1	The Mechanism of MICU-Dependent Gating of the
2	Mitochondrial Ca ²⁺ Uniporter
3 4	Authors: Vivek Garg ^{1,*} , Ishan Paranjpe ¹ , Tiffany Unsulangi ¹ , Junji Suzuki ¹ , Lorin S. Milescu ² , and Yuriy Kirichok ^{1,*} .
5	
6	Affiliations:
7	¹ Department of Physiology, University of California San Francisco, San Francisco, CA, USA.
8	² Department of Biology, University of Maryland, College Park, MD, USA.
9	*Correspondence to: <u>yuriy.kirichok@ucsf.edu</u> (YK); <u>vivek.garg@ucsf.edu</u> (VG)
10	
11	
12	This Paper is submitted back-to-back with the following paper:
13 14 15	W. Zhuo et al., Structure of intact human MCU supercomplex with the auxiliary MICU subunits . bioRxiv, 2020.2004.2004.025205 (2020). doi: <u>https://doi.org/10.1101/2020.04.04.025205</u>

16 Abstract

17	Mitochondrial Ca ²⁺ uniporter (MCU) mediates mitochondrial Ca ²⁺ uptake, regulating ATP
18	production and cell death. According to the existing paradigm, MCU is occluded at the resting
19	cytosolic [Ca ²⁺] and only opens above an ~400 nM threshold. This Ca ²⁺ -dependent gating is
20	putatively conferred by MICUs, EF hand-containing auxiliary subunits that block/unblock the
21	MCU pore depending on cytosolic [Ca ²⁺]. Here we provide the first direct, patch-clamp based
22	analysis of the Ca ²⁺ -dependent MCU gating and the role played by MICUs. Surprisingly, MICUs
23	do not occlude the MCU pore, and MCU is a constitutively active channel without cytosolic
24	[Ca ²⁺] activation threshold. Instead, MICUs potentiate MCU activity when cytosolic Ca ²⁺ binds
25	to their EF hands. MICUs cause this potentiation by increasing the probability of open state of
26	the MCU channel.
27	
28	

29 **One Sentence Summary**

Auxiliary MICU subunits do not occlude the mitochondrial Ca²⁺ uniporter (MCU) but increase
its activity as cytosolic Ca²⁺ is elevated.

32 Main Text

Mitochondrial Ca^{2+} uptake regulates ATP production, shapes intracellular Ca^{2+} transients 33 and plays a crucial role in deciding cell fate (1-4). It is mediated by the mitochondrial Ca²⁺ 34 uniporter (MCU) (3-5), which upon elevation of cytosolic $[Ca^{2+}]$ ($[Ca^{2+}]_{cyto}$) allows selective 35 Ca^{2+} permeation into the mitochondrial matrix, down the high electrochemical gradient across 36 the IMM. All Ca^{2+} channels lose their selectivity and become permeable for Na^{+} at low $[Ca^{2+}]$. 37 when Ca^{2+} is removed from the pore (6-8). MCU also conducts Na^{+} but only when $[Ca^{2+}]$ is 38 decreased to low nM range, because the MCU pore has a Ca²⁺ binding site with an exceptionally 39 40 high affinity ($K_d \leq 2$ nM) (9-15). This prevents permeation of abundant cytosolic monovalent cations even at a resting $[Ca^{2+}]_{cvto}$ of ~100 nM, and makes MCU the most selective Ca^{2+} channel 41 known. 42 MCU activity must be regulated. Insufficient Ca²⁺ uptake would result in deficient ATP 43 production, whereas excessive uptake would lead to mitochondrial Ca²⁺ overload, $\Delta \Psi$ 44 dissipation, mitochondrial dysfunction and cell death (16). A few early studies suggested that 45 MCU activity might be potentiated by cytosolic $[Ca^{2+}]$ (4, 17, 18). However, the results differed 46 significantly between labs, because MCU activity was assessed indirectly in suspensions of 47 isolated mitochondria and critical experimental conditions could not be reliably controlled (3, 4). 48 Thus, such potentiation was controversial and no clear unifying model for Ca^{2+} -dependent MCU 49 50 gating was generated. Recent molecular characterization established that MCU is a macromolecular complex 51

(fig. S1A). Its pore is formed by the MCU subunit (*19, 20*) and the essential MCU regulator
(EMRE) subunit (*21*). EF hand domain-containing auxiliary MICU1–3 subunits are tethered on
the cytosolic side of the MCU/EMRE pore (*22, 23*). MICU1 interacts directly with the MCU and

EMRE, while MICU2 and MICU3 attach to the MCU complex only by heterodimerizing with
MICU1 (*21*, *24-26*). MICU3 is a neuronal- and embryonic-specific isoform with little expression
in other tissues (*23*, *27*).

The understanding of the molecular composition of the MCU complex renewed interest 58 in the MCU gating by cytosolic Ca^{2+} . In MICU1 deficiency, when none of the MICU subunits is 59 associated with the MCU/EMRE pore, mitochondrial Ca^{2+} ([Ca^{2+}]_{mito}) starts to increase at lower 60 $[Ca^{2+}]_{cvto}$ both in cells (24, 25, 28-31) and isolated mitochondria (32). Based on these results, the 61 term " $[Ca^{2+}]_{cvto}$ threshold for mitochondrial Ca^{2+} uptake" was coined, and it was postulated that 62 MICU1 (in association with other MICUs) confers the $[Ca^{2+}]_{cvto}$ threshold for MCU activation 63 (28, 29). Specifically, the current paradigm suggests that at resting $[Ca^{2+}]_{cvto}$, MICU1 occludes 64 the MCU pore (28, 33, 34), but when $[Ca^{2+}]_{cvto}$ increases above ~400–800 nM and Ca^{2+} binds to 65 the MICU1 EF hands, this occlusion is relieved (24, 28, 29) (Fig. 6A). MICU2 is proposed to 66 facilitate this MICU1 function (24, 25, 35). In this model, the occlusion of MCU by 67 MICU1/MICU2 at the resting $[Ca^{2+}]_{cyto}$ is considered well-established (tables S1 and S2), while 68 the degree to which the occlusion is removed at elevated $[Ca^{2+}]_{cyto}$ remains controversial with 69 different groups reporting a wide range of effects (tables S1 and S2). MICU1^{-/-} mice show 70 71 profound late embryonic and postnatal lethality (32, 36), while loss-of function MICU1 mutations in humans cause fatigue, lethargy, severe myopathy, developmental and learning 72 73 disabilities, and progressive extrapyramidal movement disorder (30, 37-39). The paradigm that MICUs occlude the MCU pore at resting cytosolic Ca²⁺ and impart 74 $[Ca^{2+}]_{cvto}$ activation threshold on MCU has affected the field profoundly. However, it has never 75 been demonstrated by direct measurement of Ca²⁺ currents mediated by MCU. Instead, MCU 76 activity was inferred from the changes in $[Ca^{2+}]$ inside or outside of mitochondria, as measured 77

79 determined by the balance between mitochondrial Ca^{2+} uptake and efflux mechanisms (80 Some of these studies (<i>34, 36</i>) used CGP37157 to inhibit the mitochondrial Ca^{2+} efflux 81 associated with the Ca^{2+}/Na^+ exchange mechanism, but this was clearly insufficient to e 82 all mitochondrial Ca^{2+} efflux. Indeed, if the Ca^{2+} efflux was fully eliminated, the free [C 83 (based on the Nernst equation and assuming 100 nM $[Ca^{2+}]_{cyto}$ and $\Delta\Psi$ at -160 mV) would 84 an enormous value of ~25 mM even with residual MCU activity. Other factors such as 27 85 volume of mitochondrial matrix, matrix Ca^{2+} buffering with phosphates (<i>40</i>) and pH car 86 confound indirect assessment of MCU activity using Ca^{2+} indicators. 87 The numerous pitfalls associated with indirect assessment of MCU activity make 88 measurements of MCU currents (<i>9, 10, 41</i>) necessary for understanding of MCU regular	iminate a ²⁺] _{mito} lld reach
 associated with the Ca²⁺/Na⁺ exchange mechanism, but this was clearly insufficient to e all mitochondrial Ca²⁺ efflux. Indeed, if the Ca²⁺ efflux was fully eliminated, the free [C (based on the Nernst equation and assuming 100 nM [Ca²⁺]_{cyto} and ΔΨ at -160 mV) would an enormous value of ~25 mM even with residual MCU activity. Other factors such as A volume of mitochondrial matrix, matrix Ca²⁺ buffering with phosphates (40) and pH car confound indirect assessment of MCU activity using Ca²⁺ indicators. The numerous pitfalls associated with indirect assessment of MCU activity make 	a ²⁺] _{mito}
 all mitochondrial Ca²⁺ efflux. Indeed, if the Ca²⁺ efflux was fully eliminated, the free [C (based on the Nernst equation and assuming 100 nM [Ca²⁺]_{cyto} and ΔΨ at -160 mV) would an enormous value of ~25 mM even with residual MCU activity. Other factors such as A volume of mitochondrial matrix, matrix Ca²⁺ buffering with phosphates (40) and pH car confound indirect assessment of MCU activity using Ca²⁺ indicators. The numerous pitfalls associated with indirect assessment of MCU activity make 	a ²⁺] _{mito}
 (based on the Nernst equation and assuming 100 nM [Ca²⁺]_{cyto} and ΔΨ at -160 mV) would an enormous value of ~25 mM even with residual MCU activity. Other factors such as A volume of mitochondrial matrix, matrix Ca²⁺ buffering with phosphates (40) and pH car confound indirect assessment of MCU activity using Ca²⁺ indicators. The numerous pitfalls associated with indirect assessment of MCU activity make 	ld reach
 an enormous value of ~25 mM even with residual MCU activity. Other factors such as 2 volume of mitochondrial matrix, matrix Ca²⁺ buffering with phosphates (40) and pH car confound indirect assessment of MCU activity using Ca²⁺ indicators. The numerous pitfalls associated with indirect assessment of MCU activity make 	
 volume of mitochondrial matrix, matrix Ca²⁺ buffering with phosphates (40) and pH car confound indirect assessment of MCU activity using Ca²⁺ indicators. The numerous pitfalls associated with indirect assessment of MCU activity make 	W tho
 confound indirect assessment of MCU activity using Ca²⁺ indicators. The numerous pitfalls associated with indirect assessment of MCU activity make 	T, IIC
87 The numerous pitfalls associated with indirect assessment of MCU activity make	further
88 measurements of MCU currents (9, 10, 41) necessary for understanding of MCU regular	direct
	ion and
the role of MICU subunits. However, such direct measurements have been considered e	stremely
90 challenging, especially in the context of structure–function studies of the MCU complex	, which
91 require assessment of numerous knockout and mutant models. There have been a few at	empts to
92 characterize MICU1-dependent regulation of MCU using direct electrophysiology, but t	he scope
93 of electrophysiological experiments in these few studies was very limited, and MICU1 f	unction
94 was assessed only at high $[Ca^{2+}]_{cyto}$ (42-44). These incomplete electrophysiological stud	es
95 generated very diverse results ranging from inhibition to no effect of MICU1 on the MC	U
96 activity, and thus no clarity was achieved (table S1). One electrophysiological study trie	d to
assess the effects of MICU1 and MICU2 at both low and high $[Ca^{2+}]_{cyto}$ (table S1) (25).	
98 Unfortunately, in this study a recombinant MCU subunit was reconstituted in planar lipit	d
bilayers in the absence of EMRE, the subunit essential for both a functional MCU channel M	
the association of MICU1/MICU2 with the MCU pore (25). The observed channel cond	el and

101	Na^+ even at μM [Ca ²⁺] and failed to replicate the exceptionally high MCU selectivity for Ca ²⁺ .
102	Thus, the channel activity observed in this EMRE-less system was artifactual.
103	Therefore, to facilitate a rigorous and systematic insight into the function of MICU1–3,
104	as well as other subunits of the MCU complex, we developed a heterologous expression system
105	for direct patch-clamp analysis of the MCU complex in the native IMM. Using this system, we
106	demonstrate that MICUs do not occlude the MCU pore. An accompanying paper by Zhuo et al.,
107	(45) reporting the first complete structure of the human MCU complex, also shows that
108	MICU1/MICU2 are tethered to the periphery of the MCU-EMRE pore and do not occlude the
109	pore. We next demonstrate that the actual function of the MICU subunits is to potentiate MCU
110	activity when their EF hands bind cytosolic Ca^{2+} . Thus, MCU has no intrinsic $[Ca^{2+}]_{cyto}$
111	activation threshold. It is a constitutively active channel that is potentiated by $[Ca^{2+}]_{cyto}$ via the
112	MICU subunits.
113	
114	Results
115	System for direct structure–function analysis of MCU
116	Two factors are crucial to the success of the whole-IMM patch-clamp: the size of

individual mitoplasts (vesicles of the whole native IMM) and the IMM stability during the electrophysiological experiments. Therefore, we tested various cell lines for the best possible optimization of these two factors. Eventually, we selected a $Drp1^{-/-}$ MEF cell line (46), in which mitochondria form long tubular networks and provide a significantly higher proportion of large isolated mitoplasts that are also remarkably resilient during the whole-IMM electrophysiological experiments. We confirmed that this cell line expresses all principal subunits of the MCU complex (fig. S2A-D). We next generated gene knockouts for all principal subunits of the MCU

