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Abstract

Foraging is a vital behavioral task for living organisms. Behavioral strategies and abstract mathematical models thereof

have been described in detail for various species. To explore the link between underlying nervous systems and abstract

computational principles we present how a biologically detailed neural circuit model of the insect mushroom body imple-

ments sensory processing, learning and motor control. We focus on cast & surge strategies employed by flying insects when

foraging within turbulent odor plumes. Using a synaptic plasticity rule the model rapidly learns to associate individual

olfactory sensory cues paired with food in a classical conditioning paradigm. Without retraining, the system dynamically

recalls memories to detect relevant cues in complex sensory scenes. Accumulation of this sensory evidence on short time-

scales generates cast & surge motor commands. Our systems approach is generic and predicts that population sparseness

facilitates learning, while temporal sparseness is required for dynamic memory recall and precise behavioral control.

Keywords: mushroom body, sparse coding, sensori-motor control, foraging, olfaction, plasticity, transfer-learning,
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1. Introduction

Navigating towards a food source during foraging requires dynamical sensory processing, accumulation of sensory

evidence and appropriate high level motor control. Navigation based on an animals’ olfactory sense is a challenging task

due to the complex spatiotemporal landscape of odor molecules. A core aspect of foraging is the acquisition of sensory

cue samples in the natural environment where odor concentrations vary rapidly and steeply across space. Experimental5

access to the neural substrate is challenging in freely behaving insects. Biologically realistic models thus play a key role in

investigating the relevant computational mechanisms. Consequently, recent efforts at understanding foraging behavior have

focused on identifying viable computational strategies for making navigation decisions (Vergassola et al., 2007; Masson,

2013; Gaudry et al., 2012; Hein et al., 2016; Baddeley et al., 2009; Baker et al., 2018; Cardé and Willis, 2008).

An odor plume is often considered a volume wherein odor concentration is generally above some behavioral threshold.10

At macroscopic scales and in a natural environment, however, plumes are turbulent (Murlis et al., 1992; Crimaldi et al.,

2002). In turbulent conditions a plume breaks up into complex and intermittent filamentous structures that are interspersed

with clean air pockets or below behavioral threshold concentration patches (Celani, 2014; Kree et al., 2013; Connor et al.,

2018). The dispersing filaments form the cone-like shape of the macroscopic plume where the origin of the cone yields

the position of the odor source. When entering the cone, flying insects encounter odor filaments as discrete, short-lived15

sensory events in time.
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Several features have been derived from the statistics of an odor plume that provide information regarding the location

of the odor source (Balkovsky and Shraiman, 2002; Celani, 2014; Crimaldi et al., 2002; Murlis et al., 2000; Shraiman

and Siggia, 2000). The mean concentration varies smoothly in lateral and longitudinal directions of time-averaged (and

laminar) plumes. However, for behavioral strategies animals cannot afford the time it takes to obtain stable macroscopic20

estimates of mean concentrations (Murlis et al., 1992). Vickers et al. (2001) and Park et al. (2016) proposed the time

interval between odor encounters as an informative olfactory feature while Crimaldi et al. (2002) suggested intermittency,

the probability of the odor concentration being above some behavioral threshold, as the relevant feature. However, similarly

to estimating mean concentration, acquiring a sufficient number of samples for stable estimates of these quantities exceeds

the time typically used to form behavioral decisions (Murlis et al., 1992). Hence, obtaining time averaged quantities is25

not an optimal strategy to guide navigation decisions as concluded by Boie et al. (2018).

Most animals perform searches at large distances from the odor source where the intermittency of plumes becomes

a more severe problem as available sensory cues become more sparse in space and time. Thus, strategies that exploit

brief, localized sensory cues for navigation have been studied by several groups. One strategy for medium and long-range

navigation that has consistently been observed across species of flying insects emerges from a sequence of chained sensori-30

motor reflexes: casting & surging (van Breugel et al., 2015; Gaudry et al., 2012). Encountering a whiff of odor triggers an

upwind surge behavior, during which the insect travels parallel to the wind direction. After losing track of the plume it

evokes a crosswind cast behavior, in which a flight path perpendicular to the direction of air flow is executed. Performing

repeated casts by U-turning allows the insect to reenter and locate the plume in order to trigger the next upwind surge

(Cardé and Willis, 2008; van Breugel and Dickinson, 2014; van Breugel et al., 2015; Vickers and Baker, 1994; Riffell et al.,35

2014; Pang et al., 2018; Budick and Dickinson, 2006). As the subject approaches the source it increasingly makes use of

visual cues for navigation as the plume narrows down. (van Breugel and Dickinson, 2014; Saxena et al., 2018).

A number of studies have proposed abstract mathematical models for optimal search algorithms that assumed different

types of relevant navigational cues. The infotaxis method proposed in Vergassola et al. (2007) depends on extensive memory

and priors regarding a plume’s structure. Contrary, in van Breugel and Dickinson (2014) only local cues are used. A40

standard algorithm for navigational problems in robotics is simultaneous localisation and mapping (SLAM), which has

been used in Baddeley et al. (2009) to study olfactory navigation in bumblebees. An algorithm that works without space

perception has been proposed by Masson (2013) using a standardized projection of the probability of source position and

minimization of a free energy along the trajectory. Finally, the work of Pang et al. (2018) compares several models and

shows that it is difficult to discriminate between different models based on behavioral responses. A recent work by Boie45

et al. (2018) using information-theoretic analysis shows that plumes contain both, spatial and temporal information about

the source’s position.

While all of these previous mathematical methods for olfactory search algorithms have proven to successfully solve this

task based on the respective assumptions, they share the same major drawback: none of them uses the computational

substrate of the brain, spiking neurons and networks thereof. Instead, all methods make heavy use of symbolic math and50

advanced mathematical concepts that are not available to the biological brain. It is further unclear how and to what

extend these methods could be implemented or learned by the nervous system. Additionally, the problem of navigation

and foraging is often considered as an isolated task, independent from sensory processing.

