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ABSTRACT

Alzheimer’s disease (AD) is characterized by the selective vulnerability of specific neuronal
populations, the molecular signatures of which are largely unknown. To identify and characterize
selectively vulnerable neuronal populations, we used single-nucleus RNA sequencing to profile
the caudal entorhinal cortex and the superior frontal gyrus — brain regions where neurofibrillary
inclusions and neuronal loss occur early and late in AD, respectively — from individuals spanning
the neuropathological progression of AD. We identified RORB as a marker of selectively
vulnerable excitatory neuronsin the entorhinal cortex, and subsequently validated their depletion
and selective susceptibility to neurofibrillary inclusions during disease progression using
guantitative neuropathol ogical methods. We also discovered an astrocyte subpopulation, likely
representing reactive astrocytes, characterized by decreased expression of genesinvolved in
homeostatic functions. Our characterization of selectively vulnerable neuronsin AD pavesthe
way for future mechanistic studies of selective vulnerability and potential therapeutic strategies
for enhancing neuronal resilience.
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MAIN TEXT

Selective vulnerability is a fundamental feature of neurodegenerative diseases, in which different
neuronal populations show a gradient of susceptibility to degeneration® 2. Selective vulnerability
at the network level has been extensively explored in Alzheimer’s disease (AD)*®, currently the
leading cause of dementiaand lacking in effective therapies. However, little is known about the
mechanisms underlying selective vulnerability at the cellular level in AD, which could provide
insight into disease mechanisms and lead to therapeutic strategies.

The entorhinal cortex (EC), an allocortex, is one of the first cortical brain regions to exhibit
neuronal lossin AD®. Neuronsin the external EC layers, especialy in layer |1 (also known as
alpha clusters of the lamina principalis externa, abbreviated “Pre-alpha’)’, accumul ate tau-
positive neurofibrillary changes and die early on in the course of AD®**. However, these
selectively vulnerable neurons have yet to be characterized extensively at the molecular level.
Furthermore, it is unknown whether there are differences in vulnerability among subpopulations
of these neurons. Although rodent models of AD have offered some insights'**°, the human
brain has unique features with regard to cellular physiology, composition and aging™ ™, limiting
the extrapoloation of findings from animal models to address selective vulnerability.

Previous studies have combined laser capture microdissection with microarray analysis of gene
expression® % to characterize EC neurons in AD, but focused on disease-related changes in gene
expression, rather than selective vulnerability. More recently, single-nucleus RNA-sequencing
(snRNA-seq) has enabled large-scale characterization of transcriptomic profiles of individual
cells from post-mortem human brain tissue®® %%, However, snRNA-seq studies of AD published
to date have focused on cell-type specific differential gene expression between AD cases and
healthy controls** %°, without explicitly addressing selective vulnerability.

Here, we performed snRNA-seq on post-mortem brain tissue from a cohort of individuals
spanning the neuropathological progression of AD to characterize changesin the relative
abundance of cell types and cell type subpopulations. Importantly, we discovered a selectively
vulnerable subpopulation of excitatory neurons in the entorhinal cortex and validated the
selective depletion of this subpopulation during AD progression with quantitative
histopathology, using multiplex immunofluorescence in EC regions delineated by rigorous
cytoarchitectonic criteria. In addition, we examined subpopulations of inhibitory neurons, which
did not show differences in vulnerability, and also subpopulations of microglia and astrocytes.
We uncovered an astrocyte subpopulation likely corresponding to reactive astrocytes that
showed downregulation of genesinvolved in homeostatic function.

RESULTS

Cohort sdlection and cross-sample alignment
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We performed snRNA-seq on cdll nuclei extracted from postmortem brain tissue (see M ethods)
from the entorhinal cortex (EC) at the level of the mid-uncus and from the superior frontal gyrus
(SFG) at thelevel of the anterior commissure (Brodmann area 8), from 10 male individuals with
an APOE €3/e3 genotype spanning the range of AD neuropathological stages (Braak stages 0, 2
and 6% Fig. 1a, Table 1).

The neuropathological hallmarks of AD are amyloid plaques, which are measured by the
CERAD and Thal scores, and neurofibrillary changes consisting of intraneuronal inclusions of
hyperphosphorylated tau protein (phospho-tau) aggregates, which are measured by the Braak
staging system”. The Braak staging system is based on the stereotypical topographical
progression of neurofibrillary inclusions to different brain regions. Neurofibrillary inclusions are
first found in specific subcortical structuresin the brainstem (Braak stages a-c, also hereon
referred to collectively as Braak stage 0). Subsequently, the transentorhinal and entorhinal
cortices, followed by the hippocampal formation, are the first areas of the cerebral cortex to
accumulate tau pathology (Braak stages 1-2). The limbic areas and temporal neocortex then
follow (Braak stages 3-4), and finally, other neocortical association areas (such as the SFG) and
primary neocortical areas are involved (Braak stages 5-6)% %. Since the accumulation of
neurofibrillary inclusionsis the best correlate of clinical decline, after neuronal loss”, we
reasoned that profiling matched EC and SFG samples across different Braak stages would allow
usto isolate the effect of disease progression on cell types and cell type subpopulations.

A challenge in characterizing the impact of disease progression on different cell type
subpopulationsis that these subpopulations need to be defined in away that isindependent from
the effect of disease progression. Typically, cdl type subpopulations are defined by sub-grouping
cells of the same cell type through cluster analysis (i.e. clustering), followed by examination of
marker gene expression in the resulting clusters. To remove the effect of disease progression on
clustering, we performed, prior to clustering, cross-sample alignment®®*° of the data from each
brain region using scAlign (see Methods), which learns alow-dimensional manifold (i.e. the
alignment space) in which cells cluster by biological function independent of technical and
experimental factors®. Importantly, after identifying clusters in the alignment space, we used the
original data for subsequent analyses involving examination of gene expression, such as
identifying differentially expressed genes between clusters.

Changesin cell type composition during neuropathological AD progression

After quality control (see Methods), we recovered 42,737 cdlls from the EC and 64,257 cells
from the SFG. Examination of the average number of genes and unique molecular identifiers
(UMIs) detected per cell showed similar or superior transcript coverage compared to previously
published AD snRNA-seq datasets™ % (Extended Data Fig. 1a,b).

After cross-sample alignment, we performed clustering and recovered 18 clusters in the EC and
20 clustersin the SFG. In both brain regions, clusters demonstrated spatial grouping in t-
stochastic neighborhood embedding (tSNE) that was largely uncorrelated with the individual of
origin (Fig. 1b,c). Furthermore, clusters showed specific expression of cell type markers and
grouped in amanner consistent with their expression of cell type markersin hierarchical
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clustering (Fig. 1d,e, see Methods). For comparison, we also performed clustering without cross-
sample alignment, which resulted in many clusters that were defined by individual of originin
addition to cell type (Extended Data Fig. 1c-f). Having confirmed the effectiveness of cross-
sample alignment in removing the effect of technical and experimental factors on clustering, we
then assigned clusters to major brain cell types based on their expression of cell type markers
(Fig. 1d,e, see Methods).

