and the AFNI software package (Cox, 1996). For structural scans, we 

first performed skull-stripping by using BET (Smith, 2002), and then registered to a standard 

MNI152 2-mm template. For functional runs, data were first de-obliqued (AFNI’s  3dWarp) and 

re-oriented to match the standard template (fslreorient2std). Then, data were motion corrected, 

smoothed (8 mm FWHM Gaussian kernel), and high-pass temporal filtered with a 100s cutoff.  

At the first-level analysis of the risky choice task phase, a total of 116 runs (4 runs, 29 

participants) were modeled using a standard GLM approach. Fifteen explanatory variables (EVs) 

were set up: HH-First, HH-Second, HL-First, HL-Second, LH-First, LH-Second, LL-First, LL-

Second, High-Singleton, Low-Singleton, Choice-Yes-Win, Choice-Yes-Lose, Choice-No-Win, 

Choice-No-Lose, and the first presentation of each image as a regressor of no interest. The first 

presentation of all images was not included in the reward/location variables, because there had 

been no opportunity to learn either associated value or statistical contingency. For the passive 

viewing task, a total of 45 runs (1 run: 21 participants; 3 runs: 8 participants) were modeled 

using a standard GLM. Ten explanatory variables (EVs) were set up: HH-First, HH-Second, HL-

First, HL-Second, LH-First, LH-Second, LL-First, LL-Second, High-Singleton, Low-Singleton. 

Regressors were unit-height boxcar functions that modeled the appearance of image (2 s 

duration) or the response / outcome (2 s duration), and were convolved with a double-gamma 

canonical hemodynamic response function.  A second-level, fixed-effect analysis was then used 

to combine across four learning runs within each subject for the learning phase and up to three 

passive viewing runs. Finally, a third-level mixed-effects analysis was used to combine 
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participants’ data. Third-level results were cluster-corrected for multiple comparisons using 

Randomise, FSL's nonparametric permutation testing tool (Jenkinson et al., 2012), with 5000 

permutations and threshold free cluster enhancement (TFCE). 

Our primary interest was uncovering any effect uniquely driven by the High-First images 

(H1) compared to the Low-First (L1) images, to uncover activity associated with attention-

guided or prioritized processing coinciding with reward and order. We also ran contrasts to 

investigate any differences between high/low-value images that appeared with or without 

statistical structure (e.g., H1 or H2 > High Singleton (Hsin); L1 or L2 > Low Singleton (Lsin), 

and vice versa). This approach allowed us to explore the potential for reward to influence 

statistically structured or unstructured images (i.e., pairs vs singletons), as the additional 

associative information bound to structured images (or lack thereof for singletons) may predict 

learning based on their learned status as a high or low reward image. For the passive viewing 

phase, we focused on whether there is any relationship between reward contingencies and serial 

position even when the risky choice task was removed. If so, it would suggest that reward-

associated structured or unstructured images continue to be represented uniquely outside of 

reward-related contexts. 

RESULTS 

Behavior data 

We analyzed participants’ choices (i.e., yes or no) for the risky choice task for each time 

presentation (1st to 6th) collapsed over runs. As shown in Fig 6, a two-way repeated measures 

ANOVA (value of image x number of presentation) on risky choice proportion (i.e., choosing 

yes) showed a significant main effect of value, F (1, 28) = 51.21, p < .001, ηp² = .647, and a 

trend (but not significant) of main effect of the number of presentation, F (1, 28) = 2.22, p 
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= .055, ηp² = .074. A significant interaction between value of image (high or low) and the 

number of presentation (1st to 6th) was found, F (5, 140) = 29.46, p < .001, ηp² =.513.    

Proportion of making a risky choice was equally high for both high-value and low-value images 

at the first presentation, but across the second to sixth presentation, the proportion of making a 

risky choice on high-value images gradually increased, and the opposite was observed with low-

value images. 

 

Participants completed two memory tasks after scanning: the recognition test and the 

reward memory test. For the recognition test, a one-sample t-test of recognition accuracy against 

chance (50%) yielded significant learning for all pair conditions; High-High: t(28)=3.3, p=.002, 

d=.62, High-Low: t(28)=3.26, p=.002, d=.6; Low-High: t(28)=3.1, p=.004, d=.57; Low-Low: 

t(28)=2.46, p=.02, d=.45 (Fig. 7).  A 2 (value of first image, high or low) x 2 (value of second 

image, high or low) repeated measures ANOVA did not show any significant main effects nor an 

interaction (all p>.5). In addition, a 2 (value of first image, high or low) x 2 (value of second 

image, high or low) repeated measures ANOVA did not reveal any main effects nor an 

Figure 6. Proportion of making a risky choice by the number of presentations, split by value. 
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interaction of foil type (i.e., foil pairs of High-High, High-Low, Low-High, and Low-Low 

conditions) (F <1). Although the behavioral results of Experiment 1 did not completely replicate, 

this is likely due to design differences. In the final passive viewing task during scanning, pairs of 

all reward variations were presented in pairwise order; thus, the overall recognition rate may be 

increased across the board and eliminate the differences between reward variations. This will be 

discussed further in the general discussion section.  

