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ABSTRACT 

Different fasting regimens are known to promote health, 
mitigate chronic immunological disorders, and improve 
age-related pathophysiological parameters in animals 
and humans. Indeed, several clinical trials are currently 
ongoing using fasting as a potential therapy for a wide 
range of conditions. Fasting alters metabolism by acting 
as a reset for energy homeostasis. However, the 
molecular mechanisms underlying the beneficial effects 
of short-term fasting (STF) are still not well understood, 
particularly at the systems or multi-organ level. Here, 
we investigated the dynamic gene expression patterns 
associated with six periods of STF in nine different 
mouse organs. We cataloged the transcriptional 
dynamics within and between organs during STF and 
discovered differential temporal effects of STF among 
organs. Using gene ontology enrichment analysis, we 
identified an organ network sharing 37 common 
biological pathways perturbed by STF.  This network 
incorporates the brain, liver, interscapular brown 
adipose tissue, and posterior-subcutaneous white 
adipose tissue, hence we named it the brain-liver-fats 
organ network. Using Reactome pathways analysis, we 
identified the immune system, dominated by T cell 
regulation processes, as a central and prominent target 
of systemic modulations during STF in this organ 
network. The changes we identified in specific immune 
components point to the priming of adaptive immunity 
and parallel the fine-tuning of innate immune signaling.  
Our study provides a comprehensive multi-organ 
transcriptomic profiling of mice subjected to multiple 
periods of STF, and adds new insights into the 
molecular modulators involved in the systemic 
immuno-transcriptomic changes that occur during 
short-term energy loss. 
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INTRODUCTION 

Dietary restriction refers to an intervention that can 
range from chronic but minor reduction in calorie 
intake to periods of repeated cycles of short-term 
fasting (STF) and, in humans, those lasting more than 
48h [1]. These various forms of reduction in food 
consumption have many beneficial effects on health, 
including weight reduction, amelioration of auto-
immune diseases, and increased lifespan [2,3]. In line 
with this, a triad of recent studies demonstrated the 
ability of different forms of fasting on changing the 
level and functions of the various immune cell types [4–
6]. Recently, the interest and applicability of fasting to 
treat various conditions are as such that they have 
generated momentum in clinical trials [7–9]. 
 
The advent of high-throughput omics facilitated the 
elucidation of some of the cellular and molecular 
mechanisms underlying the beneficial effects of fasting. 
Nonetheless, the majority of these studies focused on 
single organ response (i.e., the liver) and, less often, 
involved two or three organs [10–16]. The adaptation 
to energy deprivation, however, requires a multi-organ 
integration of metabolic modulations to protect the 
organism from an irreversible loss of resources [17]. In 
mice, disturbance of normal eating patterns alters 
metabolism systemically [18]. A recent study described 
the interorgan coordination of adaptive responses to 
various periods of fasting (0-72 hours) in mice; 
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however, the transcriptomic changes characterized in 
the four tissues applied mainly to states of starvation 
and are limited by the depth offered by microarrays [19]. 
Another recent multi-omic approach also presented 
similar limitations [20]. Currently, a systemic or multi-
organ overview of the in-depth molecular changes (i.e., 
transcriptomics) mediated by fasting is lacking. 
 
In this study, we profiled the transcriptomic responses 
to periods of STF (0-22 hours) in nine different mouse 
organs. Using a combination of data-driven and 
semantic similarity clustering approaches, we 
discovered the presence of a brain-liver-fats organ 
network, conserved in their enriched biological 
processes perturbed by STF. The organ network 
recapitulated numerous reported 
physiological/molecular changes associated with 
various forms of fasting. In all, we provide a multi-
organ consensus of known and novel molecular 
mediators of systemic effects of short-term energy loss 
in mice. 
 
RESULTS 

Transcriptome profiling across multiple organs in 
the fasted mice 
To investigate the global gene expression dynamics 
associated with STF, we used mRNA-seq to profile the 
transcriptomes of nine organs obtained from mice 
subjected to six different STF duration (0, 2, 8, 12, 18 
and 22 hours of fasting; n=3 per time point; Fig. 1a). 
The nine organs profiled were: olfactory bulb (OB), 
brain (BRN, which includes the telencephalon and 
diencephalon), cerebellum (CBL), brainstem (BST, 
which consists of the mesencephalon, pons, and 
myelencephalon), stomach (STM), liver (LIV), 
interscapular brown adipose tissue (iBAT), perigonadal 
white adipose tissue (pgWAT), and posterior-
subcutaneous white adipose tissue (psWAT).  After 
quality control (see Methods), we retained 157 out of 
162 samples (97%) for downstream analyses. After 
applying a cutoff of >10 normalized counts in at least 
three samples, we found that 13,129-15,012 genes were 
expressed per organ (Additional file 1: Fig. S1; 
Additional file 2: Table S1). Next, we performed a 
principal component analysis on the genes expressed 
across all samples (9420) and found segregation 
primarily according to organ type and into four 
different clusters: one composed by all nervous system 
samples (OB, BRN, CBL, BST), one by all adipose 
tissues (iBAT, pgWAT, psWAT), and the two 
remaining clusters composed by STM and LIV,  

Figure 1. Transcriptomic profiling of multiple organs in the 
fasted mice. a)  Schematic view of the experimental design for the 
six different short term fasting (STF) durations are indicated by the 
red bars (0, 2, 8, 12, 18, and 22 hours). The fed ad libitum condition 
is shown by the beige bars. The time of organ collection from male 
C57BL/6J mice (n=3 per time point) is represented by the grey-
shaded area. Periods of light-on and light-off are represented by the 
white and black bars, respectively. b) Principal component (PC) 
analysis of the 9420 expressed genes in all samples. Each dot 
represents the gene expression profile of an organ (indicated by the 
colour) at a specific time point. Percentages of the variance 
explained by the PCs are indicated in parentheses. c) Hierarchical 
clustering analysis of the union on the top 100 highly expressed 
genes (rows) among all organs (columns). Median mRNA 
expression levels are represented on a log2 (x+1) scale of normalized 
counts (NC) (0 - not expressed; 20 - highly expressed). Organ 
abbreviations: OB - olfactory bulb, BRN - brain (which includes the 
telencephalon and diencephalon), CBL - cerebellum, BST - 
brainstem (which includes the mesencephalon, pons, and 
myelencephalon), STM - stomach, LIV - liver, iBAT - interscapular 
brown adipose tissue, pgWAT - perigonadal white adipose tissue, 
and psWAT - posterior-subcutaneous white adipose tissue. 

respectively (Fig. 1b). Principal component analyses 
made on all samples from each organ also did not yield 
clear separation by fasting time (data now shown). A 
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hierarchical clustering analysis of the union of the top 
100 most abundant genes expressed across all samples 
also resulted in similar sample clustering (Fig. 1c). 
Together these results indicate that organ clustering is 
primarily driven by anatomical similarity, consistent 
with previous findings [21–23].  
 