124	complex (MCU, EMRE and MICU1-3) using CRISPR-Cas9 in the background of Drp1 ^{-/-} MEFs
125	(fig. S1). All knockout cell lines lacked protein expression of the respective subunit (fig. S2A-C).
126	To explore the cytosolic/mitochondrial Ca^{2+} phenotypes in these MCU complex knockout
127	cell lines, we induced slow elevation of $[Ca^{2+}]_{cyto}$ using the SERCA inhibitor thapsigargin (Tg)
128	and observed an associated increase in $[Ca^{2+}]_{mito}$ (fig. S2E-J). $[Ca^{2+}]_{cyto}$ was measured using
129	Fura-2 while the mitochondrial Ca^{2+} changes were measured using a genetically-encoded Ca^{2+}
130	indicator Cepia (47) targeted to mitochondria. $[Ca^{2+}]_{cyto}$ under resting conditions was maintained
131	~75 nM in all cell lines (fig. S2K) and peaked in the range of 400–1000 nM upon addition of Tg
132	(fig. S2L). In cells with the WT MCU complex, the $[Ca^{2+}]_{cyto}$ increase was followed, after a short
133	delay, by $[Ca^{2+}]_{mito}$ elevation (fig. S2E). However, as expected, in $MCU^{-/-}$ or $EMRE^{-/-}$ cell lines
134	that have no functional MCU complex (19-21), no significant $[Ca^{2+}]_{mito}$ elevation was observed
135	(fig. S2F and G). In MICU1–3-deficient cells, the $[Ca^{2+}]_{cyto}$ threshold for elevation of $[Ca^{2+}]_{mito}$
136	was altered as compared to that in cells with the WT MCU complex (fig. S2H-J, and M). In
137	MICU1 ^{-/-} cells, the threshold was drastically decreased (fig. S2H and M), and a significant but
138	less profound decrease was also observed in <i>MICU2^{-/-}</i> cells (fig. S2I and M). However, <i>MICU3^{-/-}</i>
139	cells had an increased threshold (fig. S2J and M). Thus, in our cell system, we observed the same
140	[Ca ²⁺] _{mito} phenotypes associated with knockout of individual MCU complex subunits as reported
141	previously (24, 25, 28, 29, 34).

We next explored how knockouts for various MCU complex subunits affect MCU currents. Importantly, the MCU complex was intact in isolated whole-IMM vesicles (mitoplasts) used in our patch-clamp experiments, and its composition was the same as in intact mitochondria based on MCU-FLAG co-immunoprecipitation experiments (fig. S4A). Mitoplasts isolated from cells with the *WT* MCU complex had a robust whole-IMM Ca^{2+} current (*I*_{Ca}). The voltage step

147	from 0 to -160 mV, followed by a voltage ramp to +80 mV, elicited an inwardly rectifying I_{Ca}
148	that gradually increased as $[Ca^{2+}]_{cyto}$ (bath solution) was elevated (Fig. 1A, <i>left panel</i> , and fig.
149	S3A and B). As expected, in a Ca ²⁺ -free bath solution (control), we only observed an outward
150	Na^+ current (I_{Na} , black trace) via MCU, because the pipette solution contained Na^+ (Fig. 1A, <i>left</i>
151	panel, and fig. S3A and B).
152	Mitoplasts isolated from $MCU^{-/-}$ and $EMRE^{-/-}$ lines had no inward I_{Ca} or outward I_{Na} ,
153	confirming the essential role of these two subunits for the functional MCU complex (21, 48, 49)
154	(Fig. 1A and C). Importantly, even millimolar $[Ca^{2+}]_{cyto}$ induced no I_{Ca} in $MCU^{-/-}$ and $EMRE^{-/-}$,
155	demonstrating that MCU is the only electrogenic mechanism for mitochondrial Ca ²⁺ uptake.
156	Heterologous expression of MCU or EMRE in their corresponding knockout cell lines (fig. S4B
157	and C) resulted in restoration of the inward I_{Ca} and outward I_{Na} (Fig. 1B and C).
158	Thus, we have identified a system that has robust MCU currents, can be used for
159	heterologous expression of recombinant MCU complex subunits, and significantly improves
160	throughput of whole-IMM patch-clamp recording.
161	
162	MICUs are Ca ²⁺ -dependent MCU potentiators
163	In contrast to MCU ^{-/-} and EMRE ^{-/-} , none of the MICU knockouts (MICU1-3) showed
164	loss of I_{Ca} or I_{Na} (Fig. 1D), demonstrating that these subunits are not absolutely required for a
165	functional MCU channel. However, among all MICU knockouts, loss of MICU1 resulted in a
166	marked reduction (~50%) of I_{Ca} in both micromolar and millimolar ranges of $[Ca^{2+}]_{cyto}$ (Fig. 1D
167	and E, and fig. S5). The same reduction was observed when I_{Ca} was measured at both -160 mV
168	(Fig. 1E) and -80 mV (fig. S5C). We next focused on understanding the mechanism by which
169	MICU1 regulates MCU function.

170	As was suggested previously, MICU1 tethers other MICU subunits to the MCU/EMRE
171	pore (21, 24-26). The accompanying paper reporting the structure of the complete human MCU
172	complex confirms that the MICU1/MICU2 dimer is tethered to the MCU/EMRE pore
173	specifically via interactions between MICU1 and EMRE (Zhuo et al., accompanying manuscript
174	(45)). Thus, in <i>MICU1^{-/-}</i> none of the MICU subunits are associated with the MCU complex. The
175	levels of MCU and MCUb (MCU paralog with no Ca2+ transport activity and putative dominant-
176	negative effect on the MCU function) subunits (50) were not affected in MICU1 ^{-/-} , while EMRE
177	expression was significantly reduced (fig. S6A-D), as was also shown previously (32). The lower
178	EMRE expression in $MICU1^{-/-}$ was not a limiting factor for I_{Ca} , because EMRE overexpression
179	in <i>MICU1</i> ^{-/-} cells did not rescue the I_{Ca} reduction (fig. S6D-F). Therefore, the I_{Ca} reduction in
180	MICU1 ^{-/-} was caused by the lack of MICU1 (and other MICU proteins) in the MCU complex.
181	Because I_{Ca} was recorded at $[Ca^{2+}]_{cyto} \ge 10 \ \mu M$, when the EF hands of MICU subunits ($K_d \sim 600$
182	nM) (51) are occupied by Ca^{2+} , we conclude that in the Ca^{2+} -bound state MICUs potentiate the
183	MCU current.
184	We next studied how MICUs affect the MCU current when Ca ²⁺ is not bound to their EF
185	hands. Because this requires $[Ca^{2+}]_{cyto} < 60 \text{ nM}$ (10-fold less than <i>Kd</i>) and <i>I</i> _{Ca} cannot be measured
186	reliably under these conditions, we used Na ⁺ as the permeating ion. A robust I_{Na} via MCU was
187	observed when Ca^{2+} was eliminated on the cytosolic face of the IMM with Ca^{2+} chelators (Fig.
188	2A, <i>left panel</i>). As expected, I_{Na} completely disappeared in $MCU^{-/-}$ and $EMRE^{-/-}$ (Fig. 2A and B).
189	Interestingly, in a striking contrast to I_{Ca} , I_{Na} was not reduced in <i>MICU1^{-/-}</i> , (Fig. 2C-E, also see

- 190 Fig. 1D and E). The very presence of a robust I_{Na} , and the fact that it is not altered in $MICU1^{-/-}$,
- argues strongly against the currently accepted paradigm (33, 34) in which the MCU/EMRE pore
- is occluded by MICUs when their EF hands are not occupied by Ca^{2+} (Fig. 6A). In the absence of

193	cytosolic Ca ²⁺ , a robust I_{Na} via MCU was also previously recorded in mitoplasts isolated from
194	COS-7 cells, mouse heart and skeletal muscle (9, 10). Nanomolar concentrations of MCU
195	inhibitor ruthenium red (RuR) completely block this $I_{Na}(9, 10)$. In the absence of divalent
196	cations, a RuR-sensitive, Na ⁺ -selective MCU-dependent uniport was also reported in intact
197	isolated mitochondria (52, 53). Thus, the MCU/EMRE pore is not occluded by MICU proteins
198	when Ca^{2+} is not bound to their EF hands. Moreover, the similarity of I_{Na} amplitudes in WT and
199	$MICU1^{-/-}$ (Fig. 2C-E) suggests that in their Ca ²⁺ -free state MICUs do not affect ion permeation
200	through the MCU/EMRE pore at all. The accompanying structural paper describing the human
201	MCU complex also demonstrates that MICU1/MICU2 do not occlude the pore entrance.
202	Moreover, the profile of the MCU pore is the same, with or without MICU1/MICU2 attached
203	(Zhuo et al., accompanying manuscript (45)).
204	The <i>MICU1</i> ^{-/-} phenotypes of I_{Na} (no change) and I_{Ca} (reduction) suggest that the only
205	function of MICUs is potentiation of the MCU complex activity when their EF hands are
206	occupied by Ca^{2+} . To further examine this phenotype, we studied how the ratio of I_{Ca} to I_{Na} , as
207	measured in the same mitoplast, is affected by $MICU1^{-/-}$. Such I_{Ca}/I_{Na} ratio depends only on the
208	functional properties of the MCU complex, and, in contrast to I_{Ca} and I_{Na} amplitudes, is
209	independent of the number of MCU complexes in a mitoplast. Thus, an alteration of the I_{Ca}/I_{Na}
210	ratio in <i>MICU1</i> ^{-/-} can be directly attributed to altered functional properties of the MCU complex,
211	and would not depend on any associated changes in MCU/EMRE expression affecting the
212	number of MCU complexes.
213	The I_{Ca}/I_{Na} ratio was dramatically reduced in <i>MICU1^{-/-}</i> mitoplasts (Fig. 2F), which means

The I_{Ca}/I_{Na} ratio was dramatically reduced in $MICU1^{-/-}$ mitoplasts (Fig. 2F), which means that the loss of MICUs is directly responsible for the reduction of I_{Ca} as compared to I_{Na} . The loss of MICUs can cause such reduction in the I_{Ca}/I_{Na} ratio by either altering the channel gating or affecting the relative affinities for Ca^{2+} and Na^+ binding in the selectivity filter. The reduction in I_{Ca}/I_{Na} ratio in $MICU1^{-/-}$ could not be explained by altered relative affinities for Ca^{2+} and Na^+ binding in the selectivity filter, because I_{Na} was inhibited to the same extent by 2 nM $[Ca^{2+}]_{cyto}$ in both WT and $MICU1^{-/-}$ mitoplasts (Fig. 2G and H). Thus, a reduced I_{Ca}/I_{Na} ratio in $MICU1^{-/-}$ is caused by a disrupted MICU-dependent gating mechanism. This gating mechanism potentiates MCU currents in a Ca^{2+} -dependent fashion.

The above experiments were all performed in cell lines with disrupted Drp1. However, 222 Drp1 is not a part of the MCU complex, and therefore Drp1 loss is not expected to affect MCU 223 224 currents as measured directly with patch-clamp electrophysiology. Indeed, in our experiments Drp1 knockout did not affect the amplitudes of I_{Ca} or I_{Na} mediated by the MCU complex (fig. 225 S7A and B). However, we still confirmed that the observed *MICU1^{-/-}* current phenotypes were 226 the same, irrespective of the Drp1 background. Similar to MICU1 knockout in Drp1^{-/-} MEFs, 227 MICU1 knockout in $Drp1^{+/+}$ MEFs did not affect I_{Na} while markedly reduced I_{Ca} (fig. S7C-E). 228 Additionally, $MICU1^{-/-}$ reduced the I_{Ca}/I_{Na} ratio, as measured in the same mitoplast, to the similar 229 extent in $Drp1^{+/+}$ MEFs (fig. S7F). Thus, as expected, Drp1 presence or absence does not affect 230 currents mediated by the MCU complex or the *MICU1*^{-/-} phenotypes. 231

To conclude, MICU subunits do not occlude the MCU/EMRE pore or impart a $[Ca^{2+}]_{cyto}$ activation threshold on the MCU complex. Instead, MCU is a constitutively active channel, and the actual function of MICU subunits is to potentiate MCU currents as $[Ca^{2+}]_{cyto}$ is elevated.

