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ABSTRACT 
Alzheimer’s disease (AD) is characterized by the selective vulnerability of specific neuronal 
populations, the molecular signatures of which are largely unknown. To identify and characterize 
selectively vulnerable neuronal populations, we used single-nucleus RNA sequencing to profile 
the caudal entorhinal cortex and the superior frontal gyrus – brain regions where neurofibrillary 
inclusions and neuronal loss occur early and late in AD, respectively – from individuals spanning 
the neuropathological progression of AD. We identified RORB as a marker of selectively 
vulnerable excitatory neurons in the entorhinal cortex, and subsequently validated their depletion 
and selective susceptibility to neurofibrillary inclusions during disease progression using 
quantitative neuropathological methods. We also discovered an astrocyte subpopulation, likely 
representing reactive astrocytes, characterized by decreased expression of genes involved in 
homeostatic functions. Our characterization of selectively vulnerable neurons in AD paves the 
way for future mechanistic studies of selective vulnerability and potential therapeutic strategies 
for enhancing neuronal resilience.  
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MAIN TEXT 
 
Selective vulnerability is a fundamental feature of neurodegenerative diseases, in which different 
neuronal populations show a gradient of susceptibility to degeneration1, 2. Selective vulnerability 
at the network level has been extensively explored in Alzheimer’s disease (AD)3-5, currently the 
leading cause of dementia and lacking in effective therapies. However, little is known about the 
mechanisms underlying selective vulnerability at the cellular level in AD, which could provide 
insight into disease mechanisms and lead to therapeutic strategies.  
 
The entorhinal cortex (EC), an allocortex, is one of the first cortical brain regions to exhibit 
neuronal loss in AD6.  Neurons in the external EC layers, especially in layer II (also known as 
alpha clusters of the lamina principalis externa, abbreviated “Pre-alpha”)7, accumulate tau-
positive neurofibrillary changes and die early on in the course of AD8-13. However, these 
selectively vulnerable neurons have yet to be characterized extensively at the molecular level. 
Furthermore, it is unknown whether there are differences in vulnerability among subpopulations 
of these neurons. Although rodent models of AD have offered some insights14-16, the human 
brain has unique features with regard to cellular physiology, composition and aging17-19, limiting 
the extrapoloation of findings from animal models to address selective vulnerability. 
 
Previous studies have combined laser capture microdissection with microarray analysis of gene 
expression20, 21 to characterize EC neurons in AD, but focused on disease-related changes in gene 
expression, rather than selective vulnerability. More recently, single-nucleus RNA-sequencing 
(snRNA-seq) has enabled large-scale characterization of transcriptomic profiles of individual 
cells from post-mortem human brain tissue22, 23. However, snRNA-seq studies of AD published 
to date have focused on cell-type specific differential gene expression between AD cases and 
healthy controls24, 25, without explicitly addressing selective vulnerability. 
 
Here, we performed snRNA-seq on post-mortem brain tissue from a cohort of individuals 
spanning the neuropathological progression of AD to characterize changes in the relative 
abundance of cell types and cell type subpopulations. Importantly, we discovered a selectively 
vulnerable subpopulation of excitatory neurons in the entorhinal cortex and validated the 
selective depletion of this subpopulation during AD progression with quantitative 
histopathology, using multiplex immunofluorescence in EC regions delineated by rigorous 
cytoarchitectonic criteria. In addition, we examined subpopulations of inhibitory neurons, which 
did not show differences in vulnerability, and also subpopulations of microglia and astrocytes. 
We uncovered an astrocyte subpopulation likely corresponding to reactive astrocytes that 
showed downregulation of genes involved in homeostatic function.  
 
                                                                                                                                
RESULTS  
 
Cohort selection and cross-sample alignment 
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We performed snRNA-seq on cell nuclei extracted from postmortem brain tissue (see Methods) 
from the entorhinal cortex (EC) at the level of the mid-uncus and from the superior frontal gyrus 
(SFG) at the level of the anterior commissure (Brodmann area 8), from 10 male individuals with 
an APOE ε3/ε3 genotype spanning the range of AD neuropathological stages (Braak stages 0, 2 
and 63; Fig. 1a, Table 1).  
 
The neuropathological hallmarks of AD are amyloid plaques, which are measured by the 
CERAD and Thal scores, and neurofibrillary changes consisting of intraneuronal inclusions of 
hyperphosphorylated tau protein (phospho-tau) aggregates, which are measured by the Braak 
staging system3. The Braak staging system is based on the stereotypical topographical 
progression of neurofibrillary inclusions to different brain regions. Neurofibrillary inclusions are 
first found in specific subcortical structures in the brainstem (Braak stages a-c, also hereon 
referred to collectively as Braak stage 0). Subsequently, the transentorhinal and entorhinal 
cortices, followed by the hippocampal formation, are the first areas of the cerebral cortex to 
accumulate tau pathology (Braak stages 1-2). The limbic areas and temporal neocortex then 
follow (Braak stages 3-4), and finally, other neocortical association areas (such as the SFG) and 
primary neocortical areas are involved (Braak stages 5-6)3, 26. Since the accumulation of 
neurofibrillary inclusions is the best correlate of clinical decline, after neuronal loss27, we 
reasoned that profiling matched EC and SFG samples across different Braak stages would allow 
us to isolate the effect of disease progression on cell types and cell type subpopulations. 
 
A challenge in characterizing the impact of disease progression on different cell type 
subpopulations is that these subpopulations need to be defined in a way that is independent from 
the effect of disease progression. Typically, cell type subpopulations are defined by sub-grouping 
cells of the same cell type through cluster analysis (i.e. clustering), followed by examination of 
marker gene expression in the resulting clusters. To remove the effect of disease progression on 
clustering, we performed, prior to clustering, cross-sample alignment28-30 of the data from each 
brain region using scAlign (see Methods), which learns a low-dimensional manifold (i.e. the 
alignment space) in which cells cluster by biological function independent of technical and 
experimental factors30. Importantly, after identifying clusters in the alignment space, we used the 
original data for subsequent analyses involving examination of gene expression, such as 
identifying differentially expressed genes between clusters.  
 
 
Changes in cell type composition during neuropathological AD progression 
 
After quality control (see Methods), we recovered 42,737 cells from the EC and 64,257 cells 
from the SFG. Examination of the average number of genes and unique molecular identifiers 
(UMIs) detected per cell showed similar or superior transcript coverage compared to previously 
published AD snRNA-seq datasets24, 25 (Extended Data Fig. 1a,b).  
 
After cross-sample alignment, we performed clustering and recovered 18 clusters in the EC and 
20 clusters in the SFG. In both brain regions, clusters demonstrated spatial grouping in t-
stochastic neighborhood embedding (tSNE) that was largely uncorrelated with the individual of 
origin (Fig. 1b,c). Furthermore, clusters showed specific expression of cell type markers and 
grouped in a manner consistent with their expression of cell type markers in hierarchical 
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clustering (Fig. 1d,e, see Methods). For comparison, we also performed clustering without cross-
sample alignment, which resulted in many clusters that were defined by individual of origin in 
addition to cell type (Extended Data Fig. 1c-f). Having confirmed the effectiveness of cross-
sample alignment in removing the effect of technical and experimental factors on clustering, we 
then assigned clusters to major brain cell types based on their expression of cell type markers 
(Fig. 1d,e, see Methods).  
 
Next, to assess whether the cell type composition of the EC and SFG changes with disease 
progression, we aggregated clusters assigned to the same cell type for each individual and then 
computed the relative abundance of each cell type in each individual. We tested the statistical 
significance of changes in relative abundance using beta regression31 (see Methods), which is 
suitable for variables ranged from 0 to 1. After correcting for multiple testing (Holm’s method, 
see Methods), we found a statistically significant increase in the relative abundance of microglia 
in the EC (Fig. 1f) in Braak stage 6 compared to Braak stage 0, suggestive of microgliosis. In the 
SFG, however, we failed to find statistically significant changes in the relative abundance of 
microglia throughout disease progression (Fig. 1g). As for other cell types, we did not detect 
changes in relative abundance that were statistically significant after correction for multiple 
hypothesis testing. However, we observed a downward trend in the relative abundance of EC 
excitatory neurons in Braak stages 2 (Punadjusted = 0.1) and 6 (Punadjusted = 0.02), and of SFG 
excitatory neurons only in Braak stage 6 (Punadjusted = 0.04), consistent with early involvement of 
the EC and sparing of the SFG until late Braak stages, and the previously described selective 
vulnerability of excitatory neurons relative to inhibitory neurons16, 32. 
 