 

In the last reward memory phase, the mean proportion correct was 0.79 (SD: 0.13, 

t(28)=11.75, p < .001, d=2.18 ; one-sample t-test against chance, 50%). When we divided the 

results into the image type (the first, second images for pairs and singletons) and the reward type 

(high and low images), a repeated measures ANOVA did not show any significant main effect 

nor interaction (all p>.2; Fig. 8).  

Figure 7. Accuracy at choosing target pairs over foil pair in four reward variations. 
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fMRI data  

Learning phase 

There were two main approaches we chose to explore the potential interaction of reward 

and VSL. First, based on our findings in Experiment 1, we were interested in uncovering any 

differences in neural responses between the high-value first image (H1) and the low-value first 

image (L1) in pairs, to examine whether differences would be consistent with differences in 

attentional engagement. Secondly, we were interested in contrasting any such observations with 

differences that might arise in response to high-value second images (H2) vs. low-value second 

images (L2), and high-value singletons (Hsin) vs. low-value singletons (Lsin), to ask whether 

structure modulated this response.   

The contrast of the high-value first images versus the low-value first images (i.e., H1 > 

L1) yielded significant clusters in inferior frontal gyrus (IFG), middle temporal gyrus, superior 

temporal gyrus, parahippocampal gyrus, temporal fusiform cortex, hippocampus, amygdala, 

thalamus, orbitofrontal cortex (OFC), lateral occipital cortex (LOC) (all bilaterally) as well as 

right putamen, left anterior cingulate gyrus (ACC), and left paracingulate gyrus (Table 1 and 

Figure 8. Accuracy at choosing reward value (high or low). 
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Figure 9). To examine whether these results were driven solely by the value difference (i.e., high 

vs. low), we contrasted the activity provoked by the high-value second images with that in 

response to the low-value second images (i.e., H2>L2 and L2>H2) but no significant difference 

was observed. There was also no significant difference between high-value singletons and low-

value singletons (i.e., Hsin>Lsin and Lsin>Hsin). Additionally, a statistical comparison of the 

interactions between 1) (H1-Hsin) and (L1-Lsin), and 2) (H1-L1) and (H2-L2) were measured. 

The contrast of (H1-Hsin) > (L1-Lsin) yielded greater activation in the postcentral gyrus, 

precentral gyrus, middle temporal gyrus, superior temporal gyrus, hippocampus, amygdala, and 

other regions (Table 1 and Figure 10). The lack of any observable difference between high-value 

singleton and low-value singleton, and the significant interaction in many regions, supports the 

conclusion that H1 > L1 outcomes are not driven solely by the value difference, but rather an 

interaction between statistical regularity and value differences. With the contrasts of (H1-L1) and 

(H2-L2) and (H2 – Hsin) and (L2 – Lsin), no significant clusters were observed.  

Considering these activations in conjunction with our results from Experiment 1, these 

results suggest an interaction of value processing and statistical regularity, such that high-value 

first images (i.e., predictive images) in particular provoke deeper processing and greater 

attentional engagement than low-value predictive images. The greater activation in the IFG, 

ACC, and LOC support our hypothesis that attention plays an important role in enhanced 

processing of the high-value first images.  

Table 1. Results of contrast with H1>L1 and (H1-Hsin) > (L1-Lsin). In this and all other tables, clusters 

with five or fewer voxels were not reported.  

Anatomical Label Hemisphere Cluster size 

(voxel) 

P value 

(TFCE) 

Peak MNI, 

mm 

1. High value first image (H1) > Low value first image (L1) 
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Middle Temporal Gyrus, 