Next, to assess whether the cell type composition of the EC and SFG changes with disease
progression, we aggregated clusters assigned to the same cell type for each individual and then
computed the relative abundance of each cell type in each individual. We tested the statistical
significance of changesin relative abundance using beta regression® (see Methods), which is
suitable for variables ranged from O to 1. After correcting for multiple testing (Holm’s method,
see Methods), we found a statistically significant increase in the relative abundance of microglia
inthe EC (Fig. 1f) in Braak stage 6 compared to Braak stage 0, suggestive of microgliosis. In the
SFG, however, we failed to find statistically significant changes in the relative abundance of
microglia throughout disease progression (Fig. 1g). Asfor other cell types, we did not detect
changes in relative abundance that were statistically significant after correction for multiple
hypothesis testing. However, we observed a downward trend in the relative abundance of EC
excitatory neuronsin Braak stages 2 (Punagjusted = 0.1) and 6 (Punagjusted = 0.02), and of SFG
excitatory neurons only in Braak stage 6 (Punagjusted = 0.04), consistent with early involvement of
the EC and sparing of the SFG until late Braak stages, and the previously described selective
vulnerability of excitatory neurons relative to inhibitory neurons'® %,

Selective vulnerability of excitatory neuron subpopulations

Next, we interrogated whether a decline in the relative abundance of excitatory neurons reflected
ageneral vulnerability of al excitatory neurons, or of specific excitatory neuron subpopulations.

Previous single-cell transcriptomic studies of human and mouse cortex have shown that unbiased
clustering of excitatory neurons largely recapitulates the laminar organization of the cortex? %,
In the context of AD, tau neurofibrillary inclusions are known to preferentially accumulate in
neocortical layers 111 and V33 most likely reflecting the selective vulnerability of specific
neuronal subpopulations. Therefore, we asked whether specific excitatory neuron subpopulations
show a declinein their relative abundance with disease progression, by performing subclustering
of excitatory neurons in the EC and SFG after cross-sample alignment (see Methods).

In the EC, we discerned eight excitatory neuron subpopulations (Fig. 2a-d). These
subpopulations exhibited distinct expression of EC layer-specific genes identified in the mouse
medial EC*, which phylogenetically resembles the human caudal EC***". Notably,
subpopulation EC:Exc.s2 showed a striking ~50% decrease in its relative abundance in Braak
stage 2 compared to Braak stage 0, with no further decrease in Braak stage 6 (Fig. 2c),
suggesting depletion early in disease. EC.Exc.s4 smilarly exhibited a ~50% reduction in its
relative abundance in Braak stage 2. Both EC:Exc.s2 and EC:Exc.s4 expressed genes associated
with mouse EC layer 11 (Fig. 2¢), consistent with the fact that tau neurofibrillary inclusions are
known to accumulate preferentially in human EC layer |1 (Pre-alpha) early in AD®™. However,
not all subpopulations expressing genes associated with mouse EC layer 11 showed similar levels
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of early vulnerability. For example, the relative abundance of EC:Exc.s6 was relatively stable
across disease progression. Also, we failed to find evidence of selective vulnerability in neuronal
subpopul ations expressing genes associated with mouse EC layer 111 (Pre-beta) or V/VI (lamina
principalis interna, abbreviated Pri).

To identify molecular markers of selectively vulnerable excitatory neuron subpopulationsin the
EC, we ingpected transcript levels of genes differentially expressed between pairs of
subpopulations and curated a set of genes which were specifically expressed by no more than
four subpopulations (Extended Data Fig. 2). We found that EC:Exc.s2 and EC:Exc.s4
specifically expressed two protein coding genes, RORB and IL1RAPL?2, and two non-coding
transcripts, CTC-340A15.2 and CTC-535M15.2 (Fig. 2c). RORB encodes a transcri g)ti on factor
known as amarker and developmental driver of layer IV neuronsin the neocortex®**, but is also
expressed by neuronsin other layers. ILIRAPL2 encodes a membrane protein and is located
within the Xg22 region, which has been linked to mental retardation*" *. Little is known about
the non-coding transcripts CTC-340A15.2 and CTC-535M15.2 in the context of neuronal identity
and function.

In addition to identifying molecular markers of the selectively vulnerable EC:Exc.s2 and
EC:Exc.s4 neurons, we also enumerated genes that were differentially expressed in EC:Exc.s2
and EC:Exc.s4 compared to all other excitatory neuronsin the EC, controlling for differences
across individuals (see Methods). We found that genes with higher expression in EC:Exc.s2 and
EC:Exc.s4 were enriched for axon-localized proteins and voltage-gated potassium channels,
whereas genes with lower expression in EC:Exc.s2 and EC:Exc.s4 were enriched for synapse-
and dendrite-localized proteins and pathways involving Rho GTPase signaling, ion homeostasis,
and neurotransmitter receptor signaling (Extended Data Fig. 3, Supplementary Table 1).

Having identified and characterized selectively vulnerable excitatory neuron subpopulationsin
the EC, we next examined excitatory neuron subpopulations in the SFG. Similar to previous
studies?® 2, we found that excitatory neuron subpopulations in the SFG (12 in total) expressed
distinct sets of neocortical layer-specific genes (Fig. 2b,d), recapitulating the laminar
organization of the neocortex. Interestingly, two out of three subpopulations that expressed the
four markers RORB, IL1RAPL2, CTC-340A15.2, and CTC-535M15.2 — namely SFG:Exc.s5 and
SFG:Exc.s2 — trended towards decreased relative abundance only in Braak stage 6 (Fig. 2d;
SFG:EXC.S5 Pynagjusted = 0.008, SFG:EXC.S2 Pynagjusted = 0.3), consistent with the late appearance
of neurofibrillary inclusionsin the SFG at Braak stage 5. Given that RORB is known to function
as adevelopmental driver of neuronal subtype identity® *, we hypothesized that SFG:Exc.s5
and SFG:Exc.s2 may be homologous to selectively vulnerable excitatory neuron subpopulations
in the EC. To test this hypothesis, we calculated the Pearson correlation coefficient between the
expression profiles of SFG and EC subpopulations and found that SFG:Exc.s5 and SFG:Exc.s2
were indeed most smilar to EC:Exc.s4 and EC:Exc.s2 (Fig. 2e), consistent with the reported
homology between deep layer neocortical excitatory neurons and EC excitatory neurons™.
Furthermore, this correspondence was preserved when we mapped subpopulations in the EC to
those in the SFG by performing cross-sample alignment for both brain regionsjointly (Extended
DataFig. 4).
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Although the decrease in the relative abundance of SFG:Exc.s2 and SFG:Exc.s5 in Braak stage 6
was not statistically significant after correction for multiple testing, we asked if we could detect
signs of selective vulnerability in neocortical RORB-expressing excitatory neuronsin an
independent dataset with a larger sample size. To this end, we reanalyzed data from Mathys et al.
24 which profiled the prefrontal cortex from 24 AD cases and 24 healthy controls, with our
cross-sample alignment pipeline and performed subclustering of excitatory neurons. In the
Mathys et al. dataset, we discerned 10 excitatory neuron subpopulations, each of which
expressed distinct sets of neocortical layer-specific genes (Extended Data Fig. 5a,b) similar to
Lake et al.?* and our dataset. Of these 10 subpopulations, Mathys:.Exc.s3, Mathys:Exc.s5, and
Mathys.Exc.sl expressed RORB at high levels. Importantly, we observed a statistically
significant decrease in the relative abundance of Mathys:Exc.s3 in male AD cases vs. controls
(Extended Data Fig. 5b), recapitulating the selective vulnerability observed in our dataset, which
consists only of male individuals. Furthermore, gene expression correlation analysis showed that
Mathys.Exc.s3 was the most similar to EC:Exc.s2 and EC:Exc.s4 (Extended Data Fig. 5¢), again
suggesting homology between selectively vulnerable excitatory neurons in the neocortex and
thosein the EC.