Our approach distills recent experimental results to formulate a biologically plausible and detailed spiking neural

network model supporting adaptive foraging behavior. We thereby take advantage of the rapidly accumulating knowledge55
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regarding the anatomy (e.g. (Aso et al., 2014a; Caron et al., 2013; Xu et al., 2020)) and neurophysiology (e.g. (Ito et al.,

2008; Kazama and Wilson, 2009; Demmer and Kloppenburg, 2009; Szyszka et al., 2014; Inada et al., 2017; Egea-Weiss

et al., 2018)) of insect olfaction and basic computational features (Litwin-Kumar et al., 2017; Kloppenburg and Nawrot,

2014; Betkiewicz et al., 2020). We follow the idea of compositionality, a widely used concept in mathematics, semantics

and linguistics. According to this principle, the meaning of a complex expression is a function of the meanings of its60

constituent expressions (Frege principle (Hintikka, 1984)). In the present case of foraging and navigation this means

dynamically recombining memories of individual (temporal and spatial) sensory cues present within a plume.
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Figure 1: Spiking network model of the insect olfactory system. 2048 olfactory receptor neurons (ORNs) at the antennae bind

and respond to volatile odorant compounds. ORNs expressing the same genetic phenotype (52 different receptor types) project to the same

Glumerus in the antenal lobe (AL). Each of the 52 Glomeruli consitutes of one projection (PN) and local interneuron (LN). LNs form lateral

inhibitory connections among Glomeruli and PNs randomly connect to a large population of Kenyon Cells (KC) where each KC receives input

from 6 random PNs on average. Sensory processing, learning and memory is performed by the Mushroom body (MB) with Kenyon Cells

(KC) and a fully connected single, plastic readout neuron (mushroom body output neuron (MBON)). The overall architectural bauplan of the

olfactory system is homologous across species. Here the specific numbers of neurons within each population and connectivity are taken from

the connectome of the mushroom body of the adult Drosophila melanogaster

2. Results

We approach the problem of foraging by decomposition into four components: First, sensory processing with temporal

sparse and population sparse coding in the mushroom body (MB). Second, associative learning for assigning a valence to65
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individual odor identities. Third, the time-dependent detection of valenced cues resulting from encounters of discrete odor

filaments to provide an ongoing and robust estimate of sensory cue evidence. Fourth, the translation into online motor

command signals to drive appropriate behavior.

For sensory processing we use a three-layer spiking neural network model of the insect olfactory pathway (see Fig

1). The generic blueprint of the insect olfactory system is homologous across species and comprises three successive70

processing stages (see Methods for details): The periphery with olfactory receptor neurons (ORNs), the antennal lobe

(AL) and the MB. Excitatory feed-forward connections across layers from ORNs to projection neurons (PNs), from ORNs

to local interneuron (LNs), and from PNs to the MB Kenyon cells (KCs) are fixed. Lateral inhibition within the AL uses

fixed synaptic weights from LNs to PNs. For neuron numbers and their connectivity patterns we here rely on the adult

Drosophila melanogaster where anatomical knowledge is most complete (Turner et al., 2008; Takemura et al., 2017; Xu75

et al., 2020; Aso et al., 2014a). A single MB output neuron (MBON) receives input from all Kenyon cells and plasticity

at the synapses between KCs and the MBON enable associative learning (Gütig, 2016; Rapp et al., 2020).

Sparse coding in space and time

The olfactory system transforms a dense olfactory code in the AL into a sparse stimulus code at the MB level. In the

large population of KCs, a specific odor stimulus is represented by only a small fraction of all KCs (population sparseness)80

and each stimulus-activated KC responds with only a single or very few action potentials (temporal sparseness).

In our model, temporal sparseness is achieved through the cellular mechanisms of spike-frequency adaptation (SFA,

Benda and Herz (2003); Farkhooi et al. (2013); Betkiewicz et al. (2020)) implemented at two levels of the system. ORNs

show clear stimulus response adaptation that could be attributed to the spike generating mechanism (Nagel and Wilson,

2011). Based on this experimental evidence we introduced a slow and weak SFA conductance in our model ORNs (see85

Methods). At the level of the MB, KCs have been shown to express strong SFA-mediating channels (Demmer and

Kloppenburg, 2009). This is matched by the SFA parameters of our model KCs (see Methods, (Farkhooi et al., 2013;

Betkiewicz et al., 2020)). As an effect of cellular adaptation in ORNs and KCs, odor stimulation (Fig 2 A) results in

temporally precise and adaptive responses across all layers of the network (Fig 2 B). The effect of SFA implemented

in ORNs is transitive and thus carries over to the postsynaptic PN and LN populations in agreement with experimental90

observations across species (Stopfer et al., 2003; Wilson et al., 2004; Bhandawat et al., 2007; Krofczik et al., 2009; Watanabe

et al., 2012). In the KC population the background firing rate is very low. This is partially due to the outward SFA

conductance (Farkhooi et al., 2013) and in agreement with experimental results (Ito et al., 2008). The KC population

response is highly transitive where individual responding cells generate only a single or very few response spikes shortly

after stimulus onset. This is in good qualitative and quantitative agreement with the temporal sparse KC responses95

measured in various species (Perez-Orive et al., 2002; Stopfer et al., 2003; Ito et al., 2008; Turner et al., 2008; Gruntman

and Turner, 2013; Szyszka et al., 2005; Froese et al., 2014).

Population sparse stimulus encoding at the level of KCs is supported by two major factors. First, the sparse divergent-

convergent connectivity between the PNs and the 20 times larger population of KCs is the anatomical basis for sparse

odor representation (Huerta et al., 2004; Jortner et al., 2007; Litwin-Kumar et al., 2017; Caron et al., 2013; Betkiewicz100

et al., 2020). Second, lateral inhibition mediated by the LNs in the AL (Wilson, 2013) facilitates decorrelation of odor

representations (Wilson and Laurent, 2005; Schmuker et al., 2011; Wilson, 2013; Campbell et al., 2013) and contributes to

population sparseness (Luo et al., 2010; Betkiewicz et al., 2020). The sparse code in the KC population has been shown

to reduce the overlap between different odor representations (Luo et al., 2010; Lin et al., 2014; Inada et al., 2017) and
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consequently population sparseness is an important property of olfactory learning and plasticity models in insects (Huerta105

et al., 2004; Huerta and Nowotny, 2009; Wessnitzer et al., 2012; Ardin et al., 2016; Peng and Chittka, 2017; Müller et al.,

2018).

The system response to a single odor presentation in Fig. 2B) demonstrates the transformation of a dense olfactory

code at the ORN and PN layers into a population sparse representation at the KC layer where less than < 2% of the total

KC population is active at any time during stimulus presentation. This is in good agreement with quantitative estimates110

in the fruit fly (Turner et al., 2008; Honegger et al., 2011).

Few-shot learning forms an associative memory of single cues with rewards.

Many insects exhibit a rapid learning dynamics when trained in classical olfactory conditioning tasks. They typically

acquire high retention scores (test accuracy > 60%) for a binary conditioned response (CR) behavior within only very few

trials (e.g. Bitterman et al. (1983); Szyszka et al. (2011); Scheunemann et al. (2013); Pamir et al. (2014)).115

Here, we use a classical conditioning paradigm to form associative memories and generate binary CR behavior by

training the single MBON in our network (see Fig. 1). We mimic standard experimental lab protocols for classical

conditioning (see Fig. 2A). Two different odors are presented as single odor pulses of 500ms duration (see Methods).