 
Selective vulnerability of excitatory neuron subpopulations  
 
Next, we interrogated whether a decline in the relative abundance of excitatory neurons reflected 
a general vulnerability of all excitatory neurons, or of specific excitatory neuron subpopulations.  
 
Previous single-cell transcriptomic studies of human and mouse cortex have shown that unbiased 
clustering of excitatory neurons largely recapitulates the laminar organization of the cortex22, 23. 
In the context of AD, tau neurofibrillary inclusions are known to preferentially accumulate in 
neocortical layers III and V33, 34, most likely reflecting the selective vulnerability of specific 
neuronal subpopulations. Therefore, we asked whether specific excitatory neuron subpopulations 
show a decline in their relative abundance with disease progression, by performing subclustering 
of excitatory neurons in the EC and SFG after cross-sample alignment (see Methods).  
 
In the EC, we discerned eight excitatory neuron subpopulations (Fig. 2a-d). These 
subpopulations exhibited distinct expression of EC layer-specific genes identified in the mouse 
medial EC35, which phylogenetically resembles the human caudal EC36, 37. Notably, 
subpopulation EC:Exc.s2 showed a striking ~50% decrease in its relative abundance in Braak 
stage 2 compared to Braak stage 0, with no further decrease in Braak stage 6 (Fig. 2c), 
suggesting depletion early in disease. EC:Exc.s4 similarly exhibited a ~50% reduction in its 
relative abundance in Braak stage 2. Both EC:Exc.s2 and EC:Exc.s4 expressed genes associated 
with mouse EC layer II (Fig. 2c), consistent with the fact that tau neurofibrillary inclusions are 
known to accumulate preferentially in human EC layer II (Pre-alpha) early in AD8-11. However, 
not all subpopulations expressing genes associated with mouse EC layer II showed similar levels 
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of early vulnerability. For example, the relative abundance of EC:Exc.s6 was relatively stable 
across disease progression. Also, we failed to find evidence of selective vulnerability in neuronal 
subpopulations expressing genes associated with mouse EC layer III (Pre-beta) or V/VI (lamina 
principalis interna, abbreviated Pri).  
 
To identify molecular markers of selectively vulnerable excitatory neuron subpopulations in the 
EC, we inspected transcript levels of genes differentially expressed between pairs of 
subpopulations and curated a set of genes which were specifically expressed by no more than 
four subpopulations (Extended Data Fig. 2). We found that EC:Exc.s2 and EC:Exc.s4 
specifically expressed two protein coding genes, RORB and IL1RAPL2, and two non-coding 
transcripts, CTC-340A15.2 and CTC-535M15.2 (Fig. 2c). RORB encodes a transcription factor 
known as a marker and developmental driver of layer IV neurons in the neocortex38-40, but is also 
expressed by neurons in other layers. IL1RAPL2 encodes a membrane protein and is located 
within the Xq22 region, which has been linked to mental retardation41, 42. Little is known about 
the non-coding transcripts CTC-340A15.2 and CTC-535M15.2 in the context of neuronal identity 
and function.  
 
In addition to identifying molecular markers of the selectively vulnerable EC:Exc.s2 and 
EC:Exc.s4 neurons, we also enumerated genes that were differentially expressed in EC:Exc.s2 
and EC:Exc.s4 compared to all other excitatory neurons in the EC, controlling for differences 
across individuals (see Methods). We found that genes with higher expression in EC:Exc.s2 and 
EC:Exc.s4 were enriched for axon-localized proteins and voltage-gated potassium channels, 
whereas genes with lower expression in EC:Exc.s2 and EC:Exc.s4 were enriched for synapse- 
and dendrite-localized proteins and pathways involving Rho GTPase signaling, ion homeostasis, 
and neurotransmitter receptor signaling (Extended Data Fig. 3, Supplementary Table 1).  
 
Having identified and characterized selectively vulnerable excitatory neuron subpopulations in 
the EC, we next examined excitatory neuron subpopulations in the SFG. Similar to previous 
studies22, 23, we found that excitatory neuron subpopulations in the SFG (12 in total) expressed 
distinct sets of neocortical layer-specific genes (Fig. 2b,d), recapitulating the laminar 
organization of the neocortex. Interestingly, two out of three subpopulations that expressed the 
four markers RORB, IL1RAPL2, CTC-340A15.2, and CTC-535M15.2 – namely SFG:Exc.s5 and 
SFG:Exc.s2 – trended towards decreased relative abundance only in Braak stage 6 (Fig. 2d; 
SFG:Exc.s5 Punadjusted =  0.008, SFG:Exc.s2 Punadjusted = 0.3), consistent with the late appearance 
of neurofibrillary inclusions in the SFG at Braak stage 5. Given that RORB is known to function 
as a developmental driver of neuronal subtype identity38, 39, we hypothesized that SFG:Exc.s5 
and SFG:Exc.s2 may be homologous to selectively vulnerable excitatory neuron subpopulations 
in the EC. To test this hypothesis, we calculated the Pearson correlation coefficient between the 
expression profiles of SFG and EC subpopulations and found that SFG:Exc.s5 and SFG:Exc.s2 
were indeed most similar to EC:Exc.s4 and EC:Exc.s2 (Fig. 2e), consistent with the reported 
homology between deep layer neocortical excitatory neurons and EC excitatory neurons43. 
Furthermore, this correspondence was preserved when we mapped subpopulations in the EC to 
those in the SFG by performing cross-sample alignment for both brain regions jointly (Extended 
Data Fig. 4).  
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Although the decrease in the relative abundance of SFG:Exc.s2 and SFG:Exc.s5 in Braak stage 6 
was not statistically significant after correction for multiple testing, we asked if we could detect 
signs of selective vulnerability in neocortical RORB-expressing excitatory neurons in an 
independent dataset with a larger sample size. To this end, we reanalyzed data from Mathys et al. 
24, which profiled the prefrontal cortex from 24 AD cases and 24 healthy controls, with our 
cross-sample alignment pipeline and performed subclustering of excitatory neurons. In the 
Mathys et al. dataset, we discerned 10 excitatory neuron subpopulations, each of which 
expressed distinct sets of neocortical layer-specific genes (Extended Data Fig. 5a,b) similar to 
Lake et al.22 and our dataset. Of these 10 subpopulations, Mathys:Exc.s3, Mathys:Exc.s5, and 
Mathys:Exc.s1 expressed RORB at high levels. Importantly, we observed a statistically 
significant decrease in the relative abundance of Mathys:Exc.s3 in male AD cases vs. controls 
(Extended Data Fig. 5b), recapitulating the selective vulnerability observed in our dataset, which 
consists only of male individuals. Furthermore, gene expression correlation analysis showed that 
Mathys:Exc.s3 was the most similar to EC:Exc.s2 and EC:Exc.s4 (Extended Data Fig. 5c), again 
suggesting homology between selectively vulnerable excitatory neurons in the neocortex and 
those in the EC.  
 
Considering the Mathys et al. dataset24 together with our dataset, it appears that while not all 
RORB-expressing excitatory neuron subpopulations in the neocortex showed signs of selective 
vulnerability, those that did (SFG:Exc.s5, SFG:Exc.s2, Mathys:Excs3) showed similarities to 
RORB-expressing excitatory neurons in the EC, all of which showed signs of selective 
vulnerability. Furthermore, gene expression correlation analysis showed that SFG:Exc.s5, 
SFG:Exc.s2, Mathys:Excs3 mapped to RORB+/CMAHP+ excitatory neurons found in 
neocortical layers III-V (Extended Data Fig. 6), a molecularly-defined human excitatory neuron 
subpopulation described in the Allen Brain Atlas, located in the neocortical layers most 
vulnerable to neurofibrillary inclusions3. 
 