Superior Temporal Gyrus, 

Parahippocampal Gyrus, 

Temporal Fusiform Cortex,  

Hippocampus, Amygdala, 

Thalamus, Orbitofrontal Cortex 

Left 9220 0.009 -54, -28, -4 

Parahippocampal Gyrus, 

Temporal Fusiform Cortex,  

Hippocampus, Amygdala, 

Thalamus, Accumbens 

Right 2360 0.014 26, -34, -16 

Middle Temporal Gyrus, 

Superior Temporal Gyrus,  

Supramarginal Gyrus, Planum 

Temporale, Parietal Operculum 

Right 890 0.034 72, -32, 2 

Orbitofrontal Cortex, Inferior 

Frontal Gyrus 

Right 122 0.041 28, 20, -22 

Frontal Pole Left 54 0.04 -16, 50, 42 

Cingulate Gyrus Left 23 0.041 -2, -12, 34 

Occipital Fusiform Gyrus Right 13 0.046 30, -68, 0 

Lateral Occipital Cortex Left 8 0.048 -28, -88, 20 

Paracingulate Gyrus Left 6 0.05 -4, 46, 8 

2. (H1 - High Singleton) > (L1 - Low Singleton) 

Postcentral Gyrus, Precentral 

Gyrus 

Right 203 0.033 26, -26, 68 

Planum Temporale, Superior 

Temporal Gyrus 

Right 145 0.041 50, -32, 14 

Middle Temporal Gyrus, 

Superior Temporal Gyrus  

Left 35 0.042 -66, -28, 0 

Hippocampus, Amygdala Left 22 0.037 -20, -10, -20 

Planum Temporale Right 10 0.048 64, -10, 2 
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Figure 9. The H1 > L1 contrast yielded clusters that included IFG, middle temporal gyrus, 
superior temporal gyrus, parahippocampal gyrus, temporal fusiform cortex, hippocampus, 

amygdala, thalamus, OFC, LOC (all bilaterally) as well as right putamen, left ACC, and left 

paracingulate gyrus. From top to bottom, coordinates are centered on left IFG, left OFC, left 
ACC, and left hippocampus. In this and all other figures, coordinates are in MNI standard 

space. 
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Figure 10. The (H1-Hsin) > (L1-Lsin) contrast yielded significant clusters in the postcentral 

gyrus, precentral gyrus, middle temporal gyrus, superior temporal gyrus, hippocampus, 

amygdala. Top row coordinates are centered on right precentral gyrus, and bottom row 

coordinates are centered on left hippocampus.  

Following up on these results, we examined how statistical regularities modulate 

responses, keeping value constant. We examined four contrasts: 1) H1 vs. Hsin, 2) H2 vs. Hsin, 

3) L1 vs. Lsin, and 4) L2 vs. Lsin. We observed significant clusters for 1) Lsin > L1 and 2) 

Lsin> L2. The contrast of Lsin > L1 showed greater activation in middle temporal gyrus, 

hippocampus, amygdala, putamen, LOC, and other regions (Table 2 and Figure 11A), and the 

contrast of Lsin > L2 resulted in clusters in similar areas (Table 2 and Figure 11B). Comparisons 

between high-value paired images and high-value singletons did not yield any significant 

differences.  
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Table 2. Results of contrast with Lsin>L1 and Lsin>L2 

Anatomical Label Hemisphere Cluster size 

(voxel) 

P value 

(TFCE) 

Peak MNI, 

mm 

1. Low-value singleton (Lsin) > Low-value first image (L1) 

Middle Temporal Gyrus, Superior 

Temporal Gyrus, Caudate, 

Parahippocampal Gyrus, 

Temporal Fusiform Cortex, 

Hippocampus, Amygdala, 

Cingulate Gyrus, Thalamus, 

Putamen, Postcentral Gyrus, 

Planum Temporale, Precentral 

Gyrus, Lateral Occipital Cortex, 

Ventricle, Right cerebellum, 

Accumbens 

Both (unless 

stated 

specifically) 

44022 0.009 10, -34, 58 

Precuneous Cortex Left 146 0.036 -22, -48, 26 

Lingual Gyrus Left 32 0.046 -6, -70, 2 

Cerebellum Left 32 0.046 -4, -46, -12 

Intracalcarine Cortex ,Precuneous 

Cortex 

Right 8 0.05 6, -66, 12 

2. Low-value singleton (Lsin) > Low-value second image (L2) 

Middle Temporal Gyrus, Superior 

Temporal Gyrus, Precuneous 

Cortex, Supramarginal Gyrus 

Right 1903 0.02 22, -52, 30 

Caudate, Pallidum, Putamen Right 670 0.021 16, 4, 26 

Ventricle Both 145 0.041 0, 4, 6 

Precuneous Cortex Left 63 0.038 -24, -52, 26 
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Orbitofrontal Cortex, Frontal Pole, 