Data-driven clustering shows differential temporal 
effects of STF among organs. 
To examine the temporal impact of STF for each organ, 
we employed a data-driven approach aimed at 
identifying time-dependent fasting clusters. To do so, 
we defined the highly variable genes (HVGs) within 
each organ and calculated the optimal number of 
clusters into which all samples segregated based on 
organ-specific HVGs (see Methods and Additional file 
2: Fig. S1). We observed that for most organs (BRN, 
CBL, BST, STM, LIV and iBAT), samples grouped in 
three clusters, which we designated as Phase I, II, and 
III (Fig. 2a, Additional file 3: Table S2). Samples from 
OB and psWAT grouped only in two clusters (Phases I 
and III), which seemingly cycle throughout the 22 
hours. This cyclical transcriptomic pattern is 
reminiscent and consistent with other cyclical 
physiological or metabolic responses occurring in these 
organs during fasting [24–26]. In contrast with these 
results, we failed to identify robust clusters using the 
samples from pgWAT (thus excluding it from our 
downstream analyses). While intriguing, the fact that 
pgWAT and psWAT show differential gene expression 
dynamics to STF is expected, as different adipose 
depots are functionally distinct and can display 
differential transcriptomic responses to fasting [27,28].  
 
To gain further insight into the transcriptomic changes 
associated with fasting, we performed a differential 
expression analysis for all pairwise Phase comparisons 
for each organ. The numbers of differentially expressed 
genes (DEGs; FDR<0.05, log2FC>1) among the 
organs ranged from 38 in the OB to 3826 in psWAT 
(Additional file 5: Table S4). To keep our analysis 
limited on the most impacted genes by STF, we focused 
our downstream analyses only on the top and bottom 
12.5% of the log2FC ranked genes for organs yielding 
>500 DEGs (i.e., BRN, STM, iBAT, and psWAT). 
Hereafter, DEGs refer to these filtered DEGs.  
 
The total number of DEGs identified for each organ 
varied greatly (Fig. 2b). While OB and BST displayed  
the lowest quantity of DEGs (38 and 122 respectively), 
the adipose tissues psWAT and iBAT showed the 
highest number of DEGs (962 and 956 respectively;  

Figure 2 Gene expression-driven sample clustering shows 
differential temporal effects of STF among organs. a) Fasting 
Phase-call results from the data-driven clustering approach for each 
animal (columns) and organs (rows): Phase I (yellow), Phase II 
(orange), Phase III (red). N/A (white) represents excluded samples 
that did not meet the QA/QC criteria (see Additional file 3: Table 
S2). Experimental durations of fasting are as indicated. b) Number 
of differentially expressed genes (DEGs) from the all pairwise 
fasting Phase comparisons in all organs. Since samples from 
pgWAT did not split into fasting Phases, no DEGs for the organ 
were available (N/A). c) Expression values across the three Phases 
of select DEGs that have been previously reported to be modulated 
by fasting in selected organs. Mean mRNA expression levels are 
represented on a log2 (x+1) scale of normalized counts (NC) ± SEM 
(for replicate number, see Additional file 3: Table S2). Organ 

acronyms are as in Fig. 1. 

Additional file 4: Table S3). This analysis yielded 
multiple sets of both known and newly identified genes 
that are affected by STF. For instance, between Phases 
I and III we found decreasing expression levels of Nrg4, 
Lep and Ucp1 in psWAT, decreasing expression levels 
of Reg1 in STM, and increased expression of Egr1, 
Fam107a, Map3k6, and Mt1 in the LIV (Fig. 2c; 
Additional file 5: Table S4), consistent with previous 
STF studies in rodents [11,20,29–32]. In sum, by 
allowing the similarity of HVGs among the samples to 
drive their clustering in an organ-specific manner, we 
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Figure 3. Functional re-clustering of DEGs increased the identification of the biological perturbations and the unique gene expression 
patterns in organs of the fasted mice. a) The number of gene ontology (GO) terms shared among organs increased after applying a semantic 
similarity based sub-clustering algorithm to the DEGs. GO analysis for the original DEGs, and for the subcDEGs are represented in the left and 
right panels, respectively. The number and nature of the GO intersections are denoted by the vertical bar graph and the line-dots, respectively. 
Number of GOs enriched from DEGs and subcDEGs are noted in between parenthesis in front of the organ acronym. b) The unique temporal 
expression patterns of the genes (as log2(x+1) NC) comprised in the subcDEGs from three selected organs (LIV, STM, BRN). mRNA expression 
levels are represented on a log2 (x+1) scale of mean normalized counts (NC) (dark green line) ± SD (light green shadow). c) Summary of the 
unique temporal expression patterns of the genes (as log2(x+1) NC) comprised in the subcDEGs in the seven organs. A total of eight different 
temporal expression patterns are present (green). d) Mean variance of the log2 fold change (FC) vs. timepoint 0 hour of the genes in all the 
subcDEGs across the three Phases. Linear regression analysis (red line) was performed for each organ, and the R2 and p-values are depicted in 
each panel. Up to six gene clusters, i.e. subcDEGs, have been identified among the seven organs; the cluster number is indicated at the bottom of 
the panel. Organ acronyms are as in Fig. 1.  
 
were able to detect differential temporal effects of STF 
on the transcriptional dynamics across multiple organs. 
 
Organ-specific modulations by STF 
To get insight into the functional roles of the hundreds 
of DEGs identified above, we combined multiple 
strategies to perform gene ontology (GO) enrichment 
analyses (see Methods). The biological pathway analysis 
returned significant results for psWAT, iBAT, LIV, 
BST, STM, and BRN, but not for CBL and OB (Fig. 
3a).  STF appears to induce changes in unique biological 
processes among the organs, with only two overlapping 
GO terms between LIV-psWAT and iBAT-psWAT, 
respectively (Fig. 3a, left panel). It is to note that the 
relatively small numbers of GO terms shown reflect the 
stringent thresholds and semantic reduction applied 
(see Methods); thus, only the most relevant and non-
redundant terms are kept. 