 
Validation of the selective vulnerability of RORB-expressing excitatory neurons 
 
To validate our snRNA-seq-based finding that RORB-expressing excitatory neurons in the EC 
were highly vulnerable in AD, we performed multiplex immunofluorescence on post-mortem 
samples from a larger cohort of individuals (Table 1). Specifically, we quantified the proportion 
of excitatory neurons and RORB-positive excitatory neurons in the EC superficial layers (above 
layer IV –  lamina dissecans) in postmortem tissue from 26 individuals spanning Braak stage 0 to 
6, who were devoid of non-AD neuropathological changes (Table 1). Given the heterogeneity of 
the EC , the areas selected for analysis in the caudal EC were delimited using rigorous 
cytoarchitectonic parameters to minimize the odds of artifactual results (Fig. 3a-c, Extended Data 
Fig. 7, see Methods). We used multiplex immunofluorescence44 to label cells (DAPI), excitatory 
neurons (TBR1), RORB+ neurons, and phospho-tau neuronal inclusions (CP-13, Ser 202).  We 
failed to find statistically significant changes in the proportion of excitatory neurons overall 
(TBR1+) across disease progression (Fig. 3d). However, we observed a substantial reduction in 
the proportion of RORB+ neurons among excitatory neurons in Braak stages 2-4 and 5-6 
compared to Braak stages 0-1 (Fig. 3e). Furthermore, by analyzing a subset of cases, we detected 
phospho-tau (CP-13) preferentially in RORB+ compared to RORB- excitatory neurons (Fig. 3f-
g). Thus, the above results substantiate that RORB-expressing excitatory neurons are highly 
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vulnerable in AD and that their depletion is likely a consequence of accumulating tau 
neurofibrillary changes.   
 
 
Inhibitory neuron subpopulations lack consistentent differences in vulnerability 
 
Having validated the selective vulnerability of a subpopulation of excitatory neurons, we 
proceeded to examine inhibitory neurons. It has previously been reported that inhibitory neurons 
are more resistant to tau pathology compared to excitatory neurons in AD16, 32. To investigate 
whether there are differences among inhibitory neuron subtypes in resilience, we performed 
subclustering of inhibitory neurons in our dataset, discerning 11 subpopulations in the EC and 10 
subpopulations in the SFG (Fig. 4a-d). In both brain regions, inhibitory neuron subpopulations 
expressed distinct sets of inhibitory neuron subtype markers (Fig. 4a-d), consistent with previous 
studies22, 23. In the EC, we did not observe statistically significant changes in the relative 
abundance of any subpopulation of inhibitory neurons (Fig. 4c). In the SFG, the relative 
abundance of a RELN+/NDNF+ subpopulation – SFG:Inh.s6 – showed a statistically significant 
decrease in Braak stage 2 and trended downwards in Braak stage 6 (Punadjusted = 0.04; Fig. 4d). 
However, given that RELN+/NDNF+ inhibitory neurons in the EC (EC:Inh.s2) and prefrontal 
cortex (Mathys:Inh.s6; Extended Data Fig. 8) did not show similar changes, the biological 
significance of the observed depletion of RELN+/NDNF+ inhibitory neurons in the SFG is 
unclear.  
 
Overall, we found no consistent differences among molecularly-defined inhibitory neuron 
subtypes in terms of resilience or vulnerability in AD.  
 
 
Transcriptome of AD-associated reactive astrocytes suggests loss of homeostatic functions  
 
Glial cells have emerged as important players in AD. We found an increase in the relative 
abundance of microglia in EC in with AD progression (Fig. 1f), consistent with microgliosis. 
Next, we asked whether a specific transcriptional state of microglia is associated with AD in our 
dataset. Recent single-cell profiling of microglia from mouse models of AD identified disease-
associated microglia45 (DAM), the transcriptional signature of which overlap only partially with 
that of human microglia found in AD46. Considering the possibility that DAMs may cluster 
separately from homeostatic microglia after cross-sample alignment, we performed subclustering 
of microglia in our dataset, discerning 4 subpopulations in both the EC and SFG (Extended Data 
Fig. 9a-b). However, we were unable to detect the expression the majority of homeostatic 
microglia markers and DAM markers in our dataset or in Mathys et al. (Extended Data Fig. 10d-
f), which may be due to the relatively low number of genes captured in microglia compared to 
other cell types (Fig. 1h-i).  
 
We next turned our attention to astrocytes. While reactive astrocytes are ubiquitously associated 
with AD pathology47, 48, only few studies to date have directly profiled reactive astrocytes due to 
the difficulty of specifically isolating reactive astrocytes49, 50. Similarly to our interrogation of 
microglia, we asked if reactive astrocytes would cluster separately from non-reactive astrocytes 
after cross-sample alignment. After subclustering of astrocytes in our dataset, we discerned 4 
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subpopulations in the EC and 5 subpopulations in the SFG (Fig. 5a-d). In each brain region, one 
subpopulation (EC:Astro.s3 and SFG:Astro.s2) expressed dramatically higher levels of GFAP 
(Fig. 5c,d). Furthermore, SFG:Astro.s2 showed a statistically significant increase in its relative 
abundance in Braak stage 6 (Fig. 5d), consistent with reactive astrogliosis. EC:Astro.s3 and 
SFG:Astro.s2 (which we will refer to as GFAPhigh astrocytes) also expressed CD44 and HSPB1, 
previously reported markers of pan-reactive astrocytes51, and TNC, previously shown to be 
upregulated in stab-wound reactive astrocytes52, 53 (Fig. 5c,d). In terms of downregulated genes, 
GFAPhigh astrocytes expressed significantly lower levels of genes associated with glutamate 
homeostasis (SLC1A2, SLC1A3, GLUL, SLC6A11) and synaptic adhesion/maintenance (NRXN1, 
CADM2, PTN, GPC5), suggesting a loss of homeostatic function.  
 
Examination of all differentially expressed genes in GFAPhigh astrocytes compared to other 
astrocyte subpopulations showed significant overlap with differentially expressed genes from 
reactive astrocytes in a mouse model of spinal cord injury54  (Fig. 5e). Overlapping 
downregulated genes included the previously noted genes associated with glutamate homeostasis 
(SLC1A2, SLC1A3, GLUL, SLC6A11) and synaptic adhesion/maintenance (NRXN1, CADM2, 
PTN, GPC5; Fig. 5f,g).  
 
Finally, to confirm the presence of GFAPhigh astrocytes in an independent dataset, we performed 
subclustering of astrocytes from Mathys et al.24 after cross-sample alignment, which yielded 4 
subpopulations (Extended Data Fig. 10a,b). Indeed, we found that Mathys:Astro.s3 (also referred 
to as Mathys:GFAPhigh in Extended Data Fig. 10) behaved identically compared to GFAPhigh 
astrocytes from the EC and SFG in terms of upregulating reactive astrocyte markers and 
downregulating genes associated with glutamate homeostasis and synaptic adhesion (Extended 
Data Fig. 10b). Furthermore, the differentially expressed genes in Mathys:Astro.s3 overlapped 
highly with those in GFAPhigh astrocytes from the EC and SFG (Extended Data Fig. 10c).  
 
 
DISCUSSION 
 
Selective vulnerability is recognized as a fundamental feature of neurodegenerative diseases, 
including AD. Past studies have characterized the most vulnerable neurons to AD based based on 
topography and morphology. For instance, EC layer II stellate cells are more vulnerable than EC 
layer III pyramidal cells11-13. However, the molecular signature of selectively vulnerable neurons 
is largely unknown. In this study, we performed snRNA-seq of well-characterized postmortem 
brain tissue from individuals spanning the neuropathological progression of AD, followed by 
cross-sample data alignment to identify and characterize selectively vulnerable neuronal 
populations in the caudal EC and the SFG (Brodmann area 8), representing areas that develop tau 
neurofibrillary changes at early and late AD stages, respectively.  
 
The EC and the transentorhinal region, hubs for integrating information from hipocampal, 
cortical and subcortical regions36, are the first cortical fields to accumulate tau-positive 
neurofibrillary inclusions followed by neuronal loss in AD. Neurons in EC layer II of the lateral, 
intermediate and caudal subfields are first affected7, 8, 10, 11, 55. The EC is a relatively 
phylogenetically conserved brain structure in mammals7, 36, 56. The rodent EC can be subdivided 
into medial (MEC) and lateral (LEC) portions based on cytoarchitectonics and projections. In 
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primates, the EC has been subdivided into up to 16 regions that show differential abundances of 
several neuronal markers, distinct projections, and variation of laminar features12, 56. During 
evolution, the position of the EC changed, and the mouse MEC (the source of our layer-specific 
marker genes) is generally regarded as the equivalent of the caudal EC in humans (our sampling 
location)37. Irrespective of the parcellation scheme adopted, the EC is a heterogeneous structure 
and cytoarchitectonic considerations matter when analyzing and sampling this region to avoid 
biased observations56. 
 