Considering the Mathys et al. dataset* together with our dataset, it appears that while not all
RORB-expressing excitatory neuron subpopulationsin the neocortex showed signs of selective
vulnerability, those that did (SFG:Exc.s5, SFG:Exc.s2, Mathys.Excs3) showed similarities to
RORB-expressing excitatory neuronsin the EC, all of which showed signs of selective
vulnerability. Furthermore, gene expression correlation analysis showed that SFG:Exc.s5,
SFG:Exc.s2, Mathys:Excs3 mapped to RORB+/CMAHP+ excitatory neurons found in
neocortical layers 111-V (Extended Data Fig. 6), a molecularly-defined human excitatory neuron
subpopulation described in the Allen Brain Atlas, located in the neocortical layers most
vulnerable to neurofibrillary inclusions®.

Validation of the selective vulnerability of RORB-expressing excitatory neurons

To validate our snRNA-seg-based finding that RORB-expressing excitatory neuronsin the EC
were highly vulnerable in AD, we performed multiplex immunofluorescence on post-mortem
samples from alarger cohort of individuals (Table 1). Specifically, we quantified the proportion
of excitatory neurons and RORB-positive excitatory neurons in the EC superficial layers (above
layer IV — laminadissecans) in postmortem tissue from 26 individuals spanning Braak stage 0 to
6, who were devoid of non-AD neuropathological changes (Table 1). Given the heterogeneity of
the EC , the areas selected for analysisin the caudal EC were delimited using rigorous
cytoarchitectonic parameters to minimize the odds of artifactual results (Fig. 3a-c, Extended Data
Fig. 7, see Methods). We used multiplex immunofluorescence™ to label cells (DAPI), excitatory
neurons (TBR1), RORB+ neurons, and phospho-tau neuronal inclusions (CP-13, Ser 202). We
failed to find gatistically significant changes in the proportion of excitatory neurons overall
(TBR1+) across disease progression (Fig. 3d). However, we observed a substantial reduction in
the proportion of RORB+ neurons among excitatory neurons in Braak stages 2-4 and 5-6
compared to Braak stages 0-1 (Fig. 3e). Furthermore, by analyzing a subset of cases, we detected
phospho-tau (CP-13) preferentially in RORB+ compared to RORB- excitatory neurons (Fig. 3f-
0). Thus, the above results substantiate that RORB-expressing excitatory neurons are highly
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vulnerable in AD and that their depletion islikely a consequence of accumulating tau
neurofibrillary changes.

Inhibitory neuron subpopulationslack consistentent differencesin vulnerability

Having validated the selective vulnerability of a subpopulation of excitatory neurons, we
proceeded to examine inhibitory neurons. It has previously been reported that inhibitory neurons
are more resistant to tau pathology compared to excitatory neuronsin AD'® . To investigate
whether there are differences among inhibitory neuron subtypes in resilience, we performed
subclustering of inhibitory neurons in our dataset, discerning 11 subpopulations in the EC and 10
subpopulations in the SFG (Fig. 4a-d). In both brain regions, inhibitory neuron subpopulations
expressed distinct sets of inhibitory neuron subtype markers (Fig. 4a-d), consistent with previous
studies? %, In the EC, we did not observe statistically significant changesin the relative
abundance of any subpopulation of inhibitory neurons (Fig. 4c). In the SFG, the relative
abundance of a RELN+/NDNF+ subpopulation — SFG:Inh.s6 — showed a statistically significant
decrease in Braak stage 2 and trended downwards in Braak stage 6 (Punagjused = 0.04; Fig. 4d).
However, given that RELN+/NDNF+ inhibitory neuronsin the EC (EC:Inh.s2) and prefrontal
cortex (Mathys:Inh.s6; Extended Data Fig. 8) did not show similar changes, the biological
significance of the observed depletion of RELN+/NDNF+ inhibitory neuronsin the SFG is
unclear.

Overall, we found no consistent differences among molecularly-defined inhibitory neuron
subtypes in terms of resilience or vulnerability in AD.

Transcriptome of AD-associated reactive astr ocytes suggests loss of homeostatic functions

Glial cells have emerged asimportant playersin AD. We found an increase in the relative
abundance of microgliain EC in with AD progression (Fig. 1f), consistent with microgliosis.
Next, we asked whether a specific transcriptional state of microgliais associated with AD in our
dataset. Recent single-cell profiling of microglia from mouse models of AD identified disease-
associated microglia™ (DAM), the transcriptional signature of which overlap only partially with
that of human microglia found in AD*. Considering the possibility that DAMs may cluster
separately from homeostatic microglia after cross-sample alignment, we performed subclustering
of microgliain our dataset, discerning 4 subpopulationsin both the EC and SFG (Extended Data
Fig. 9a-b). However, we were unable to detect the expression the mgjority of homeostatic
microglia markers and DAM markersin our dataset or in Mathys et al. (Extended Data Fig. 10d-
f), which may be due to the relatively low number of genes captured in microglia compared to
other cdll types (Fig. 1h-i).

We next turned our attention to astrocytes. While reactive astrocytes are ubiquitously associated
with AD pathology®” %, only few studies to date have directly profiled reactive astrocytes due to
the difficulty of specifically isolating reactive astrocytes™ *°. Similarly to our interrogation of
microglia, we asked if reactive astrocytes would cluster separately from non-reactive astrocytes
after cross-sample alignment. After subclustering of astrocytes in our dataset, we discerned 4
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subpopulations in the EC and 5 subpopulations in the SFG (Fig. 5a-d). In each brain region, one
subpopulation (EC:Astro.s3 and SFG:Astro.s2) expressed dramatically higher levels of GFAP
(Fig. 5¢,d). Furthermore, SFG:Astro.s2 showed a statistically significant increasein its relative
abundance in Braak stage 6 (Fig. 5d), consistent with reactive astrogliosis. EC:Astro.s3 and
SFG:Astro.s2 (which we will refer to as GFAPig, astrocytes) aso expressed CD44 and HSPBL,
previously reported markers of pan-reactive astrocytes™, and TNC, previously shown to be
upregulated in stab-wound reactive astrocytes™® > (Fig. 5¢,d). In terms of downregulated genes,
GFAP}gn astrocytes expressed significantly lower levels of genes associated with glutamate
homeostasis (SL.C1A2, SL.C1A3, GLUL, S.C6A11) and synaptic adhesion/maintenance (NRXNL,
CADMZ2, PTN, GPC5), suggesting aloss of homeostatic function.

Examination of all differentially expressed genes in GFAPg, astrocytes compared to other
astrocyte subpopulations showed significant overlap with differentially expressed genes from
reactive astrocytesin a mouse mode of spinal cord injury™ (Fig. 5€). Overlapping
downregulated genes included the previously noted genes associated with glutamate homeostasis
(SLC1A2, SLC1A3, GLUL, SLC6A11) and synaptic adhesion/maintenance (NRXN1, CADM2,
PTN, GPCS5; Fig. 5f,g).