Multiple independent trials are presented in pseudo-random order where each trial constitutes a single odor stimulus

paired with a reward (CS+) or punishment (CS-) shortly after the stimulus presentation.120

The system response of the neural network model to a single CS+ stimulus is shown in Fig. 2B. To obtain a neural

representation of the odor valence at the MB output (Strube-Bloss et al., 2011; Aso et al., 2014b; Strube-Bloss et al.,

2016), the MBON is trained (Gütig, 2016; Rapp et al., 2020) to elicit exactly one action potential in response to a stimulus

that is paired with reward (CS+) and zero action potentials when the CS- stimulus is presented (see Methods).

In a first step we quantify the learning performance by considering the accuracy of correctly generated MBON output125

spikes in response to CS+ and CS- stimuli after each training trial. The average accuracy over N = 100 independently

trained model instances is shown in Fig. 2C. Learning dynamics of the neural representation of the stimuli show a very

steep slope and indicate that memories are formed rapidly with up to 80% accuracy after presentation of 50 (25× CS+

and 25× CS-) training trials.

Next, we consider the binary CR behavior depending on whether the MBON generates one or more action potentials130

in response to a stimulus (positive response) or remains silent (negative response). A conditioned response is correct if

the MBON generates a positive response to CS+ cues or a negative response to CS- cues. Results are quantified by a

behavioral learning curve (Fig. 2 D) representing the median percentage of correctly responding individuals from N = 100

independently trained models.

In the untrained model, and due to randomly drawn initial synaptic weights, the MBON does not generate any action135

potentials. Thus all models correctly generate negative behavioral responses to CS- trials from the very beginning and

consequently zero correct conditioned responses to CS+ stimuli. After presentation of 3−5 trials up to 70% of the trained

models are able to generate the correct, appetitive CR to the CS+ stimuli. The learning curve saturates after 10 training

trials fluctuating around an asymptotic value of 80% correct CRs. This reproduces the rapid learning dynamics of insects

in classical conditioning experiments and fits qualitatively and quantitatively to the conditioned response behaviors in140

honeybees (e.g. Bitterman et al. (1983); Pamir et al. (2011); Szyszka et al. (2011); Pamir et al. (2014)).

We conclude that our statically configured sensory network model with a single plastic readout neuron is capable to

successfully form associative memories by few-shot learning, replicating the classical conditioning experiments in the typical
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Figure 2: Rapid associative learning with binary behavior response during
a classical conditioning task. A: Sketch of a classical conditioning (differential

conditioning) paradigm. Two different sensory cues are presented, where one is paired

with a reward (CS+), e.g. food, and the other is paired with punishment (CS-). This

process is repeated for many trials. After successful learning, the subject is supposed to

show a positive binary behavioral response to CS+ cues and no behavioral response to

CS- cues. B: System response of the olfactory network model (ORN,AL,MB,MBON) in

response to a single CS+ stimulus presented during a classical conditioning paradigm.

From top to bottom: Input to the model is provided as noisy current injection into the

ORN population. Stimulus onset at t = 0sec is clearly visible by magnitude increase

of injected current for the sub-population of ORNs that belong to the receptor type

sensitive to the presented CS+ odor. Stimulus onset is clearly visible by an increase

in spiking activity across all populations of the network. For ORNs and PNs only a

relevant subset of 60 and 35 neurons of the total population is shown. ORNs (blue

raster plot) sensitive to the presented stimulus show an increase in spiking activity over

their spontaneous background activity at stimulus onset which slowly attenuates due

to the cellular mechanism of spike frequency adaptation (SFA). A similar attenuating

effect is visible in the subset of PNs (red raster plot) that belong to the glomeruli

of activated ORNs. This is a transitive effect of SFA implemented in the ORNs, as

the PNs do not have SFA implemented. The same can be seen in the LN population

(green raster plot). The population of 2000 KCs (magenta raster plot) show temporal

and spatial sparse response where during spontaneous background activity (Ito et al.,

2008) < 1% of all KCs are active and during stimulus onset only about 2% of all KCs

are active (cf. histogram in black below magenta KC activity). The transformation

of dense code at the ORN population into a temporal and population sparse code

at the KC population have been identified as the two main computational principles

of the olfactory system. The last row shows response of the plastic mushroom body

output neuron (MBON) after being trained in a classical conditioning paradigm. The

MBON correctly responds with a single action potential shortly after CS+ cue onset

at t = 0sec. C: Learning performance of the readout neuron when pairing a single

odor cue with a reward (food). The readout neuron is trained to generate a single

action potential in response to odor cues associated with CS+ and remain silent for

odor cues associated with CS-. A learning step is performed after each trial if and

only if the response of the readout neuron was wrong. The median learning dynamics

(red) over N = 100 independent models show a steep slope up to 80% accuracy within

50 training trials (approximately 25 CS+ and 25 CS- trials). Beyond 50 trials the

performance starts to saturate. D: Learning dynamics of a binary behavioral response

evoked due to presentation of cues. When the readout neuron fires one or more spikes,

it is considered to be a positive response and zero spikes are considered a negative

(or no) response. A positive response to a CS+ trial or a negative response to a CS-

trial is considered to be a correct response. By default the model does not generate

any output spike, consequently 100% of the models correctly respond to CS- trials

from the beginning (blue). Behavioral response dynamics to CS+ show a steep slope

within 10 trials where 80% of the models learn to respond correctly. This result

closely matches the few-shot learning dynamics observed in insects, e.g. honeybees,

on a similar classical conditioning task.
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lab situation. The computational mechanism of population sparseness implemented in our model increases discriminability

of the two different stimuli supporting a rapid learning dynamics and a high accuracy of memory recall.145

Figure 3: A: Sketch of the problem of dynamic memory recall when

experiencing multiple cues over time. In a single trial, multiple cues

of different odors are experienced over time. The total number of

cues over time varies strongly as well as the number of different odors

present (from 2 up to 5 in the data-sets used here). Such a sensory

experience can be related to natural conditions, where a flying in-

sect encounters many odor filaments over time, e.g. during ”cast”

behavior employed for foraging. B System response of the olfactory

network model (ORN input, PN, LN, KC, MBON) in response to a

dynamical sequence of cues from 3 different odors. Top to bottom:

stimulus profiles of model input as current injection into ORNs; dif-

ferent odors activate PNs that belong to different glomeruli, clearly

showing the transitive effect of spike-frequency adaptation imple-

mented in ORNs; activity of LNs evoked by different types of odors;

response of KCs with temporal and population sparseness (∼ 3%

of KCs active during stimulus onset) and spontaneous background

activity (Ito et al., 2008); response of the readout MBON with one

action potential to each CS+ related cue whereas no action poten-

tials are generated for CS- cues and all other distractor cues.
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Robust dynamic memory recall and background segmentation in complex sensory scenes.