235

236 Role of EF hands of MICUs in *I*_{Ca} potentiation

To confirm that Ca^{2+} binding to the EF hands of MICUs is responsible for the Ca^{2+} dependent potentiation of MCU, we recombinantly expressed MICU1–3 or MICU1–3 with mutated EF hands (mut-EF-MICU, to disable Ca^{2+} binding (24)) in their respective knockout cell lines and examined the changes in I_{Ca} (Fig. 3A).

241	In $MICU1^{-/-}$, expression of MICU1 was able to restore I_{Ca} to the WT level, but mut-EF-	
242	MICU1 expression failed to do so (Fig. 3B). Expression levels of both the recombinant MICU1	
243	and mut-EF-MICU1 were significantly higher as compared to MICU1 expression in the cells	
244	with WT MCU complex (Fig. 3A). This confirms our hypothesis that Ca^{2+} binding to the EF	
245	hands of MICU1 is indispensable for I_{Ca} potentiation.	
246	In $MICU2^{-/-}$, I_{Ca} was not significantly affected (Fig. 3C, and 1D and E), because the loss	
247	of MICU2 appeared to be compensated with increased MICU1 expression and replacement of	
248	MICU1/MICU2 heterodimer with MICU1/MICU1 homodimer (fig. S8A-C). Therefore,	
249	overexpression of recombinant MICU2 in MICU2 ^{-/-} and preferential conversion of	
250	MICU1/MICU1 homodimers back into MICU1/MICU2 heterodimers also did not alter the I_{Ca}	
251	amplitude (Fig. 3C). In contrast, mut-EF-MICU2 overexpression displaced MICU1 from	
252	MICU1/MICU1 homodimers in favor of MICU1/mut-EF-MICU2 heterodimer, leading to a	
253	dominant-negative effect and a significant decrease in MICU-dependent I_{Ca} potentiation (Fig.	
254	3C). These functional data, combined with biochemical evidence for MICU1/MICU2	
255	heterodimers (25, 54, 55) (also see the companion manuscript by Zhou et al.), suggest that	
256	MICU2, along with MICU1, is responsible for allosteric potentiation of MCU upon binding of	
257	cytosolic Ca^{2+} to their EF hands.	
258	The effect of $MICU1^{-/-}$ on I_{Ca} was more profound as compared to that of $MICU2^{-/-}$ (Fig.	
259	1D and E), because MICU1 could compensate for MICU2. However, the reverse compensation	
260	was impossible, because only MICU1 tethers the MICU1/MICU2 heterodimer to the	

261 MCU/EMRE pore (Zhuo et al., accompanying manuscript (45)). The composition of MICU

262	dimers can also be affected by MICU3 that similar to MICU2 was proposed to interact and form
263	heterodimers with MICU1 (27). However, in our experiments, we did not observe robust current
264	phenotypes associated with MICU3. Specifically, I_{Ca} was not affected in <i>MICU3^{-/-}</i> mitoplasts,
265	and overexpression of recombinant MICU3 or mut-EF-MICU3 in MICU3-/- also had no effect on
266	I_{Ca} (Fig. 3D). It has been suggested that MICU3 is a minor protein as compared to MICU1 and 2
267	in the majority of tissues and cell lines assessed (27). Although in our system the amount of
268	MICU3 mRNA appeared to be comparable with that of other MICU subunits (fig. S2D), and the
269	MICU3 protein was expressed (Fig. 3A right panel, and fig. S2C), the relative abundance of
270	MICU3 vs other MICUs is not clear. Moreover, in contrast to MICU1, MICU3 is not upregulated
271	in MICU2 ^{-/-} cells (fig. S8B), and thus, MICU3 expression does not appear to be linked to the
272	level of MICU2. Therefore, although MICU3 could in principle support the Ca ²⁺ -dependent
273	potentiation of MCU by forming dimers with MICU1 (27), the exact role of MICU3 and its
274	interaction with other MCU complex subunits remains to be established.
275	Ca ²⁺ binding to the EF hands of MICU subunits and a subsequent conformational change
276	that potentiates the MCU complex activity require a finite time and may delay I_{Ca}
277	activation/deactivation in response to changes in $[Ca^{2+}]_{cyto}$. Such delayed I_{Ca} kinetics can
278	profoundly affect $[Ca^{2+}]_{mito}$, because in situ MCU takes up Ca^{2+} from Ca^{2+} microdomains (56)
279	that exist in the cytosol only for a few milliseconds (57). Therefore, we examined I_{Ca} activation
280	and deactivation kinetics in response to rapid changes in $[Ca^{2+}]_{cyto}$ and tested whether they
281	depend on MICUs. I_{Ca} activation upon rapid elevation of $[Ca^{2+}]_{cyto}$ from virtually Ca ²⁺ -free to 1
282	mM was immediate, with kinetics comparable to the rate of solution exchange ($\tau \sim 0.4 \text{ ms}$)
283	achieved by our piezoelectric fast application system (Fig. 3E). Importantly, the kinetics of the
284	I_{Ca} rapid response was not altered in <i>MICU1</i> ^{-/-} (Fig. 3E and F). The deactivation kinetics was

similarly fast and not dependent on MICU1 (Fig. 3E and F). The result of these experiments 285 correspond to the previous observation that EF hands of calmodulin bind Ca²⁺ with a µs time 286 constant (58). The conclusion from these experiments is that the kinetics of Ca^{2+} binding to the 287 MICU's EF hands, and the resultant conformational change in the MCU complex, are extremely 288 fast, and thus MICU-dependent potentiation of the MCU activity should occur instantaneously 289 upon elevation of the $[Ca^{2+}]_{cvto}$. This is perhaps true even within Ca^{2+} microdomains, but it has to 290 be taken into account that in our experiments we used somewhat higher $[Ca^{2+}]_{cvto}$ (1 mM) as 291 compared to the maximal $[Ca^{2+}]_{cvto}$ achieved in the microdomains (100 μ M). 292 A phenomenon of Ca^{2+} -induced mitochondrial Ca^{2+} release (mCICR) by which 293 mitochondria release Ca^{2+} into cytosol in response to elevations of $[Ca^{2+}]_{cyto}$ has been observed 294 (4, 59, 60). mCICR required mitochondrial depolarization and was proposed to be mediated by 295 296 MCU (61, 62) and/or the permeability transition pore (PTP) (59, 60). Therefore, we tested whether MCU can mediate Ca²⁺-dependent Ca²⁺ efflux at depolarized membrane voltages and 297 whether such efflux is dependent on MICUs. We measured outward I_{Ca} at positive voltages with 298 2 mM $[Ca^{2+}]_{mito}$ (the pipette solution), as $[Ca^{2+}]_{cyto}$ was gradually elevated from virtual zero to 1 299 mM. Remarkably, such $[Ca^{2+}]_{cvto}$ elevation failed to induce any outward I_{Ca} . However, as 300 301 expected, it caused a robust inward I_{Ca} (Fig. 3G). This experiment also demonstrates, as was also suggested previously (9), that MCU has a strong inward rectification (unidirectional Ca^{2+} 302 permeation into the matrix). This strong inward rectification of MCU under various $[Ca^{2+}]_{cvto}$ 303 remained unaltered in *MICU1^{-/-}* (Fig. 3G). Thus, MCU has a strong preference for conducting 304 Ca^{2+} into mitochondria and is unlikely to mediate Ca^{2+} release via mCICR. 305 It has also been suggested that MCU is regulated by matrix $[Ca^{2+}]$ (63). Specifically, I_{Ca} 306 was shown to be profoundly reduced at $[Ca^{2+}]_{mito} \sim 400 \text{ nM}$, as compared to that at both lower 307

308	(Ca ²⁺ -free) and higher (high μ M) [Ca ²⁺] _{mito} (63). The authors also proposed that the reduction of
309	the MCU current at $[Ca^{2+}]_{mito} \sim 400 \text{ nM}$ is MICU1-dependent. However, in contrast to this
310	previous observation, in our experiments I_{Ca} amplitude remained unaltered when $[Ca^{2+}]_{mito}$ was
311	set at Ca^{2+} -free, 400 nM, or 400 μ M (fig. S9). Thus, the MCU complex is not regulated by
312	matrix Ca^{2+} , and MICUs only impart the regulation of the MCU complex by cytosolic Ca^{2+} . It
313	should also be mentioned that the authors proposed a membrane topology of EMRE (63) that is
314	reverse to that determined in the recent biochemical and structural studies (14, 26) (see also the
315	accompanying manuscript by Zhuo et al. (45)).
316	Taken together, these data indicate that MICU proteins allosterically potentiate MCU-
317	mediated Ca^{2+} influx when cytosolic Ca^{2+} binds to their EF hands.
318	
319	MICUs increase the open probability of MCU
320	To investigate the mechanism by which Ca^{2+} -bound MICU proteins potentiate I_{Ca} , we
321	examined the activity of single MCU channels in inside-out (matrix-side out) IMM patches.
322	Because the unitary Ca^{2+} current (i_{Ca} , current via a single MCU channel) is very small (<1 pA), it

must be recorded at high $[Ca^{2+}]=105$ mM to improve resolution (9). At this $[Ca^{2+}]$, EF hands of

324 MICU subunits are fully saturated with Ca^{2+} .

MCU exhibits multiple levels of single channel conductance. These subconductances can be observed at all tested voltages (-40, -80, and -120 mV), but their resolution improves markedly as transmembrane voltage becomes more negative. At -120 mV, in addition to what appears to be a fully open i_{Ca} , subconductances at ~0.8 and ~0.6 of the amplitude of the fully open i_{Ca} can be easily detected (Fig. 4A and C). Because similar amplitude levels were observed in all the patches, we conclude that these events represent genuine subconductances in the MCU bioRxiv preprint doi: https://doi.org/10.1101/2020.04.04.025833; this version posted April 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

331	channel.
001	enannen

332	There was no difference in the single channel amplitude between control and MICU1 ^{-/-}
333	mitoplasts (Fig. 4A-C). However, we found that the single-channel open probability (Po) was
334	significantly decreased ~2–3 fold in $MICU1^{-/-}$ versus WT mitoplasts, depending on the
335	transmembrane voltage (Fig. 4A, B, D and fig. S10A-C). As a result, the time-averaged current
336	contributed by a single MCU channel differs significantly between control and MICU1-/-
337	mitoplasts (Fig. 4E), thus mirroring and explaining the effect of MICU1 knockout on the
338	amplitude of the whole-mitoplast I_{Ca} (Fig. 1E).
339	These results demonstrate that the potentiating effect of MICU proteins on the
340	MCU/EMRE pore is not associated with an increased single-channel conductance. Rather, when
341	their EF hands bind Ca ²⁺ , MICUs increase MCU currents by causing an increase in the open
342	probability of the MCU/EMRE pore.
343	
343 344	MICU1 does not affect the Mn ²⁺ vs Ca ²⁺ permeability of MCU
	MICU1 does not affect the Mn ²⁺ vs Ca ²⁺ permeability of MCU While Mn ²⁺ is essential for the proper function of several mitochondrial enzymes, its
344	
344 345	While Mn^{2+} is essential for the proper function of several mitochondrial enzymes, its
344 345 346	While Mn^{2+} is essential for the proper function of several mitochondrial enzymes, its excessive accumulation inhibits oxidative phosphorylation and causes toxicity (64). MCU
344 345 346 347	While Mn^{2+} is essential for the proper function of several mitochondrial enzymes, its excessive accumulation inhibits oxidative phosphorylation and causes toxicity (64). MCU appears to be the primary pathway for Mn^{2+} entry into mitochondria (4). Recently, it has been
344 345 346 347 348	While Mn^{2+} is essential for the proper function of several mitochondrial enzymes, its excessive accumulation inhibits oxidative phosphorylation and causes toxicity (64). MCU appears to be the primary pathway for Mn^{2+} entry into mitochondria (4). Recently, it has been suggested that MICU1 is responsible for the relatively low permeability of MCU for Mn^{2+} as
344 345 346 347 348 349	While Mn^{2+} is essential for the proper function of several mitochondrial enzymes, its excessive accumulation inhibits oxidative phosphorylation and causes toxicity (64). MCU appears to be the primary pathway for Mn^{2+} entry into mitochondria (4). Recently, it has been suggested that MICU1 is responsible for the relatively low permeability of MCU for Mn^{2+} as compared to Ca^{2+} , and MICU1 deficiency or loss-of-function MICU1 mutations in patients can
344 345 346 347 348 349 350	While Mn^{2+} is essential for the proper function of several mitochondrial enzymes, its excessive accumulation inhibits oxidative phosphorylation and causes toxicity (64). MCU appears to be the primary pathway for Mn^{2+} entry into mitochondria (4). Recently, it has been suggested that MICU1 is responsible for the relatively low permeability of MCU for Mn^{2+} as compared to Ca ²⁺ , and MICU1 deficiency or loss-of-function MICU1 mutations in patients can lead to excessive mitochondrial Mn^{2+} accumulation and cellular toxicity (42, 65). These
344 345 346 347 348 349 350 351	While Mn^{2+} is essential for the proper function of several mitochondrial enzymes, its excessive accumulation inhibits oxidative phosphorylation and causes toxicity (64). MCU appears to be the primary pathway for Mn^{2+} entry into mitochondria (4). Recently, it has been suggested that MICU1 is responsible for the relatively low permeability of MCU for Mn^{2+} as compared to Ca^{2+} , and MICU1 deficiency or loss-of-function MICU1 mutations in patients can lead to excessive mitochondrial Mn^{2+} accumulation and cellular toxicity (42, 65). These observations were explained within the paradigm in which MICU1 occludes the MCU/EMRE

