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Highlights 54 

⚫ New interpretable machine-learning analytic framework identifies a combination 55 

of microbes consistently associated with type 2 diabetes risk across three 56 

independent cohorts involving 9111 participants 57 

⚫ Faecal microbiota transplantation from humans to germ-free mice demonstrates a 58 

causal role of the identified combination of microbes in the type 2 diabetes 59 

development  60 

⚫ Body shape could modify the gut microbiome-diabetes relationship 61 
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Abstract  62 

Gut microbiome targets for type 2 diabetes (T2D) prevention among human cohorts 63 

have been controversial. Using an interpretable machine learning-based analytic 64 

framework, we identified robust human gut microbiome features, with their optimal 65 

threshold, in predicting T2D. Based on the results, we constructed a microbiome risk 66 

score (MRS), which was consistently associated with T2D across 3 independent 67 

Chinese cohorts involving 9111 participants (926 T2D cases). The MRS could also 68 

predict future glucose increment, and was correlated with a variety of gut microbiota-69 

derived blood metabolites. Faecal microbiota transplantation from humans to germ-70 

free mice demonstrated a causal role of the identified combination of microbes in the 71 

T2D development. We further identified adiposity and dietary factors which could 72 

prospectively modulate the MRS, and found that body fat distribution may be the key 73 

factor modulating the gut microbiome-T2D relationship. Taken together, we proposed 74 

a new analytical framework for the investigation of microbiome-disease relationship. 75 

The identified microbiota may serve as potential drug targets for T2D in future.  76 
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Introduction 77 

Type 2 diabetes (T2D) is a complex disorder influenced by both host genetic and 78 

environmental factors (1), and its prevalence is rising rapidly in both developed and 79 

developing countries (2). Gut microbiome is considered as a modifiable 80 

environmental factor, which plays an important role in the development of T2D (3–7). 81 

The research interest to identify gut microbiome-related treatment/prevention target is 82 

emerging recently (8). Although there are a few human studies investigating the 83 

association of gut microbiome with T2D in the past few years, the results are 84 

inconsistent, and the causality is lacking (9). So far, there are sparse human evidence 85 

robustly linking specific gut microbiome features to T2D.  86 

 87 

Machine learning has been widely used in biomedical fields in recent years (10). 88 

However, its application in the clinical setting is still limited as their predictions are 89 

usually difficult to interpret. Of note, with the methodology development in the past 90 

few years, interpretable algorithms could unlock the traditional “black box” of 91 

machine learning results (11). The integration of the new algorithms with large-scale 92 

gut microbiome data have the potential to radically unveil the relationship between 93 

gut microbiome and T2D. Yet, no such investigation has been done. 94 

 95 

Therefore, in the present study, we aimed to identify robust human gut microbiome 96 

features in predicting T2D with a novel interpretable machine learning analytical 97 

framework in large-scale human cohort studies. We also assessed the correlation 98 

between the combination of microbes and host blood metabolites to provide insight 99 

into the role of T2D-related gut microbiota in host metabolism. We further performed 100 

a faecal microbiota transfer experiment to establish the causality of the identified 101 
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combination of microbes on the T2D development. As a secondary objective, we 102 

aimed to identify potential adiposity, dietary and lifestyle factors which could modify 103 

the T2D-related gut microbiota using our longitudinal cohort data.  104 

 105 

Results  106 

Linking host multi-dimensional information and T2D based on a machine 107 

learning method 108 

The characteristics of the participants for the current study are shown in Table 1, and 109 

the overview of the study workflow is shown in Fig.1 and Fig.S1. 297 host features 110 

(metadata, gut microbiota composition, and gut microbiota diversity, see 111 

Supplemental text) were incorporated into our analyses. The metadata were collected 112 

at the same point-in-time as the stool sample. Prevalent T2D cases were ascertained 113 

on the basis of fasting blood glucose ≥7.0 mmol/L or HbA1c ≥6.5% or currently 114 

under medical treatment for diabetes at either of the follow-up visits, according to the 115 

American Diabetes Association criteria for the diagnosis of diabetes (12). We used 116 

LightGBM (13), a Gradient Boosting Decision Tree (GBDT) algorithm, to infer the 117 

relationship between incorporated features and T2D (Materials and Methods). Our 118 

machine learning model showed a high and robust performance for the prediction of 119 

T2D (AUC=0.86~0.89) in the discovery and external validation cohort 1 (Fig.2A, and 120 

Table S1). The LightGBM algorithm used in the present study outperformed the 121 

random forest algorithm in the T2D prediction (Table S2).  122 

 123 

Factors underlying T2D prediction 124 

To gain insight into the contribution of the different features in the algorithm’s 125 

prediction, we used SHapley Additive explanation(SHAP) (11) to interpret the 126 
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machine learning model. Features with an average absolute SHAP value greater than 127 

0 were used as selected features. We finally identified 21 features associated with the 128 

risk of T2D, of which 15 were microbiome features (two of them are indicators of 129 

microbial diversity, others are taxa-related features) (Fig.2B, Fig.S2 and Table S3), 130 

and the majority of the selected microbiome features had a low to modest 131 

intercorrelation (Fig.2, C to D, and Table S4). The selected features from the model 132 

showed a similar predictive capacity compared to all input features (Fig.2E, and Table 133 