Even though sensory systems are highly specialized sub-systems, in general, each sensory system is in charge of solving

several sub-problems. This is particularly true for the olfactory system, which is in charge of odor discrimination (Lin

et al., 2014; Riffell et al., 2014), segmentation (Grabska-Barwińska et al., 2016) and possibly other perceptual tasks. Thus,

whichever neural representation of external stimuli the system uses, this representation should be general to successfully150

satisfy all of its intended purposes. We now assess our previously trained model, by associative learning of single odor cues

in a classical conditioning paradigm, in a new task of recognizing previously associated odors in complex and dynamic

olfactory scenes where several different odor cues are present as sketched in Fig. 3 A. We ask the question how robust

and general the learned neural representation is, when many cues of different odor sources appear in complex sequences.

If successful, we can conclude that our model is able to use a form of compositionality by means of dynamical memory155

recall of simpler concepts to solve more complex tasks without explicit re-training. The ability of using previously learned

concepts to solve novel tasks, in our case without re-training, is also known as transfer-learning in the scientific field of

machine learning. We draw sequences with an average of five non-overlapping cues, each of random duration between

100ms and 500ms (see Methods). All cues are randomly positioned within T = 10s by drawing stimulus onset times from

a uniform distribution. Each cue gets randomly assigned to 1 out of up to 5 possible odors. The use of non-overlapping160

cues follows the rationale presented in Szyszka et al. (2012) who could show that, in nature, filaments originating from

different odors do not mix perfectly. The number of possible different odors varies across the 5 different data sets. The

data sets are constructed such that the difficulty of odor discrimination increases due to increasing overlap in the ORN

receptor activation patterns between odors (similar vs. distinct) and due to an increasing total number of possible odors.

Each data-set comprises 200 generated sequences where Fig. 3B shows the system’s response to one example sequence165

with random occurrences of 3 CS+ and 4 distractor cues. The ORN receptor activation profile of different odors for all 5

odors is shown in fig. 4B.

The objective in this task is a neuronal response with a single action potential to each cue occurrence that belongs to

the positively associated odor (CS+). For all other cues, CS- as well as any distractor cue, no action potential should be

generated. The overall response to a sequence is considered to be correct if and only if the number of action potentials170

generated by the readout neuron is equal to the number of CS+ cues. Results are shown in fig. 4A. We find that our

previously trained model can successfully generalize to this new task and reaches ∼80% accuracy across all data sets,

independent of their complexity. It is thus able to use the previously learned neural representation of single cues and

dynamically recalls memories to respond correctly to complex sequences of stimuli of different length. We further find,

that our model solves the problem of odor vs. background segmentation (Grabska-Barwińska et al., 2016), by reliably175

responding to CS+ cues only as quantified by the accuracy of correctly recalled CS+ cues in the sequences.

In a second step we performed the same task, but changed the odor associated with CS+ to have large overlap with all

4 distractor odors in terms of ORN receptor activation profile (Fig. 4D). We used the same conditioning paradigm with

single cues to train the model and test it on the generated sequential data sets (Fig. 4C). We find that, despite the large

overlap of the receptor profiles of CS+ odor and the distractor odors, our model is still able to generalize reasonably well180

with accuracy of 50% correctly detected sequences across all data sets.

We conclude that our model can use a form of compositionality to successfully implement transfer learning without

re-training by robustly generalizing memory recall from single cues to complex sequences of multiple cues and distractor

cues of variable cue duration. Our results hold for arbitrary distributions of cues in time. As a by-product the model
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Figure 4: Fast and accurate dynamic memory recall of mul-
tiple cues using previously learned associations. A: Results

when testing the trained model on the problem of dynamic mem-

ory recall of multiple cues. Each of the five different data sets is

quantified by accuracy of correctly estimated trials. A single trial

constitutes a sequence of multiple sensory cues and is considered

correct when the number of CS+ cues within that sequence are cor-

rectly predicted by a single action potential per each CS+ cue. Cue

distributions are modeled as Poisson-like events. The difficulty in-

creases with each data set in terms of the number of different odors

present in a sequence and similarity (ORN stimulus response over-

lap) of pleasant vs. unpleasant vs. background odors. The results

show that the model can successfully solve this new and more com-

plex problem without additional training. B: Similarity of odors in

terms of overlap in ORN stimulus response profiles for the 5 different

odors. Here, the odor associated with CS+ is distinct from the odor

associated with CS- (no overlap). Out of the 3 distractor odors each

has a slightly larger overlap with the CS- odor and is considered

to be more similar to CS-. C+D: The same type of experiment,

but with different ORN response profiles. Now the CS+ odor is

very similar to all background odors and renders the problem more

difficult. All models have been trained in the same classical con-

ditioning task but using the ORN response profiles shown in panel

B,D. Afterwards they are tested on the five generated data sets that

contain recombination of multiple cues without retraining. Results

show, that the model generalizes reasonably to this problem despite

the strong similarity of CS+ and distractor odors.
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solves the problem of odor background segmentation. The results presented in 4A+D suggest, that the functional role of185

temporal sparseness is to generate precise temporal memory recall up to very short time scales (i.e. for short cue durations

and high frequency of cue occurrences).
e(

t)=
Pr

(fi
la

m
en

t)

1

0

SENSORY EXPERIENCE & MOTOR COMMAND

odor
source

cone center line

SPAC
E

time

plume cone formed by dispersing filaments

wind

cast 1

cast 2

cast 4 & surge

cast 3

within cone within coneu-turn u-turn surgewithin cone u-turn

background
odor

0

1

e(
t) 

[a
.u

.]

time [sec]

-1
1
0

de
/d

t [
a.

u.
]

0 10 15 20 25

A

C

D

E

1

2

3

4

5

6

7

8

9

10

ca
st

 #

0 5 10
time [sec]

0

1
ev

id
en

ce
 [a

.u
]

MBON output
sensory cue
background cue

MBON output        est. evidence        motor command        cone boundary

B

Figure 5: Dynamical sensory processing and motor control serving chemotaxis A: Sketch of a typical olfactory experiment setup in

a wind tunnel with a pleasant odor source (orange flower) and a second distractor source (gray flower). Due to turbulence, the odor molecules

emitted by a source form dispersing, intermittent filaments within a cone-like boundary that constitutes the odor plume. The plume is modeled

as Gaussian distributed filaments. A behaving model insect (here Drosophila melanogaster) performs stereotypic ”cast&surge” behavior to

locate the food source. This constitutes alternating between scanning crosswind and U-turning after running past the plume cone boundary

where no filaments are present. Eventually after several casts (here 3) it surges upwind until it loses track of the plume cone and starts over.