354	prevents Mn ²⁺	permeation v	via MCU and	ensures selective	Ca ²⁺ p	ermeation (42, 6	55).
-----	---------------------------	--------------	-------------	-------------------	--------------------	------------------	------

355	We recorded the inward Mn^{2+} current (I_{Mn}) in the presence of 5 mM [Mn^{2+}] _{cyto} . I_{Mn}
356	disappeared in MCU ^{-/-} and EMRE ^{-/-} , confirming that it was solely mediated by MCU (Fig. 5A-
357	D). As was also shown previously (9), I_{Mn} was indeed significantly smaller (~7-fold) than I_{Ca} at 5
358	mM $[Mn^{2+}]_{cyto}$ and 5 mM $[Ca^{2+}]_{cyto}$, respectively (Fig. 5E). However, we also observed that I_{Mn}
359	and I_{Ca} were reduced to a similar extent in $MICU1^{-/-}$ (Fig. 5F-H). This result was in a striking
360	contrast to the current MICU1-based model for Mn^{2+} vs Ca^{2+} selectivity of MCU (42, 65), under
361	which I_{Mn} would be increased but I_{Ca} not affected under our experimental conditions. Moreover,
362	even the ratio between I_{Mn} and I_{Ca} calculated from the same mitoplast (I_{Mn}/I_{Ca}) was not affected
363	in <i>MICU1</i> ^{-/-} (Fig. 5I), although it is expected to be decreased as per the MICU1-based model for
364	Mn^{2+} vs Ca^{2+} selectivity of MCU (42, 65). Finally, Mn^{2+} inhibited I_{Ca} to the same extent in WT
365	and $MICU1^{-/-}$ mitoplasts (Fig. 5F and J), indicating that Ca^{2+} and Mn^{2+} are likely to compete in
366	the selectivity filter of the MCU/EMRE pore.
367	Thus, the I_{Ca} and I_{Mn} phenotypes of $MICU1^{-/-}$ are the same, and MICU1 does not
368	determine the preference of MCU for Ca^{2+} over Mn^{2+} . Permeation of both Ca^{2+} and Mn^{2+} is
369	enhanced, rather than inhibited by MICU1. Instead of MICU1, the selectivity of the MCU
370	complex for Ca^{2+} over Mn^{2+} (and for any other ion) should be determined by the selectivity filter
371	located in the pore (11-13, 15), exactly as in other ion channels. Thus, the properties of Mn^{2+}
372	permeation via MCU cannot be explained within the paradigm in which MICUs occlude the
373	MCU/EMRE pore, nor it can be used to validate it.

374

375 **Discussion**

376

In summary, the direct patch-clamp analysis presented here argues for a significant

revision of the current paradigm for the gating of the MCU complex, its control by $[Ca^{2+}]_{cyto}$, and the role played by MICU subunits (Fig. 6).

In contrast to the existing model, we demonstrated that at low $[Ca^{2+}]_{cyto}$, when EF hands 379 of MICU subunits are Ca²⁺-free, the MCU/EMRE pore is not occluded by MICUs and conducts 380 robust Na⁺ current regardless of MICU's presence. Thus, the MCU complex is a constitutively 381 382 active channel. We further demonstrated that the real function of MICU subunits is to potentiate the activity of the MCU complex as cytosolic Ca^{2+} is elevated and binds to MICU's EF hands 383 (Fig. 6B). MICU subunits potentiate MCU activity by increasing the open state probability of the 384 385 MCU/EMRE pore. MICUs are likely to achieve this effect by interacting with EMRE that is predicted to control the gating of the MCU/EMRE pore (14). The structure of the complete MCU 386 complex presented in the accompanying paper clarifies this mechanism further and suggests that 387 MICU1/MICU2 dimers connect (at the cytosolic side) EMREs of two different MCU/EMRE 388 pores and could control MCU gating by pulling on these EMREs (Zhuo et al., accompanying 389 390 manuscript (45)). MICU1/MICU2 dimer binds cytosolic Ca²⁺ with $K_d \sim 600$ nM (51). To understand the 391 Ca²⁺-dependent function of the MICU1/MICU2 dimer, the effects of MICUs on the 392 MCU/EMRE pore must be studied at the two extremes of the EF-hand Ca²⁺ titration range – 393 when all MICUs are essentially Ca^{2+} -free and when they are fully occupied by Ca^{2+} . This can be 394 achieved by measuring the two types of currents via the MCU complex - I_{Na} and I_{Ca} . 395 396 As we demonstrated previously (9, 10) and also elaborate in this work, the MCU complex can conduct both Na^+ and Ca^{2+} . This is because Ca^{2+} and Na^+ have very similar radii and both 397

similar to other Ca²⁺ channels (6, 11-13). I_{Na} and I_{Ca} have been instrumental in understanding the

398

can bind to and permeate through the narrowest Ca^{2+} binding site in the MCU selectivity filter,

MCU channel and its exceptionally high Ca^{2+} selectivity (9, 10). I_{Na} is measurable only when 400 $[Ca^{2+}]_{cvto} \le 2 \text{ nM}$ (Fig. 2G), while I_{Ca} can only be measured at $[Ca^{2+}]_{cvto} \ge 10 \mu M$ (Fig. 1D). In 401 between 2 nM and 10 μ M, lies a [Ca²⁺]_{cyto} range where MCU currents are extremely small and 402 cannot be measured reliably. Such "no-current" range is not a unique property of MCU, but is a 403 404 characteristic property of all Ca²⁺-selective channels and is explained by the anomalous molefraction effect, a phenomenon of binding and competition between two different ions (Na⁺ and 405 Ca^{2+}) in the selectivity filter (66). However, by measuring I_{Na} and I_{Ca} , the patch-clamp 406 407 electrophysiology can reliably establish the effect of MICUs on the MCU/EMRE pore at the two extremes of the EF-hand Ca²⁺ titration range – when all EF hands are either in the Ca²⁺-free state 408 or in the Ca²⁺-occupied state. It is important to understand that such direct measurement of I_{Na} 409 410 and I_{Ca} is the only reliable way to assess the function of MICU subunits within the MCU 411 complex.

It is tempting to assume that optical methods can assess the MCU complex activity and 412 the MICU function continuously over a wide $[Ca^{2+}]_{cvto}$ range, starting from high nM. This 413 perceived "high sensitivity" of optical methods is achieved by integration of the net 414 mitochondrial Ca²⁺ influx (even if it is very slow) over a period of time, resulting in a 415 measurable $[Ca^{2+}]_{mito}$ change. However, it must be realized that the optical methods do not 416 measure MCU activity directly or in isolation from other Ca²⁺ transport mechanisms, and do not 417 permit adequate control over the experimental conditions. When $[Ca^{2+}]_{cyto}$ is in the high nM 418 range (around the resting levels), the MCU-mediated Ca²⁺ uptake is very slow and exists in an 419 equilibrium with the mitochondrial Ca^{2+} efflux mechanisms (40). Thus, any measured changes in 420 $[Ca^{2+}]_{mito}$ cannot be assigned to MCU exclusively. When $[Ca^{2+}]_{cvto}$ is elevated into the μ M range, 421 the MCU activity becomes high and overwhelms not only the Ca^{2+} efflux machinery but also the 422

423	electron transport chain, resulting in a decreased driving force for Ca ²⁺ and underestimation of
424	the MCU activity (3, 4). Because of all these technical limitations, measuring the effect of MICU
425	knockouts on I_{Na} at nM [Ca ²⁺] _{cyto} and on I_{Ca} at μ M [Ca ²⁺] _{cyto} with direct patch-clamp
426	electrophysiology is the only way to reliably study the MICU function.
427	Here we demonstrate that the MCU complex is constitutively active and has no intrinsic
428	$[Ca^{2+}]_{cyto}$ threshold. A recent report also suggested no apparent $[Ca^{2+}]_{cyto}$ threshold for MCU in
429	heart and skeletal muscle (67). Thus, the $[Ca^{2+}]_{cyto}$ threshold for elevation of $[Ca^{2+}]_{mito}$ is simply
430	determined by the equilibrium between the MCU-dependent Ca ²⁺ uptake and the mitochondrial
431	Ca^{2+} efflux mechanisms. Such a simple equilibrium-based $[Ca^{2+}]_{cyto}$ threshold for $[Ca^{2+}]_{mito}$
432	elevation was proposed previously and was termed the "set point" (40).
433	Assuming that the K_d for Ca ²⁺ binding to MICU EF hands is ~600 nM (51), MICUs
434	would start potentiating the MCU complex activity already in the high nanomolar range of
435	[Ca ²⁺] _{cyto} , around the resting levels. Thus, MICUs should help MCU to overcome the
436	mitochondrial Ca ²⁺ efflux machinery and decrease the set point.
437	It is therefore paradoxical that the optical studies report not an increase but a decrease in
438	"threshold" for mitochondrial Ca ²⁺ uptake in <i>MICU1^{-/-}</i> . However, it simply illustrates that the
439	results of the optical experiments should be interpreted with a caution not only at the level of
440	MCU but also at the level of the whole organelle. The set point for mitochondrial Ca^{2+}
441	accumulation is affected not only by the MCU-mediated uptake but also by mitochondrial Ca^{2+}
442	efflux and numerous other factors such as $\Delta \psi$, matrix pH, permeability of the outer
443	mitochondrial membrane, and mitochondria-ER interface, to mention the most obvious. These
444	factors can also change and overcompensate for the reduced MCU activity in MICU1 ^{-/-} , resulting
445	in a decreased set point. In contrast to the MICU1 ^{-/-} , such overcompensation, however, cannot

correct the phenotype of MCU and EMRE knockouts because the mitochondrial Ca²⁺ uptake is 446 completely eliminated. To further illustrate these points, in species other than mammals, where 447 the compensatory mechanisms induced by MICU1 knockout may be different, the $[Ca^{2+}]_{cvto}$ 448 "threshold" for $[Ca^{2+}]_{mito}$ elevation is affected in a different way, although the composition of the 449 450 MCU complex (including EMRE and MICU1) is similar to mammals. Specifically, in Trypanosoma cruzi, MICU1 knockout causes an increase in the Ca²⁺ uptake "threshold" and a 451 marked decrease in Ca^{2+} uptake capacity at all $[Ca^{2+}]_{cvto}$ (68). The possibility that MICU proteins 452 have other functions (69) beyond being a part of the MCU complex can further complicate the 453 interpretation of the *MICU1^{-/-}* phenotype as assessed by optical methods. In *Drosophila*, a lethal 454 phenotype of MICU1 knockout was not rescued when combined with either MCU or EMRE 455 knockouts (the MCU and EMRE knockouts themselves had mild phenotypes), suggesting 456 457 functions for MICU proteins beyond the MCU complex (69). Thus, the results obtained with optical methods must be interpreted with due consideration to direct electrophysiological and 458 structural data on the MCU complex. Otherwise, not only the properties of the MCU complex, 459 but also mitochondrial Ca²⁺ homeostasis in general will be misunderstood. 460 In summary, we demonstrate that MICUs are Ca^{2+} -dependent MCU potentiators. They 461 are likely to exert their potentiating effect over a range of $[Ca^{2+}]_{cvto}$ from resting to high 462

463 micromolar. By doing so, MICUs can control both the $[Ca^{2+}]_{cyto}$ set point for $[Ca^{2+}]_{mito}$ elevation

464 and the maximum $[Ca^{2+}]_{mito}$ reached during intracellular Ca^{2+} signaling. Importantly, the

465 potentiation of MCU by MICUs could help to reduce the number of MCU channels required for

466 adequate Ca^{2+} -dependent stimulation of mitochondrial ATP production. Without MICUs, the

467 number of MCU channels per mitochondrion would have to be ~2 times higher, which would

468 also increase futile Ca^{2+} cycling at resting $[Ca^{2+}]_{cyto}$.