Finally, to confirm the presence of GFAPig» astrocytes in an independent dataset, we performed
subclustering of astrocytes from Mathys et al.** after cross-sample alignment, which yielded 4
subpopulations (Extended Data Fig. 10a,b). Indeed, we found that Mathys:Astro.s3 (also referred
to as Mathys.GFAPign in Extended Data Fig. 10) behaved identically compared to GFAPygh
astrocytes from the EC and SFG in terms of upregulating reactive astrocyte markers and
downregulating genes associated with glutamate homeostasis and synaptic adhesion (Extended
DataFig. 10b). Furthermore, the differentially expressed genes in Mathys:Astro.s3 overlapped
highly with those in GFAP},¢» astrocytes from the EC and SFG (Extended Data Fig. 10c).

DISCUSSION

Selective vulnerability is recognized as a fundamental feature of neurodegenerative diseases,
including AD. Past studies have characterized the most vulnerable neuronsto AD based based on
topography and morphology. For instance, EC layer 1 stellate cells are more vulnerable than EC
layer |11 pyramidal cells™***. However, the molecular signature of selectively vulnerable neurons
islargely unknown. In this study, we performed snRNA-seq of well-characterized postmortem
brain tissue from individuals spanning the neuropathological progression of AD, followed by
cross-sample data alignment to identify and characterize selectively vulnerable neuronal
populationsin the caudal EC and the SFG (Brodmann area 8), representing areas that develop tau
neurofibrillary changes at early and late AD stages, respectively.

The EC and the transentorhinal region, hubs for integrating information from hipocampal,
cortical and subcortical regions™, are the first cortical fields to accumulate tau-positive
neurofibrillary inclusions followed by neuronal lossin AD. Neuronsin EC layer |1 of the lateral,
intermediate and caudal subfields are first affected” ® '* ™ *°, The EC isarelatively
phylogenetically conserved brain structure in mammals” ** *°. The rodent EC can be subdivided
into medial (MEC) and lateral (LEC) portions based on cytoarchitectonics and projections. In
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primates, the EC has been subdivided into up to 16 regions that show differential abundances of
several neuronal markers, distinct projections, and variation of laminar features* *°. During
evolution, the position of the EC changed, and the mouse MEC (the source of our layer-specific
marker genes) is generally regarded as the equivalent of the caudal EC in humans (our sampling
location)®”. Irrespective of the parcellation scheme adopted, the EC is a heterogeneous structure
and cytoarchitectonic considerations matter when analyzing and sampling thisregion to avoid
biased observations™.

Layer Il features a mixture of neurona subpopulations. Stellate (pre-alpha) and pyramidal cdlls,
which are deemed to be excitatory, predominate®, but multipolar and bipolar neurons are also
abundant. Stellate cells are considered the most vulnerable neuron in AD. However, rigorous
quantitative studies focusing on stellate vs. other neuronsin layer 2 changesin AD are lacking
because stellate cells show heterogeneous morphologies.

Here, we discovered that in the caudal EC, specific excitatory neuron subpopulations defined by
SnRNA-Seq were selectively vulnerable, exhibiting a ~50% decline in their relative abundance
already at early AD stages. These neurons expressed genes associated with EC layer 11,
consistent with the known vulnerability of neurons in the superficial layers of the EC**,

Importantly, we identified RORB as a marker of these selectively vulnerable excitatory neuron
subpopulations, and subsequently validated the selective depletion of RORB-expressing
excitatory neuronsin the EC along AD progression by quantifying these neuronsin alarger
cohort of individuals using multiplex immunofluorescence. Furthermore, we also showed that
tau neurofibrillary inclusions, achief AD neuropathological hallmark, preferentially accumulated
in RORB-expressing excitatory neurons.

In neocortical areas, layers 111 and V are the first to accumulate tau neurofibrillary changesin
AD*3* We found that in the SFG, RORB-expressing excitatory neuron subpopulations
showed signs of selective vulnerability only latein AD, in line with the late appearance of
neurofibrillary changes in the SFG, although the decrease in their relative abundance did not pass
our threshold for statistical significance after correction for multiple testing. Interestingly, we
found through correlation analysis of gene expression and also EC-SFG cross-sample alignment
that RORB-expressing excitatory neuron subpopulationsin the SFG showing signs of selective
vulnerability were similar to those in the EC in terms of their transcriptomic profile. Moreover,
our likely vulnerable ROBR-expressing neurons in the SFG had similar expression profiles with
RORB-expressing neurons found in neocortical layers 11-V*!, To verify the reproducibility of
our findings, we re-analyzed the data from Mathys et al.* using our cross-sample alignment
approach. Although Mathys et al. probed a different neocortical region (the prefrontal cortex),
we found that one of their RORB-expressing excitatory neuron subpopulations also exhibited
selective vulnerability and mapped to our RORB-expressing excitatory neuron subpopulationsin
the EC. Considering our dataset jointly with the Mathys et al. dataset, it appears that in the
neocortex, while not all RORB-expressing excitatory neuron subpopulations are selectively
vulnerable, those that are vulnerable are transcriptomically similar to selectively vulnerable
neuronsin the EC. Given that RORB is known to act as a developmental driver for neuronal
subtype identity in the neocortex®®“*°, we speculate that the vulnerability of RORB-expressing
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excitatory neuronsin both the EC and neocortex may stem in part from genetically determined
functional properties or connectivity.

A previous study suggested changes in calbindin- and parval bumin-positive neuronsin EC layer
Il in AD*'. Here, we found no evidence of selective vulnerability in inhibitory neurons
subpopulationsin EC layer |1 or any other layer. Inhibitory neuronsin the EC superficia layers
show a gradient of abundance in the various EC regions®, which could confound the results. But,
given that we used strict cytoarchitectonic criteriato sample the EC, it isunlikely that our results
reflect comparisons of different EC areas across the cases. Also, evidence suggest that these
inhibitory neurons undergo changes in morphology and function, rather than loss™. Thus, our
results do not preclude the possibility that inhibitory neuron subpopulations may be differentially
affected by AD progression at the morphological and likely functional level, even if neuronal
loss is not apparent.

Until recently, AD research was mostly neuron-centric, but accumulating evidenceis
highlighting the importance of glial changesin the pathogenesis of AD. Although we could not
detect the disease-associated microglia signature®™ * in our study, likely due the low number of
transcripts recovered in microglia, we discovered an astrocyte subpopulation expressing high
levels of GFAP, which we termed GFAP,ig, astrocytes, in both the EC and SFG, as well asin the
prefrontal cortex from Mathys et al.** We found that GF APy gh astrocytes also expressed higher
levels of other genes associated with reactive astrocytes, while expressing lower levels of genes
involved in glutamate homeostasis and synaptic adhesi on/maintenance, which suggests loss of
normal astrocyte homeostatic functions. Furthermore, we found a high degree of overlap
between genes differentially expressed in GFAPi¢, astrocytes and genes differentially expressed
in reactive astrocytes from a mouse model of spinal injury®*. Thus, we believe that GFAPigh
astrocytes correspond to reactive astrocytes in AD, which may have compromised homeostatic
function.