GO semantic similarity provides the basis for 
functional comparison of gene products and are widely 
used in bioinformatics applications such as in cluster 
analysis of genes [33,34]. To improve the sensitivity and 
coverage of our GO enrichment analyses, we sub-
clustered the organ-specific DEGs lists based on the 
semantic similarity of their associated GO terms (see 
Methods); hereafter, referred to as the sub-clustered 
DEGs (subcDEGs). We then performed GO 
enrichment for each of the multiple subcDEGs groups 
created for each organ; subcDEGs that did not yield 
enrichment of GO were excluded from downstream 
analysis. This new approach yielded a 5- to 24-fold 
increase in the enriched GO terms for all organs except 
OB, for which we still failed to identify enriched 
pathways, thus excluding it from further analysis (Fig. 
3a, right panel; Additional file 6: Table S5). Notably, 22 
GO terms were returned for CBL, which previously 
had no significant enrichments, and for BRN, the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2020. ; https://doi.org/10.1101/2020.04.05.026351doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.05.026351
http://creativecommons.org/licenses/by-nc-nd/4.0/


Huang, Makhlouf et al.   |   bioRχiv   |   April 2020   |    5 - 18 

 

annotation coverage increased 24-fold, from 3 to 73 
GO terms. To validate this new approach, we used a 
semantic network to visualize the GO terms enriched 
in LIV, which is the most well-studied tissue in the 
context of fasting (Additional file 1: Fig. S2).  Among 
those, we found several GO terms consistent with 
previous fasting studies, including carboxylic acid 
biosynthetic process, lipid homeostasis, xenobiotic 
metabolism, regulation of protein stability, and 
regulation of protein localization to membrane 
[13,16,35]. Interestingly, we also identified other novel 
pathways enriched by STF, such as wound healing, 
sensory perception of pain and positive regulation of 
vasculature development, thus highlighting the 
discovery potential of this approach. In sum, by 
functionally re-clustering the DEGs, we have 
substantially increased both the organ-specific GO 
annotation coverage and the probability of discovering 
novel pathways associated with STF.  
 
We then asked how the genes in each of the subcDEGs 
that provided GO enrichment varied over STF 
duration. To do so, we extracted and summarized the 
unique expression patterns of the collective subcDEGs 
against STF phases in each organ (Fig. 3b and c). In 
general, the non-brain organs exhibited a relatively 
higher number of distinct cluster expression patterns, 
suggesting comparatively higher dynamics in their gene 
expression response to STF. As expected, only two 
patterns were found in psWAT (explained by only two 
Phases). To further quantify these gene expression 
temporal perturbations, we calculated the variance of 
the mean fold-change versus timepoint 0 hour of the 
genes in all the subcDEGs across the three Phases and 
performed regression analysis (Fig. 3d). We found 
positive correlations of fold change variance with STF 
in most organs, except for BST and psWAT, where the 
relationships are non-significant. Interestingly, STM, 
BRN, and iBAT exhibited a noticeably higher degree of 
fold change variances with STF (i.e., the slope of the 
regression) compared with those of psWAT, CBL, and 
LIV, suggesting differential regulation of their 
transcriptional patterns as STF progressed. Together, 
these results provide a second line of evidence that 
different organs show different dynamics in their 
transcriptional programs to STF. Moreover, these data 
suggest that organs from the nervous and 
digestive/adipose systems use different strategies to 
cope with longer durations of STF, with the former 
displaying less variability in the number of temporal 
expression patterns but showing higher amplitudes in 

terms of individual gene expression. Indeed, 
intermittent fasting and dietary restriction have been 
shown to induce different metabolic trade-offs and 
organ-specific changes in bioenergetics and redox state 
in mice [36,37].  
 
Enrichment network reveals key biological 
processes conserved among the brain-liver-fats 
organ network in the fasted mice 
By functionally re-clustering the DEGs, we have also 
improved the extent of inter-organ overlaps in STF-
induced physiological perturbations (Fig. 3a). We 
identified four highly overlapping organs (LIV, BRN, 
iBAT, and psWAT) based on their enriched biological 
pathways (Additional file 7: Table S6). Hereafter, we 
refer to this organ group as the brain-liver-fats organ 
network. To further our understanding of the biological 
implications of STF among this organ network, we 
performed network enrichment analysis against the 
Reactome database with the 349 genes integrating the 
37 shared GO terms. The network enrichment of 63 
reaction pathways (nodes), with 70 connections (edges), 
resulting from 188 of the 349 genes that passed the 
significance selection criteria (see Methods), shows that 
immune-related pathways account for 48% of the total 
enriched categories, followed by muscle contraction 
(12.94%) and neuronal system (9.41%) (Fig. 4a,b; 
Additional file 8: Table S7).  
 
To better understand the individual organ responses in 
the collective network, we represented the gene 
numbers and proportion of the up-regulated genes 
associated with each of the summarized Reactome 
terms across the four organs (Additional file 1: Fig. 
S3a). Additionally, we performed hierarchical clustering 
analysis on the gene expression matrix of these 188 
genes, to highlight the unique and shared STF-induced 
expression patterns among the four organs (Additional 
file 1: Fig. S3b). Although we found the transcriptional 
programs to be highly specific to organ type, the 
temporal effect of STF is consistent within and between 
organs, as demonstrated by the sequential clustering of 
their respective STF Phases (i.e., Phase I and II cluster 
closer than to Phase III). Importantly, the differential 
regulation of the organ DEGs (i.e., percent showing 
increased expression) indicates that the molecular 
mechanisms leading to perturbations of the shared 
biological processes are not the same.  
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Figure 4. Enrichment network reveals key biological processes conserved among the brain-liver-fat network in the fasted mice. a) 
Reactome enrichment network of 63 reaction pathways (nodes) and 70 connections (edges), resulting from 188 of 349 DEGs that were extracted 
from the 37 overlapping GO terms among BRN, LIV, iBAT and psWAT and passed the significance selection criteria (FDR<0.05). The node 
color indicates biologically similar reactions and the size reflects the number of genes contributing to the pathway. If the reaction pathway shares 
50% or more of the contributing genes, then they are connected by an edge. The representative nodes (based on FDR) are indicated by the colored 
texts. On the top left, a schematic representation of the four organs composing the brain-liver-fats organ network, and all of their possible 
interactions (bidirectional arrows). b) The representative categories and percentages of the Reactome pathways enriched from the 188 genes 
obtained from the brain-liver-fats organ network. The categories and colour are the same as in panel a. Organ acronyms are as in Fig. 1.  

 
Biological implications of the conserved DEGs 
among the brain-liver-fats organ network in the 
fasting mice are in agreement with the current 
literature 
To assess the known biological effects of STF-induced 
changes among the brain-liver-fats organ network, we 
used Literature Lab (LitLab™) to perform an 
association analysis of the 188 DEGs mentioned above 
with the current body of scientific literature. Briefly, 
LitLab™ queried the PubMed database (30 million 
abstracts, January 20 of 2020) for articles associated 
with the gene list of interest and returned the tagged 
Medical Subject Headings (MeSHs) with statistical 
significance. This analysis yielded four MeSH terms 
clusters that mirrored the four major network-derived 
pathway categories identified in our previous analysis 
(Fig. 5a). We then summarized the significant 
Physiology and Pathway-specific MeSH terms returned 
and identified associations of the brain-liver-fats organ 
network with the immune and nervous systems, pain 
tolerance, and also other pathways and physiological 
parameters (Additional file 1: Fig. S4a). In sum, the 
corroborated literature findings support the robustness 
of our network results, indicating relevant conserved 
changes in pathway connectivity among the brain-liver-
fats web in response to STF. 