B: Filament encounters during this behavior result in brief on/off, sequential stimuli of the olfactory system. The probability of encountering

filaments is > 0 within the plume and zero outside of the plume. Sensory evidence e(t) can be viewed as a likelihood function of filament

encounters, that increases towards the plume’s center line and is zero outside of the plume. The properties of this function can be used to

generate optimal motor commands for chemotaxis. C: Evidence e(t) and derivative de
dt

over 4 simulated casting trajectories estimated by

low-pass filtering the MBON spiking activity. U-turn motor commands are generated when e(t) runs below a fixed threshold (0.01) and surge

motor commands are generated when de
dt

turns negative. The motor commands generated by this model closely match the optimal commands

as sketched in panel B. D: Spiking activity of the MBON (orange) in response to 10 casting trajectories. The MBON reliably predicts the true

sensory cues of simulated filaments (dark gray) and ignores background cues (light gray). E: Smooth PSTH computed over 10 casting trials

recovers an accurate estimate of the true underlying sensory cue distribution simulated from a gaussian distribution.
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Sensory evidence accumulation informs motor control for foraging.

We now consider the situation of foraging within a natural environment (fig. 5A). The objective is to locate the food

source which emits an attractive odor (CS+) by utilizing the sensory cues present in its turbulent odor plume. We show190

that cast & surge behavior can emerge by accumulation and exploitation of sensory evidence of sequentially experienced

individual cues.

For this task, we assume that the occurrence of filaments within a cross-wind slice of the plume are approximately

Gaussian distributed. This is a reasonable assumption, particularly in a wind-tunnel setting with laminar flows, as

typically used in experimental settings (van Breugel and Dickinson, 2014; Sehdev et al., 2019). However, our model is195

general and works independent of the actual distribution of filaments. When the insect performs a cast through the

plume, it encounters filaments as short-lived discrete, sequential events where each encounter represents a single sensory

cue (see sketch in Fig. 5B). Thus, to simulate the sensory experience during casting we generate sequences of cues and

distractors, where cue onsets for CS+ odor are drawn from a Gaussian distribution and onsets of distractor cues from a

uniform distribution (see Methods). We further assume that the subject has already formed an association of food with the200

attractive odor, either through learning (e.g. classical conditioning, cf. Fig.2) or through some genetically predetermined

innate valence. To this end we again use the trained model from the classical conditioning task above without any further

re-training.

We simulate 4 consecutive casting trajectories where the agent senses odor cues of sequentially experienced filament

encounters. Ongoing accumulation of sensory evidence (Fig. 5C) by low-pass filtering of the readout neuron’s output205

assumes positive values shortly after entering the plume cone and further increases while approaching the plume’s center

line. When travelling beyond the center line sensory evidence slowly decreases until the agent leaves the plume cone

boundary. When sensory evidence drops to zero and after a fix delay, the agent initiates a U-turn motor command to

perform another casting trajectory. Responses from our model’s readout neuron precisely follow the ground truth of CS+

odor cues as shown by 10 random casting trajectories in Fig. 5D. Performing analysis by averaging of sensory evidence210

across these 10 casting trajectories yields an average evidence (Fig. 5E) that resembles the underlying, true Gaussian

profile of the simulated filaments. We thus find that the average estimate produced by our model closely matches the

ground truth distribution.

We conclude that the model output provides an accurate and robust estimate of sensory evidence that can be used

to reason about a plume’s spatial extend and center line. Both information are crucial to generate appropriate motor215

commands for U-turn and upwind surge behavior, necessary to successfully execute a cast & surge strategy. Apart from

the existence of filaments inside a plume and absence outside a plume’s cone, our model does not make any specific

assumption regarding the plume’s structure and statistics. It thus provides a generic mechanism implemented in a neural

system to perform cast & surge behavior during foraging flights.

3. Discussion220

Distinct functional roles for population and temporal sparse stimulus encoding

Population sparseness improves discriminability of different stimuli to facilitate associative learning. This has been

demonstrated in theory and experiment (Lin et al., 2014; Litwin-Kumar et al., 2017; Caron et al., 2013; Assisi et al., 2020;

Nowotny et al., 2003; Jortner et al., 2007). We have shown, that our neural network model implements this feature in a

biologically realistic way and our results confirm the functional role of population sparseness to support rapid and robust225
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memory acquisition through associative learning. Experimental Liu and Davis (2008); Lin et al. (2014) and theoretical

(Bennett et al., 2019; Assisi et al., 2020; Litwin-Kumar et al., 2017) studies in the fruit fly strongly suggests that inhibitory

feedback through the anterior paired lateral (APL) neuron improves population sparseness in the KC population. The

APL is a GABAergic neuron that broadly innervates the KC population and likely receives input from KCs in the MB

output region. Inhibitory feedback from MB output onto MB input has also been demonstrated in other species (Rybak230

and Menzel, 1993; Papadopoulou et al., 2011) and blocking of feedback inhibition in the MB reduced population sparseness

in the honeybee (Froese et al., 2014). Including an inhibitory feedback loop in our model would further improve robustness

of population sparseness and thus not change the our core findings.

Our model demonstrates how temporal sparseness can be exploited to generate short patterned signaling of cue

identity. This enables perception of high temporal stimulus dynamics. In our model this is achieved independently235

of the duration of individual stimulus incidents and their distribution in time and makes temporally precise and robust

sensory evidence available. It allows for the ongoing computation of derived estimates such as cue distributions or changes

in cue density. Maintaining temporally sparse representations mechanistically supports the principle of compositionality

(or Frege principle (Hintikka, 1984)), where an atomic stimulus entity is represented and can be learned by the readout

neuron before processing this output. For example by estimation of densities or recombination with other entities to form240

composite perception or memory read-out. The temporal stimulus dynamics remains intact throughout the system even

after learning of stimulus relevance. Thus valence is encoded with the same dynamics and faithfully captures occurrences

of relevant cues. This allows compression of code to relevant stimuli while retaining full stimulus dynamics of the external

world. Compression of code along the sensory processing pipeline is particularly relevant for small-brained animals like

insects, which need to economize on their neuronal resources.245

Odor-background segregation: a joint effect of temporal and population sparse cue representation

The task presented in Fig. 3 implicitly addresses the issue of odor-background segregation. This refers to the problem

that in nature cues of multiple odors of different sources are present, either in terms of mixtures or stimulus onset

asynchrony due to turbulent conditions (Szyszka et al., 2012; Sehdev and Szyszka, 2019; Grabska-Barwińska et al., 2016;

Chakroborty et al., 2016; Deisig et al., 2010; Capurro et al., 2012). For behavior it is relevant to reliably isolate and detect250

the relevant cues from any background or distractor cues. The results presented in Fig. 4 show that this works nicely in

our system. This is achieved by exploiting the joint effect of temporal and population sparseness. Optimal discrimination

of cue representation is guarantied by population sparseness and temporal precision by means of temporal sparseness.