Caudate, Putamen 

Right 52 0.042 22, 32, -6 

Temporal Occipital Fusiform 

Cortex 

Left 48 0.048 -40, -44, -10 

Planum Polare Right 24 0.044 42, -24, -4 

Inferior Temporal Gyrus, Lateral 

Occipital Cortex 

Left 6 0.049 -48, -66, -14 
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Figure 11. A) The contrast of Lsin > L1 showed greater activation in middle 

temporal gyrus, hippocampus, amygdala, putamen, and LOC. B) The contrast of 

Lsin > L2 also showed significant activations in middle temporal gyrus, 
hippocampus, inferior temporal gyrus, amygdala, putamen, and LOC. From top to 

bottom row, coordinates are centered on right caudate, right precentral, right 

caudate, and right LOC. 
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 We were not able to find any significant differences with contrasts scrutinizing the first 

images of paired images > singletons (see Turk-Browne et al., 2010). With our design, however, 

paired images contained not only statistical structure but also reward information, and the 

interaction between these two variables may drive a different pattern of results. Rather, we found 

that low-value singletons showed greater activity than low-value predictive (L1) images in areas 

recognized for playing a role in processing reward information (e.g., caudate, putamen, 

hippocampus). These results suggest that our (H1-L1)>(Hsin-Lsin) interaction may have been 

driven predominantly by differences in the way that L1 images are processed compared to low-

value images that are non-predictive.  

Passive viewing phase 

During the passive viewing phase, participants were not required to perform any task 

other than to focus on each image as it goes by. We were interested in seeing whether any 

reward/structure related findings from the risky choice task phase would extend into other 

contexts (i.e., a context where participants are no longer making a choice or actively earning 

reward). However, we were unable to find similar patterns of activity with contrasts we ran with 

the risky choice task. We suspect that any failure to observe patterns of activity similar to that 

found for the learning phase is possibly due to a lack of power from having time to collect data 

from a single of the passive viewing task for most participants.  

DISCUSSION 

In Experiment 2, we measured brain responses to visual images that were associated with 

both varying levels of reward and statistical contingencies. We found that the high-value first 

image (i.e., H1) led to greater activity in areas including IFG, left ACC, LOC, fusiform gyrus, 
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orbitofrontal cortex (OFC), accumbens, precuneous cortex, parahippocampal gyrus, middle 

temporal gyrus, amygdala, hippocampus, and putamen as compared to the low-value first image 

(i.e., L1). These findings suggest that H1, in comparison to L1, led to greater attentional 

engagement (Beck & Vickery, 2019; Murray & Wojciulik, 2004b; Stokes et al., 2009), and may 

enhance associative learning thusly. The contrasts of (H1-Hsin) > (L1-Lsin) yielded greater 

activations in the precentral gyrus, middle temporal gyrus, hippocampus, and amygdala, which 

supports the possibility that the differences between the high-value first image and the low-value 

first image are not driven solely by the value difference, but by an interaction of predictiveness 

and value. As no difference was found between the high-value singletons and the low-value 

singletons, the greater activation in precentral gyrus in this interaction also supports our 

hypothesis that the first image of the pair that was associated with high value received the 

attentional priority in comparison to that was associated with the low value (Fockert et al., 2004). 

For contrasts comparing first images and singletons (e.g., H1>Hsin and L1>Lsin), we 

were not able to replicate the findings of Turk-Browne et al. (2010). We speculate that embedded 

reward information possibly altered learning in such a way that made it unique versus when VSL 

occurs in the absence of reward. Rather, we found evidence that when an image contains both 

statistical structure and reward information, the reward learning may be predicted by the type of 

statistical structure it is associated with. Specifically, we found that low-value predictive images 

(i.e., L1) provoked less activity than non-predictive low-value singletons. In contrast, there was 

no difference in high-value comparisons between paired images and singletons. This suggests 

that the predictive nature of a stimulus may specifically down-regulate responses to low-value 

images, and thus that attention was less guided/prioritized to the low-value first image than the 

high-value first image.  
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GENERAL DISCUSSION 

Across two experiments, we provided behavioral and neural evidence that reward alters 

visual statistical learning. In Experiment 1, better recognition of pairs when the first image of a 

pair was associated with high-value was observed, and this effect was especially pronounced for 

High-High pairs. Neural evidence supports this finding, such that when the first image of a pair 

was associated with high-value, in comparison to the first image being associated with low-

value, greater BOLD response was observed in brain areas that have been known to play an 

essential role in associative learning (e.g., hippocampus, precuneous cortex, parahippocampal 

gyrus; Turk-Browne et al., 2010), and value processing (e.g., OFC, accumbens, and caudate; 

Baliki et al., 2013; Kringelbach & Rolls, 2004). These findings are not driven solely by the value 

difference, but rather the interaction between statistically structured information and reward –

with additional analyses, we showed that this value difference was specific to predictive items, 

suggesting that predictiveness and value interact in determining neural responses to images.   