469 **REFERENCES AND NOTES**

472

475

478

481

484

487

491

494

497

500

503

506

509

512

- B. Glancy, R. S. Balaban, Role of mitochondrial Ca2+ in the regulation of cellular energetics.
 Biochemistry 51, 2959-2973 (2012).
- 473 2. M. J. Berridge, M. D. Bootman, H. L. Roderick, Calcium signalling: dynamics, homeostasis and 474 remodelling. *Nature reviews* **4**, 517-529 (2003).
- 476 3. P. Bernardi, Mitochondrial transport of cations: channels, exchangers, and permeability
 477 transition. *Physiol Rev* **79**, 1127-1155 (1999).
- 4. T. E. Gunter, D. R. Pfeiffer, Mechanisms by which mitochondria transport calcium. *Am J Physiol*480 **258**, C755-786 (1990).
- 482 5. H. F. Deluca, G. W. Engstrom, Calcium uptake by rat kidney mitochondria. *Proc Natl Acad Sci U S*483 A 47, 1744-1750 (1961).
- 485 6. L. Tang *et al.*, Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. *Nature* 505,
 486 56-61 (2014).
- P. Hess, J. B. Lansman, R. W. Tsien, Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. *J Gen Physiol* 88, 293-319 (1986).
- 4928.P. Hess, R. W. Tsien, Mechanism of ion permeation through calcium channels. Nature 309, 453-493456 (1984).
- 4959.Y. Kirichok, G. Krapivinsky, D. E. Clapham, The mitochondrial calcium uniporter is a highly selective496ion channel. Nature 427, 360-364 (2004).
- 49810.F. Fieni, S. B. Lee, Y. N. Jan, Y. Kirichok, Activity of the mitochondrial calcium uniporter varies499greatly between tissues. Nat Commun **3**, 1317 (2012).
- 501 11. N. X. Nguyen *et al.*, Cryo-EM structure of a fungal mitochondrial calcium uniporter. *Nature* 559,
 570-574 (2018).
- 50412.C. Fan *et al.*, X-ray and cryo-EM structures of the mitochondrial calcium uniporter. *Nature* 559,505575-579 (2018).
- 50713.R. Baradaran, C. Wang, A. F. Siliciano, S. B. Long, Cryo-EM structures of fungal and metazoan508mitochondrial calcium uniporters. Nature 559, 580-584 (2018).
- 51014.Y. Wang *et al.*, Structural Mechanism of EMRE-Dependent Gating of the Human Mitochondrial511Calcium Uniporter. *Cell* **177**, 1252-1261 e1213 (2019).
- 513 15. J. Yoo *et al.*, Cryo-EM structure of a mitochondrial calcium uniporter. *Science* **361**, 506-511 (2018).

514

515 16. P. Bernardi, A. Rasola, Calcium and cell death: the mitochondrial connection. *Subcell Biochem* 45, 481-506 (2007).

517

520

523

526

529

532

535

538

541

544

547

550

553

556

559

- 51817.H. Kroner, Ca2+ ions, an allosteric activator of calcium uptake in rat liver mitochondria. Arch519Biochem Biophys 251, 525-535 (1986).
- 52118.A. Vinogradov, A. Scarpa, The initial velocities of calcium uptake by rat liver mitochondria. J Biol522Chem 248, 5527-5531 (1973).
- 52419.J. M. Baughman *et al.*, Integrative genomics identifies MCU as an essential component of the525mitochondrial calcium uniporter. *Nature* **476**, 341-345 (2011).
- 52720.D. De Stefani, A. Raffaello, E. Teardo, I. Szabo, R. Rizzuto, A forty-kilodalton protein of the inner528membrane is the mitochondrial calcium uniporter. Nature 476, 336-340 (2011).
- Y. Sancak *et al.*, EMRE is an essential component of the mitochondrial calcium uniporter complex.
 Science **342**, 1379-1382 (2013).
- 533 22. F. Perocchi *et al.*, MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake. 534 *Nature* **467**, 291-296 (2010).
- 536 23. M. Plovanich *et al.*, MICU2, a paralog of MICU1, resides within the mitochondrial uniporter 537 complex to regulate calcium handling. *PLoS One* **8**, e55785 (2013).
- 53924.K. J. Kamer, V. K. Mootha, MICU1 and MICU2 play nonredundant roles in the regulation of the540mitochondrial calcium uniporter. *EMBO Rep* **15**, 299-307 (2014).
- 54225.M. Patron *et al.*, MICU1 and MICU2 finely tune the mitochondrial Ca2+ uniporter by exerting543opposite effects on MCU activity. *Mol Cell* **53**, 726-737 (2014).
- 545 26. M. F. Tsai *et al.*, Dual functions of a small regulatory subunit in the mitochondrial calcium 546 uniporter complex. *eLife* **5**, (2016).
- 54827.M. Patron, V. Granatiero, J. Espino, R. Rizzuto, D. De Stefani, MICU3 is a tissue-specific enhancer549of mitochondrial calcium uptake. *Cell Death Differ* **26**, 179-195 (2019).
- 55128.K. Mallilankaraman *et al.*, MICU1 is an essential gatekeeper for MCU-mediated mitochondrial552Ca(2+) uptake that regulates cell survival. *Cell* **151**, 630-644 (2012).
- 554 29. G. Csordas *et al.*, MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca(2)(+) uniporter. *Cell Metab* **17**, 976-987 (2013).
- 55730.C. V. Logan *et al.*, Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked558to primary alterations in mitochondrial calcium signaling. *Nat Genet* **46**, 188-193 (2014).
- 560 31. S. de la Fuente, J. Matesanz-Isabel, R. I. Fonteriz, M. Montero, J. Alvarez, Dynamics of 561 mitochondrial Ca2+ uptake in MICU1-knockdown cells. *Biochem J* **458**, 33-40 (2014).