S1).  134 

 135 

We explored the marginal effect of each selected feature on T2D risk accounting for 136 

other features to examine how a single selected feature affected the output of the 137 

machine learning model. We created a SHAP dependence plot to show the effect of a 138 

single feature across the whole dataset (Fig.S3). Our results indicated that individuals 139 

with age >66.7 years or waist circumference >84.6cm were considered at high risk of 140 

T2D (Fig.S3). This is consistent with the standards of medical care for T2D in China 141 

(14, 15), which suggests that individuals >65 years old or with waist 142 

circumference >85cm (male) or 80cm (female) are at high risk of T2D. These results 143 

further demonstrated the validity of our novel machine learning-based analytic 144 

framework.  145 

 146 

We identified the optimal threshold of the identified 13 taxa-related features according 147 

to their SHAP dependence plots (Table S5). 8 of 13 taxa-related features showed 148 

statistically significant associations with T2D when they were treated as binary 149 

variables: high abundance (i.e., ≥ the optimal threshold) compared to low abundance 150 

(i.e., < the optimal threshold) (Fig.S4, A, and Table S6), while only 3 taxa-related 151 
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features showed significant association with T2D if the abundance of the selected 152 

microbiome was treated as a continuous variable (Fig.S4, B, and Table S6). These 153 

results highlight the importance of our interpretable machine learning framework to 154 

identify the optimal threshold for the individual microbes, suggesting that a linear 155 

model may not be suitable for microbiome analysis.  156 

 157 

The identified combination of microbes is strongly predictive of T2D risk 158 

To estimate individual microbiome risk for T2D development, we generated a 159 

microbiome risk score (MRS) integrating the threshold and direction of the above-160 

identified microbial features (13 taxa-related features and observed species) to predict 161 

T2D risk (Materials and Methods). The MRS (ranges from 0-14) showed superior 162 

T2D prediction accuracy compared to the host genetics (T2D genetic risk score), 163 

Framingham-Offspring Risk Score (FORS) components (age, sex, parental history of 164 

diabetes, BMI, systolic blood pressure, high-density lipoprotein cholesterol, 165 

triglycerides, and waist circumference), lifestyle and dietary factors (current smoking 166 

status, current tea-drinking, current alcohol drinking, physical activity, total energy 167 

intake, vegetable intake, fish intake, red and processed meat intake, fruit intake and 168 

yogurt intake) (Fig.2F, and Table S7). An addition of the MRS to the model (FORS + 169 

lifestyle + diet) increased the AUC from 0.63 (95% CI 0.55-0.71) to 0.73 (95% CI 170 

0.66-0.8) in the internal validation cohort (P=0.0024), 0.66 (95% CI 0.57-0.76) to 171 

0.73 (95% CI 0.65-0.82) in the internal test cohort (P=0.016), and 0.51 (95% CI 0.45-172 

0.57) to 0.64 (95% CI 0.56-0.71) in the external validation cohort 1 (P=0.0036), 173 

respectively.  174 

 175 

We found that the MRS (per unit change in MRS) consistently showed positive 176 
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association with T2D risk in the discovery cohort (RR 1.28, 95%CI 1.23-1.33), 177 

external validation cohort 1 (RR 1.23, 95%CI 1.13-1.34) and external validation 178 

cohort 2 (RR 1.12, 95%CI 1.06-1.18) (Fig.3A, Table 2, and Table S8). We also 179 

repeated the MRS-T2D association based on 1068 deep shotgun metagenomics 180 

samples in the discovery cohort (including 159 T2D cases). In agreement with the 16S 181 

RNA results, the metagenome-based MRS consistently showed positive association 182 

with T2D risk (per unit change in new MRS: RR 1.33, 95%CI 1.17-1.51) (Fig.3A, and 183 

Table S8). 184 

 185 

The identified combination of microbes is longitudinally related with glucose 186 

increments 187 

In order to investigate the relationship between the identified combination of microbes 188 

(i.e., MRS) and glucose increments longitudinally. We conducted a prospective 189 

investigation among 249 GNHS cohort participants with normal fasting glucose 190 

(fasting glucose <7 mmol/l) at baseline, who were followed up for a median of 3.4 191 

years after the collection of stool samples. Linear regression was used to calculate the 192 

correlation coefficient (Beta) and 95% confidence interval (CI) of glucose increments 193 

per unit higher in the MRS after adjusting for age, sex, BMI, waist circumference, 194 

smoking status, household income, alcohol drinking status, total energy intake, 195 

marital status and education level (model 1). We also conducted a sensitivity analysis 196 

to test the influence of baseline fasting glucose on the performance of our model by 197 

including baseline fasting glucose into the model. Our results showed that MRS was 198 

significantly positively associated (P<0.05) with future glucose increments in two 199 

statistical models (Fig.3B, and Table S9). These results indicate that our identified 200 

combination of microbes could predict future glucose status among non-T2D 201 
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participants. 202 

 203 

Correlation of the identified combination of microbes with host blood 204 

metabolome  205 

We performed targeted metabolomics profiling of serum samples from the discovery 206 

cohort (n=903) and external validation 1 (n=113), and assessed the correlation of the 207 