Layer II features a mixture of neuronal subpopulations. Stellate (pre-alpha) and pyramidal cells, 
which are deemed to be excitatory, predominate57, but multipolar and bipolar neurons are also 
abundant. Stellate cells are considered the most vulnerable neuron in AD. However, rigorous 
quantitative studies focusing on stellate vs. other neurons in layer 2 changes in AD are lacking 
because stellate cells show heterogeneous morphologies. 
 
Here, we discovered that in the caudal EC, specific excitatory neuron subpopulations defined by 
snRNA-Seq were selectively vulnerable, exhibiting a ~50% decline in their relative abundance 
already at early AD stages. These neurons expressed genes associated with EC layer II, 
consistent with the known vulnerability of neurons in the superficial layers of the EC8-11. 
 
Importantly, we identified RORB as a marker of these selectively vulnerable excitatory neuron 
subpopulations, and subsequently validated the selective depletion of RORB-expressing 
excitatory neurons in the EC along AD progression by quantifying these neurons in a larger 
cohort of individuals using multiplex immunofluorescence. Furthermore, we also showed that 
tau neurofibrillary inclusions, a chief AD neuropathological hallmark, preferentially accumulated 
in RORB-expressing excitatory neurons. 
 
In neocortical areas, layers III and V are the first to accumulate tau neurofibrillary changes in 
AD3, 33, 34. We found that in the SFG, RORB-expressing excitatory neuron subpopulations 
showed signs of selective vulnerability only late in AD, in line with the late appearance of 
neurofibrillary changes in the SFG, although the decrease in their relative abundance did not pass 
our threshold for statistical significance after correction for multiple testing. Interestingly, we 
found through correlation analysis of gene expression and also EC-SFG cross-sample alignment 
that RORB-expressing excitatory neuron subpopulations in the SFG showing signs of selective 
vulnerability were similar to those in the EC in terms of their transcriptomic profile. Moreover, 
our likely vulnerable ROBR-expressing neurons in the SFG had similar expression profiles with 
RORB-expressing neurons found in neocortical layers III-V21. To verify the reproducibility of 
our findings, we re-analyzed the data from Mathys et al.24 using our cross-sample alignment 
approach. Although Mathys et al. probed a different neocortical region (the prefrontal cortex), 
we found that one of their RORB-expressing excitatory neuron subpopulations also exhibited 
selective vulnerability and mapped to our RORB-expressing excitatory neuron subpopulations in 
the EC. Considering our dataset jointly with the Mathys et al. dataset, it appears that in the 
neocortex, while not all RORB-expressing excitatory neuron subpopulations are selectively 
vulnerable, those that are vulnerable are transcriptomically similar to selectively vulnerable 
neurons in the EC. Given that RORB is known to act as a developmental driver for neuronal 
subtype identity in the neocortex38-40, we speculate that the vulnerability of RORB-expressing 
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excitatory neurons in both the EC and neocortex may stem in part from genetically determined 
functional properties or connectivity.  
 
A previous study suggested changes in calbindin- and parvalbumin-positive neurons in EC layer 
II in AD37. Here, we found no evidence of selective vulnerability in inhibitory neurons 
subpopulations in EC layer II or any other layer. Inhibitory neurons in the EC superficial layers 
show a gradient of abundance in the various EC regions36, which could confound the results. But, 
given that we used strict cytoarchitectonic criteria to sample the EC, it is unlikely that our results 
reflect comparisons of different EC areas across the cases. Also, evidence suggest that these 
inhibitory neurons undergo changes in morphology and function, rather than loss55. Thus, our 
results do not preclude the possibility that inhibitory neuron subpopulations may be differentially 
affected by AD progression at the morphological and likely functional level, even if neuronal 
loss is not apparent.  
 
Until recently, AD research was mostly neuron-centric, but accumulating evidence is 
highlighting the importance of glial changes in the pathogenesis of AD. Although we could not 
detect the disease-associated microglia signature45, 46 in our study, likely due the low number of 
transcripts recovered in microglia, we discovered an astrocyte subpopulation expressing high 
levels of GFAP, which we termed GFAPhigh astrocytes, in both the EC and SFG, as well as in the 
prefrontal cortex from Mathys et al.24 We found that GFAPhigh astrocytes also expressed higher 
levels of other genes associated with reactive astrocytes, while expressing lower levels of genes 
involved in glutamate homeostasis and synaptic adhesion/maintenance, which suggests loss of 
normal astrocyte homeostatic functions. Furthermore, we found a high degree of overlap 
between genes differentially expressed in GFAPhigh astrocytes and genes differentially expressed 
in reactive astrocytes from a mouse model of spinal injury54. Thus, we believe that GFAPhigh 
astrocytes correspond to reactive astrocytes in AD, which may have compromised homeostatic 
function.  
 
This study has several methodological strengths. First, the postmortem cohort used for snRNA-
seq and histopathological validation consists of well-characterized cases, devoid of non-AD 
pathology. To minimize confounders in the snRNA-seq results, we only used males with an 
APOE ε3/ε3 genotype. Second, the human cortex displays a complex parcellation scheme based 
on cytoarchitectonic characteristics that reflect differences in the abundance of various cell 
subpopulations, with implications for function, projections, and differential vulnerability in AD. 
Many RNA-seq studies of AD used broad descriptions to define the sampled brain areas, making 
it challenging to understand if they were sampled from the same subfields. We used strict 
cytoarchitectonic criteria to sample brain regions for snRNA-seq and histopathological 
validation. Third, unlike previous snRNA-seq studies of human AD, we focused on differentially 
expressed genes between cell type subpopulations, allowing us to make comparisons within 
individuals while controlling for differences among individuals, instead of making comparisons 
across groups of individuals (see Fig. 1 and Extended Data Fig. 2), which can be influenced by 
confounding factors and require larger sample sizes to make robust inferences. Fourth, by 
validating our findings using a novel multiplex immunofluorescence approach that enables 
probing a higher number of antibodies simultaneously58, we could quantify the relative 
abundance of excitatory neurons and RORB+ neurons and also demonstrate that RORB+ 
excitatory neurons were preferentially affected by neurofibrillary inclusions. 
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A limitation of our study is that we only included male APOE ε3/ε3 individuals in the snRNA-
Seq analysis. We included females and individuals carrying the APOE ε4 allele associated with 
AD risk in our histopathological validation, but caution should be taken before generalizing our 
results to these groups. Future studies will provide a systematic analysis of the impact of sex and 
APOE status on selective vulnerability in AD. 
 
In conclusion, our study contributes, to the best of our knowledge, the first characterization of 
selectively vulnerable neuronal populations in the entorhinal cortex in AD using snRNA-seq. 
These results will inform future studies of the mechanistic basis of selective vulnerability in both 
animal and in vitro models, such as human iPSC-derived neurons, in which CRISPRi/a 
technology enables the dissection of functional consequences of transcriptomic changes59, 60. 
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ONLINE METHODS 
 
Post-mortem cohort  
This study was approved by and University of Sao Paulo institutional review board and deemed 
non-human subject research by the University of California, San Francisco (UCSF). De-
identified human postmortem brain tissue was supplied by the Neurodegenerative Disease Brain 
Bank (NDBB) at UCSF, and the Brazilian BioBank for Aging Studies (BBAS) from the 
University of Sao Paulo61. The NDBB receives brain donations from patients enrolled in the 
UCSF Memory and Aging Center research programs. The BBAS is population�based and 
houses a high percentage of pathologically and clinically normal control subjects who are not 
available in the NDBB. Neuropathological assessments were performed using standardized 
protocols and followed internationally accepted criteria for neurodegenerative diseases62-64. The 
brain samples used in this study contained a broad burden of AD-type pathology and were 
selected to be free from non-AD pathology including Lewy body disease, TDP-43 
proteinopathies, primary tauopathies, and cerebrovascular changes. Argyrophilic grain disease 
(AGD) was not an exclusion criterion based on its high prevalence and lack of correlation with 
significant clinical symptoms65-67. In total, the cohort included 10 cases who underwent snRNA-
seq, representing Braak stages 0, 2 and 6, all ApoE 3/3, and 26 cases who underwent 
neuroanatomical analysis,  representing Braak stages 0-63, 26, ranging from 2-5 individuals per 
Braak stage. Table 1 depicts the characteristics of the 31 cases.  
 