562	32.	J. C. Liu et al., MICU1 Serves as a Molecular Gatekeeper to Prevent In Vivo Mitochondrial Calcium
563		Overload. <i>Cell Rep</i> 16 , 1561-1573 (2016).
564		
565	33.	C. B. Phillips, C. W. Tsai, M. F. Tsai, The conserved aspartate ring of MCU mediates MICU1 binding
566	00.	and regulation in the mitochondrial calcium uniporter complex. <i>eLife</i> 8 , (2019).
567		
568	34.	M. Paillard <i>et al.</i> , MICU1 Interacts with the D-Ring of the MCU Pore to Control Its Ca(2+) Flux and
	54.	•
569		Sensitivity to Ru360. <i>Mol Cell</i> 72 , 778-785 e773 (2018).
570	25	
571	35.	J. Matesanz-Isabel <i>et al.</i> , Functional roles of MICU1 and MICU2 in mitochondrial Ca(2+) uptake.
572		Biochim Biophys Acta 1858 , 1110-1117 (2016).
573		
574	36.	A. N. Antony et al., MICU1 regulation of mitochondrial Ca(2+) uptake dictates survival and tissue
575		regeneration. Nat Commun 7, 10955 (2016).
576		
577	37.	D. Lewis-Smith et al., Homozygous deletion in MICU1 presenting with fatigue and lethargy in
578		childhood. <i>Neurol Genet</i> 2 , e59 (2016).
579		
580	38.	S. Musa et al., A Middle Eastern Founder Mutation Expands the Genotypic and Phenotypic
581		Spectrum of Mitochondrial MICU1 Deficiency: A Report of 13 Patients. <i>JIMD Rep</i> 43 , 79-83 (2019).
582		
583	39.	G. Bhosale et al., Pathological consequences of MICU1 mutations on mitochondrial calcium
584	001	signalling and bioenergetics. <i>Biochim Biophys Acta</i> 1864 , 1009-1017 (2017).
585		
	40	D. G. Nicholls, Mitochondria and calcium signaling, Cell Calcium 38, 311-317 (2005)
586	40.	D. G. Nicholls, Mitochondria and calcium signaling. Cell Calcium 38, 311-317 (2005).
586 587		
586 587 588	40. 41.	V. Garg, Y. Y. Kirichok, Patch-Clamp Analysis of the Mitochondrial Calcium Uniporter. Methods
586 587 588 589		
586 587 588 589 590	41.	V. Garg, Y. Y. Kirichok, Patch-Clamp Analysis of the Mitochondrial Calcium Uniporter. <i>Methods Mol Biol</i> 1925 , 75-86 (2019).
586 587 588 589 590 591		 V. Garg, Y. Y. Kirichok, Patch-Clamp Analysis of the Mitochondrial Calcium Uniporter. <i>Methods Mol Biol</i> 1925, 75-86 (2019). K. J. Kamer <i>et al.</i>, MICU1 imparts the mitochondrial uniporter with the ability to discriminate
586 587 588 589 590 591 592	41.	V. Garg, Y. Y. Kirichok, Patch-Clamp Analysis of the Mitochondrial Calcium Uniporter. <i>Methods Mol Biol</i> 1925 , 75-86 (2019).
586 587 588 589 590 591 592 593	41. 42.	 V. Garg, Y. Y. Kirichok, Patch-Clamp Analysis of the Mitochondrial Calcium Uniporter. <i>Methods Mol Biol</i> 1925, 75-86 (2019). K. J. Kamer <i>et al.</i>, MICU1 imparts the mitochondrial uniporter with the ability to discriminate between Ca(2+) and Mn(2+). <i>Proc Natl Acad Sci U S A</i> 115, E7960-E7969 (2018).
586 587 588 589 590 591 592 593 594	41.	 V. Garg, Y. Y. Kirichok, Patch-Clamp Analysis of the Mitochondrial Calcium Uniporter. <i>Methods Mol Biol</i> 1925, 75-86 (2019). K. J. Kamer <i>et al.</i>, MICU1 imparts the mitochondrial uniporter with the ability to discriminate between Ca(2+) and Mn(2+). <i>Proc Natl Acad Sci U S A</i> 115, E7960-E7969 (2018). H. Vais <i>et al.</i>, EMRE Is a Matrix Ca(2+) Sensor that Governs Gatekeeping of the Mitochondrial
586 587 588 590 591 592 593 594 595	41. 42.	 V. Garg, Y. Y. Kirichok, Patch-Clamp Analysis of the Mitochondrial Calcium Uniporter. <i>Methods Mol Biol</i> 1925, 75-86 (2019). K. J. Kamer <i>et al.</i>, MICU1 imparts the mitochondrial uniporter with the ability to discriminate between Ca(2+) and Mn(2+). <i>Proc Natl Acad Sci U S A</i> 115, E7960-E7969 (2018).
586 587 588 590 591 592 593 594 595 596	41. 42. 43.	 V. Garg, Y. Y. Kirichok, Patch-Clamp Analysis of the Mitochondrial Calcium Uniporter. <i>Methods Mol Biol</i> 1925, 75-86 (2019). K. J. Kamer <i>et al.</i>, MICU1 imparts the mitochondrial uniporter with the ability to discriminate between Ca(2+) and Mn(2+). <i>Proc Natl Acad Sci U S A</i> 115, E7960-E7969 (2018). H. Vais <i>et al.</i>, EMRE Is a Matrix Ca(2+) Sensor that Governs Gatekeeping of the Mitochondrial Ca(2+) Uniporter. <i>Cell Rep</i> 14, 403-410 (2016).
586 587 588 590 591 592 593 594 595 596 597	41. 42.	 V. Garg, Y. Y. Kirichok, Patch-Clamp Analysis of the Mitochondrial Calcium Uniporter. <i>Methods Mol Biol</i> 1925, 75-86 (2019). K. J. Kamer <i>et al.</i>, MICU1 imparts the mitochondrial uniporter with the ability to discriminate between Ca(2+) and Mn(2+). <i>Proc Natl Acad Sci U S A</i> 115, E7960-E7969 (2018). H. Vais <i>et al.</i>, EMRE Is a Matrix Ca(2+) Sensor that Governs Gatekeeping of the Mitochondrial Ca(2+) Uniporter. <i>Cell Rep</i> 14, 403-410 (2016). N. E. Hoffman <i>et al.</i>, MICU1 motifs define mitochondrial calcium uniporter binding and activity.
586 587 588 590 591 592 593 594 595 596	41. 42. 43.	 V. Garg, Y. Y. Kirichok, Patch-Clamp Analysis of the Mitochondrial Calcium Uniporter. <i>Methods Mol Biol</i> 1925, 75-86 (2019). K. J. Kamer <i>et al.</i>, MICU1 imparts the mitochondrial uniporter with the ability to discriminate between Ca(2+) and Mn(2+). <i>Proc Natl Acad Sci U S A</i> 115, E7960-E7969 (2018). H. Vais <i>et al.</i>, EMRE Is a Matrix Ca(2+) Sensor that Governs Gatekeeping of the Mitochondrial Ca(2+) Uniporter. <i>Cell Rep</i> 14, 403-410 (2016).
586 587 588 590 591 592 593 594 595 596 597	41. 42. 43.	 V. Garg, Y. Y. Kirichok, Patch-Clamp Analysis of the Mitochondrial Calcium Uniporter. <i>Methods Mol Biol</i> 1925, 75-86 (2019). K. J. Kamer <i>et al.</i>, MICU1 imparts the mitochondrial uniporter with the ability to discriminate between Ca(2+) and Mn(2+). <i>Proc Natl Acad Sci U S A</i> 115, E7960-E7969 (2018). H. Vais <i>et al.</i>, EMRE Is a Matrix Ca(2+) Sensor that Governs Gatekeeping of the Mitochondrial Ca(2+) Uniporter. <i>Cell Rep</i> 14, 403-410 (2016). N. E. Hoffman <i>et al.</i>, MICU1 motifs define mitochondrial calcium uniporter binding and activity.
586 587 588 590 591 592 593 594 595 596 597 598	41. 42. 43.	 V. Garg, Y. Y. Kirichok, Patch-Clamp Analysis of the Mitochondrial Calcium Uniporter. <i>Methods Mol Biol</i> 1925, 75-86 (2019). K. J. Kamer <i>et al.</i>, MICU1 imparts the mitochondrial uniporter with the ability to discriminate between Ca(2+) and Mn(2+). <i>Proc Natl Acad Sci U S A</i> 115, E7960-E7969 (2018). H. Vais <i>et al.</i>, EMRE Is a Matrix Ca(2+) Sensor that Governs Gatekeeping of the Mitochondrial Ca(2+) Uniporter. <i>Cell Rep</i> 14, 403-410 (2016). N. E. Hoffman <i>et al.</i>, MICU1 motifs define mitochondrial calcium uniporter binding and activity.
586 587 588 590 591 592 593 594 595 596 597 598 599	41. 42. 43. 44.	 V. Garg, Y. Y. Kirichok, Patch-Clamp Analysis of the Mitochondrial Calcium Uniporter. <i>Methods Mol Biol</i> 1925, 75-86 (2019). K. J. Kamer <i>et al.</i>, MICU1 imparts the mitochondrial uniporter with the ability to discriminate between Ca(2+) and Mn(2+). <i>Proc Natl Acad Sci U S A</i> 115, E7960-E7969 (2018). H. Vais <i>et al.</i>, EMRE Is a Matrix Ca(2+) Sensor that Governs Gatekeeping of the Mitochondrial Ca(2+) Uniporter. <i>Cell Rep</i> 14, 403-410 (2016). N. E. Hoffman <i>et al.</i>, MICU1 motifs define mitochondrial calcium uniporter binding and activity. <i>Cell Rep</i> 5, 1576-1588 (2013).
586 587 588 590 591 592 593 594 595 596 597 598 599 600	41. 42. 43. 44.	 V. Garg, Y. Y. Kirichok, Patch-Clamp Analysis of the Mitochondrial Calcium Uniporter. <i>Methods Mol Biol</i> 1925, 75-86 (2019). K. J. Kamer <i>et al.</i>, MICU1 imparts the mitochondrial uniporter with the ability to discriminate between Ca(2+) and Mn(2+). <i>Proc Natl Acad Sci U S A</i> 115, E7960-E7969 (2018). H. Vais <i>et al.</i>, EMRE Is a Matrix Ca(2+) Sensor that Governs Gatekeeping of the Mitochondrial Ca(2+) Uniporter. <i>Cell Rep</i> 14, 403-410 (2016). N. E. Hoffman <i>et al.</i>, MICU1 motifs define mitochondrial calcium uniporter binding and activity. <i>Cell Rep</i> 5, 1576-1588 (2013). W. Zhuo <i>et al.</i>, Structure of intact human MCU supercomplex with the auxiliary MICU subunits.
586 587 588 590 591 592 593 594 595 596 597 598 599 600 601	41. 42. 43. 44.	 V. Garg, Y. Y. Kirichok, Patch-Clamp Analysis of the Mitochondrial Calcium Uniporter. <i>Methods Mol Biol</i> 1925, 75-86 (2019). K. J. Kamer <i>et al.</i>, MICU1 imparts the mitochondrial uniporter with the ability to discriminate between Ca(2+) and Mn(2+). <i>Proc Natl Acad Sci U S A</i> 115, E7960-E7969 (2018). H. Vais <i>et al.</i>, EMRE Is a Matrix Ca(2+) Sensor that Governs Gatekeeping of the Mitochondrial Ca(2+) Uniporter. <i>Cell Rep</i> 14, 403-410 (2016). N. E. Hoffman <i>et al.</i>, MICU1 motifs define mitochondrial calcium uniporter binding and activity. <i>Cell Rep</i> 5, 1576-1588 (2013). W. Zhuo <i>et al.</i>, Structure of intact human MCU supercomplex with the auxiliary MICU subunits.
586 587 588 590 591 592 593 594 595 596 597 598 599 600 601 602	41. 42. 43. 44. 45.	 V. Garg, Y. Y. Kirichok, Patch-Clamp Analysis of the Mitochondrial Calcium Uniporter. <i>Methods Mol Biol</i> 1925, 75-86 (2019). K. J. Kamer <i>et al.</i>, MICU1 imparts the mitochondrial uniporter with the ability to discriminate between Ca(2+) and Mn(2+). <i>Proc Natl Acad Sci U S A</i> 115, E7960-E7969 (2018). H. Vais <i>et al.</i>, EMRE Is a Matrix Ca(2+) Sensor that Governs Gatekeeping of the Mitochondrial Ca(2+) Uniporter. <i>Cell Rep</i> 14, 403-410 (2016). N. E. Hoffman <i>et al.</i>, MICU1 motifs define mitochondrial calcium uniporter binding and activity. <i>Cell Rep</i> 5, 1576-1588 (2013). W. Zhuo <i>et al.</i>, Structure of intact human MCU supercomplex with the auxiliary MICU subunits. <i>bioRxiv</i>, 2020.2004.2004.025205 (2020).
586 587 588 590 591 592 593 594 595 596 597 598 599 600 601 602 603	41. 42. 43. 44. 45.	 V. Garg, Y. Y. Kirichok, Patch-Clamp Analysis of the Mitochondrial Calcium Uniporter. <i>Methods Mol Biol</i> 1925, 75-86 (2019). K. J. Kamer <i>et al.</i>, MICU1 imparts the mitochondrial uniporter with the ability to discriminate between Ca(2+) and Mn(2+). <i>Proc Natl Acad Sci U S A</i> 115, E7960-E7969 (2018). H. Vais <i>et al.</i>, EMRE Is a Matrix Ca(2+) Sensor that Governs Gatekeeping of the Mitochondrial Ca(2+) Uniporter. <i>Cell Rep</i> 14, 403-410 (2016). N. E. Hoffman <i>et al.</i>, MICU1 motifs define mitochondrial calcium uniporter binding and activity. <i>Cell Rep</i> 5, 1576-1588 (2013). W. Zhuo <i>et al.</i>, Structure of intact human MCU supercomplex with the auxiliary MICU subunits. <i>bioRxiv</i>, 2020.2004.2004.025205 (2020). N. Ishihara <i>et al.</i>, Mitochondrial fission factor Drp1 is essential for embryonic development and
586 587 588 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604	41. 42. 43. 44. 45.	 V. Garg, Y. Y. Kirichok, Patch-Clamp Analysis of the Mitochondrial Calcium Uniporter. <i>Methods Mol Biol</i> 1925, 75-86 (2019). K. J. Kamer <i>et al.</i>, MICU1 imparts the mitochondrial uniporter with the ability to discriminate between Ca(2+) and Mn(2+). <i>Proc Natl Acad Sci U S A</i> 115, E7960-E7969 (2018). H. Vais <i>et al.</i>, EMRE Is a Matrix Ca(2+) Sensor that Governs Gatekeeping of the Mitochondrial Ca(2+) Uniporter. <i>Cell Rep</i> 14, 403-410 (2016). N. E. Hoffman <i>et al.</i>, MICU1 motifs define mitochondrial calcium uniporter binding and activity. <i>Cell Rep</i> 5, 1576-1588 (2013). W. Zhuo <i>et al.</i>, Structure of intact human MCU supercomplex with the auxiliary MICU subunits. <i>bioRxiv</i>, 2020.2004.2024.025205 (2020). N. Ishihara <i>et al.</i>, Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. <i>Nat Cell Biol</i> 11, 958-966 (2009).
586 587 588 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606	 41. 42. 43. 44. 45. 46. 	 V. Garg, Y. Y. Kirichok, Patch-Clamp Analysis of the Mitochondrial Calcium Uniporter. <i>Methods Mol Biol</i> 1925, 75-86 (2019). K. J. Kamer <i>et al.</i>, MICU1 imparts the mitochondrial uniporter with the ability to discriminate between Ca(2+) and Mn(2+). <i>Proc Natl Acad Sci U S A</i> 115, E7960-E7969 (2018). H. Vais <i>et al.</i>, EMRE Is a Matrix Ca(2+) Sensor that Governs Gatekeeping of the Mitochondrial Ca(2+) Uniporter. <i>Cell Rep</i> 14, 403-410 (2016). N. E. Hoffman <i>et al.</i>, MICU1 motifs define mitochondrial calcium uniporter binding and activity. <i>Cell Rep</i> 5, 1576-1588 (2013). W. Zhuo <i>et al.</i>, Structure of intact human MCU supercomplex with the auxiliary MICU subunits. <i>bioRxiv</i>, 2020.2004.2004.025205 (2020). N. Ishihara <i>et al.</i>, Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. <i>Nat Cell Biol</i> 11, 958-966 (2009). J. Suzuki <i>et al.</i>, Imaging intraorganellar Ca2+ at subcellular resolution using CEPIA. <i>Nat Commun</i>
586 587 588 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605	 41. 42. 43. 44. 45. 46. 	 V. Garg, Y. Y. Kirichok, Patch-Clamp Analysis of the Mitochondrial Calcium Uniporter. <i>Methods Mol Biol</i> 1925, 75-86 (2019). K. J. Kamer <i>et al.</i>, MICU1 imparts the mitochondrial uniporter with the ability to discriminate between Ca(2+) and Mn(2+). <i>Proc Natl Acad Sci U S A</i> 115, E7960-E7969 (2018). H. Vais <i>et al.</i>, EMRE Is a Matrix Ca(2+) Sensor that Governs Gatekeeping of the Mitochondrial Ca(2+) Uniporter. <i>Cell Rep</i> 14, 403-410 (2016). N. E. Hoffman <i>et al.</i>, MICU1 motifs define mitochondrial calcium uniporter binding and activity. <i>Cell Rep</i> 5, 1576-1588 (2013). W. Zhuo <i>et al.</i>, Structure of intact human MCU supercomplex with the auxiliary MICU subunits. <i>bioRxiv</i>, 2020.2004.2024.025205 (2020). N. Ishihara <i>et al.</i>, Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. <i>Nat Cell Biol</i> 11, 958-966 (2009).