T2D-related combination of microbes (i.e., MRS) with 199 serum metabolites 208 

(Supplemental text). Participants with a history of the T2D medication use were 209 

excluded in this analysis. The serum samples were collected at the same point-in-time 210 

as the stool samples. We found the MRS was consistently correlated with 6 211 

metabolites in the discovery cohort and external validation cohort 1 (Fig.3C).  212 

 213 

The MRS was negatively correlated with 2-phenylpropionate, hydrocinnamic acid and 214 

indole-3-propionic acid, which were all associated with gut microbiome metabolism 215 

(16–18). Deoxycholic acid and deoxycholic acid glycine conjugate are secondary bile 216 

acids produced by the action of enzymes existing in the microbial flora of the colonic 217 

environment (19). Recent studies have revealed that alteration of gut microbiota could 218 

not only affect the bile acid pool, but also influence the bile acid receptor signaling 219 

(i.e., FXR and TGR5). The FXR has been reported to be involved in glucose 220 

homeostasis, energy expenditure, and lipid metabolism (20).These observations 221 

provide insight into the potential function and mechanism of our identified microbial 222 

features, represented by the MRS, in host metabolism.  223 

 224 

The identified combination of microbes causally affect the T2D development in 225 

germ-free mice 226 
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To determine the causality between the identified combination of microbes and T2D 227 

risk, we transferred human faecal samples to germ-free mice to investigate the effects 228 

of the identified microbiota on T2D development (Fig.3D, Materials and Methods). 229 

Mice transplanted with the gut microbiota from high MRS individuals, either at non-230 

T2D or T2D status, showed significant increase in fasting glucose levels compared 231 

with those from the low MRS individuals or germ-free control mice (Fig.3E to F). 232 

There was no significant difference in fasting glucose between the germ-free control 233 

group and the low MRS group. The mice weight of each group during follow-up was 234 

shown in Fig.S5 A to B. These results provide evidence for a causal relationship of the 235 

selected gut microbial features with T2D risk.  236 

 237 

Baseline adiposity and dietary factors can modulate the T2D-related microbiome 238 

We examined whether the MRS could be modulated by baseline adiposity, dietary or 239 

lifestyle factors (components see table S10). In the longitudinal analysis of the 240 

discovery cohort, baseline BMI were positively associated with the MRS, while hip 241 

circumference and tea-drinking was inversely associated (Fig.4A, and Table S10). 242 

 243 

Body shape is associated with gut microbiome, modulating the association of gut 244 

microbiome with T2D 245 

Obesity is a most important risk factor of T2D (21). As BMI and hip circumference 246 

are closely correlated with the MRS in our study, we hypothesized that the 247 

relationship of gut microbiome with T2D might be modulated by the adiposity status. 248 

The MRS was positively associated (P<0.05) with the distribution of trunk to limb fat 249 

ratio (trunk/limb fat mass ratio) in the discovery cohort and external validation cohort 250 

1 (Fig.4B and Table S11-Table S12). We found a significant interaction between MRS 251 
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and trunk/limb fat mass ratio for T2D risk in the discovery cohort (Pinteraction=0.012) 252 

and external validation cohort1 (Pinteraction=0.037), adjusted for potential confounders 253 

(Fig.4E). In the discovery cohort, adjusted risk ratio (95% CIs) of T2D according to 254 

tertiles of the trunk/limb fat mass ratio was 1 (reference), 1.83 (0.86-3.88) and 3.61 255 

(1.81-7.18) in the lowest MRS tertile, and 4.5 (2.21-9.17), 6.14 (3.12-12.08) and 256 

11.79 (6.28-22.16) in the highest MRS tertile. Similar interaction results were found 257 

in the external validation cohort 1 (Fig.4C, and Table S13).  258 

 259 

Discussion  260 

In the present study we identify robust combination of microbes in predicting T2D by 261 

integrating a cutting-edge interpretable machine learning framework with large-scale 262 

human cohort studies. We construct a novel risk score for the gut microbiome, which 263 

shows superior T2D prediction accuracy compared to host genetics or traditional risk 264 

factors. Additionally, we successfully replicate the MRS-T2D association in another 265 

two independent cohorts. We then reveal that the MRS is correlated with a few gut 266 

microbiota-derived blood metabolites. The faecal microbiota transfer experiment 267 

confirmed the causality of the identified combination of microbes on T2D 268 

development. Finally, we identify potential baseline factors which could modulate the 269 

T2D-related microbiome features, and demonstrate that the relationship between the 270 

microbiome and T2D could be modified by the body fat distribution.  271 

 272 

Microbiome data are highly dimensional, underdetermined, over-dispersed, and often 273 

sparse with excess zeros. These features challenge standard statistical tools, making 274 

results from both traditional parametric and non-parametric models unsatisfactory 275 

(22). On the other hand, multiple host anthropometric, dietary and lifestyle factors 276 
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play important roles in shaping the microbiome composition (23–25); while large 277 

human cohorts that taking into account these confounders are necessary but are so far 278 

sparse. The machine learning algorithm (LightGBM) we used to integrate host 279 

demographic, clinical, dietary, lifestyle and microbiome profiles outperformed the 280 

random forest algorithm in the T2D prediction. We also interpret the results of the 281 

‘black box’ machine learning models with a recently developed novel tool: SHAP 282 