 
STF modulates immune-specific transcriptional 
programs in the brain-liver-fats organ network 
We found that among the 349 DEGs extracted from 
the overlapping GO terms of the brain-liver-fats organ 
network, 42% (119) are annotated as immune-specific 
(see Methods). To investigate what aspect of the 
immune system is centrally involved in the organ 
network, we re-constructed the enrichment network 
using an immune-specific GO database (ClueGO). 
After threshold corrections, 96 genes were retained 
(Fig. 5b), which resulted in an enrichment of 61 
immune-related pathways, with 156 connections (data 
not shown). The general categories and the proportions 
of the immune enrichment showed that T-cell 
regulation processes account for more than 52% of 
overall processes, followed by leukocyte differentiation 
(12.5%) and microglial cell activation (9.75%) 
(Additional file 1: Fig. S4b). The gene numbers and 
proportion of the up-regulated genes associated with 
each of the summarized immune-specific GO terms 
across the four organs (Additional file 1: Fig. S4c).  
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Figure 5. Current understanding of the biological implications 
of the brain-liver-fats organ network in the fasted mice points 
to immune related processes. a) Summary of the significant (cut-
off at p-value<0.0228) Medical Subject Heading (MeSH) term 
clusters associated with the 188 genes among the brain-liver-fats organ 
network were obtained using Literature Lab (LitLabTM). b) Gene 
expression hierarchical clustering analysis of the 96 significant genes 
(FDR<0.05) from an immune-specific GO enrichment analysis 

(data not shown) of the 349 genes extracted from the 37 overlapping 
GO terms from BRN, LIV, iBAT and psWAT.  Median mRNA 
expression levels are represented on a log2 (x+1) scale of normalized 
counts (NC) (0 - not expressed; 15 - highly expressed) against the 
fasting Phases (Ph). c) Proportion of immune-specific genes (blue) 
queried using the innateDB and Mouse Genome Database, among 
all DEGs of BRN, LIV, iBAT and psWAT. d) The immune system 
in the context of short-term fasting - a summary schematic 
highlighting the key changes in the immune regulation of the brain-
liver-fats organ network during fasting. A brief statement, and 
example of genes, describing the type of immune change are shown 
for each organ. The blue and yellow triangles indicate increased and 
decreased gene expression, respectively. Organ acronyms are as in 
Fig. 1.  

 
These results provide a strong indication that T-cell 
regulation, among other immune processes, are 
important mediators of STF in the brain-liver-fats 
organ network. The differential gene expression 
changes again highlight that the normal immune 
processes are modulated differently among the four 
organs composing this organ network. 
 
To better understand the immune-regulated changes in 
the individual organs of the brain-liver-fats organ 
network, we asked what are the proportion of immune-
related genes among the DEGs for each organ (i.e., the 
filtered DEGs from the all pair-wise Phase 
comparisons; Additional file 4: Table S3). Using 
innateDB and Mouse Genome Database as references, 
we found that the percentages of immune-specific 
genes among the DEGs ranged from 11.8% in BRN to 
18.8% in psWAT (Fig. 5c). We then identified the top 
five up and down-regulated immune-related genes 
among the DEGs from the four organs and evaluated 
their literature-supported functions (Additional file 1: 
Fig. S5, Fig. S6). Interestingly, we found that nearly a 
third (11) of the top 40 differentially expressed genes in 
the brain-liver-fats organ network have immune-related 
functions.  
 
Next, we examined the immune-specific genes among 
the DEGs to infer the immunological status of the four 
organs. In the psWAT, higher expression of CD28, Icosl, 
TLRs, Il12b, Il21, Aim2, Mmp8 (1.5-5.4 log2FC) and 
lower expression of Btn1a1 (-4.3 Log2FC) in psWAT 
suggest a pro-inflammatory activation/environment 
albeit the absence of infection. Concomitantly, Foxp3 
(1.6 log2FC), which promotes T cell differentiation to 
Treg, was expressed at higher levels, possibly to prevent 
overt immune activation. Fasn is essential for TLR4 
activation in macrophages [38] and its lower expression 
has been linked to Nlrp3 inflammasome inhibition and 
decreased production of the pro-inflammatory cytokine 
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precursor pro-Il1b [39]. Together with Foxp3 
expression, lower expression of Fasn (-2.8 log2FC), 
suggests a regulated heightened state of immune 
readiness in psWAT during short-term energy loss. We 
also observed an increased expression of Cxcr2 (2.36 
log2FC), which may be related to reducing adipogenesis 
[40,41], as a part of the emerging non-conventional 
functions of chemokine receptors.  
 
In iBAT, Lck (promotes CD8 memory T cells) and 
CD8a (T cell coreceptor for recognition of antigen) 
showed 2.8 and 3.7 log2FC increases in expression of, 
respectively. In contrast, Gpam, essential for Cd4 T cell 
metabolic activation [42], was expressed at 2.6 log2FC 
lower levels. The components of the Nod-like receptor 
pathway, Nod2, and Aim2 were also expressed at lower 
levels (-1.6 and -4.4 log2FC, respectively), while Nlrc3, 
an NLR decoy/attenuator shown to attenuate 
inflammation in myeloid cells, showed increase 
expression (2.3 log2FC). Wnt4 has been shown to 
suppress dendritic cell responsiveness [43] and was 
increased by 3.3 log2FC. Overall, in iBAT, the effector 
T cell and innate signaling were reduced, suggesting an 
anti-inflammatory state during STF. 
 
In BRN, we observed higher expression of FAS ligand 
(1.9 log2FC) and lower expression (-4.1 log2FC) of 
Ly96 (assists immune response via TLR4), suggesting 
immune-response priming in the absence of MCHII-
antigen peptide presentation. Given the increase in 
Gata3 (1.9 log2FC), Cd4 activation was deemed 
reduced, while T2 differentiation was favored. Ctla2a 
expression also increased (3.2 log2FC), supporting the 
bias towards memory and regulated immune response 
in the brain. Collectively, these immune gene changes 
suggest that in BRN, STF induced the maintenance of 
higher innate cell activity, likely to preserve organ 
integrity, via the promotion of less destructive effector 
mechanisms.  
 