Isolation of nuclei from frozen post-mortem human brain tissue  
Isolation of nuclei was performed similarly as previously described68. Briefly, frozen brain tissue 
was dounce homogenized in 5 ml of lysis buffer (0.25 M sucrose, 25 mM KCl, 5 mM MgCl2, 20 
mM Tricine-KOH, pH 7.8, 1 mM DTT, 0.15mM spermine, 0.5 mM spermidine, 1X protease 
inhibitor (Sigma, 4693159001), and RNAse Inhibitor (Promega, N2615)). Following initial 
dounce homogenization, IGEPAL-630 was added to a final concentration of 0.3% and the 
sample was homogenized with 5 more strokes. The solution was then filtered through a 40 um 
cell filter and mixed with Optiprep (Sigma, D1556-250ML) to create a 25% Optiprep solution. 
This solution was then layered onto a 30%/40% Optiprep gradient and centrifuged at 10,000g for 
18 minutes using the SW41-Ti rotor. The nuclei were collected at the 30%/40% Optiprep 
interface. 
 
Droplet-based single-nucleus RNA-sequencing   
Droplet-based single-nucleus RNA-sequencing (snRNA-seq) was performed using the 
Chromium Single Cell 3′ Reagent Kits v2 from 10X Genomics. Nuclei were resuspended to a 
concentration of 1000 nuclei/uL in 30% Optiprep solution before loading according to 
manufacturer’s protocol, with 10,000 nuclei recovered per sample as the target. cDNA fragment 
analysis was performed using the Agilent 4200 TapeStation System. Sequencing parameters and 
quality control were performed as described by The Tabula Muris Consortium69.  
 
Pre-processing of snRNA-seq data  
Sequencing data generated from snRNA-seq libraries were demultiplexed using Cellranger 
(version 2.1.0) cellranger mkfastq. To align reads, we first generated our own pre-mRNA 
GRCh38 reference genome using cellranger mkref in order to account for introns that may be 
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eliminated using the default GRCh38 reference genome. Alignment and gene expression 
quantification was then performed using cellranger count with default settings.  
 
Exploratory analysis of EC and SFG data  
For each sample, the raw gene-barcode matrix outputted by Cellranger (version 2.1.0) was 
converted into a SingleCellExperiment (SCE) object using the read10xCounts function from the 
DropletUtils package70 (version 1.2.2). Droplets containing nuclei were then distinguished from 
empty droplets using DropletUtils::emptyDrops with the parameter FDR = 0.01, and then nuclei 
(hereon also referred to as “cells”) with less than 200 UMIs were discarded. Afterwards, SCE 
objects corresponding to each sample were merged into a single SCE object for downstream 
processing and analyses.  
 
For normalization of raw counts, to avoid artifacts caused by data sparsity, the approach of Lun 
et al.71 was adopted: For each sample, cells were first clustered using a graph-based method 
followed by pooling counts across cells in each cluster to obtain pool-based size factors, which 
were then deconvoluted to yield cell-based size factors. Clustering was performed using the 
quickCluster function from the scran package72 (version 1.10.2) with the parameters method = 
‘igraph’, min.mean = 0.1, irlba.args = list(maxit = 1000), and the block parameter set to a 
character vector containing the sample identity of each cell. Size factors were computed using 
scran::computeSumFactors with the parameter min.mean = 0.1 and the cluster parameter set to a 
character vector containing the cluster identity of each cell; cells with negative size factors were 
removed. Normalization followed by log-transformation was then performed using the normalize 
function from the scater package73 (version 1.10.1).  
 
Prior to dimensionality reduction, highly variable genes were identified for each sample 
separately using the approach of Lun et al.72: Each gene’s variance was decomposed into a 
technical and biological component. Technical variance was assumed as Poisson and modeled 
using scran::makeTechTrend. The mean-variance trend across genes was fitted using 
scran::trendVar with parameters use.spikes = FALSE and loess.args = list(span = 0.05); and the 
trend slot of the resulting fit object was then set to the output of scran::makeTechTrend. 
Biological variance was extracted from the total variance using scran::decomposeVar with the 
above fit object as the input. Finally, highly variable genes that were preserved across samples 
were identified by combining the variance decompositions with scran::combineVar, using 
Stouffer’s z-score method for meta-analysis (method = ‘z’), which assigns more weight to 
samples with more cells.  
 
For initial data exploration, genes with combined biological variance greater than 0 were used as 
the feature set for dimensionality reduction by principle component analysis using 
scran::parallelPCA, which uses Horn’s parallel analysis to decide how many principle 
components to retain, with parameter approx = TRUE. Clustering was then performed on the 
retained principle components using the FindClusters function from the Seurat package74 
(version 2.3.4) with parameter resolution = 0.8, which required conversion of SCE objects to 
Seurat objects using Seurat::Convert. To visualize the clusters, t-stochastic neighborhood 
embedding (tSNE) was performed on the retained principle components using scater::runTSNE 
with parameters perplexity = 30 and rand_seed = 100.  
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Cross-sample alignment of SFG and EC data 
Initial data exploration revealed that clustering was driven by individual of origin in addition to 
cell type identity, which makes it difficult to analyze changes in the relative abundance or gene 
expression of a given cell type across disease progression or brain regions. To recover clusters 
defined by mainly by cell type identity, data was aligned across samples from each brain region 
using with scAlign30 (version 1.0.0), which leverages a neural network to learn a low-
dimensional alignment space in which cells from different datasets group by biological function 
independent of technical and experimental factors. As noted by Johansen & Quon30, scAlign 
converges faster with little loss of performance when the input data is represented by principal 
components or canonical correlation vectors. Therefore, prior to running scAlign, the top 2000 
genes with the highest combined biological variance were used as the feature set for canonical 
correlation analysis (CCA), which was implemented using Seurat::RunMultiCCA with parameter 
num.cc = 15. The number of canonical coordinates to use for scAlign was determined by the 
elbow method using Seurat::MetageneBicorPlot. scAlign was then run on the cell loadings along 
the top 10 canonical correlation vectors with the parameters options = scAlignOptions(steps = 
10000, log.every = 5000, architecture = ‘large’, num.dim = 64), encoder.data = ‘cca’, 
supervised = ‘none’, run.encoder = TRUE, run.decoder = FALSE, log.results = TRUE, and 
device = ‘CPU’. Clustering was then performed on the aligned canonical coordinates from 
scAlign using Seurat::FindClusters with parameter resolution = 0.8. Clusters were visualized 
with tSNE using Seurat::RunTSNE on the aligned canonical coordinates with parameter do.fast 
= TRUE. Alignment using scAlign followed by clustering was also performed for all samples 
from both brain regions jointly.  
 
To assign clusters identified in the aligned subspace generated by scAlign to major brain cell 
types, the following marker genes were used: SLC17A7 and CAMK2A for excitatory neurons, 
GAD1 and GAD2 for inhibitory neurons, SLC1A2 and AQP4 for astrocytes, MBP and MOG for 
oligodendrocytes, PDGFRA and SOX10 for oligodendrocyte precursor cells (OPCs), CD74 and 
CX3CR1 for microglia/myeloid cells, and CLDN5 and FLT1 for endothelial cells. Clusters 
expressing markers for more than one cell type, most likely reflecting doublets, were removed 
from downstream analyses.  
 
Cell type-specific subclustering (subpopulation) analysis  
To identify cell type subpopulations, cells from all samples belonging to a given major cell type 
were extracted for sample-level re-computation of size factors and highly variable genes. CCA 
was then performed using the top 1000 genes with the highest combined biological variance as 
the feature set, followed by alignment with scAlign, with steps = 2500. The first 10 to 12 
canonical coordinates were retained for subclustering (using resolution = 0.4) and tSNE. 
Analyzing cells from each brain region separately, marker genes for subpopulations were 
identified using scran::findMarkers with parameters direction = ‘up’, pval.type = ‘any’, lfc = 
0.58, and the block parameter set to a character vector corresponding to each cell’s sample 
identity. Subpopulations that expressed markers for more than one cell type were removed from 
downstream analyses.  
 