This study has several methodological strengths. First, the postmortem cohort used for snRNA-
seg and histopathological validation consists of well-characterized cases, devoid of non-AD
pathology. To minimize confounders in the snRNA-seq results, we only used males with an
APOE €3/e3 genotype. Second, the human cortex displays a complex parcellation scheme based
on cytoarchitectonic characteristics that reflect differences in the abundance of various cell
subpopulations, with implications for function, projections, and differential vulnerability in AD.
Many RNA-seq studies of AD used broad descriptions to define the sampled brain areas, making
it challenging to understand if they were sampled from the same subfields. We used strict
cytoarchitectonic criteria to sample brain regions for snRNA-seq and histopathological
validation. Third, unlike previous snRNA-seq studies of human AD, we focused on differentially
expressed genes between cell type subpopulations, allowing us to make comparisons within
individuals while controlling for differences among individuals, instead of making comparisons
across groups of individuals (see Fig. 1 and Extended Data Fig. 2), which can be influenced by
confounding factors and require larger sample sizes to make robust inferences. Fourth, by
validating our findings using a novel multiplex immunofluorescence approach that enables
probing a higher number of antibodies simultaneously®®, we could quantify the relative
abundance of excitatory neurons and RORB+ neurons and also demonstrate that RORB+
excitatory neurons were preferentially affected by neurofibrillary inclusions.
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A limitation of our study is that we only included male APOE €3/e3 individuals in the snRNA-
Seq analysis. We included females and individuals carrying the APOE €4 allele associated with
AD risk in our histopathological validation, but caution should be taken before generalizing our
results to these groups. Future studies will provide a systematic analysis of the impact of sex and
APOE status on selective vulnerability in AD.

In conclusion, our study contributes, to the best of our knowledge, the first characterization of
selectively vulnerable neuronal populationsin the entorhinal cortex in AD using sSnRNA-seq.
These results will inform future studies of the mechanistic basis of selective vulnerability in both
animal and in vitro models, such as human iPSC-derived neurons, in which CRISPRi/a
technology enables the dissection of functional consequences of transcriptomic changes™ .
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ONLINE METHODS

Post-mortem cohort

This study was approved by and University of Sao Paulo ingtitutional review board and deemed
non-human subject research by the University of California, San Francisco (UCSF). De-
identified human postmortem brain tissue was supplied by the Neurodegenerative Disease Brain
Bank (NDBB) at UCSF, and the Brazilian BioBank for Aging Studies (BBAS) from the
University of Sao Paulo®. The NDBB receives brain donations from patients enrolled in the
UCSF Memory and Aging Center research programs. The BBAS is populationIbased and
houses a high percentage of pathologically and clinically normal control subjects who are not
available in the NDBB. Neuropathological assessments were performed using standardized
protocols and followed internationally accepted criteria for neurodegenerative diseases™®. The
brain samples used in this study contained a broad burden of AD-type pathology and were
selected to be free from non-AD pathology including Lewy body disease, TDP-43
proteinopathies, primary tauopathies, and cerebrovascular changes. Argyrophilic grain disease
(AGD) was not an exclusion criterion based on its high prevalence and lack of correlation with
significant clinical symptoms®*®’. In total, the cohort included 10 cases who underwent snRNA-
seq, representing Braak stages O, 2 and 6, all ApoE 3/3, and 26 cases who underwent
neuroanatomical analysis, representing Braak stages 0-6> %, ranging from 2-5 individuals per
Braak stage. Table 1 depicts the characteristics of the 31 cases.

| solation of nucle from frozen post-mortem human brain tissue

Isolation of nuclei was performed similarly as previously described®. Briefly, frozen brain tissue
was dounce homogenized in 5 ml of lysis buffer (0.25 M sucrose, 25 mM KCI, 5 mM MgCl,, 20
mM Tricine-KOH, pH 7.8, 1 mM DTT, 0.15mM spermine, 0.5 mM spermidine, 1X protease
inhibitor (Sigma, 4693159001), and RNAse Inhibitor (Promega, N2615)). Following initial
dounce homogenization, IGEPAL-630 was added to a final concentration of 0.3% and the
sample was homogenized with 5 more strokes. The solution was then filtered through a 40 um
cell filter and mixed with Optiprep (Sigma, D1556-250ML) to create a 25% Optiprep solution.
This solution was then layered onto a 30%/40% Optiprep gradient and centrifuged at 10,000g for
18 minutes using the SW41-Ti rotor. The nuclei were collected at the 30%/40% Optiprep
interface.

Droplet-based single-nucleus RNA-sequencing

Droplet-based single-nucleus RNA-sequencing (SnRNA-seq) was performed using the
Chromium Single Cell 3’ Reagent Kits v2 from 10X Genomics. Nuclel were resuspended to a
concentration of 1000 nuclei/uL in 30% Optiprep solution before loading according to
manufacturer’s protocol, with 10,000 nuclei recovered per sample as the target. cDNA fragment
analysis was performed using the Agilent 4200 TapeStation System. Sequencing parameters and
quality control were performed as described by The Tabula Muris Consortium®.

Pre-processing of sSnRNA-seq data

Sequencing data generated from snRNA-seq libraries were demultiplexed using Cellranger
(version 2.1.0) cellranger mkfastg. To align reads, we first generated our own pre-mRNA
GRCh38 reference genome using cellranger mkref in order to account for introns that may be
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eliminated using the default GRCh38 reference genome. Alignment and gene expression
guantification was then performed using cellranger count with default settings.

Exploratory analysisof EC and SFG data

For each sample, the raw gene-barcode matrix outputted by Cellranger (version 2.1.0) was
converted into a SngleCellExperiment (SCE) object using the read10xCounts function from the
DropletUtils package™ (version 1.2.2). Droplets containing nuclei were then distinguished from
empty droplets using DropletUtils::emptyDrops with the parameter FDR = 0.01, and then nuclel
(hereon also referred to as“ cells’) with less than 200 UMIs were discarded. Afterwards, SCE
objects corresponding to each sample were merged into a single SCE object for downstream
processing and analyses.

For normalization of raw counts, to avoid artifacts caused by data sparsity, the approach of Lun
et al.”* was adopted: For each sample, cells were first clustered using a graph-based method
followed by pooling counts across cells in each cluster to obtain pool-based size factors, which
were then deconvoluted to yield cell-based size factors. Clustering was performed using the
quickCluster function from the scran package™ (version 1.10.2) with the parameters method =
‘igraph’, min.mean = 0.1, irlba.args = list(maxit = 1000), and the block parameter set to a
character vector containing the sample identity of each cell. Size factors were computed using
scran: :computeSumFactors with the parameter min.mean = 0.1 and the cluster parameter set to a
character vector containing the cluster identity of each cell; cells with negative size factors were
removed. Normalization followed by log-transformation was then performed using the normalize
function from the scater package” (version 1.10.1).

Prior to dimensionality reduction, highly variable genes were identified for each sample
separately using the approach of Lun et al.”% Each gene' s variance was decomposed into a
technical and biological component. Technical variance was assumed as Poisson and modeled
using scran:: makeTechTrend. The mean-variance trend across genes was fitted using
scran::trendVar with parameters use.spikes = FALSE and loess.args = list(span = 0.05); and the
trend slot of the resulting fit object was then set to the output of scran::makeTechTrend.
Biological variance was extracted from the total variance using scran::decomposeVar with the
above fit object asthe input. Finally, highly variable genes that were preserved across samples
were identified by combining the variance decompositions with scran::combineVar, using
Stouffer’s z-score method for meta-analysis (method = ‘Z'), which assigns more weight to
samples with more cédlls.