In the liver, the expression of Cd4 and Lcn2 (mediators 
of the innate immune response to bacteria) decreased 
with fasting time (-1.2 and -3.7 log2FC, respectively). In 
contrast, Myc, which affects cell growth, B cell 
proliferation, and stem cell renewal, was induced by 
STF (2.7 log2FC). The Gadd45 family proteins are 
upregulated under cellular stress [44] and are involved 
in the activation of S and G2/M checkpoints [45]. Both 
the gamma and beta forms are critical in the 
development of pathogenic effector T cells; their 
deficiency in mice leads to lymphoproliferative 
syndrome and systemic lupus erythematosus [46]. 

Downregulation of Gadd45g contributes to the 
pathogenesis of hepatocellular carcinoma in both 
mouse and human [47]. In T cells, Gadd45b is a critical 
mediator for Th1 response to infection [48]. We 
observed increases of 2.07 and 1.54 log2FC for Gadd45g 
and Gadd45b, respectively, which is likely an attempt to 
diminish cellular metabolic activities in response to the 
stress induced by STF. Fasting-induced increases in 
Gadd45b expression is a liver-specific molecular event 
promoting adaptive metabolic function in mice [49], 
and are well in line with the role that Gadd45g plays as a 
cold-induced activator of BAT thermogenesis [50].  
 
Finally, to get a second line of evidence that STF affects 
the transcriptional dynamics of the immune system, we 
assessed the available literature on the collective topics 
of fasting-related processes, mouse, gene expression, 
and immune-related processes (see Methods). This 
search yielded a total of 241 peer-reviewed articles 
published over the past ten years. Upon manual 
inspection, we selected 52 relevant articles for which we 
then extracted the tagged/associated genes using Gene 
Retriever™ (Additional file 9: Table S10). Interestingly, 
the 151 referenced genes that were tagged in more than 
one article include 10% of the genes in the brain-liver-
fats organ network and 23% of the DEGs for BRN, 
LIV, iBAT, and psWAT. In other words, a small 
fraction of the immune transcriptional dynamics we 
observe during STF in mouse has been reported in 
range of other fasting and diet intervention studies, 
suggesting that some of the molecular processes 
triggered by fasting might be independent of its 
duration. Importantly, this analysis also shows that the 
vast majority of our findings are novel, thus highlighting 
the tremendous discovery potential of the experimental 
approach we used here. In sum, our study expands our 
current knowledge of molecular processes and 
pathways shared and modulated in a multi-organ 
network during short-term energy loss. 
 
DISCUSSION 
Here, we performed mRNA-seq on multiple organs of 
mice subjected to various periods of STF to understand 
the molecular mechanisms and biological processes 
related to short-term energy loss. Our results provide a 
comprehensive resource on the global mRNA 
expression changes during STF. We recapitulated some 
reported physiological/molecular effects from a wide 
range of longer-term or intermittent fasting studies 
while providing additional insights into new molecular 
modulators of fasting in a multi-organ network. 
Additionally, we present an intuitive analytical method 
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to extrapolate meaningful biological implications from 
dynamic transcriptomic changes at the organ and 
systemic levels.  
 
The analytical approach 
Gene expression is highly dynamic, in part due to 
organ-specific expression patterns and biological 
variation among individuals [51]. The conventional 
approach to analyzing dynamic transcriptional 
responses is to infer the enrichment of biological 
pathways from gene expression changes at multiple 
time points by analyzing each time point individually. 
The implicit assumption that the biological processes 
are independent of each other - the lack of biological 
dependency across the time points - limits the ability to 
pinpoint changes at a pathway level in a biological 
system [52]. To circumvent this limitation, we utilized 
HVGs across our dataset as determinants to group 
samples that best represents their temporal 
characteristics induced by STF. This data-driven 
approach allowed us to maximize the detection of the 
differential temporal gene expression changes that are 
informative of, but not constrained by, the 
experimental time points. The latter is of particular 
importance at the multi-organ level. Given the 
differential prioritization in energetic re-allocation 
between organs during short-term energy loss [36,37], 
it is logical to assume a certain level of asynchrony in 
their temporal gene expression. Using this approach, we 
were able to characterize the differential temporal 
effects of STF on the global gene expression patterns 
among the nine murine tissues. 
 
Although we observed fold change direction and 
magnitude in some genes that have been reported in the 
literature, we failed to observe some known changes, 
such as a significant increase of Fgf21 transcript in LIV 
with increased fasting duration. FGF21 has been shown 
to act as a negative feedback signal to terminate growth 
hormone (GH)-stimulated regulation of glucose and 
lipid metabolism under fasting conditions [53]. In mice, 
high levels of FGF21 suppresses the activity of GH and 
reduces the production of insulin-like growth factors 
(IGF) [54]. In line with the literature, we observed 
drastic reductions in Gh (-4.68 log2FC) and Igf2 (-3.06 
log2FC) expressions in BRN and a trend of increasing 
raw expression of Fgf21 in LIV with STF duration 
(Additional file 2: Table S1). Recently, it was shown that 
FGF21 is partially required for appropriate gene 
expression during the fed to fasted transition in mice 
[55]. FGF21-KO mice and pharmacological blockage 
of the FGF21 axis did not profoundly disrupt the 

physiological response to fasting. Also, STF (< 60 
hours) did not affect plasma FGF21 level in lean human 
subjects; however, the mRNA expression of FGF21 
receptors (KLB) was decreased in the subcutaneous 
WAT from both lean and obese subjects [56]. In 
concordance, we observed a -3.30 log2FC decrease in 
Klb expression in psWAT by STF. Thus, both study 
heterogeneity and biology may have contributed to 
these observed gene expression differences in the 
context of fasting. 
 
An analysis of multiple caloric restriction studies in 
mice detected relatively few genes that exhibited a 
consistent expression response across numerous 
experimental conditions [10]. Thus, relying on specific 
subsets of DEGs is unlikely to find common biological 
processes and to provide a meaningful representation 
of systemic effects. In contrast, a high-level approach, 
like GO enrichment analysis, are more likely to reveal 
common biological pathways [57]. Gene set analyses are 
now the standard practice for functional annotation of 
gene lists. However, the enrichment bias for 
multifunctional genes (i.e., frequently represented in 
GO terms) is an inherent challenge [58], and it drives 
the generation of biologically non-specific and highly 
fragile significances in genomic studies [59]. Also, the 
amount of redundancy and overlaps in GO terms can 
make result summarization challenging. To address 
these issues, we clustered the experimentally derived 
gene list from each organ using the semantic similarity 
of their functional annotations (i.e., subcDEGs). We 
then reduced the redundancy of the resulting GO terms 
using semantic uniqueness, keeping only the most 
relevant and profoundly affected biological pathways 
(see Methods). Despite the stringency of our 
enrichment methods, we obtained increased and 
sufficient organ overlaps that allowed for the 
investigation of the biologically relevant events 
occurring at the multi-organ level.  
 