609 610 611	48.	X. Pan <i>et al.</i> , The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. <i>Nat Cell Biol</i> 15 , 1464-1472 (2013).
612 613 614	49.	E. Kovacs-Bogdan <i>et al.</i> , Reconstitution of the mitochondrial calcium uniporter in yeast. <i>Proc Natl Acad Sci U S A</i> 111 , 8985-8990 (2014).
615 616 617	50.	A. Raffaello <i>et al.</i> , The mitochondrial calcium uniporter is a multimer that can include a dominant- negative pore-forming subunit. <i>Embo J</i> 32 , 2362-2376 (2013).
618 619 620	51.	K. J. Kamer, Z. Grabarek, V. K. Mootha, High-affinity cooperative Ca(2+) binding by MICU1-MICU2 serves as an on-off switch for the uniporter. <i>EMBO Rep</i> 18 , 1397-1411 (2017).
621 622 623	52.	P. Bernardi, A. Angrilli, G. F. Azzone, A gated pathway for electrophoretic Na+ fluxes in rat liver mitochondria. Regulation by surface Mg2+. <i>Eur J Biochem</i> 188 , 91-97 (1990).
624 625 626	53.	J. P. Wehrle, M. Jurkowitz, K. M. Scott, G. P. Brierley, Mg2+ and the permeability of heart mitochondria to monovalent cations. <i>Arch Biochem Biophys</i> 174 , 313-323 (1976).
627 628 629	54.	C. Petrungaro <i>et al.</i> , The Ca(2+)-Dependent Release of the Mia40-Induced MICU1-MICU2 Dimer from MCU Regulates Mitochondrial Ca(2+) Uptake. <i>Cell Metab</i> 22 , 721-733 (2015).
630 631 632	55.	Y. Xing <i>et al.</i> , Dimerization of MICU Proteins Controls Ca(2+) Influx through the Mitochondrial Ca(2+) Uniporter. <i>Cell Rep</i> 26 , 1203-1212 e1204 (2019).
633 634 635	56.	R. Rizzuto <i>et al.,</i> Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. <i>Science</i> 280 , 1763-1766 (1998).
636 637 638	57.	E. Neher, Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. <i>Neuron</i> 20 , 389-399 (1998).
639 640 641	58.	G. C. Faas, S. Raghavachari, J. E. Lisman, I. Mody, Calmodulin as a direct detector of Ca2+ signals. Nat Neurosci 14 , 301-304 (2011).
642 643 644	59.	P. Bernardi, V. Petronilli, The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal. <i>J Bioenerg Biomembr</i> 28 , 131-138 (1996).
645 646 647	60.	F. Ichas, L. S. Jouaville, J. P. Mazat, Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. <i>Cell</i> 89 , 1145-1153 (1997).
648 649	61.	M. Montero, M. T. Alonso, A. Albillos, J. Garcia-Sancho, J. Alvarez, Mitochondrial Ca(2+)-induced Ca(2+) release mediated by the Ca(2+) uniporter. <i>Mol Biol Cell</i> 12 , 63-71 (2001).
650 651 652 653	62.	U. Igbavboa, D. R. Pfeiffer, Regulation of reverse uniport activity in mitochondria by extramitochondrial divalent cations. Dependence on a soluble intermembrane space component. <i>J Biol Chem</i> 266 , 4283-4287 (1991).
654 655 656	63.	H. Vais <i>et al.</i> , EMRE Is a Matrix Ca(2+) Sensor that Governs Gatekeeping of the Mitochondrial Ca(2+) Uniporter. <i>Cell reports</i> 14 , 403-410 (2016).

657 64. T. E. Gunter *et al.*, An analysis of the effects of Mn2+ on oxidative phosphorylation in liver, brain,
658 and heart mitochondria using state 3 oxidation rate assays. *Toxicol Appl Pharmacol* 249, 65-75
659 (2010).

- 65. J. Wettmarshausen *et al.*, MICU1 Confers Protection from MCU-Dependent Manganese Toxicity.
 662 *Cell Rep* 25, 1425-1435 e1427 (2018).
- 66466.B. Hille, *Ionic channels of excitable membranes*. (Sinauer Associates, Sunderland, Mass., ed. 2nd,6651992), pp. xiii, 607.
- 667 67. A. P. Wescott, J. P. Y. Kao, W. J. Lederer, L. Boyman, Voltage-energized calcium-sensitive ATP 668 production by mitochondria. *Nature Metabolism* **1**, 975-984 (2019).
- 670 68. M. S. Bertolini, M. A. Chiurillo, N. Lander, A. E. Vercesi, R. Docampo, MICU1 and MICU2 Play an
 671 Essential Role in Mitochondrial Ca(2+) Uptake, Growth, and Infectivity of the Human Pathogen
 672 Trypanosoma cruzi. *MBio* 10, (2019).
- 674 69. R. Tufi *et al.*, Comprehensive Genetic Characterization of Mitochondrial Ca(2+) Uniporter
 675 Components Reveals Their Different Physiological Requirements In Vivo. *Cell Rep* 27, 1541-1550
 676 e1545 (2019).
- 678
 70.
 F. A. Ran *et al.*, Genome engineering using the CRISPR-Cas9 system. *Nat Protoc* **8**, 2281-2308

 679
 (2013).
- 68171.G. Grynkiewicz, M. Poenie, R. Y. Tsien, A new generation of Ca2+ indicators with greatly improved682fluorescence properties. J Biol Chem 260, 3440-3450 (1985).
- D. A. Winter, *Biomechanics and motor control of human movement*. (Wiley, Hoboken, N.J., ed.
 4th, 2009), pp. xiv, 370 pages.
- 68773.D. D. Hall, Y. Wu, F. E. Domann, D. R. Spitz, M. E. Anderson, Mitochondrial calcium uniporter688activity is dispensable for MDA-MB-231 breast carcinoma cell survival. *PLoS One* **9**, e96866 (2014).
- 690 74. G. Bhosale *et al.*, Pathological consequences of MICU1 mutations on mitochondrial calcium 691 signalling and bioenergetics. *Biochim Biophys Acta Mol Cell Res* **1864**, 1009-1017 (2017).

692

660

663

666

669

673

677

680

683

686

689

693 ACKNOWLEDGEMENTS

694	We thank Drs. Katsuyoshi Mihara (Kyushu University, Japan) and David C. Chan (Caltech,
695	USA) for sending us Drp1 ^{-/-} MEFs, and Dr. Toren Finkel (University of Pittsburgh, USA) for
696	sending the MEFs with intact Drp1 (WT and MICU1 ^{-/-} MEFs). We thank the Nikon Microscopy
697	Core (DeLaine Larsen, Kari Herrington) and Lab for Cell Analysis (Sarah Elms) at UCSF for
698	help with use of microscopy and FACS equipment. We thank all members of the Y.K. lab for
699	helpful discussions; Funding: This work was supported by American Heart Association
700	Scientist Development Grant 17SDG33660926 (V.G.) and NIH grant 5R01GM107710 (Y.K.);
701	Author contributions: V.G. and Y.K. conceived the project and designed all experiments. V.G.
702	performed all experiments. V.G. and T.U. performed Western blot experiments. J.S. consulted on
703	Ca ²⁺ imaging experiments. I.P. helped with the analysis of Ca ²⁺ imaging experiments. L.S.M.
704	consulted on single-channel analysis using QuB. V.G and Y.K. discussed the results and wrote
705	the manuscript. All authors commented on the manuscript; Competing interests: Authors
706	declare no competing interests; Data and materials availability: All data is available in the
707	main text or the supplementary materials. Further information and requests for reagents may be
708	directed to the lead contact Yuriy Kirichok (yuriy.kirichok@ucsf.edu).

709

710 SUPPLEMENTARY MATERIALS

- 711 Materials and Methods
- 712 Figure S1 S10
- 713 Tables S1 S2
- 714 References

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.04.025833; this version posted April 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

715 **FIGURES**

- Fig. 1. MCU-mediated I_{Ca} in WT and knockouts of MCU complex subunits. (A) Inward I_{Ca}
- elicited by a voltage ramp in WT, $MCU^{-/-}$ and $EMRE^{-/-}$ mitoplasts exposed to $[Ca^{2+}]_{cyto}$ of 30 μ M,
- 100 μ M and 1 mM. In WT, also note an outward Na⁺ current via MCU at positive voltages in
- 719 Ca²⁺-free bath solution (Control). Voltage protocol is indicated on the top. (**B**) I_{Ca} is rescued by
- the recombinant expression of MCU and EMRE in their respective knockout cell lines. (C) I_{Ca}
- density measured at -160 mV at different $[Ca^{2+}]_{cyto}$ in indicated cell lines. (*n* = 4 to 5 each) Mean
- 22 ± SEM. (**D**) Inward I_{Ca} in WT, MICU1^{-/-}, MICU2^{-/-} and MICU3^{-/-} mitoplasts exposed to 10 μM,
- 100 μ M and 1 mM [Ca²⁺]_{cyto}. (E) I_{Ca} amplitudes measured at -160 mV in mitoplasts at [Ca²⁺]_{cyto}
- of 10μ M, 100μ M and 1μ M (*upper*), as well as 5 mM and 25 mM (*lower*). (n = 8 to 17) Mean
- \pm SEM; one-way ANOVA with post-hoc Tuckey test. **p < 0.01; ***p < 0.001.

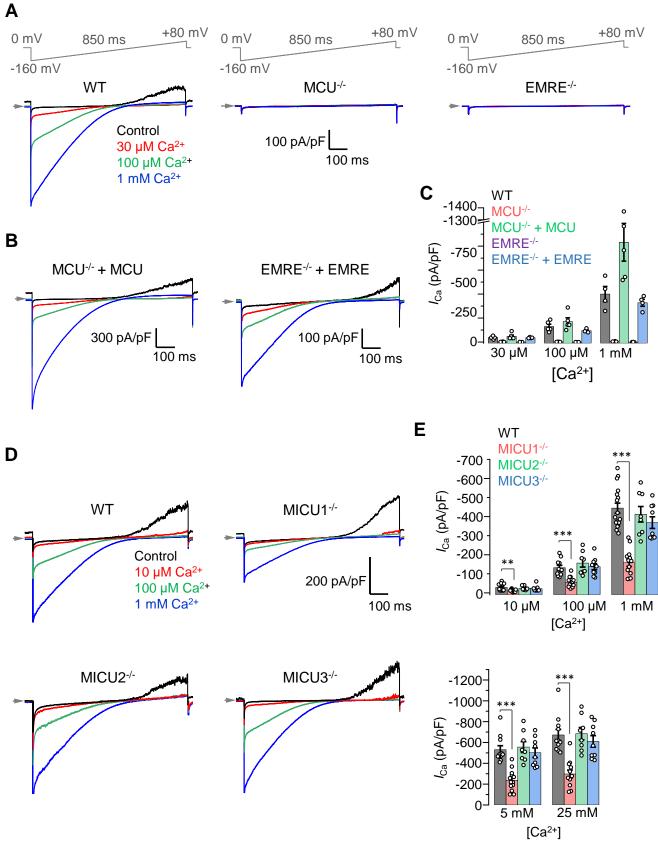


Fig. 1

- Fig. 2. MICU1 is a Ca²⁺-dependent MCU potentiator. (A) Representative I_{Na} in WT, $MCU^{-/-}$
- and *EMRE*^{-/-} mitoplasts at 110 mM [Na⁺]_{cyto}. (**B**) I_{Na} amplitudes measured at -80 mV in WT (n =
- 728 20), $MCU^{-/-}$ (n = 3) and $EMRE^{-/-}$ (n = 3) mitoplasts. (**C**) Representative I_{Ca} (*blue*) and I_{Na} (*red*)
- recorded from the same WT and $MICU1^{-/-}$ mitoplasts exposed to 1 mM $[Ca^{2+}]_{cyto}$ or 110 mM
- 730 $[Na^+]_{cyto}$. (**D** to **F**), Amplitudes of I_{Na} (D) and I_{Ca} (E), and the I_{Ca}/I_{Na} ratio in the same mitoplast
- (F) in WT (n = 27) and MICU1^{-/-} (n = 18). Current were measured at -80 mV. Mean \pm SEM;
- unpaired t-test, two-tailed. ***p < 0.001. (G) Inward I_{Na} recorded in the absence of cytosolic Ca²⁺
- (*blue*) and subsequently at 2 nM $[Ca^{2+}]_{cyto}$ (*red*) in WT (*left*) and MICU1^{-/-} (*right*) mitoplasts
- exposed to 110 mM [Na⁺]_{cyto}. (**H**) Inhibition of I_{Na} by 2 nM [Ca²⁺]_{cyto} in WT and MICU1^{-/-}. Mean \pm
- 735 SEM; unpaired t-test, two-tailed (n = 4 each).