For initial data exploration, genes with combined biological variance greater than O were used as
the feature set for dimensionality reduction by principle component analysis using
scran::parallelPCA, which uses Horn's parallel analysis to decide how many principle
components to retain, with parameter approx = TRUE. Clustering was then performed on the
retained principle components using the FindClusters function from the Seurat package™
(version 2.3.4) with parameter resolution = 0.8, which required conversion of SCE objects to
Seurat objects using Seurat::Convert. To visualize the clusters, t-stochastic neighborhood
embedding (tSNE) was performed on the retained principle components using scater::runTSNE
with parameters perplexity = 30 and rand_seed = 100.
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Cross-sample alignment of SFG and EC data

Initial data exploration revealed that clustering was driven by individual of origin in addition to
cell type identity, which makesit difficult to analyze changes in the relative abundance or gene
expression of agiven cell type across disease progression or brain regions. To recover clusters
defined by mainly by cell type identity, data was aligned across samples from each brain region
using with scAlign®* (version 1.0.0), which leverages a neural network to learn alow-
dimensional alignment space in which cells from different datasets group by biological function
independent of technical and experimental factors. As noted by Johansen & Quon®, scAlign
converges faster with little loss of performance when the input datais represented by principal
components or canonical correlation vectors. Therefore, prior to running scAlign, the top 2000
genes with the highest combined biological variance were used as the feature set for canonical
correlation analysis (CCA), which was implemented using Seurat: : RunMultiCCA with parameter
num.cc = 15. The number of canonical coordinates to use for scAlign was determined by the
elbow method using Seurat:: MetageneBicorPlot. scAlign was then run on the cell loadings along
the top 10 canonical correlation vectors with the parameters options = scAlignOptions(steps =
10000, log.every = 5000, architecture = ‘large’, num.dim= 64), encoder.data = ‘cca’,
supervised = ‘non€e’, run.encoder = TRUE, run.decoder = FALSE, log.results = TRUE, and
device = ‘CPU’. Clustering was then performed on the aligned canonical coordinates from
scAlign using Seurat:: FindClusters with parameter resolution = 0.8. Clusters were visualized
with tSNE using Seurat:: RunTSNE on the aligned canonical coordinates with parameter do.fast
= TRUE. Alignment using scAlign followed by clustering was also performed for all samples
from both brain regionsjointly.

To assign clusters identified in the aligned subspace generated by scAlign to major brain cell
types, the following marker genes were used: SLC17A7 and CAMK2A for excitatory neurons,
GAD1 and GAD2 for inhibitory neurons, SLC1A2 and AQP4 for astrocytes, MBP and MOG for
oligodendrocytes, PDGFRA and SOX10 for oligodendrocyte precursor cells (OPCs), CD74 and
CX3CR1 for microgliasmyeloid cells, and CLDNS5 and FLT1 for endothelial cells. Clusters
expressing markers for more than one cell type, most likely reflecting doublets, were removed
from downstream analyses.

Céll type-specific subclustering (subpopulation) analysis

To identify cell type subpopulations, cells from all samples belonging to a given major cell type
were extracted for sample-level re-computation of size factors and highly variable genes. CCA
was then performed using the top 1000 genes with the highest combined biological variance as
the feature set, followed by alignment with scAlign, with steps = 2500. Thefirst 10 to 12
canonical coordinates were retained for subclustering (using resolution = 0.4) and tSNE.
Analyzing cells from each brain region separately, marker genes for subpopulations were
identified using scran::findMarkers with parameters direction = ‘up’, pval.type = ‘any’, Ifc =
0.58, and the block parameter set to a character vector corresponding to each cell’s sample
identity. Subpopulations that expressed markers for more than one cell type were removed from
downstream analyses.

I dentification of differentially expressed genesin cell type subpopulations
To identify genes differentially expressed by a cell type subpopulation compared to all other
subpopulations in a way that accounts for true biological replication (i.e. at the level of
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individuals), UMI counts of cells from the same individual belonging to the subpopulation of
interest or all other subpopulations were summed to obtain “pseudo-bulk” samples, which were
then analyzed using edgeR"™ (version 3.24.3) following the approach recommended by
Amezquita et al.”® A false-discovery rate cutoff of 0.1 was used.

Heatmap visualization of cell-type and subpopulations-specific gene expression

For heatmaps of cell type- or subpopulation-specific gene expression shown in the figures, log-
scaled expression values (counts per million, CPM) were averaged across cellsin each cluster
and then scaled row-wise to enhance visualization of differences among clusters.

Networ k visualization and pathway enrichment analysis of differentially expressed genes
Differentially expressed genes were visualized as an association network using String-db (v11)”’
and Cytoscape’ (version 3.7.2), with the association confidence score cutoff set to 0.5. The
network layout was optimized for visualization using the yFiles Organic Layout. Enrichment for
Gene Ontology terms and Reactome Pathways were also obtained through String-db, using a
false-discovery rate cutoff of 0.05.

Betaregresson

For each brain region, to determine the statistical significance of changesin therelative
abundance of a given cluster or cell type across disease progression, the relative abundance was
computed for each sample and treated as an independent measurement and beta regression®* was
performed using the betareg package™ (version 3.1-1), using the formula rel ative.abundance ~
braak.stage for both the mean and precision models, and the bias-corrected maximum likelihood
estimator (type = ‘BC’). The statistical significance of changes in the proportion of TBR1+ cells
and RORB+ cells among TBR1+ cells obtained from immunofluorescence validation were
assessed similarly as above using betaregression. To correct for multiple hypothesis testing for
each family of tests (e.g. testing all cell type subpopulations for a brain region), Holm’'s method
was used to adjust P values obtained from beta regression to control the family-wise type | error
rate at 0.05.

Entorhinal cortex layer-specific genes

Dueto the lack of published data on layer-specific genes for the human EC, layer-specific genes
in the mouse medial entorhinal cortex (M EC) were obtained from Ramsden et al.*. (The MEC is
the most phylogenetically similar to the human caudal EC®* " used in this study.) Specifically,
genes with expression specific for layer 11, I11, and V/VI of the mouse MEC according to the 4
Dataset excel spreadsheet in the supplemental information of Ramsden et al. were mapped to
human genes, and cross-referenced against genes differentially expressed across EC excitatory
neuron subclusters (obtained using scran::findMarkers without setting direction = ‘up’).

Re-analysisof the Mathys et al. dataset

To re-analyze the data from Mathys et al.?* using our cross-sample alignment approach, the
filtered matrix of UMI counts (“filtered_count_matrix.mtx”) and associated row and column
metadata were downloaded from The AMP-AD Knowledge Portal (Synapse ID: syn18485175).
Since clinical metadata was not provided in the column metadata, the individual 1D (“projid”
column in the column metadata) was cross-referenced with the official ROS-MAP clinical
metadata (“ROSMAP_Clinical_2019-05 v3.csv”, synapse ID: syn3191087), which was then
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cross-referenced with the additional metadata provided in Supplementary Table 1 and 3 from
Mathys et al. Thefiltered UMI counts matrix and the associated row and column metadata were
then converted to a SngleCell Experiment object for analysis. The cell type assignments from
Mathys et al. provided in the column metadata were used for subclustering.

Quantitative histopathological assessment using multiplex immunofluorescence

Delineation of the caudal EC. We used archival paraffin blocks from the UCSF/NBDD and
BBAS (Table 1). First, we collected blocks sampling the hippocampal formation anterior to the
lateral genicular body from the 10 cases used for the snRNAseq and another 30 cases spanning
all Braak stages. To determine if the caudal EC region was present, 8um thick sections of each
block underwent hematoxylin and eosin staining (Extended Data Fig. 8A). We took digital
images of the stained sections and aligned each one the most approximate section from a large
collection of 400 um thick serial coronal sections of whole-brain hemispheres stained for
gallocyanin provided by co-author Heinsen®® # (Extended Fig Data 8B). We eliminated blocks
from five cases used for snRNA-seq and four of the extra cases for lack of caudal EC. Next,
again with the aid of the paired gallocyanin sections, we delineated the borders of the caudal EC
in each case (Extended Data Fig. 8A).