Identification of differentially expressed genes in cell type subpopulations  
To identify genes differentially expressed by a cell type subpopulation compared to all other 
subpopulations in a way that accounts for true biological replication (i.e. at the level of 
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individuals), UMI counts of cells from the same individual belonging to the subpopulation of 
interest or all other subpopulations were summed to obtain “pseudo-bulk” samples, which were 
then analyzed using edgeR75 (version 3.24.3) following the approach recommended by 
Amezquita et al.76 A false-discovery rate cutoff of 0.1 was used.  
 
Heatmap visualization of cell-type and subpopulations-specific gene expression 
For heatmaps of cell type- or subpopulation-specific gene expression shown in the figures, log-
scaled expression values (counts per million, CPM) were averaged across cells in each cluster 
and then scaled row-wise to enhance visualization of differences among clusters.  
 
Network visualization and pathway enrichment analysis of differentially expressed genes 
Differentially expressed genes were visualized as an association network using String-db (v11)77 
and Cytoscape78 (version 3.7.2), with the association confidence score cutoff set to 0.5. The 
network layout was optimized for visualization using the yFiles Organic Layout. Enrichment for 
Gene Ontology terms and Reactome Pathways were also obtained through String-db, using a 
false-discovery rate cutoff of 0.05.  
 
Beta regression 
For each brain region, to determine the statistical significance of changes in the relative 
abundance of a given cluster or cell type across disease progression, the relative abundance was 
computed for each sample and treated as an independent measurement and beta regression31 was 
performed using the betareg package79 (version 3.1-1), using the formula relative.abundance ~ 
braak.stage for both the mean and precision models, and the bias-corrected maximum likelihood 
estimator (type = ‘BC’). The statistical significance of changes in the proportion of TBR1+ cells 
and RORB+ cells among TBR1+ cells obtained from immunofluorescence validation were 
assessed similarly as above using beta regression. To correct for multiple hypothesis testing for 
each family of tests (e.g. testing all cell type subpopulations for a brain region), Holm’s method 
was used to adjust P values obtained from beta regression to control the family-wise type I error 
rate at 0.05.  
 
Entorhinal cortex layer-specific genes  
Due to the lack of published data on layer-specific genes for the human EC, layer-specific genes 
in the mouse medial entorhinal cortex (MEC) were obtained from Ramsden et al.35. (The MEC is 
the most phylogenetically similar to the human caudal EC36, 37 used in this study.) Specifically, 
genes with expression specific for layer II, III, and V/VI of the mouse MEC according to the S4 
Dataset excel spreadsheet in the supplemental information of Ramsden et al. were mapped to 
human genes, and cross-referenced against genes differentially expressed across EC excitatory 
neuron subclusters (obtained using scran::findMarkers without setting direction = ‘up’).  
 
Re-analysis of the Mathys et al. dataset 
To re-analyze the data from Mathys et al.24 using our cross-sample alignment approach, the 
filtered matrix of UMI counts (“filtered_count_matrix.mtx”) and associated row and column 
metadata were downloaded from The AMP-AD Knowledge Portal (Synapse ID: syn18485175). 
Since clinical metadata was not provided in the column metadata, the individual ID (“projid” 
column in the column metadata) was cross-referenced with the official ROS-MAP clinical 
metadata (“ROSMAP_Clinical_2019-05_v3.csv”, synapse ID: syn3191087), which was then 
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cross-referenced with the additional metadata provided in Supplementary Table 1 and 3 from 
Mathys et al. The filtered UMI counts matrix and the associated row and column metadata were 
then converted to a SingleCellExperiment object for analysis. The cell type assignments from 
Mathys et al. provided in the column metadata were used for subclustering.  
 
Quantitative histopathological assessment using multiplex immunofluorescence 
 
Delineation of the caudal EC. We used archival paraffin blocks from the UCSF/NBDD and 
BBAS (Table 1). First, we collected blocks sampling the hippocampal formation anterior to the 
lateral genicular body from the 10 cases used for the snRNAseq and another 30 cases spanning 
all Braak stages. To determine if the caudal EC region was present, 8µm thick sections of each 
block underwent hematoxylin and eosin staining (Extended Data Fig. 8A). We took digital 
images of the stained sections and aligned each one the most approximate section from a large 
collection of 400 µm thick serial coronal sections of whole-brain hemispheres stained for 
gallocyanin provided by co-author Heinsen56, 80 (Extended Fig Data 8B). We eliminated blocks 
from five cases used for snRNA-seq and four of the extra cases for lack of caudal EC. Next, 
again with the aid of the paired gallocyanin sections, we delineated the borders of the caudal EC 
in each case (Extended Data Fig. 8A). 
The EC is considered a peri- or allocortex, depending on the author12. EC parcellation and 
cytoarchitectonic definitions have been a matter of debate, and here, we are adopting the 
cytoarchitectonic definitions proposed by Heinsen and colleagues56, which is based on the 
examination of thick histological preparations and considered the definitions proposed by 
Insausti and Amaral (6 layers)81 and Braak and Braak (3 layers)12. We adopted Arabic numerals 
for naming the EC layers to avoid confusion with neocortical layer nomenclature that uses 
Roman numerals. 
In thick histological sections, the caudal entorhinal region features well-delineated clusters of 
stellate or principal cells in layer II (or pre-alpha clusters) and two lamina dissecants56. The 
external dissecants correspond to layer IV of Insuasti7 and lamina dissecans of Braak and Braak12 
and Rose82. The internal dissecans is hardly appreciated in thin sections but easy to visualize in 
thick sections. It roughly corresponds to layer Vc of the caudal subregions of Insuasti7. 
  
Multiplex immunofluorescence. Next, for each case, an 8µm thick, formalin-fixed and paraffin-
embedded coronal section underwent immunofluorescence against TBR1, RORB and phospho-
tau(CP-13) as described below. TBR1, or T-box, brain, 1 is a transcription factor protein that has 
a role in differentiation of glutamatergic neurons and is a marker for excitatory neurons, 
including EC excitatory neurons15, 83.  In summary, sections were deparaffinized and incubated in 
3.0% hydrogen peroxide (Fisher, H325-500) in methanol to inactivate endogenous peroxidase. 
Antigen retrieval was performed in 1X Tris-EDTA HIER solution (TES500) PBS with 0.05% 
Tween 20 (PBS-T) at pH9 in an autoclave at 121�°C for five�minutes. To reduce nonspecific 
background staining, sections were blocked with 5% Milk/PBS-T. To avoid cross-reactions 
between primary antibodies that were raised against the same species, an antibody stripping step 
using 0.80% β-mercaptoethanol/10% sodium dodecyl sulfate in 12.5% Tris-HCL was performed 
after the tyramide-signal amplification (TSA) development for RORB. 
 
Sections were first incubated overnight in primary antibody against RORB (1:400, rabbit, 
HPA008393, Millipore Sigma), which was later developed in goat anti-rabbit HRP (1:400, R-
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05072-500, Advansta) with Alexa Fluor 488 TSA (1:100, B40953, Thermo Fisher). Next, 
sections were stripped of RORB primary antibody and then were incubated overnight in a 
cocktail of primary antibodies against TBR1 (1:100, Rabbit, ab31940, Abcam) and CP13 (1:800, 
mouse, phospho-tau serine 202, gift of Peter Davies, NY), all of which were later developed with 
secondary antibodies and fluorophores: for TBR1, Alexa Fluor 546 conjugated anti-rabbit 
secondary (1:200, A-11010, Thermo Fisher) was used, and for CP13, biotinylated anti-mouse 
(1:400, BA-2000, Vector Laboratory) with streptavidin Alexa Fluor 790 (1:250, S11378, Thermo 
Fisher) was used. Sections were then counterstained with DAPI diluted in PBS (1:5000, D1306, 
Invitrogen). Finally, sections were then incubated in Sudan Black B (199664-25g, Sigma) to 
reduce autofluorescence and coverslipped using Prolong antifade mounting media (P36980, 
Invitrogen). A quality control slide was used to verify the efficacy of the antibody stripping 
process. A detailed description of the method is provided in Ehrenberg et al.58 Sections were 
scanned using a Zeiss AxioScan Slide Scanner.  
 