Our plastic output neuron requires population sparseness for learning and the plasticity rule (Gütig, 2016; Rapp et al.,

2020) allows for temporally precise memory recall. We predict that our model can solve the challenge of odor-background255

segregation.

Rapid learning within few trials

The ability of insects to quickly form associative memories after 3-5 trials has been demonstrated experimentally

(Szyszka et al., 2011; Pamir et al., 2014). In Nowotny et al. (2005) a model has been shown to perform single-shot

learning to discriminate odors. However, in general few-shot learning remains a difficult task for computational models260

(Delahunt and Kutz, 2019; Jiang and Litwin-Kumar, 2019). We find that, when compared with learning dynamics data

of real insects (Szyszka et al., 2011; Pamir et al., 2014) our model is able to show realistic learning dynamics that matches
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with the experimental observations. Due to frequent changes in the environment it might be a better strategy to trade-

off fast and reasonable accurate learning against slow and high precision learning. Additionally, acquisition of training

samples might be costly or they generally occur very sparsely.265

Few-shot learning capabilities are also an active area of research in machine learning. Particularly current deep learning

methods require massive amounts of training samples to successfully learn a classification model. For example the popular

benchmark data sets, ImageNet (Deng et al., 2009) and CIFAR10 (Krizhevsky, 2009), for image classification contain 14

million and 60 million sample images. The Google News dataset used to train language models contains 100 billion words

and learning to play the Space Invaders Atari game by deep reinforcement learning requires sampling of > 500.000 game270

frames from the environment. Clearly, these are numbers a biological organism cannot afford to accumulate. In fact, all

animals have been shown to be able to perform few-shot learning which likely is a fundamental skill for survival. We

have demonstrated that our neurobiologically motivated approach using spike-based computations is capable to perform

few-shot learning with similar speed as real insects to establish an odor-with-reward association. We further showed, that

our model can perform transfer learning to novel, complex combinations that have not been part of the training data.275

Innate vs. learned behavior

Cast & surge behavior belongs to the innate behavioral repertoire of air-borne insects and emerges from a set of sensori-

motor reflexes (van Breugel and Dickinson, 2014). It can be considered as a base strategy wich guarantees survival. The

base system can be modulated and improved throughout an animals lifespan by experience-based learning. On the other

hand, strategies that emerge solely from learned behavior might require re-training whenever the environment changes.280

This can be costly in terms of energy, acquisition of samples to learn from or a short life span in general. Here, we assume,

that our readout neuron is tuned to a pleasant odor. In the present work this tuning is learned (adaptive process) as we

have shown with the classical conditioning task. However, the tuning can generally be learned by other mechanisms, e.g.

reinforcement learning. We demonstrated that the existence of such a tuned neuron allows cast & surge foraging behavior

to emerge.285

There are other ways how such a tuned neuron can come about, for example due to genetically predetermined wiring or

during development from larval to adult stage. The cast & surge behavior can be executed on innately valenced olfactory

cues and our suggested model for motor control during cast & surge (Fig. 5A+B) also works for innate valenced stimuli.

Learning is important to adapt behavior to changing environmental circumstances and associative learning provides a

means to learn new valences on demand in such situations. Our model learns odor valences at the mushroom body output290

and it has been shown that MBONs signal odor valence (Hige et al., 2015; Owald et al., 2015; Aso et al., 2014b; Perisse

et al., 2016; Strube-Bloss et al., 2016, 2011). We suggest that this valence is then used downstream to execute higher

level functions of motor control. At this processing stage it might be integrated with innate valences and other necessary

sensory input (Fry et al., 2009; Ache et al., 2019; van Breugel and Dickinson, 2014; Saxena et al., 2018) to form behavioral

decisions.295

Implications for other sensory systems

Sparse stimulus encoding has been identified as a powerful principle used by higher order brain areas to encode and

represent features of the sensory environment in invertebrate (Perez-Orive et al., 2002; Szyszka et al., 2005; Turner et al.,

2008; Ito et al., 2008; Honegger et al., 2011) and vertebrate (Hromádka et al., 2008; Vinje, 2000; Wolfe et al., 2010; Isaacson,

2010) systems. Sensory systems with similar coding principles may share similar mechanisms when it comes to learning300
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and multi-modal sensory integration. The mushroom body is a center for integration of multi-modal sensory information.

Thus our model can be extended to incorporate multi-modal input from other sensory systems. It is known that olfactory

search and foraging strategies do not solely rely on olfactory cues, but require additional sensory information from at least

visual cues (Fry et al., 2009; Ache et al., 2019; van Breugel and Dickinson, 2014; Saxena et al., 2018) and wind direction

(Wolf and Wehner, 2000; Bhandawat et al., 2010; Álvarez-Salvado et al., 2018; Suver et al., 2019). Extending our model305

to include additional sensory processing systems for vision and wind direction can provide a comprehensive functional

model to study foraging, olfactory search and navigation.

Potential improvement through multiple readout neurons.

Our current approach only comprises the simplest case of a single readout neuron. This model can be extended to

multiple readout neurons. Different readout neurons can be tuned to different odors or groups of odorants. This would310

allow foraging for different types of food sources and further be useful for multi-modal sensory integration and learning

of valences of multiple odors. Another way to use multiple readout neurons is to create an ensemble learning model.

Particularly, one can perform bootstrap aggregation (bagging) (Breiman, 1996) to decrease variance of predictions. With

this technique, multiple, independent readout neurons are trained for the same target and their outputs are averaged to

produce a single output. This approach can be useful when the level of noise increases due to different input models used315

to drive the network. Another possible extension is to use a single readout neuron to code for multiple odors by associating

different number of action potentials to different odors (e.g. 2 or 3). The choice of model for the readout neuron and the

plasticity rule allows to do this (Gütig, 2016).

Top-down motor control and lateral horn

In the current work, generation of motor commands is not computed within the neural network. Integration of sensory320

evidence is modeled by low-pass filtering of the readout neuron’s spike train and its derivative is numerically estimated.

In Lundstrom et al. (2008) it has been shown, that a single compartment Hodgkin-Huxley neuron can operate in two

computational regimes. One is more sensitive to input variance and acts like a differentiator while in the other regime it

acts like an integrator. Similarly Ratté et al. (2015) has shown that the subthreshold current of neurons can encode the

integral or derivative of their inputs based on their tuning properties. This could serve as basis for estimating the low-pass325

filtered sensory evidence and its derivative using neural computations. The turning behavior could be implemented by an

always-on neuron serving as a central pattern generator for the motor signal. This neuron can be inhibited by the activity

of the readout neuron and only becomes active when no sensory cues are present anymore, which happens shortly after

leaving the plume cone. Another option could be to use the cellular mechanism of spike-frequency adaptation to initiate

a fast turning movement which slowly decays with a fixed time constant.330

Relevance for machine learning and artificial intelligence.