A brain-liver-fats organ network modulated by STF 
We hypothesized that the systemic effects of STF 
would be, at some level, exerted through biological 
perturbations shared among multiple organs. We 
identified four organs that highly overlapped in their 
enriched biological processes, which we called the 
brain-liver-fats organ network. Evidence for crosstalk 
between different pairs of these four organs has been 
shown in the context of fasting. For example, during 

prolonged fasting, PPAR and FGF21 signaling 
between the brain and liver mediates glucose 
homeostasis [60]. In mice, fasting-induced glycogen 
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shortage activates a liver-brain-adipose neurocircuitry 
to facilitate fat utilization [61], and the regulation of 
food intake and glucose homeostasis by liver glycogen 
is dependent on the hepatic branch of the vagus nerve 
[62]. In addition, leptin mediated interactions between 
the brain and adipose depots related to the maintenance 
of systemic energy balance were recently reviewed [63]. 
These previous studies provide additional lines of 
evidence for the existence of our proposed brain-liver-
fats organ network in the context of STF.  
 
Within the organ network, we identified immune-
related pathways, muscle contraction, neuronal systems, 
and signal transductions as the top conserved pathways 
affected by STF. Additionally, with LitLab™, we found 
strong associations between the genes comprised in our 
organ network and pain signaling and physiological 
response to pain. In line with this, fasting and calorie 
restriction have an analgesic effect in murine models 
[64–66], and intermittent fasting was proposed as a 
non-invasive, inexpensive, and implementable strategy 
to chronic pain treatment (reviewed in [67]). Key 
underlying mechanisms in fasting-enhanced 
neuroplasticity include activation of short-term 
corticosterone increase, reduction in GABAergic 
inhibition, and increase in protein chaperons and 
neurotrophic growth factors such as brain-derived 
neurotrophic factor (BDNF), which exerts positive 
effects on neuronal survival and synaptogenesis [68–
70]. Interestingly, the BDNF pathway was showed a 
strong association with our organ network gene list, 
driven by the presence of both Bdnf and its receptor, 
Ntrk2b (Additional file 7: Table S6).  
 
As our gene-MeSHs association query goes beyond 
single-study comparisons (over 30 million abstracts), 
the results provided unbiased and statistically significant 
support for our experimental observations. 
Importantly, we recapitulated several known genes 
reported in literature associated with fasting, gene 
expression, immunity, and mouse. As a result of the 
synthesis of the multi-organ transcriptome, we noted 
that 90% of the genes encompassing the organ network 
might represent potential novel molecular modulators 
of the dynamic biological and immunological 
perturbations in mice subjected to STF.  
 
Immune system during homeostatic perturbations 
The physiological response to STF is a consortium of 
organ adaptation, aimed to preserve the most critical 
functions amidst a systemic decrease in energy 
availability. The topic of the immune system acting as a 

regulator of organismal homeostasis in the absence of 
infection has been recently reviewed [71–73]. Non-
infectious signals, such as physiological perturbation 
(e.g., cold exposure) and diet metabolites, can regulate 
the equilibrium between different types of immune 
responses (e.g., intracellular, parasitic, and extracellular) 
[74,75]. These non-canonical modulations of cytokines 
in the innate and adaptive immune systems have an 
essential role in regulating complex organ physiology 
(reviewed in [72]). These studies suggest that immune 
cells are well-positioned and equipped to sense 
homeostatic perturbations and relay signals at the 
systemic level in the absence of an infection.  
 
In this context, many recent studies have focused on 
the neuronal regulation of inflammation, neuroimmune 
circuits in inter-organ communication, and the role 
immune cells play in the systemic regulation of 
metabolism and obesity (recently reviewed in [76,77]). 
For example, macrophage polarization towards a 
classically (M1-like) activated state is a characteristic of 
obese adipose tissue [78], and adipose tissue 
macrophages remain the primary immune participant 
studied in the context of obesity since their discovery 
[79,80]. Non-canonical pathways of macrophage 
activation via metabolites (i.e., glucose, insulin, and 
palmitate) also result in a continuum of 
proinflammatory phenotypes [77]. Moreover, 
sympathetic neuron-associated macrophages were 
recently identified and shown to affect norepinephrine 
(NE)-mediate regulation of thermogenesis of adipose 
tissue by facilitating NE clearance and shifting to a 
more pro-inflammatory state [81]. Furthermore, liver 
macrophages contribute to insulin resistance 
independently of their inflammatory status, via the 
secretion of IGFBP7, a non-inflammatory factor with a 
high capacity to bind the insulin receptor and induce 
lipogenesis and gluconeogenesis through the activation 
of ERK signaling [82].  
 
The immune system in the context of short-term 
fasting 
The brain-liver-fats organ network described in this 
study highlights the importance of the immune 
processes modulated by STF. However, the 
mechanisms underlying fasting-induced effects on the 
immune system remain largely unknown and only 
recently started to be elucidated [83]. Three recent 
studies demonstrated that monocytes, naïve B cells, and 
memory CD8 T cells use bone marrow as a refuge 
during periods of energy reduction to maintain systemic 
immune-responsiveness [4–6]. These studies also 
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provided new insights into the integrated 
immunometabolic response in a state of energy 
deprivation.  
 
Among the organ network, we found increased 
expression of genes that negatively regulate monocyte 
and macrophage activation (Tiff2 and Myc), promote 
regulatory T cell differentiation (Ctla2a), B cell 
differentiation in the bone marrow (Fzd9), cytotoxic T 
cell differentiation (Cd8a), suppression of type 2 
immunity and inflammation (Wnt4), and modulation of 
neuroinflammation and priming of innate immunity 
(S100a8 and S100a9). Moreover, we found that the 
immune genes showing lower expression values with 
higher durations of fasting time, are involved in the 
promotion of inflammation (Ly96), activation of the 
innate immune response (lfi203 and Lcn2), negative 
regulation of T cell proliferation (Btn1a1), inhibition of 
innate immune response to virus infection (Trim29), 
and mediation of inflammasome activation (Aim2).  
Intuitively, the direction or amplitude of the 
immunological responses to STF in different organs is 
unlikely to be the same. Interestingly, we found 
enriched expression for genes contributing to T cell and 
the innate response in psWAT, but lower expression 
levels for inflammation-related genes in iBAT.  
 