Neuronal quantification. The caudal EC delineations carried out in the hematoxylin, and eosin-
stained slides were then transferred to the immunostained images. Within these borders, we 
randomly placed four 500x500 µm regions of interest (ROI), overlaying EC external layers (I to 
III). We then extracted the ROI for quantification in ImageJ (Fig. 3). The number of excitatory 
neurons was quantified by segmenting the TBR1 signal, using a threshold to create a mask and 
the segmentation editor plugin to manually remove all non-neuronal artifacts and vessels. The 
number of RORB-expressing excitatory neurons compared to total cell number (based on DAPI) 
was then counted using the mask of excitatory (TBR1+) neurons in the segmentation editor and 
manually removing all neurons not expressing RORB. All segmentations were manually verified 
for quality control. Quantification was done blinded to the neuropathological diagnosis. 
 
We quantified phospho-tau (CP-13) data, in two ROI in a subset of the cases, using the same FIJI 
protocol; CP13 + TBR1 positive neurons were counted manually, including RORB positive and 
negative excitatory neurons. 
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The raw snRNA-seq sequencing data and unfiltered UMI count matrices are available on the 
Gene Expression Omnibus (GEO) under the accession GSE147528. Single-cell data after quality 
control is available for download in synapse.org at 10.7303/syn21788402. 
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Fig. 1 | AD progression differentially affects the cell-type composition of the EC and SFG. 
a, Schematic of experimental design and sample processing. b-c, tSNE projection of cells from 
the EC (b) and SFG (c) in their respective alignment spaces, colored by individual of origin 
(center) or cluster assignment (outer). d-e, Heatmap and hierarchical clustering of cell clusters 
and cluster marker expression (top subpanel). Expression of cell type markers in each cluster 
(second subpanel). The average number of cells and average number of genes detected per cell in 
each cluster (third and fourth subpanels). f-g, Relative abundance of major cell types across 
Braak stages. Cell type abbreviations: Exc – excitatory neurons, Oligo – oligodendrocytes, Astro 
– astrocytes, Inh – inhibitory neurons, OPC – oligodendrocyte precursor cells, Micro – 
microglia, Endo – endothelial cells.  
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Fig. 2 | RORB-expressing excitatory neuron subpopulations in the EC are selectively 
vulnerable. a-b, tSNE projection of excitatory neurons from the EC (a) and SFG (b) in their 
respective alignment spaces, colored by individual of origin (center) or subpopulation identity 
(outer). c-d, Heatmap and hierarchical clustering of subpopulations and subpopulation marker 
expression (top subpanel). Relative abundance of subpopulations across Braak stages (second 
subpanel). Expression heatmap of EC layer-specific genes identified from Ramsden et al.35 (c, 
third subpanel). Expression heatmap of neocortical layer-specific genes from Lake et al.22 (d, 
third subpanel). Expression of selectively vulnerable subpopulation markers identified in the EC 
(bottom subpanel). e, Heatmap of Pearson correlation between the gene expression profiles of 
EC and SFG subpopulations.  
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Fig. 3 | Immunofluorescence of the EC validates selective vulnerability of RORB-expressing 
excitatory neurons. a, Method for extracting regions of interest (ROI) is illustrated using a 
representative brain slice used for immunofluorescence with the EC delineated in red. Four ROIs 
(red squares) were randomly distributed along the superficial layers of the EC and extracted for 
quantification. A representative ROI image with DAPI, NeuN, TBR1, and RORB staining is 
shown. b, Representative RORB staining in a Braak stage 0 sample (left) vs. a Braak stage 5 
sample (right), shown with (top) and without (bottom) excitatory neurons marked by TBR1 
staining. c, Representative CP13 staining in a Braak stage 6 sample, shown together with TBR1 
and RORB staining (left) or only with RORB staining (right). d-e, Proportion of TBR1+ cells (d) 
or proportion of RORB+ cells among TBR1+ cells (e) averaged across ROIs for each individual 
across groups of Braak stages. f, Proportion of CP13+ cells in RORB- or RORB+ excitatory 
neurons (i.e. TBR1+ cells) averaged across ROIs for each individual across groups of Braak 
stages. g, Contingency tables of raw counts of TBR1+ cells based on their RORB or CP13 
staining status summed across ROIs and individuals for each group of Braak stages; the P value 
(Fisher’s Exact Test) is shown below each table. All scale bars correspond to 100 µm.  
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Fig. 4 | Inhibitory neuron subpopulations do not show consistent differences in resilience or 
vulnerability to AD progression. a-b, tSNE projection of inhibitory neurons from the EC (a) 
and SFG (b) in their respective alignment spaces, colored by individual of origin (center) or 
subpopulation identity (outer). c-d, Heatmap and hierarchical clustering of subpopulations and 
subpopulation marker expression (top subpanel). Relative abundance of subpopulations across 
Braak stages (middle subpanel). Expression heatmap of inhibitory neuron molecular subtype 
markers from Lake et al.22 (bottom subpanel).  
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Fig. 5 | GFAPhigh astrocytes show signs of dysfunction in glutamate homeostasis and 
synaptic support. a-b, tSNE projection of astrocytes from the EC (a) and SFG (b) in their 
respective alignment spaces, colored by individual of origin (center) or subpopulation identity 
(outer). c-d, Heatmap and hierarchical clustering of subpopulations and subpopulation marker 
expression (top subpanel). Relative abundance of subpopulations across Braak stages (middle 
subpanel). Expression of genes associated with reactive astrocytes, with median expression level 
marked by line (bottom subpanel). e, Enrichment analysis of overlap between differentially 
expressed genes in GFAPhigh astrocytes vs. differentially expressed genes in reactive astrocytes 
from Anderson et al.54. The number of genes in each gene set and the number of overlapping 
genes are shown in parentheses, and the P values (hypergeometric test, corrected for multiple 
testing using the Benjamini-Hochberg procedure) are shown without parentheses. f, Enrichment 
of Reactome pathways in downregulated genes in GFAPhigh astrocytes, with selected terms 
highlighted in color. g, String-db association network of downregulated genes shared between 
EC and SFG GFAPhigh astrocytes that overlap with those in Anderson et al.54. Genes with 
stronger associations are connected by thicker lines. Genes that belong to selected gene sets in 
panel f are highlighted in color.  
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TABLE 
 

Cases used for snRNA-seq 

Case # Braak stage Sex Age at death APOE Source 

1 0 M 50 ε3/ε3  BBAS 

2 0 M 60 ε3/ε3 BBAS 

3 0 M 71 ε3/ε3 BBAS 

4 2 M 72 ε3/ε3 BBAS 

5* 2 M 77 ε3/ε3 UCSF 

6* 2 M 87 ε3/ε3 UCSF 

7* 2 M 91 ε3/ε3 UCSF 

8* 6 M 72 ε3/ε3 UCSF 

9* 6 M 82 ε3/ε3 UCSF 

10 6 M 82 ε3/ε3 UCSF 

Cases used for immunofluorescence validation 

Case # Braak stage Sex Age at death APOE Source 

11 0 F 62 NA BBAS 

12 0 M 64 ε3/ε3 BBAS 

13 1 M 60 NA BBAS 

14 1 F 64 ε3/ε3 BBAS 

15 1 M 70 ε3/ε3 BBAS 

16 1 F 82 NA UCSF 

5* 2 M 77 ε3/ε3 UCSF 

17 2 F 79 ε3/ε3 BBAS 

18 2 F 81 ε3/ε3 UCSF 

6* 2 M 87 ε3/ε3 UCSF 

7* 2 M 91 ε3/ε3 UCSF 

19 3 M 81 NA UCSF 

20 3 M 84 NA UCSF 

21 3 F 88 ε3/ε3 UCSF 

22 3 M 89 ε3/ε3 UCSF 

23 4 F 87 ε3/ε3 UCSF 

24 4 M 91 ε3/ε3 UCSF 

25 4 M 103 ε3/ε3 UCSF 

26 5 M 77 ε4/ε4 UCSF 

27 5 M 85 ε3/ε3 UCSF 
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28 5 M 86 ε3/ε4 UCSF 