(11). Compared with other interpreting methods such as gain, split count and 283 

permutation method, SHAP has been theoretically verified as the only consistent and 284 

locally accurate method to interpret machine learning results (26). We demonstrated 285 

that our new analytic framework could effectively integrate data from different 286 

dimensions and subsequently unlocking the machine learning-generated ‘black box’ 287 

results. This analytic framework could be used for other multi-omics research as well, 288 

beyond gut microbiome. 289 

 290 

The first published human cohort study examining the difference of gut microbiome 291 

between T2D cases (n=18) and healthy controls (n=18) found that proportions of 292 

phylum Firmicutes and class Clostridia were significantly reduced in the T2D group 293 

compared to the control group (5). However, these results were not confirmed in 294 

another two small human gut microbiome studies conducted in China and Europe (27, 295 

28). Although results from the above two studies (27, 28) suggested that functional 296 

alterations of the gut microbiome might be directly linked to T2D development, the 297 

most discriminatory microbial markers for T2D differ between the two studies.  298 

 299 

Most of our identified T2D-related taxa were from the order Clostridiales 300 

(f_mogibacteriaceae, g_clostridiaceae spp, g_butyrivibrio, g_roseburia, 301 
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g_megamonas, g_mogibacteriaceae spp, g_dorea, s_dispar), which were consistently 302 

enriched in the healthy controls, rather than T2D cases. Specifically, roseburia, which 303 

is decreased in our T2D patients, is a butyrate-producing genus and has been shown to 304 

causally improve glucose tolerance (29, 30). A previous study has demonstrated that 305 

reduction in the diversity and function of the class Clostridia contributes to the 306 

obesity development potentially via down-regulated genes that control lipid 307 

absorption (31). Therefore, the potential effect of Clostridia on obesity may explain 308 

our observed interaction between MRS and body fat distribution. In line with previous 309 

literature indicating that genus lactobacillus might contribute to chronic inflammation 310 

in diabetes development (5, 32), we also found that the family lactobacillaceae was 311 

enriched in the T2D participants and had a strong predictive power for T2D. Although 312 

based on the different microbiome analysis method, the two shotgun metagenomics 313 

based studies (27, 28) consistently showed a decrease in roseburia species and an 314 

increase in lactobacillus species in T2D cases compared to controls. Specially, 315 

lactobacillus species had the highest score for the identification of T2D patients in a 316 

European study (28). Due to the translational nature of the present project, we did not 317 

further investigate the functionality of each identified gut microbial taxa, but rather, 318 

we were more interested in the role of the overall microbiome combination and 319 

pattern. 320 

 321 

We developed the concept of MRS for T2D. The MRS could predict future glucose 322 

change prospectively, inferring the potential causality of the identified combination of 323 

microbes in diabetes development, which was confirmed by our faecal microbiota 324 

transplantation study. The prospective investigation of the gut microbiome-glucose 325 

association was rarely conducted by any of the previous cohort studies, which 326 
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exclusively investigated a cross-sectional association of gut microbiome with T2D or 327 

related traits (5, 9, 27, 28, 33–35). Integration of MRS-blood metabolome analysis 328 

revealed potential mechanism of the MRS-T2D association, involving a variety of gut 329 

microbiota-derived metabolites, although the detailed mechanism is yet to be 330 

discovered.  331 

 332 

We further demonstrated that higher BMI or lower hip circumference is positively 333 

associated with future MRS levels, which indicates the potential role of adiposity in 334 

affecting gut microbiome. The evidence is clearer when we found an interaction 335 

between the MRS and trunk to limb fat mass ratio, suggesting that adiposity may be 336 

an effect modifier for gut microbiome and T2D development. Taken together, our 337 

results highlight that a healthy body shape may play an important role in maintaining 338 

the gut health. 339 

 340 

In summary, with a high-accuracy machine learning model and a credible interpreter, 341 

we discover and validate the associations of gut microbiome and the related MRS 342 

with T2D in several large human cohorts. These newly discovered combination of 343 

microbes can be potentially used as T2D diagnostic, therapeutic targets, or preventive 344 

targets through diet and lifestyle intervention. Furthermore, the MRS can potentially 345 

assist in the screening of the best faecal donors for the treatment of T2D patients in 346 

future and improve the clinical therapeutic safety of faecal transplantation. 347 

 348 

 349 

 350 

 351 
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Materials and Methods 352 

Study design 353 

We included participants from three human cohorts, 1832 participants from the 354 

Guangzhou Nutrition and Health Study (GNHS) (36) as a discovery cohort (270 T2D 355 

cases), 203 participants belonged to the control arm of a case-control study of hip 356 

fracture in Guangdong Province, China (37) as an external validation cohort 1 (48 357 

T2D cases), and another 7009 participants from GGMP (Guangdong Gut Microbiome 358 

Project) as an further external validation cohort 2 (608 cases) (23). Detailed study 359 

designs of GNHS have been reported previously(36). Briefly, GNHS is an ongoing 360 

community-based prospective cohort study in Guangzhou, China. There were two 361 

waves of participant recruitment using the same criteria: between 2008 and 2010 362 

(n=3169), and between 2012 and 2013 (n=879). All participants were followed up 363 

every 3 years. Stool samples were collected at the second and third follow-up. Those 364 

with measurement of 16s rRNA from stool samples were included in the present study 365 