The EC is considered a peri- or allocortex, depending on the author'?. EC parcellation and
cytoarchitectonic definitions have been a matter of debate, and here, we are adopting the
cytoarchitectonic definitions proposed by Heinsen and colleagues™®, which is based on the
examination of thick histological preparations and considered the definitions proposed by
Insausti and Amaral (6 layers)®* and Braak and Braak (3 layers)*?. We adopted Arabic numerals
for naming the EC layers to avoid confusion with neocortical layer nomenclature that uses
Roman numerals.

In thick histological sections, the caudal entorhinal region features well-delineated clusters of
stellate or principal cells in layer 11 (or pre-alpha clusters) and two lamina dissecants®. The
external dissecants correspond to layer IV of Insuasti’ and lamina dissecans of Braak and Braak'
and Rose®™. The internal dissecans is hardly appreciated in thin sections but easy to visualize in
thick sections. It roughly corresponds to layer V¢ of the caudal subregions of Insuasti’.

Multiplex immunofluorescence. Next, for each case, an 8um thick, formalin-fixed and paraffin-
embedded coronal section underwent immunofluorescence against TBR1, RORB and phospho-
tau(CP-13) as described below. TBR1, or T-box, brain, 1 is atranscription factor protein that has
a role in differentiation of glutamatergic neurons and is a marker for excitatory neurons,
including EC excitatory neurons™ %. In summary, sections were deparaffinized and incubated in
3.0% hydrogen peroxide (Fisher, H325-500) in methanol to inactivate endogenous peroxidase.
Antigen retrieval was performed in 1X TrissEDTA HIER solution (TES500) PBS with 0.05%
Tween 20 (PBS-T) at pH9 in an autoclave at 12101°C for five_Z'minutes. To reduce nonspecific
background staining, sections were blocked with 5% Milk/PBS-T. To avoid cross-reactions
between primary antibodies that were raised against the same species, an antibody stripping step
using 0.80% B-mercaptoethanol/10% sodium dodecyl sulfate in 12.5% TrissHCL was performed
after the tyramide-signal amplification (TSA) development for RORB.

Sections were first incubated overnight in primary antibody against RORB (1:400, rabbit,
HPA008393, Millipore Sigma), which was later developed in goat anti-rabbit HRP (1:400, R-
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05072-500, Advansta) with Alexa Fluor 488 TSA (1:100, B40953, Thermo Fisher). Next,
sections were stripped of RORB primary antibody and then were incubated overnight in a
cocktail of primary antibodies against TBR1 (1:100, Rabbit, ab31940, Abcam) and CP13 (1:800,
mouse, phospho-tau serine 202, gift of Peter Davies, NY), all of which were later developed with
secondary antibodies and fluorophores: for TBR1, Alexa Fluor 546 conjugated anti-rabbit
secondary (1:200, A-11010, Thermo Fisher) was used, and for CP13, biotinylated anti-mouse
(1:400, BA-2000, Vector Laboratory) with streptavidin Alexa Fluor 790 (1:250, S11378, Thermo
Fisher) was used. Sections were then counterstained with DAPI diluted in PBS (1:5000, D1306,
Invitrogen). Finally, sections were then incubated in Sudan Black B (199664-25g, Sigma) to
reduce autofluorescence and coverslipped using Prolong antifade mounting media (P36980,
Invitrogen). A quality control slide was used to verify the efficacy of the antibody stripping
process. A detailed description of the method is provided in Ehrenberg et al.>® Sections were
scanned using a Zeiss AxioScan Slide Scanner.

Neuronal quantification. The caudal EC delineations carried out in the hematoxylin, and eosin-
stained slides were then transferred to the immunostained images. Within these borders, we
randomly placed four 500x500 um regions of interest (ROI), overlaying EC external layers (I to
[11). We then extracted the ROI for quantification in ImageJ (Fig. 3). The number of excitatory
neurons was quantified by segmenting the TBR1 signal, using athreshold to create a mask and
the segmentation editor plugin to manually remove all non-neuronal artifacts and vessels. The
number of RORB-expressing excitatory neurons compared to total cell number (based on DAPI)
was then counted using the mask of excitatory (TBR1+) neurons in the segmentation editor and
manually removing all neurons not expressing RORB. All segmentations were manually verified
for quality control. Quantification was done blinded to the neuropathological diagnosis.

We quantified phospho-tau (CP-13) data, in two ROI in a subset of the cases, using the same FlJI
protocol; CP13 + TBR1 positive neurons were counted manually, including RORB positive and
negative excitatory neurons.

DATA AVAILABILITY

The raw snRNA-seq sequencing data and unfiltered UMI count matrices are available on the
Gene Expression Omnibus (GEO) under the accession GSE147528. Single-cell data after quality
control isavailable for download in synapse.org at 10.7303/syn21788402.
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Fig. 5| GFAPigh astrocytes show signs of dysfunction in glutamate homeostasis and
synaptic support. a-b, tSNE projection of astrocytes from the EC (a) and SFG (b) in their
respective alignment spaces, colored by individual of origin (center) or subpopulation identity
(outer). c-d, Heatmap and hierarchical clustering of subpopulations and subpopulation marker
expression (top subpanel). Relative abundance of subpopulations across Braak stages (middle
subpanel). Expression of genes associated with reactive astrocytes, with median expression level
marked by line (bottom subpanel). e, Enrichment analysis of overlap between differentially
expressed genesin GFAPyig, astrocytes vs. differentially expressed genesin reactive astrocytes
from Anderson et al.>*. The number of genes in each gene set and the number of overlapping
genes are shown in parentheses, and the P values (hypergeometric test, corrected for multiple
testing using the Benjamini-Hochberg procedure) are shown without parentheses. f, Enrichment
of Reactome pathways in downregulated genes in GFAPyig, astrocytes, with selected terms
highlighted in color. g, String-db association network of downregulated genes shared between
EC and SFG GFAP},g, astrocytes that overlap with those in Anderson et al > Geneswith
stronger associations are connected by thicker lines. Genes that belong to selected gene setsin
panel f are highlighted in color.
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TABLE
Cases used for snRNA-seq
Case# Braak stage Sex Age at death APOE Sour ce
1 0 M 50 €3/e3 BBAS
2 0 M 60 €3/e3 BBAS
3 0 M 71 €3/e3 BBAS
4 2 M 72 €3/e3 BBAS
5* 2 M 77 €3/e3 UCSF
6* 2 M 87 €3/e3 UCSF
T* 2 M 91 €3/e3 UCSF
8* 6 M 72 €3/e3 UCSF
o* 6 M 82 €3/e3 UCSF
10 6 M 82 €3/e3 UCSF
Cases used for immunofluorescence validation
Case# Braak stage Sex Ageat death APOE Source
11 0 F 62 NA BBAS
12 0 M 64 €3/e3 BBAS
13 1 M 60 NA BBAS
14 1 F 64 €3/e3 BBAS
15 1 M 70 €3/e3 BBAS
16 1 F 82 NA UCSF
5* 2 M 77 €3/e3 UCSF
17 2 F 79 €3/e3 BBAS
18 2 F 81 €3/e3 UCSF
6* 2 M 87 €3/e3 UCSF
T* 2 M 91 €3/e3 UCSF
19 3 M 81 NA UCSF
20 3 M 84 NA UCSF
21 3 F 88 €3/e3 UCSF
22 3 M 89 €3/e3 UCSF
23 4 F 87 €3/e3 UCSF
24 4 M 91 €3/e3 UCSF
25 4 M 103 €3/e3 UCSF
26 5 M 77 edled UCSF
27 5 M 85 €3/e3 UCSF
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28 5 M 86 €3/e4 UCSF
29 5 F 87 €3/e3 BBAS
30 6 F 64 €3/ed UCSF
31 6 F 67 edled UCSF
8* 6 M 72 €3/e3 UCSF
o 6 M 82 €3/e3 UCSF