29 5 F 87 ε3/ε3 BBAS 

30 6 F 64 ε3/ε4 UCSF 

31 6 F 67 ε4/ε4 UCSF 

8* 6 M 72 ε3/ε3 UCSF 

9* 6 M 82 ε3/ε3 UCSF 
 
Table 1 | Description of post-mortem cohort.  
Asterisks denote cases used both for snRNA-seq and immunofluorescence validation. 
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EXTENDED DATA 
 
 

 
Extended Data Fig. 1 | Data quality and initial clustering without cross-sample alignment. 
a-b, Mean number of genes (a) or UMIs (b) detected per cell across individual samples for major 
cell types identified in each dataset. Grubman et al.25 did not resolve excitatory neurons from 
inhibitory neurons. Pericytes were identified only in Mathys et al.24. Cell type abbreviations: Exc 
– excitatory neurons, Oligo – oligodendrocytes, Astro – astrocytes, Inh – inhibitory neurons, 
OPC – oligodendrocyte precursor cells, Micro – microglia, Endo – endothelial cells, Per – 
pericytes. c-d, tSNE projection of cells from the EC (c) and SFG (d) clustered without first 
performing cross-sample alignment, colored by individual of origin (center) or cluster 
assignment (outer). e-f, Heatmap and hierarchical clustering of clusters and cluster marker 
expression (top subpanel). Expression of cell type markers (bottom subpanel).  
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 5, 2020. ; https://doi.org/10.1101/2020.04.04.025825doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.04.025825


 
 
Extended Data Fig. 2 | Expression of selected EC excitatory neuron subpopulation 
markers. Expression heatmap of genes that are specifically expressed by four or fewer 
subpopulations.  
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Extended Data Fig. 3 | Pathway enrichment analysis of differentially expressed genes in 
selectively vulnerable EC excitatory neurons. a-b, Gene Ontology Cellular Component and 
Reactome Pathway enrichment analysis of highly expressed (a) and lowly expressed (b) genes, 
with selected terms highlighted by color. c-d, String-db association network of highly expressed 
(c) and lowly expressed (d) genes in selectively vulnerable EC excitatory neurons; genes with 
stronger associations are connected by thicker lines; genes without known associations are not 
shown, and genes found in selected gene sets in a-b are highlighted in color. 
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Extended Data Fig. 4 | Alignment of EC and SFG maps homologous excitatory neuron 
subpopulations. a, tSNE projection of excitatory neurons from the EC and SFG in the joint 
alignment space, colored by subpopulation identity (top), individual of origin (middle), or brain 
region (bottom). b, Heatmap and hierarchical clustering of subpopulations and subpopulation 
marker expression (top subpanel). Relative abundance of subpopulations across Braak stages 
(middle subpanels). Expression of selectively vulnerable subpopulation markers identified in the 
EC (bottom subpanels). Significant P values (beta regression, adjusted for multiple testing) are 
shown in a table at the bottom of the panel. c, Sankey diagram connecting subpopulation identity 
of excitatory neurons in the EC alignment space and the SFG alignment space to subpopulation 
identity in the EC+SFG alignment space.  
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Extended Data Fig. 5 | Cross-sample alignment of excitatory neurons from Mathys et al. 
recapitulates selective vulnerability in a RORB-expressing subpopulation. a, tSNE 
projection of excitatory neurons from Mathys et al.24 in the alignment space, colored by 
subpopulation identity (top) or individual of origin (bottom). b, Heatmap and hierarchical 
clustering of subpopulations and subpopulation marker expression (top subpanel). Relative 
abundance of subpopulations in in AD cases vs. controls, separated by sex (second and third 
subpanels). Expression heatmap of neocortical layer-specific genes from Lake et al.22 (fourth 
subpanel). Expression of selectively vulnerable subpopulation markers identified in the EC 
(bottom subpanel). c, Heatmap of Pearson correlation between the gene expression profiles of 
excitatory neuron subpopulations from the EC vs. those from the prefrontal cortex in Mathys et 
al.24  
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Extended Data Fig. 6 | Gene expression correlation analysis maps excitatory neuron 
subpopulations in the SFG, EC, and prefrontal cortex to those defined in the Allen Brain 
Atlas. a-c, Heatmap of Pearson correlation between the gene expression profiles of excitatory 
neuron subpopulations in the EC (a), SFG (b), or prefrontal cortex from Mathys et al.24 (c) with 
those of subpopulations defined in the Allen Brain Atlas23.  
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Extended Data Fig. 7 | Delineation of the EC for each case used in immunofluorescence 
validation. a, The borders of the caudal EC delineated on sections stained with hematoxylin and 
eosin (H&E) for all 26 cases used in immunofluorescence validation (Table 1). b, Borders of the 
EC were determined with the aid of 400 µm-thick serial coronal sections of whole-brain 
hemispheres stained with gallocyanin56, 80. Each H&E section (left) along with its corresponding 
immunofluorescence image (middle) was aligned to the most approximate gallocyanin section 
(right), in which the the dissecans layers (diss-1, diss-2, and diss-ext) characteristic of the EC 
were easier to visualize. This was then used to guide delineation of the EC on the H&E and 
immunofluorescence sections.  
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Extended Data Fig. 8 | Inhibitory neurons from Mathys et al. also do not show differences 
in resilience or vulnerability to AD. a, tSNE projection of inhibitory neurons from Mathys et 
al.24 in the alignment space, colored by subpopulation identity (top) or individual of origin 
(bottom). b, Heatmap and hierarchical clustering of subpopulations and subpopulation markers 
(top subpanel). Relative abundance of subpopulations in in AD cases vs. controls, separated by 
sex (second and third subpanels). Expression heatmap of inhibitory neuron subtype markers 
from Lake et al.22 (bottom subpanel).  
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Extended Data Fig. 9 | Subclustering of microglia does not sufficiently resolve disease 
associated microglia signature. a-c, tSNE projection of astrocytes from the EC (a), SFG (b), 
and Mathys et al.24 (c) in their respective alignment spaces, colored by subpopulation identity 
(left) or individual of origin (right). d-f, Heatmap and hierarchical clustering of subpopulations 
and subpopulation marker expression (averaged across cells in each cluster and then scaled 
subpanel-wise, with blue reflecting low expression and red reflecting high expression; subpanel 
dendrogram not shown). g-i, Relative abundance of subpopulations across Braak stages in the 
EC and SFG or between AD cases vs. controls in Mathys et al.24 g-h, Expression of disease 
associated microglia markers.  
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Extended Data Fig. 10 | GFAPhigh astrocytes from Mathys et al. are highly similar to 
GFAPhigh astrocytes from the EC and SFG. a, tSNE projection of astrocytes from Mathys et 
al.24 in the alignment subspace, colored by subpopulation identity (top) or individual of origin 
(bottom). b, Heatmap and hierarchical clustering of subpopulations and subpopulation marker 
expression (top subpanel). Relative abundance of subpopulations in in AD cases vs. controls, 
separated by sex (middle subpanels). Expression of genes associated with reactive astrocytes, 
with median expression level marked by line (bottom subpanel). c, Enrichment analysis of 
overlap between differentially expressed genes in GFAPhigh astrocytes from Mathys et al.24 vs. 
differentially expressed genes in GFAPhigh astrocytes from the EC and SFG; the number of genes 
in each gene set and the number of overlapping genes are shown in parentheses, and the P values 
(hypergeometric test) are shown without parentheses.   
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SUPPLEMENTARY TABLE LEGEND 
 
Supplemental Table 1 | Genes differentially expressed by selectively vulnerable excitatory 
neurons compared to all other excitatory neurons in the EC.  The column “gene” contains 
official gene symbols of differentially expressed genes, “logFC” contains the associated log2 
fold-change, “logCPM” contains the log2-transformed counts per million (CPM) of transcripts 
mapping to the gene averaged across all conditions, “F” contains the value of the quasi-
likelihood F-statistic (see edgeR documentation) used to determine differential expression, 
“Pvalue” contains the raw P values associated with the quasi-likelihood F-test, “FDR” contains P 
values adjusted for multiple testing using the Benjamini-Hochberg method.   
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