(n=1935). Study participants were excluded if they had an unclear diabetes status 366 

(n=48), chronic renal dysfunction or self-reported cancers (n=55). Finally, 1832 367 

participants were included in the present analysis as a discovery cohort, including 368 

1068 individuals (159 T2D cases) with a measurement of shotgun metagenomic 369 

sequence. Among the included participants, there were 249 non-T2D participants, 370 

who were followed up for a median of 3.4 years after the collection of their stool 371 

samples. These participants were included in our longitudinal analysis of gut 372 

microbiome with glucose increments. All 1832 participants were included in our 373 

longitudinal analysis on the prospective association of baseline factors with gut 374 

microbiome (with a median follow up of 6.2 years). 375 

 376 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 5, 2020. ; https://doi.org/10.1101/2020.04.05.024984doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.05.024984
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 

The hip fracture case-control cohort (external validation cohort 1) was performed 377 

between June 2009 and June 2012 in Guangdong Province, China. Detailed 378 

information of this cohort has been reported previously (37). After adopting the same 379 

inclusion and exclusion criteria as GNHS, we included 203 participants with a 380 

measurement of 16s rRNA from stool samples in the present analysis. The study 381 

protocols of GNHS and the hip fracture case-control study were approved by the 382 

Ethics Committee of the School of Public Health at Sun Yat-sen University, and all 383 

participants gave written informed consent. 384 

 385 

Details method for the covariate measurements, stool sample collection, 16s rRNA 386 

sequencing, shotgun metagenome sequencing and taxonomy analysis for GNHS and 387 

hip fracture case-control study was provided in Supplemental text.  388 

 389 

All GGMP participants (external validation cohort 2) were from 14 randomly selected 390 

districts or counties in Guangdong province. In each district or county, three 391 

neighborhoods or townships were selected, and in each neighborhood or township, 392 

two communities or villages were selected (23). Detailed methods for the assessment 393 

of demographic, lifestyle and dietary information, stool sample collection, processing 394 

and 16s sequencing for GGMP have been reported previously (23). The study protocol 395 

was approved by the Ethical Review Committee of the Chinese Center for Disease 396 

and Prevention, and all participants gave written informed consent. 397 

 398 

Interpretable machine learning framework for data integration and explanation  399 

We devised a model based on a gradient boosting framework —LightGBM(13) to link 400 

input features with T2D (detailed parameters were provided in Supplementary text). 401 
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To train and validate our model, we divided the discovery cohort into three parts 402 

randomly at a ratio of 6:2:2, resulting in 1099, 366 and 367 participants, which were 403 

allocated at the training cohort, internal validation cohort, and internal test cohort, 404 

respectively. The training cohort was used to fit parameters of the model; the internal 405 

validation cohort was used to tune parameters of the model; and the internal test 406 

cohort was used to assess the performance of the model. AUC was used to evaluate 407 

the model’s performance. Our predictor is based on code adapted from the sklearn 408 

0.15.2 (38) lightgbm class, R packages pROC (39) were used for ROC curve analyses, 409 

“delong” method for AUC comparison. We also compared our model performance 410 

with that of a random forest algorithm, applying the same evaluation criteria (tenfold 411 

cross-validation in the discovery cohort, independent validation in the external cohort 412 

1). 413 

 414 

We used the SHAP (Shapley Additive exPlanations) (11) integrated into LightGBM to 415 

unlock the machine learning results. The inflection point of SHAP dependence plots 416 

(X-axis represents the feature variable, while Y-axis represents the SHAP value for the 417 

feature variable) were defined as the optimal threshold for each selected feature. 418 

 419 

Microbiome risk score (MRS) construction 420 

We construct an MRS based on the machine learning-selected microbiome features 421 

and their SHAP values by using the additive model: 422 

𝑀𝑅𝑆𝑖 = ∑ 𝑠𝑖𝑗

𝑛

𝑗=1

 423 

Where, 𝑀𝑅𝑆𝑖 is a MRS for individual i, 𝑠𝑖𝑗 = {
0 , 𝑖𝑓  𝑥𝑠ℎ𝑎𝑝,𝑖𝑗 < 0

1 , 𝑖𝑓  𝑥𝑠ℎ𝑎𝑝,𝑖𝑗 > 0
 , 𝑠𝑖𝑗 is the 424 

microbiome risk score for the jth microbiome features in ith individual. n is the sum 425 
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of the microbiome features, and 𝑥𝑠ℎ𝑎𝑝,𝑖𝑗is the SHAP value for the jth microbiome 426 

features in ith individual. The MRS components including observe species, 427 

f_lactobacillaceae, c_alphaproteobacteria, f_mogibacteriaceae, g_clostridiaceae spp, 428 

c_deltaproteobacteria, g_butyrivibrio, o_lactobacillales, f_comamonadaceae, 429 

g_roseburia, g_megamonas, g_mogibacteriaceae spp, g_dorea, s_dispar. 430 

 431 

Gut microbiota transplantation 432 

Nine participants were randomly selected as the representative donors according to 433 

the level of the MRS (ranges from 0-14):  434 

(1) Low MRS group: 3 participants, MRS=0, or MRS=1. 435 

(2) High MRS + non-T2D group: 3 participants, MRS=11. 436 

(3) High MRS + T2D group: 3 participants, MRS=13, or MRS=14. 437 

 438 

Weaned, germ-free male C57BL/6J mice (n = 40) were maintained in flexible-film 439 