Overall, we observed significant increases in the 
expression of genes involved in T and B cell 
differentiation and proliferation, suggesting these 
immune cells are differentiated within the organ 
network or in circulation. Decreased expression levels 
of inflammatory markers support a systemic effort to 
reduce innate immune signals to the adaptive, possibly 
by blocking cytokine signals and antigen presentation. 
Intermittent fasting has been shown to alter T cells 
differentiation bias in the gut, reducing IL-17 producing 
T cells and increasing regulatory T cells [84]. Fasting-
mimicking diets lessen the severity and symptoms in a 
multiple sclerosis mouse model and are associated with 
increased regulatory T cell and reduced levels of pro-
inflammatory cytokines, Th1 and Th17 cells, and 
antigen-presenting cells [85]. In line with the literature, 
the observed changes in our multi-organ immune-
transcriptome are such that the effect of STF regroups 
and reconsolidates the various immune cells, allowing a 
spectrum of cellular differentiation to occur but 
restricting immediate reactivity. In sum, our study 
provides evidence of a consortium of organ adaptation 
to short-term energy deprivation, in which the immune 
system plays a central role. Furthermore, we added 
insights to the molecular events of fasting-induced 

priming of T cell-mediated immunity, underlining a 
putative multi-organ effort to support, at the 
transcriptome level, the recently reported egress of T 
and B cells to the bone marrow during periods of 
systemic energy reduction [5,6].  
 
CONCLUSIONS 
While our study was not purposed to decipher the 
molecular communication between organs or to 
investigate the migratory behaviors or composition of 
immune cells under fasting conditions [4–6], our study 
highlights the centrality of immune-transcriptomic 
modulations during STF. Using a combinatorial data 
analysis approach, we provide evidence for the 
existence of an organ network, formed by the 
similarities of their biological processes, and the 
prominent role of the immune system in sensing and 
modulating systemic homeostatic perturbations in the 
absence of infection. Additionally, we provide a 
valuable transcriptome resource to further expand upon 
our current knowledge of the molecular events 
occurring across multiple organs during short term 
energy loss. 
 
METHODS 
Mice and short-term fasting experiments 
All animals used were adult (8-9 weeks of age) male 
C57BL/6J group-housed mice, on a 12:12h light: dark 
schedule (lights on at 07:30). For the short-term fasting 
(STF) experiment, mice were fasted for 2, 8, 12, 18, or 
22 hours (n=3 per time point), while the control group 
(i.e., 0 hour) was fed ad libitum (Fig. 1a). All mice had 
access to water. All animals were sacrificed by cervical 
dislocation after the start of the dark cycle (between 
21:00 and 21:30), and the following nine organs were 
collected and processed for mRNA-seq: olfactory bulb 
(OB), brain (BRN, which includes the telencephalon 
and diencephalon), cerebellum (CBL), brainstem (BST, 
which consists of the mesencephalon, pons, and 
myelencephalon), stomach (STM), liver (LIV), 
interscapular brown adipose tissue (iBAT), perigonadal 
white adipose tissue (pgWAT), and posterior-
subcutaneous white adipose tissue (psWAT). The 
organs were immediately frozen and kept at -80°C until 
further processing.  
 
RNA extraction and RNA-sequencing  
Organs (OB, BRN, CBL, BST, STM, LIV, and iBAT) 
were homogenized in Lysis RLT Buffer (Qiagen) 
supplemented with 1% β-mercaptoethanol (Sigma-
Aldrich) using the OMNI tissue homogenizer (TH) 
(OMNI International). Homogenized organ lysates 
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were then loaded onto the QIAshredder homogenizer 
spin columns (Qiagen) for further homogenization and 
elimination of insoluble debris. Total RNA was 
extracted using RNeasy Mini Kit (Qiagen), according to 
the manufacturer’s protocol. White-adipose tissues 
(pgWAT and psWAT) were homogenized in Qiazol 
(Qiagen) and RNA extracted with the Lipid RNeasy 
Lipid Tissue Mini Kit (Qiagen). mRNA was prepared 
for sequencing using the TruSeq stranded mRNA 
sample preparation kit (Illumina), with a selected insert 
size of 120–210 bp. All samples were sequenced on an 
Illumina HiSeq 4000, to generate paired-end 150 bp 
sequencing reads and at an average depth of 39.98 ± 
1.05 (SEM) million reads per sample (Additional file 2: 
Table S1).   
 
Short reads alignment to reference genome and 
transcriptome  
The quality of the reads was assessed using FastQC 
(KBase). Sample Fastq files were aligned to the mouse 
reference genome mm10/GRCm38.p5 using TopHat2 
[86] with 2 mismatches allowed. Reads were retained 
only if uniquely mapped to the genome. We used 
HTSeq-count (0.9.1, -t exon and –m union) to obtain 
the number of reads that were mapped to each gene in 
Gencode M16. Bigwig files were generated from bam 
files for visualization using RSeQC [87].  
 
Pre-Processing 
The schematic of the bioinformatic workflow is 
presented in Additional file 1: Fig. S1. Prior to the 
analysis, the mapped read counts were filtered for 
annotated genes using org.Mm.eg.db [88]. A count per 
million threshold equivalent to ~10 raw expression 
value was applied to remove all lowly expressed genes, 
and only genes having ≥ 3 samples above the threshold 
were kept. Samples with total reads lower than two 
standard deviations from the tissue means were 
removed.  
  
Clustering group calls and bootstrap validations  
Highly variable genes (HVGs) were queried from 
normalized log2 expression values (log2 (x+1) NC) of 
the filtered datasets for informative genes and were 
used for the data-driven clustering calls. Briefly, we 
calculated the gene-specific variance and regressed 
against its mean log-expression value and applied a false 
discovery rate (FDR) <0.05 was applied to denote 
significance and resulted in between 829-1190 HVGs 
per organ. Spearman’s Rho was then used to calculate 
the correlation distance matrix among these genes per 
organ: 

𝑑𝑖𝑠𝑡 = 𝑠𝑞𝑟𝑡(0.5 ∗ (1 − 𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛′𝑠 𝑅ℎ𝑜)) 

To determine the optimal number of phase clusters, 
hierarchical clustering (method = complete) was 
performed on the correlation distance matrixes of the 
HVGs and bootstrapped to 5000 iterations. A 
bootstrap mean cutoff (≥0.65) was used to determine 
the significance of the cluster fit, and any clusters not 
meeting the criteria were grouped with the previous 
node. A cluster size of three was found to be optimal 
for most organs, which we designated as Phases I, II, 
and III (Additional file 3: Table S2).  
 
Determining the differentially expressed genes  
Differential gene expression analysis was performed 
independently for each organ between all Phase groups 
using the following criteria: log2FC >1.0 and FDR 
<0.05 in DESeq2 (Additional file 4: Table S3). To 
reduce complexity, only the most extreme (top and 
bottom 12.5%) of the log2FC ranked DEGs were kept 
for organs with >500 unique DEGs for all subsequent 
analyses. 
 