Learning and building artificial, intelligent agents capable of interacting with their environment are major objectives

in the field of machine learning (ML) and artificial intelligence (AI). Deep artificial neural networks (LeCun et al.,

2015; Schmidhuber, 2015) have demonstrated great success over the recent years. Particularly, in the domains of image

recognition (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014), natural language processing (Pennington et al., 2014;335

Bahdanau et al., 2014; Mikolov et al., 2013; Vaswani et al., 2017; Devlin et al., 2018) and deep reinforcement learning

(Mnih et al., 2015; Lillicrap et al., 2015). Despite their success, when applied to agent-based systems, their major drawback
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becomes evident. They are very specific, single-purpose perceptual systems and poorly generalize to new tasks or changes

in an agent’s environment (non-stationarities). A few methods to overcome this problem have been proposed, this includes

re-training on new tasks and transfer-learning. In the context of deep learning this refers to the method of training a base340

network on features that are general to all tasks. Afterwards the pre-trained base network is used and the learned features

are repurposed to only train a classification layer on the new tasks. However, it turned out that re-training brings up

another weakness of deep neural networks, catastrophic forgetting (Kirkpatrick et al., 2017). This term refers to the fact,

that after a model has been trained on one task and gets re-trained on a 2nd task, it will completely forget everything it

has learned on the previous task. In this work we used a method similarly to the latter approach of transfer-learning but345

without any additional retraining and we used spike-based learning based on an improved implementation (Rapp et al.,

2020) of the Multispike Tempotron (Gütig, 2016). We predict that spike-based methods inspired by biological learning

will become increasingly important for artificial intelligence.
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5. Methods

LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate new unique reagents.360

METHOD DETAILS

Spiking network model

All neurons of the olfactory network are modeled as conductance-based leaky integrate-and-fire neurons with spike

frequency adaptation (SFA). Specifically, the membrane potential follows the dynamical current balance equation 1. On

threshold crossing a hard reset of the membrane potential is performed by 2. SFA is modeled as outward current by term 4365

of equation 1. Strength of the adaptation current is modeled by a constant (b) decrease on each threshold crossing. Input

to the model is modeled as direct, time-dependent current injection of shot-noise to all ORN neurons by the term Istim(t).

All simulations of the network are carried out using BRIAN2 (Stimberg et al., 2019) simulator. The membrane potential of

each neuron within a population is initialized randomly ∈ [Vrest, Vthreshold]. To avoid any artifacts the network is brought

to equilibrium by driving the network for 2 sec with background activity only before starting the actual simulation.370

Cm
dv

dt
= gl(El − v) (1)

+ ge(Ee − v)− gi(Ei − v)

− gIa(EIa − v) +Istim(t)︸ ︷︷ ︸
only for ORNs

v = Vrest on threshold crossing (2)

τIa
dgIa
dt

= −gIa (3)

gIa = gIa − b on threshold crossing (4)

For this work the number of neurons within each layer and connectivity schemes are chosen to match the numbers

found in the adult Drosophila melanogaster (Takemura et al., 2017; Aso et al., 2014a). Our model comprises 2048 explicitly

modeled olfactory recepter neurons (ORNs) organized in 52 different receptor types. ORNs of the same receptor type

converge onto the same Glomerulus (52) by feedforward excitatory synapses. Each Glomerulus is formed by a projection

neuron (PN) and local interneuron (LN). LNs provide lateral inhibition to all other PNs and LNs. PNs randomly project to375

a large population (2000) of Kenyon cells (KC) with excitatory synapses such that each KC on average receives input from

6 random PNs. This sparse random convergence implements population sparse responses. The single, plastic mushroom

body output neuron is fully connected to all KCs.

We used the cellular mechanism of spike-frequency adaptation (SFA) to achieve temporal sparseness. ORNs are

configured to have slow and weak spike-frequency adaptation in accordance with experimental findings (Nagel and Wilson,380

2011; Bhandawat et al., 2007; Krofczik et al., 2009). For PNs and LNs SFA has been turned off and KCs are set to produce

fast and strong adaptation currents (Wustenberg et al., 2004; Demmer and Kloppenburg, 2009). The property of temporal

sparseness can also be achieved by an alternative implementation through feedback inhibition as proposed by Assisi et al.

(2020) and Bennett et al. (2019).

The synaptic weights of all connections within the network have been manually determined such that an average385

background firing rate of 8 − 10 Hz is achieved in the LN population. All parameter values used for neurons of each
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population are summarized in tables 1,2,3,4. Other parameters used to setup the network (time constants, synaptic

weights) are summarized in table 5.
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ORN

Parameter Value Unit

V_threshold −57.00000 mV

b 2.00000 nS

tau_Ia 1.00000 s

V_rest −70.00000 mV

gL 28.95000 nS

EL −70.00000 mV

C 289.50000 pF

Table 1: Neuron model parameters used for ORN population.

PN

Parameter Value Unit

C 289.50000 pF

tau_Ia 1.00000 s

V_rest −70.00000 mV

b 0.00000 S

gL 28.95000 nS

EL −70.00000 mV

v_threshold −57.00000 mV

Table 2: Neuron model parameters used for PN population.

LN

Parameter Value Unit

C 289.50000 pF

tau_Ia 1.00000 s

V_rest −70.00000 mV

b 0.00000 S

gL 28.95000 nS

EL −70.00000 mV

V_threshold −57.00000 mV

Table 3: Neuron model parameters used for LN population.
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KC

Parameter Value Unit

C 289.50000 pF

tau_Ia 50.00000 ms

V_rest −70.00000 mV

b 5.00000 nS

gL 28.95000 nS

EL −70.00000 mV

V_threshold −57.00000 mV

Table 4: Neuron model parameters used for KC population.