plastic isolators under a regular 12-h light cycle (lights on at 06:00). The mice were 440 

fed a sterilized normal chow diet (10% energy from fat; 3.25 kcal/g; SLAC). At 4 441 

weeks of age, the germ-free mice were housed in individual cages and randomly 442 

divided into four groups (each group was kept in an individual isolator). After 1 weeks 443 

of acclimatization, the CON group of mice (n = 10) were orally gavaged with 100 μL 444 

of normal saline, and the other three groups of mice (n = 10, per group) were orally 445 

gavaged with 100 μL of the fecal suspension inoculum (taken from the each of the 446 

above donor group, preparation methods see supplementary materials). All mice were 447 

fed a sterilized high-fat diet. On Day 0, 7 and 14, after 12 h of fasting, fasting glucose 448 

was measured through the tail vein (Sinocare, China). 449 

 450 
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Detailed description of fecal suspension inoculum preparation was provided in 451 

Supplementary text. All animal experimental procedures were approved by the Ethics 452 

Committee of Westlake University and were conducted according to the committee’s 453 

guidelines. 454 

 455 

Statistical analysis 456 

Statistical analysis was performed using Stata 15 (StataCorp, College Station, TX, 457 

USA). For the discovery cohort and external validation cohort 1, multivariable 458 

Poisson regression model (with robust standard errors) was used to examine the cross-459 

sectional association with T2D for each machine-learning identified taxa-related 460 

feature as a continuous variable or as a binary variable: higher abundance (i.e., ≥the 461 

optimal threshold) compared with those lower abundance (i.e., <the optimal 462 

threshold), adjusted for age, sex, BMI, waist circumference, household income, 463 

marital status, and self-reported educational level, total energy intake, alcohol 464 

drinking, and smoking. For external validation cohort 2, all aforementioned covariates 465 

but total energy intake (not available) were used in the statistical model. We combined 466 

the effect estimates from the 3 cohorts using random-effects meta-analysis.  467 

 468 

With the machine-learning identified MRS, in each of the internal validation cohort, 469 

internal test cohort and external validation cohort 1, we calculated the AUC for T2D 470 

prediction for the MRS, host genetics (T2D genetic risk score), and the traditional 471 

T2D risk factors including the Framingham-Offspring Risk Score (FORS) 472 

components (age, sex, parental history of diabetes, BMI, systolic blood pressure, 473 

high-density lipoprotein cholesterol, triglycerides, and waist circumference), lifestyle 474 

and dietary factors (current smoking status, current tea-drinking, current alcohol 475 
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drinking, physical activity, total energy intake, vegetable intake, fish intake, red and 476 

processed meat intake, fruit intake and yogurt intake). ROC curves were compared 477 

with a paired two-sided DeLong's test using the pROC package in R (23). 478 

 479 

We also used a Poisson regression model (with robust standard errors) to explore the 480 

cross-sectional association of the MRS with T2D risk in our discovery cohort, and 481 

two external validation cohorts, respectively, adjusted for the same covariates as 482 

above individual taxa analysis. Given the information on household income was 483 

missing for many participants (n=2566, 37.8%) in external validation cohort 2, we 484 

performed sensitivity analysis by excluding household income as a covariate. 485 

 486 

We used a linear regression model to explore the association of baseline MRS with 487 

glucose increments in the next 3 years, adjusted for the demographic and dietary and 488 

lifestyle factors. Sensitivity analysis was conducted by adding baseline fasting glucose 489 

to test the influence of baseline fasting glucose on the performance of the above 490 

model. 491 

 492 

The association of the MRS with host circulating metabolites was assessed by the 493 

Spearman correlation. Those MRS-metabolite associations survived the multiple test 494 

correction (Benjamini and Hochberg method) in the discovery cohort were further 495 

chosen for replication in the external validation cohort 1.  496 

 497 

In the discovery cohort, linear regression was used to estimate the difference in MRS 498 

per quartile change for continuous dietary factors or per unit change for adiposity 499 

factors or per category change for categorical (ordinary) factors in the baseline tested 500 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 5, 2020. ; https://doi.org/10.1101/2020.04.05.024984doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.05.024984
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

 

factors, adjusted for demographic factors, T2D medication use, and mutually adjusted 501 

for the other tested adiposity, dietary and lifestyle factors. The tested adiposity, dietary 502 

and lifestyle factors including BMI, hip circumference, waist circumference, neck 503 

circumference, total energy intake, alcohol drinking, smoking, tea drinking, vegetable 504 

intake, fruit intake, fish intake, red and processed meat intake, yogurt intake and 505 

physical activity. The adjusted demographic factors including age, sex, household 506 

income, marital status and educational level.  507 

 508 

In both the discovery cohort and the external validation cohort 1, we used a linear 509 

regression model to assess the cross-sectional association of MRS with body fat 510 

distribution, adjusted for age, sex, total energy intake, alcohol drinking, smoking, 511 

household income, marital status and educational level. In both cohorts, Poisson 512 

regression was used to estimate the interaction of MRS with trunk fat to limb fat mass 513 

ratio on T2D risk, adjusted for the demographic, dietary and lifestyle factors. 514 