Gene ontology enrichment analysis 
Several strategies were used to perform the gene 
functional enrichment analysis to maximize annotation 
coverage and to provide meaningful interpretations for 
the DEGs. Briefly, the unique DEGs from each organ 
were submitted, as a single gene set, to query for Mus 
musculus GO terms associated with biological 
processes using the following algorithms and databases: 
gene over-representation test (enrichGO) and gene set 
enrichment analysis, both of which are provided by 
ClusterProfiler [89], and the Database for Annotation, 
Visualization and Integrated Discovery (DAVID, [90]). 
The minimal gene set size was set at three, and an 
FDR<0.05 cutoff was set for significance. When 
applicable, the number of permutations was set at 1000. 
To manage the output size, a cutoff of 150 GO terms, 
ranked by FDR, was implemented. All GO enrichment 
results were semantically reduced using REVIGO, with 
a dispensability threshold set at <0.4 [91].  
 
Functional re-clustering of DEGs - subcDEGs 
From the unique DEGs obtained from all pairwise 
comparisons, semantic similarity measures were 
calculated to determine the gene function-based 
clusters in each organ [92] (Additional file 7: Table S6). 
The optimal numbers of clusters were determined using 
dynamicTreeCut with deepSplit = 0 [91]. The gene 
function-based clusters of DEGs are referred to as the 
sub-clustered DEGs (subcDEGs). The SubcDEGS 
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were then re-submitted for GO enrichment analysis and 
reduced for term redundancy as described above. 
SubcDEGS that did not yield GO enrichment were 
excluded from downstream analysis. 
 
To evaluate the changes in gene expression pattern 
through the different STF phases, we calculated the 
log2FCs (against 0 hour) of the functional gene clusters 
mentioned above. Two-sided Wilcoxon Rank test was 
used to determine the statistical significance between 
means at p≤0.05. The mean variances of the log2FCs 
were regressed against the fasting phases (Spearman’s 
correlation was used). 
 
Gene expression pattern mining 
Unique patterns across the STF phases were 
determined from log2(x+1) NC of the genes that 
composed all the subcDEGs of each organ and that 
yielded GO enrichment. Pattern mining was performed 
using topology overlap matrix-based dissimilarity 
algorithms (WGCNA), followed by the optimal cluster 
numbers determined using dynamicTreeCut with 
deepSplit = 0. 
 
Network enrichment analysis 
A list of 349 unique genes was extracted from the 37 
GO terms shared among the top four overlapping 
organs: BRN, LIV, iBAT, and psWAT, to further 
investigate the enriched biological processes in the 
brain-liver-fats organ network observed in the fasted 
mice (Additional file 7: Table S6). The Reactome 
database [93] and ClueGO [94] were used to determine 
and visualize the enrichment networks and the 
conserved protein pathways. The following parameters 
were used to construct the enrichment network: 
min/max GO level = 3-20, Number of Genes = 3, Min 
Percentage = 3, Kappa Score Threshold = 0.4, Sharing 
Group Percentage = 50 and the statistical significance 
was set at FDR<0.05.  
 
To evaluate the immune components of the organs in 
the brain-liver-fats organ network (BRN, LIV, iBAT, 
and psWAT), we retrieved a comprehensive list of 
immune-related genes in mice from innateDB [95] and 
Mouse Genome Database 
(http://www.informatics.jax.org/vocab/gene_ontolog
y/GO:0002376)  [96]. A compiled list of 3022 genes 
was used to identify the immune-related genes in this 
study.  
 
 

Literature Mining - Acumenta Literature Lab 
(LitLabTM)  
LitLab™ (Acumenta Biotech) allows the identification 
of biological and biochemical terms that are 
significantly associated with the literature from a gene 
set. The analysis provides additional meaning to 
experimentally derived gene and protein data [97]. The 
LitLab™ database contains current gene, biological, 
and biochemical references in every indexed PubMed 
abstract and are updated quarterly (currently at 30 
million). LitLab™ calculates the frequencies of the 
input genes with each of 86,000 terms in the Literature 
Lab™ database (as of January 20th, 2020) and compare 
the values with that of a 1000 random gene sets to 
determine statistical significance (p-value<0.0228). 
LitLab™ is composed of four main applications: Term 
Viewer, PLUS, Editor, and Gene Retriever. 
 
PubMed-based literature searches 
A literature search of the PubMed databased on 
“fasting” and “immunity” in mice was conducted using 
the following search strategy: ("intermittent fasting"[All 
Fields] OR "Caloric Restriction"[Mesh] OR "Food 
Deprivation"[All] OR "food restriction"[All Fields] OR 
"fasting"[MeSH Terms] OR "fasting"[All Fields]) AND 
("gene expression"[All Fields] OR "Gene 
Expression"[Mesh] OR "transcriptome"[All Fields] OR 
"transcriptome"[MeSH Terms]) AND ("mice"[MeSH 
Terms] OR "mice"[All Fields]) AND 
("2010/01/20"[PDAT] : "2020/01/20"[PDAT]) AND 
("Immune System Phenomena"[Mesh] OR 
"Immunity"[Mesh] OR "Immune System"[Mesh] OR 
immune[All Fields] OR "immune response"[All Fields] 
OR "inflammation"[MeSH Terms] OR 
"inflammation"[All Fields] OR "infection"[All Fields]). 
 
To further evaluate our findings with the current 
literature, we extracted the gene referenced from the 
relevant resultant articles using Gene Retriever™ 
(Acumenta). Gene Retriever™ is a data mining solution 
to retrieve all genes associated with a list of PubMed 
articles. Gene Retriever processes an input list of 
PubMed IDs and produces an analysis of the genes 
mentioned in the title, text, and MeSH tags of each 
record. Results are then statistically ranked and 
presented in a spreadsheet to enable quick and 
comprehensive analyses. Hyperlinks are added within 
the spreadsheet to enable instant review of the genes or 
PubMed IDs of interest (Additional file 9: Table S8). 
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Software 
All analyses and graphics were performed and 
generated in R unless otherwise stated. ClueGO was 
performed in Cytoscape [98]. Adobe Illustrator (Adobe 
Inc.) was used to prepare the final figures.  
 
ABBREVIATIONS 
Short-term fasting (STF); olfactory bulb (OB), brain 
(BRN), cerebellum (CBL), brainstem (BST), stomach 
(STM), liver (LIV), interscapular brown adipose tissue 
(iBAT), perigonadal white adipose tissue (pgWAT), 
posterior-subcutaneous white adipose tissue (psWAT), 
highly-variable genes (HVG); log2 expression values 
(log2(x+1) NC); hierarchical clustering analysis (HCA); 
false discovery rate (FDR); differentially expressed 
genes (DEGs); fold change (FC); log2 fold change 
(log2FC); Gene Ontology (GO); sub-clustered DEGs 
(subcDEGs); Acumenta Literature Lab (LitLabTM); 
Medical Subject Headings (MeSH); growth hormone 
(GH), insulin-like growth factors (IGF), brain-derived 
neurotropic factor (BDNF); norepinephrine (NE). 
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