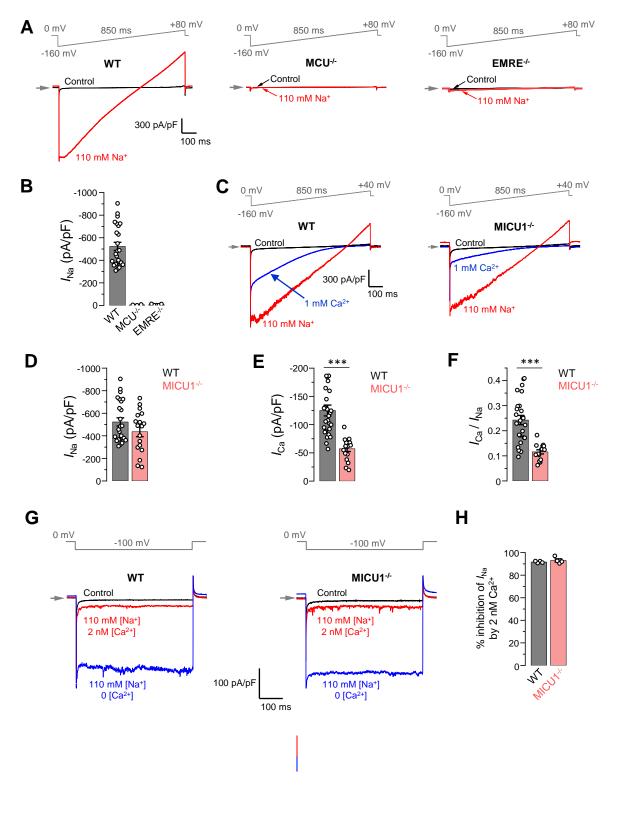
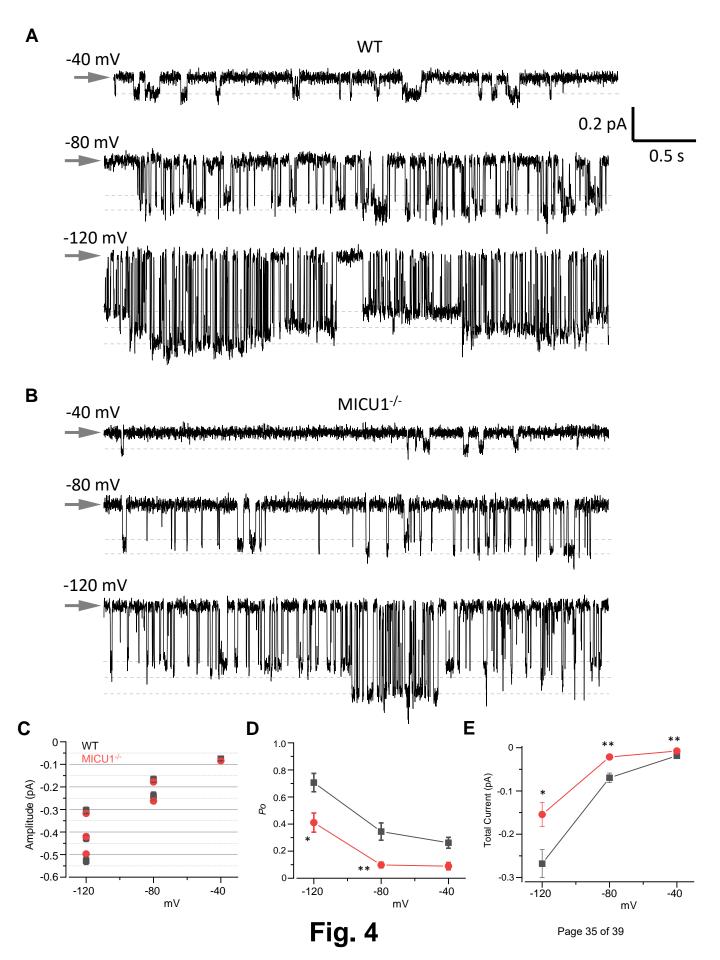


Fig. 2

Fig. 3. Effects of MICU proteins and their EF hands on the amplitude, kinetics and

rectification of $I_{Ca.}$ (A) Western blots showing overexpression of MICU proteins or MICU


- 738 proteins with non-functional EF hands (mut-EF-MICU) in their respective knockout background
- (*left*, $MICU1^{-/-}$; *middle*, $MICU2^{-/-}$ and; *right*, $MICU3^{-/-}$). (**B** to **D**) Upper panels: I_{Ca} in $MICU1^{-/-}$
- 740 (B), *MICU2^{-/-}* (C) and *MICU3^{-/-}* (D) before and after overexpression of a corresponding MICU
- subunit or its EF hand mutant, as compared to WT. To simplify comparison, representative I_{Ca}
- traces recorded from the mitoplasts of different backgrounds in 1 mM $[Ca^{2+}]_{cyto}$ are shown
- together in a single panel. Lower panels: quantification of I_{Ca} amplitudes from the upper panel at
- -160 mV. The same WT and knockout data were used as in Fig. 1e. Mean \pm SEM; one-way
- ANOVA with post-hoc Tuckey test (n = 7 to 26). *p < 0.05; **p < 0.01; ***p < 0.001. (E) Left
- 746 *panel*: I_{Ca} measured at a holding voltage of -100 mV while $[Ca^{2+}]_{cyto}$ was rapidly ($\tau \sim 0.4$ ms, see
- 747 Methods) switched from virtual zero to 1 mM and then back to virtual zero in WT (grey) and
- 748 *MICU1^{-/-} (red)* mitoplasts. *Right panel, I*_{Ca} kinetics within ~10 ms after the fast $[Ca^{2+}]_{cyto}$
- elevation and subsequent decrease in WT (grey) and $MICU1^{-/-}$ (red) mitoplasts from the left
- panel. I_{Ca} traces were normalized to the maximal amplitude to facilitate comparison of kinetics in
- 751 WT and MICU1^{-/-}. (F) Left: I_{Ca} activation time constant (τ_a) in WT and MICU1^{-/-}; Right: I_{Ca}
- deactivation time constant (τ_d) in WT and MICU1^{-/-}. Mean ± SEM (n = 3, each). (G) I_{Ca} at
- 753 $[Ca^{2+}]_{mito} = 2 \text{ mM}$ and indicated $[Ca^{2+}]_{cyto}$ in WT and MICU1^{-/-}. Arrows point out where the
- amplitude of outward I_{Ca} was measured. Bar-graph shows the amplitude of outward I_{Ca} measured
- 755 at +80 mV. n = 3, each $[Ca^{2+}]_{cyto}$.

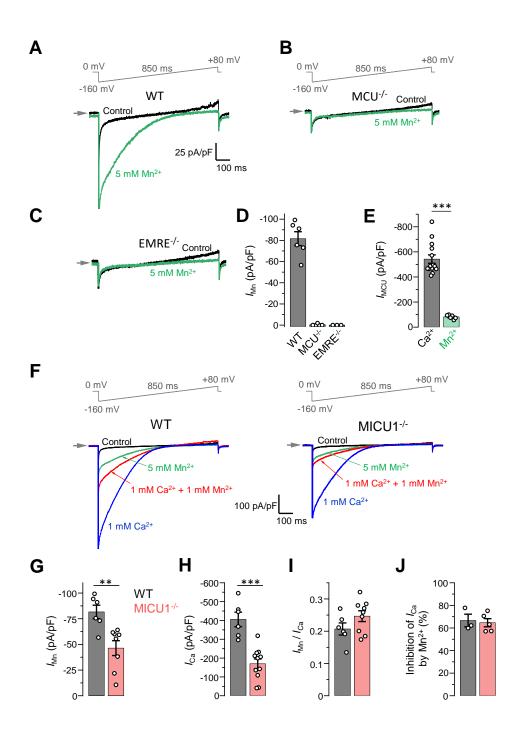
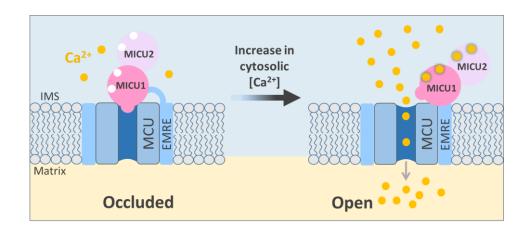
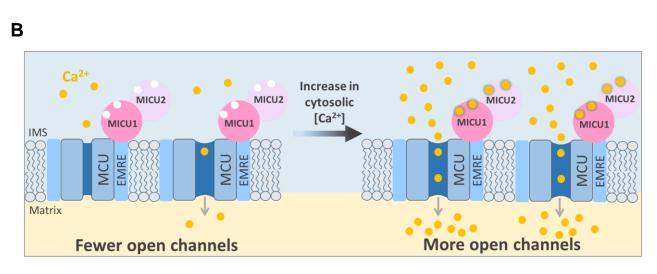

Fig. 3

Fig. 4. Open probability of the MCU channel is decreased in *MICU1^{-/-}***.** (A and B) MCU


- single-channel currents (i_{Ca}) from inside-out IMM patches in WT (A) and MICU1^{-/-} (B) recorded
- at indicated potentials in symmetrical 105 mM Ca^{2+} , and low-pass filtered at 0.3 kHz for display
- purposes. Arrows indicate closed state level, and downward deflections are the open state events.
- 760 Multiple subconductance levels are clearly visible at -80 and -120 mV. (C to E) Single-channel
- amplitudes (C), open probability (P_0) (D), and time-averaged unitary current (E) (see Methods)
- in WT and MICU1^{-/-} at indicated potentials. Mean \pm SEM; unpaired t-test, two-tailed; n = 5-6,
- 763 each. *p < 0.05; **p < 0.01.

- Fig. 5. *I*_{Mn} is reduced in *MICU1^{-/-}* to the similar extent as *I*_{Ca}. (A to C) Representative inward
- 765 I_{Mn} in WT (A), $MCU^{-/-}$ (B) and $EMRE^{-/-}$ (C) mitoplasts at 5 mM $[\text{Mn}^{2+}]_{\text{cyto.}}$ (D) I_{Mn} measured at -
- 766 160 mV from WT (n = 6), $MCU^{-/-}$ (n = 5) and $EMRE^{-/-}$ (n = 3) mitoplasts. Mean \pm SEM. (**E**) I_{MCU}
- amplitudes at 5 mM $[Ca^{2+}]_{cyto}$ and 5 mM $[Mn^{2+}]_{cyto}$ in WT mitoplasts. Currents were measured at
- -160 mV. Mean \pm SEM; unpaired t-test, two-tailed; n = 6-14; ***p < 0.001. (F) Representative
- 769 I_{Ca} (blue, [Ca²⁺]_{cyto}=1 mM), I_{Mn} (green, [Mn²⁺]_{cyto}=5 mM) and inhibition of I_{Ca} by Mn²⁺ (red,
- 770 $[Ca^{2+}]_{cyto}=1 \text{ mM and } [Mn^{2+}]_{cyto}=1 \text{ mM})$ in WT and MICU1^{-/-} mitoplasts. (**G** to **J**) I_{Mn} (G), I_{Ca} (H),
- 771 I_{Mn}/I_{Ca} ratio (I, measured in the same mitoplasts), and inhibition of I_{Ca} by 1 mM [Mn²⁺]_{cyto} (J) in
- 772 WT (n = 3-6) and MICU1^{-/-} (n = 5-11). Mean ± SEM; unpaired t-test, two-tailed. **p < 0.01;
- ****p*< 0.001.



774 Fig. 6. Gating models of the MCU complex. (A) Current model of the MCU complex gating and the role of MICU subunits. The MCU complex has two states: MICU-occluded and open. At 775 low $[Ca^{2+}]_{cvto}$, MICU subunits occlude the MCU pore and inhibit Ca^{2+} influx. As $[Ca^{2+}]_{cvto}$ is 776 777 increased, Ca²⁺ binds to the EF hands of MICU subunits, the MICU-mediated occlusion is relieved, and the MCU pore is open. (B) New model of the MCU complex gating and the role of 778 779 MICU subunits. The MCU complex is a constitutively active channel. The level of the MCU activity is determined by spontaneous transitions between the open and closed states and the 780 equilibrium between them. At low $[Ca^{2+}]_{cyto}$, this equilibrium is such that the probability of the 781 open and closed states are comparable. As $[Ca^{2+}]_{cvto}$ is increased and Ca^{2+} binds to the EF hands 782 of MICU subunits, MICUs strongly shift the equilibrium to the open state, which leads to a 783 784 significant increase in the probability of the open state (Po) and a robust increase in the MCU 785 activity.

Α

Old MCU Gating Model

New MCU Gating Model