Attentional processing may be involved in this interaction, as we found greater 

activations in LOC and frontal and parietal areas, such as inferior frontal gyrus, precentral gyrus, 

and anterior cingulate gyrus, all regions whose activity is known to scale with attentional 

processing (Beck & Vickery, 2019; Corbetta & Shulman, 2002; Fockert et al., 2004), when the 

H1 was compared to L1. We did not observe similar differences with comparisons of H2 vs. L2, 

or Hsin vs. Lsin, which implies that not all high-value images led to attentional prioritization 

compared to low-value images. Rather, a combination of predictiveness and reward value was 

crucial in provoking this response. In VSL, the predictive image plays an important role, 

provoking anticipatory responses (Turk-Browne et al., 2010). Our findings suggest that VSL 

occurs differentially as a function of the magnitude of reward associated with the first image. In 
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other words, when different amounts of reward are embedded in visual regularity, the rewards 

may interact with VSL in a way that it only impacts on the first position of the structured 

sequence. 

In Experiment 2, the processing of reward information elicited different patterns with 

behavior and neural approaches. Our behavioral results of learning of reward associations (i.e., 

the reward memory test) showed no difference in reward memory as a function of the structured 

information, which means that predictive structure (i.e., paired vs. singleton) did not impact the 

recognition of reward information. However, our neural evidence reveals that reward-related 

responses were differentiated based on which structural position the reward was embedded in. 

Differences in the binding of reward based on stimulus-stimulus predictiveness may be too 

subtle for behavioral methods to uncover, although differences in the design of our experiments 

may also play a role in discrepant findings between behavioral and neural methods.  

Different results of the recognition phase between Experiment 1 and 2 may also be 

derived from the design of our experiments. We found above chance levels of learning in all 

conditions (i.e., High-High, High-Low, Low-High, and Low-Low pairs) in Experiment 2, unlike 

Experiment 1 that showed above chance learning only for High-High and High-Low pairs. We 

speculate that this difference was due to the passive viewing task, where all pairs appeared one to 

three times across all participants. In this phase, participants were not required to make any 

choice, which means they did not have to process information related to reward variation. Hence, 

there is a possibility of the difference in recognition rates between reward variations might be 

washed out since participants were exposed to all pairs in a reward-absent environment. Prior 

work provided evidence that regularity information can be learned with a small amount of 

exposure (Turk-Browne & Scholl, 2009), and we noticed that the overall proportion correct 
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responses were higher in Experiment 2 than Experiment 1. Prior work and the trend of our 

finding support our speculation that the overall recognition was boosted because of the addition 

of the passive viewing task. In addition, in Experiment 2, each run introduced a new set of 

images, and this aspect of the design may have introduced differences in VSL, as well. 

To our knowledge, this is the first work to provide evidence of behavioral and neural 

responses being modulated by the interaction of reward and VSL. As mentioned above, Rogers 

et al. (2016) first explored the interaction between reward and VSL, but the reward variations 

(i.e., no-, low-, or high-reward) did not affect the learning of regularities. In our work, by using a 

risky choice task, we enhanced participants’ engagement to the task and value, and were able to 

observe an effect of reward on VSL. This implies that robust engagement with value information 

may be necessary to induce interactions with the learning of visual regularities. In conjunction 

with other recent results highlighting the importance of task during exposure shaping VSL 

(Vickery et al., 2018), the current study highlights the need to carefully consider context during 

exposure to regularities, and how those contexts shape incidental learning.    

With respect to the passive viewing task, we were unable to observe a similar pattern of 

activity as that found in the risky choice task phase. We suspect that this failure is possibly due 

to a lack of power, due to our only having time to collect data from a single run of the passive 

viewing task for most participants. Another possible explanation for lack of such a finding is that 

the effect of reward in VSL may only arise within the context of tasks that draw attention to 

value, like our risky choice task. Therefore, simply viewing the sequence of images may not 

yield that same neural responses as actively making a risky choice on each image. Further studies 

of how the interaction between reward and VSL may affect the later representation of memory 

even outside of a reward-related context may be needed. 
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The present study provides evidence that VSL is altered by reward. When a high reward 

is embedded in the first location of a statistically structured pair, it aids learning: a result we 

found support for in neural evidence. Several brain areas that reflect attentional capture, reward 

processing, associative learning, and the intermixed effect among them support the notion that 

reward contingencies affect VSL. These findings highlight the fact that reward may play a role 

similar to selective attention in VSL, such that the more the image can guide attentional 

resources, the better it can convey the reward information, and ultimately, facilitate visual 

statistical learning. 
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