Network

Parameter Value Unit Desciption

tau_syn_i 10.0 ms time constant inhibit. synapses

tau_syn_e 2.0 ms time constant excit. synapses

tau_ref 5.0 ms time constant refractory period

w_orn_pn 1.1282 nS synaptic weight for ORN-PN synapses

w_orn_ln 1.0 nS synaptic weight for ORN-LN synapses

w_ln_pn 2.5 nS synaptic weight for LN-PN inhibitory synapses

w_pn_kc 14.0 nS synaptic weight for PN-KC synapses

Table 5: Other parameters used to configure the model (time constants, synaptic weights, etc.).
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Stimulus response profile of ORNs

The stimulus response profile of ORNs is determined by the ORN tuning curves. We follow a similar method as used390

in Betkiewicz et al. (2020) where cyclical tuning over receptor types is modeled as half period sine waveforms. Our model

comprises Ntype = 52 receptor types and supports 52 different stimuli (e.g. different odors). Where ktype refers to the

receptor type index (∈ [0, 51]) and kodor to the stimulus index (∈ [0, 51]). Norn = 15 determines the number of receptor

types activated by a stimulus. The tuning strength r of the ORNs can be computed as 0.5 cycle of a sine wave with peak

amplitude rmax = 1. In the present work all tuning profiles are normalized to have a peak amplitude of 1.395

x =
ktype − kodormodNtype

Norn + 1
(5)

r = rmax

 sin(xπ) for 0 < x < 1

0 else
(6)

Model input

Input to the mushroom body model is modeled as time-dependent, direct current injection into all ORN neurons. In

the absence of any stimuli ORNs exhibit spontaneous activity (Nagel and Wilson, 2011). The model input thus consists of

spontaneous background activity and stimulus related activity. To generate the background activity, a current time-series

is generated for each ORN by simulating shot noise. For each ORN neuron, background activity events are generated from400

a Poisson process with high rate (λ = 300) (independent Poisson processes are drawn for each individual neuron). Events

of the Poisson process are filtered by a low-pass filter with τ = 0.6 sec. Using this shot-noise model is consistent with

experimental findings of odor transduction at the ORNs (Nagel and Wilson, 2011). To induce stimulus related activity

to this time-series of ORN j it is multiplied point-wise with a stimulaton protocol time-series sj(t) which is rescaled by a

constant determined by the tuning strength (rj ∈ [0, 1]) to the specific odor of the ORN. This results in a current time405

series where during stimulus the current magnitude is increased proportional to the ORNs tuning strength and otherwise

remains at the magnitude of the background activity.

We define a stimulation protocol function s(t), which is a step function taking on the value 1 at all time points t

where a stimulus or sensory cue is active. For each ORN a rescaled instance of the stimulation protocol is defined as

sj(t) = rjs(t), where the scaling parameter rj ∈ [0, 1] is given by the stimulus response profile (eq. 6) of the ORN to the

specific stimulus.

s(t) =

 1 if some stimulus is present

0 else

Sequences of sensory cues

Each sequence has a duration of 10 seconds. Sequences of sensory cues are generated by drawing the total number of

cues within a single sequence from a Poisson distribution with mean λ = 8. Onset times of the cues between 0 and 10410

seconds are drawn from a random uniform distribution and it is assured that there is no temporal overlapp between cues.

A stimulus relates to a single sensory cue and its duration is drawn uniformly between [1, 200] milliseconds. Finally, each

sensory cue is associated with a random odor drawn from a fixed set of possible odors (random sampling with replacement

and equal probability). This results in sequences with random number of sensory cues, random onset, random duration

and randomized odor and distractor combinations.415
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Model of sensory cues within (gaussian) plume

The same procedure is used as above to simulate the experience of sensory cues during a single casting trajectory

within a turbulent odor plume. The number of pleasant cues experienced in a casting trajectory is drawn from a Poisson

distribution with mean λ = 14. The cue onset times are drawn from a gaussian distribution with µ = 5, σ = 1.5. The

number of distractor cues is drawn from a Poisson distribution with mean λ = 5 and are distributed uniformly in time.420

Duration of both, pleasant and distractor cues, is drawn uniformly between [100, 500] ms. In total 200 different casting

trajectories have been generated using this procedure.

Readout Neuron & Learning rule

To fit the readout neuron to the stimuli such that it generates 1 spike for pleasant odor stimuli (CS+) and 0 spikes

for any other stimuli (CS-) we use a modified implementation of the Multispike Tempotron Gütig (2016); Rapp et al.

(2020). Thus, the readout neuron is modeled as voltage-based leaky integrate-and-fire neuron with soft reset following

the dynamical equation 7. Incoming spikes evoke exponentially decaying post-synaptic potentials. When the membrane

potential reaches the spiking threshold at some time t0 an output spike is generated and the membrane potential is reset

by the last term of equation 7.

V (t) = Vrest︸ ︷︷ ︸
:=0

+
N∑
i=1

ωi

∑
tji<t

exp. PSP kernel︷ ︸︸ ︷
K(t− tji ) (7)

− ( ϑ︸︷︷︸
:=1

−Vrest)
∑
tjsp

e−
t−t

j
sp

τm

The dynamical equation can be decomposed into two parts, the unreset sub-threshold potential V0(t) (eq. 8) minus the

remaining terms for the soft-reset. The neuron is trained to generate 1 spike for pleasant odor stimuli (CS+1) and 0 spikes425

for any other stimuli (CS-). To fit the desired neural code, a training step is performed after each stimulus presentation.

A training step is performed only if the number of spikes generated in response to a stimulus was not correct. The training

target is given by the difference between number of output spikes the model generated and the number of output spikes

associated with the stimulus. We denote the desired critical threshold value, the voltage value that generates d = 1 spike,

as ϑ∗ and the time point where this voltage value is reached by t∗ (more generally: the critical threshold value to generate430

d spikes). We briefly sketch the idea and intuition of the Multispike Tempotron learning rule. For detailed derivation of

the rule we refer to Gütig (2016) and the section The ϑ∗ gradient. The Multispike Tempotron training algorithm works

by differentiating the membrane potential of the the critical threshold wrt. to the synaptic weights (ω⃗). This can be

done since ϑ∗ is a regular voltage value, that can be expressed by the neuron’s dynamical equation (7), with the special

identities shown in equation 10. This allows to take the full derivative as shown in equation 11.435

V0(t) =
N∑
i=1

ωi

∑
tji<t

K(t− tji ) unreset sub-thresh. potential (8)

V (t) = V0(t)− ϑ
∑
tjsp

e−
t−t

j
sp

τm (9)

ϑ∗ = V (t∗) = V (tjsp) critical thresh. that makes d spikes (10)

∇ω⃗ϑ
∗ =

∂

∂ω
V (t∗) +

m∑
j=1

∂

∂tjsp
V (t∗)

d

dω
tjsp (11)
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The gradient of the critical threshold with respect to a single synapse i is given by equation 12.

(ϑ∗
i )

′ =
d

dωi
ϑ∗ =

d

dωi
V (t∗) =

d

dωi
V (tjsp) (12)

(ϑ∗
i )

′ =
∂

∂ωi
V (t∗) +

m∑
j=1

∂

∂tjsp
V (t∗)

d

dωi
tjsp recursive expr. exists (13)

QUANTIFICATION AND STATISTICAL ANALYSIS

Spiking network simulations have been performed using BRIAN2 and Python 3.6. Model fitting, data analysis and

visualization has been done in MATLAB 2018a and partly in Python using matplotlib.

DATA AND CODEAVAILABILITY440

Code and data sets will be made available through our github profile at: https://github.org/nawrotlab
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