 515 

For the results of the animal study, ANOVA was used for comparison between 516 

multiple groups. The P-values were adjusted using the Benjamini and Hochberg 517 

method. P values <0.05 were considered significant.  518 

 519 

 520 

 521 

 522 

 523 

 524 

 525 
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Table 1. Characteristics of the participants included in this study* 

 

Factors Discovery cohort External validation cohort 1 External validation cohort 2  

No of participants 1832 203 7009 

No of type 2 diabetes cases (%) 270 (14.7%) 48 (23.6%) 608 (8.7%) 

Age (year) 64.8 (5.9) 71.7 (6.9) 52.7 (14.7) 

Sex (%)    

Women 1223 (66.9%) 152 (74.9%) 3848 (54.9%) 

Men 605 (33.1%) 51 (25.1%) 3161 (45.1%) 

Marital status, %    

Married 1663 (91.0%) 148 (72.9%) 6322 (90.3%) 

Others 165 (9.0%) 55 (27.1%) 682 (9.7%) 

Education, %    

Middle school or lower 490 (26.8%) 28 (14.6%) 5326 (76.0%) 
High school or professional 

college 846 (46.3%) 34 (17.7%) 1398 (19.9%) 

University 492 (26.9%) 130 (67.7%) 280 (4.0%) 

Unknow   5 (0.1%) 

Income (Yuan/month/person), %    

≤500 27 (1.5%) 1 (0.5%) 834 (11.9%) 

501-1500 388 (21.2%) 3 (1.5%) 2067 (29.5%) 

1501-3000 1175 (64.3%) 30 (15.1%) 996 (14.2%) 

>3000 238 (13.0%) 165 (82.9%) 481 (6.9%) 

Unknow   2631 (37.5%) 

Height, cm 158.4 (10.4) 154.7 (11.8) 158.0 (8.5) 

Weight, kg 59.4 (10.2) 58.3 (9.9) 58.5 (10.9) 

BMI, kg/m2 23.6 (3.4) 25.5 (15.5) 23.4 (3.5) 

Waist circumference, cm 85.2 (9.3) 83.5 (9.9) 80.3 (9.9) 

Hip circumference, cm 91.7 (11.6) 91.3 (6.6)  

Neck circumference, cm 34.0 (3.2) 33.2 (2.9)  

DBP, mmol/L 74.0 (12.3) 74.1 (9.5) 77.7 (11.5) 

SBP, mmol/L 120.8 (17.0) 125.6 (16.3) 131.7 (21.7) 

Fasting glucose, mmol/L 5.5 (1.3) 5.7 (1.3) 5.6 (1.7) 

HDL, mmol/L 1.5 (0.4) 1.5 (0.4) 1.3 (0.5) 

LDL, mmol/L 3.6 (1.0) 3.6 (1.1) 3.3 (0.9) 

TC, mmol/L 5.5 (1.1) 5.6 (1.3) 5.3 (0.9) 

TG, mmol/L 1.6 (1.1) 1.7 (1.9) 1.4 (1.6) 

Current smoking status 144 (7.9%) 27 (14.1%) 1815 (26.1%) 

Current tea drinking 1051 (57.7%) 108 (56.3%)  

Current alcohol drinking 136 (7.4%) 19 (9.9%) 2752 (39.3%) 

Physical activity, MET 40.6 (14.1) 91.6 (51.1)  

Total energy intake, kcal/d 1763.1 (568.3) 1631.0 (570.5)  

Vegetable intake, g/d 369.4 (176.8) 427.0 (201.3) 336.3 (229.2) 

Fish intake, g/d 50.5 (51.9) 43.0 (50.0)  
Red and processed meat intake, 

g/d 83.6 (62.3) 72.0 (47.0) 131.2 (133.8) 

Fruit intake, g/d 150.9 (198.5) 132.1 (84.5) 79.4 (133.6) 

Yogurt intake, g/d (dry weight) 4.7 (15.6) 3.8 (6.2)  

*Data were present as no of participants (%) or as mean (SD) 
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Table 2. Association of the gut microbiome risk score (MRS) with type 2 

diabetes* 

Cohorts Median (MRS) No. of cases / Total No. Adjusted risk ratio (95% CI) P value 

Discovery cohort     

Q1 3 33 / 569 1 (reference)  

Q2 5 62 / 515 2.02 (1.35, 3.02) <0.001 

Q3 7 70 / 419 2.73 (1.85, 4.04) <0.001 

Q4 10 101 / 304 5.29 (3.66, 7.65) <0.001 

External validation cohort 1     

Q1 4 7 / 65 1 (reference)  

Q2 6 4 / 31 1.47 (0.49, 4.43) 0.49 

Q3 7 15 / 53 2.6 (1.17, 5.79) 0.019 

Q4 10 17 / 39 4.17 (1.96, 8.85) <0.001 

External validation cohort 2     

Q1 6 236 / 3065 1 (reference)  

Q2 7 147 / 1672 1.11 (0.91, 1.35) 0.31 

Q3 8 110 / 1104 1.27 (1.03, 1.57) 0.025 

Q4 9 104 / 946 1.36 (1.10, 1.68) 0.0051 

*Poisson regression was used to estimate the risk ratio (RR) and 95% confidence interval (CI) of the type 