Table 1 | Description of post-mortem cohort.
Asterisks denote cases used both for snRNA-seq and immunofluorescence validation.
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Extended Data Fig. 1 | Data quality and initial clustering without cross-sample alignment.
a-b, Mean number of genes (a) or UMIs (b) detected per cell across individual samples for major
cell types identified in each dataset. Grubman et al.? did not resolve excitatory neurons from
inhibitory neurons. Pericytes were identified only in Mathys et al.?. Cell type abbreviations: Exc
— excitatory neurons, Oligo — oligodendrocytes, Astro — astrocytes, Inh — inhibitory neurons,
OPC — oligodendrocyte precursor cells, Micro —microglia, Endo — endothelial cells, Per —
pericytes. c-d, tSNE projection of cells from the EC (c) and SFG (d) clustered without first
performing cross-sample alignment, colored by individual of origin (center) or cluster
assignment (outer). e-f, Heatmap and hierarchical clustering of clusters and cluster marker
expression (top subpandl). Expression of cell type markers (bottom subpanel).
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Extended Data Fig. 3 | Pathway enrichment analysis of differentially expressed genesin
selectively vulnerable EC excitatory neurons. a-b, Gene Ontology Cellular Component and
Reactome Pathway enrichment analysis of highly expressed (a) and lowly expressed (b) genes,
with selected terms highlighted by color. c-d, String-db association network of highly expressed
(c) and lowly expressed (d) genesin selectively vulnerable EC excitatory neurons; genes with
stronger associations are connected by thicker lines; genes without known associations are not
shown, and genes found in selected gene setsin a-b are highlighted in color.
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Extended Data Fig. 4 | Alignment of EC and SFG maps homologous excitatory neuron
subpopulations. a, tSNE projection of excitatory neurons from the EC and SFG in the joint
alignment space, colored by subpopulation identity (top), individual of origin (middle), or brain
region (bottom). b, Heatmap and hierarchical clustering of subpopulations and subpopulation
marker expression (top subpanel). Relative abundance of subpopulations across Braak stages
(middle subpanels). Expression of selectively vulnerable subpopulation markersidentified in the
EC (bottom subpanels). Significant P values (beta regression, adjusted for multiple testing) are
shown in atable at the bottom of the panel. ¢, Sankey diagram connecting subpopulation identity
of excitatory neuronsin the EC alignment space and the SFG alignment space to subpopulation
identity in the EC+SFG alignment space.
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Extended Data Fig. 5 | Cross-sample alignment of excitatory neuronsfrom Mathys et al.
recapitulates selective vulnerability in a RORB-expressing subpopulation. a, tSNE
projection of excitatory neurons from Mathys et al.** in the alignment space, colored by
subpopulation identity (top) or individual of origin (bottom). b, Heatmap and hierarchical
clustering of subpopulations and subpopulation marker expression (top subpanel). Relative
abundance of subpopulationsinin AD cases vs. controls, separated by sex (second and third
subpanels). Expression heatmap of neocortical layer-specific genes from Lake et al.? (fourth
subpanel). Expression of selectively vulnerable subpopulation markers identified in the EC
(bottom subpanel). ¢, Heatmap of Pearson correlation between the gene expression profiles of
excitatory neuron subpopulations from the EC vs. those from the prefrontal cortex in Mathys et

al.*
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Extended Data Fig. 6 | Gene expression cor relation analysis maps excitatory neuron
subpopulationsin the SFG, EC, and prefrontal cortex to those defined in the Allen Brain
Atlas. a-c, Heatmap of Pearson correlation between the gene expression profiles of excitatory
neuron subpopulations in the EC (a), SFG (b), or prefrontal cortex from Mathys et al.?* (c) with
those of subpopulations defined in the Allen Brain Atlas™.
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Extended Data Fig. 7 | Delineation of the EC for each case used in immunofluor escence
validation. a, The borders of the caudal EC delineated on sections stained with hematoxylin and
eosin (H&E) for all 26 cases used in immunofluorescence validation (Table 1). b, Borders of the
EC were determined with the aid of 400 um-thick serial coronal sections of whole-brain
hemispheres stained with gallocyanin® %, Each H& E section (left) along with its corresponding
immunofluorescence image (middle) was aligned to the most approximate gallocyanin section
(right), in which the the dissecans layers (diss-1, diss-2, and diss-ext) characteristic of the EC
were easier to visualize. This was then used to guide delineation of the EC on the H& E and
immunofluorescence sections.
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Extended Data Fig. 9 | Subclustering of microglia does not sufficiently resolve disease
associated microglia signature. a-c, tSNE projection of astrocytes from the EC (a), SFG (b),
and Mathys et al.* (c) in their respective alignment spaces, colored by subpopulation identity
(left) or individual of origin (right). d-f, Heatmap and hierarchical clustering of subpopulations
and subpopulation marker expression (averaged across cells in each cluster and then scaled
subpanel-wise, with blue reflecting low expression and red reflecting high expression; subpanel
dendrogram not shown). g-i, Relative abundance of subpopulations across Braak stages in the
EC and SFG or between AD cases vs. controls in Mathys et al.?* g-h, Expression of disease
associated microglia markers.
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Extended Data Fig. 10 | GFAPhigh astrocytes from Mathys et al. are highly smilar to
GFAPh.gh astrocytesfrom the EC and SFG. a, tSNE projection of astrocytes from Mathys et

al.?* in the alignment subspace, colored by subpopulation identity (top) or individual of origin
(bottom). b, Heatmap and hierarchical clustering of subpopulations and subpopul ation marker
expression (top subpanel). Relative abundance of subpopulationsinin AD casesvs. controls,
separated by sex (middle subpanels). Expression of genes associated with reactive astrocytes,
with median expression level marked by line (bottom subpanel). ¢, Enrichment analysis of
overlap between differentially expressed genes in GFAP 4, astrocytes from Mathys et al 2
differentially expressed genes in GFAP},¢» astrocytes from the EC and SFG; the number of genes
in each gene set and the number of overlapping genes are shown in parentheses, and the P values
(hypergeometric test) are shown without parentheses.
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SUPPLEMENTARY TABLE LEGEND

Supplemental Table 1 | Genesdifferentially expressed by selectively vulnerable excitatory
neurons compar ed to all other excitatory neuronsin the EC. The column “gene” contains
official gene symbols of differentially expressed genes, “logFC” contains the associated log,
fold-change, “logCPM” contains the logy-transformed counts per million (CPM) of transcripts
mapping to the gene averaged across all conditions, “F’ contains the value of the quasi-
likelihood F-statistic (see edgeR documentation) used to determine differential expression,
“Pvalue’ contains the raw P values associated with the quasi-likelihood F-test, “FDR” contains P
values adjusted for multiple testing using the Benjamini-Hochberg method.
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