2 diabetes in each of the three cohorts, according to the gut microbiome risk score. In these comparisons, 

participants at low microbiome risk (Q1) were treated as the reference group. The covariates for the 

discovery cohort and validation cohort 1 were total energy intake, age, waist circumference, sex, BMI, 

alcohol status, smoking status, education, marital status and income. For the validation cohort 2 (GGMP), 

covariates including age, waist circumference, sex, BMI, alcohol status, smoking status, education, 

marital status. 
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Fig.1. Study overview. (A) Identifying microbiome features, together with their 

optimal threshold and direction associated with type 2 diabetes (T2D). 1) Training and 

optimizing a machine-learning model to link the input factors with T2D in a discovery 

cohort (n=1832, 270 cases); 2) Using SHAP method to explain the output of machine 

learning model and identify the microbiome features associated with T2D risk; 3) 

Constructing a microbiome risk score (MRS) for T2D integrating the threshold and 

direction of the above-identified microbiome features. 4) Validating the MRS-T2D 

association in two independent external validation cohorts: cohort 1 (n=203, 48 

cases), cohort 2 (n=7009, 608 cases); 5) Demonstrating a causal role of the identified 

microbiome in the T2D development by faecal microbiota transplantation (FMT). (B) 

Investigating the prospective association of baseline adiposity, dietary and lifestyle 

factors with the identified T2D-related microbiome features (i.e., MRS), and the 

correlation of the MRS with host serum metabolome. Further, we investigated the role 

of body fat distribution linking the MRS and T2D development in the discovery 

cohort and external validation cohort 1.  
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Fig.2. Linking host multi-dimensional information and type 2 diabetes (T2D) 

based on an interpretable machine learning framework. (A) Receiver Operator 

Characteristic curves (ROC curves) of the predictive models based on all 297 input 

features in the discovery cohort and external validation cohort 1. (B) The average 

impact of selected features on T2D risk. The bars are colored according to data 

categories. (C-D) The inter-correlation of selected microbiome features in the 

discovery cohort and external validation cohort 1. (E) ROC curves of the predictive 

models based on the selected features (n=21) in the discovery cohort and external 

validation cohort 1. (F) Algorithm performance in the discovery cohort and external 

validation cohort 1 based on the selected microbiome features, host genetics, lifestyle 

and diet, T2D traditional risk factors (FORS), and their combination.  
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Fig.3. Identified gut microbiota affect the type 2 diabetes (T2D) development and 

host serum metabolites. (A) Association of the microbiome risk score (MRS) with 

T2D risk in discovery cohorts, external validation cohort 1, and external validation 

cohort 2. Poisson regression was used to estimate the risk ratio (RR) and 95% 

confidence interval (CI) of T2D per unit change in the MRS, adjusting for 

demographic, dietary and lifestyle factors. (B) Association between the MRS and 

prospective glucose increments over 3 years in discovery cohort. Linear regression 

was used to estimate the difference in future fasting glucose per unit change in the 

MRS in a cohort of 249 non-T2D individuals, adjusted for demographic, dietary and 

lifestyle factors (model 1). Sensitivity analyses were conducted under model 1 by plus 

baseline fasting glucose to test the influence of baseline fasting glucose on the 

performance of our model (model 2). (C) Association of the microbiome risk score 

(MRS) with host circulating metabolites. The Spearman correlation coefficients 

between the microbiome risk score and the host serum metabolites were calculated. 

The MRS- metabolite associations were further replicated in the external validation 

cohort 1. * P< 0.05, # P< 0.01, + P< 0.001. (D-F) Identified gut microbiota causally 

affect the type 2 diabetes (T2D) development in germ-free mice. (D) Schematic 

diagram. (E) Fasting glucose curves. (F) Quantification of fasting glucose by AUC. * 

compared with CON group, # compared with Low MRS group, + compared with 

High MRS+non-T2D group. (*, #, +) P< 0.05, (**, ##, ++) P< 0.01, (***, ###, +++) 

P< 0.001 by ANOVA. The P-values were adjusted using the Benjamini and Hochberg 

method. 
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Fig.4. Adiposity and dietary factors modulate the association between gut 

microbiome and type 2 diabetes (T2D). (A) Association of baseline adiposity and 

dietary factors with the microbiome risk score (MRS). Linear regression was used to 

estimate the difference in MRS per quartile (for continuous dietary factors) or per unit 

(for adiposity factors) or per category (for ordinary factors) change in the baseline 

tested factors, adjusted for demographic factors, T2D medication use, and mutually 

adjusted for the other tested adiposity, dietary and lifestyle factors. We only presented 

those adiposity, dietary or lifestyle factors showing significant association with the 

MRS in the figure. (B) Association between the MRS and trunk fat to limb fat mass 

ratio in discovery cohort and external validation cohort 1. Linear regression was used 

to estimate the difference in trunk fat to limb fat mass ratio per unit change in the 

MRS, adjusted for demographic, dietary and lifestyle factors. (C) Interaction between 

MRS and trunk fat to limb fat mass ratio on T2D risk. Poisson regression was used to 

estimate the interaction of MRS and trunk fat to limb fat mass ratio on T2D risk, 

adjusted for demographic, dietary and lifestyle factors 
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