
1 
 

Using single-plant -omics in the field to link maize genes to 1 

functions and phenotypes  2 

 3 

Daniel Felipe Cruza,b,§, Sam De Meyera,b,§, Joke Ampea,b, Heike Sprengera,b, Dorota 4 

Hermana,b, Tom Van Hautegema,b, Jolien De Blocka,b, Dirk Inzé a,b, Hilde Nelissena,b, 5 

and Steven Maere a,b,*. 6 

a  Ghent University, Department of Plant Biotechnology and Bioinformatics, 7 

Technologiepark 71, 9052 Ghent, Belgium  8 

b VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium 9 

§ shared first author 10 

* corresponding author 11 

  12 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 6, 2020. ; https://doi.org/10.1101/2020.04.06.027300doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.06.027300


2 
 

ABSTRACT 13 

Most of our current knowledge on plant molecular biology is based on experiments in 14 

controlled lab environments. Over the years, lab experiments have generated 15 

substantial insights in the molecular wiring of plant developmental processes, stress 16 

responses and phenotypes. However, translating these insights from the lab to the 17 

field is often not straightforward, in part because field growth conditions are very 18 

different from lab conditions. Here, we test a new experimental design to unravel the 19 

molecular wiring of plants and study gene-phenotype relationships directly in the 20 

field. We molecularly profiled a set of individual maize plants of the same inbred 21 

background grown in the same field, and used the resulting data to predict the 22 

phenotypes of individual plants and the function of maize genes. We show that the 23 

field transcriptomes of individual plants contain as much information on maize gene 24 

function as traditional lab-generated transcriptomes of pooled plant samples subject 25 

to controlled perturbations. Moreover, we show that field-generated transcriptome 26 

and metabolome data can be used to quantitatively predict at least some individual 27 

plant phenotypes. Our results show that profiling individual plants in the field is a 28 

promising experimental design that could help narrow the lab-field gap. 29 
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INTRODUCTION 31 

Efforts to develop crops with higher yield and higher tolerance to environmental 32 

stress are more important than ever in the quest for global food security and 33 

sustainable agriculture. Crop improvement increasingly relies on the identification of 34 

genes and genetic variants that impact agronomically important traits, so that 35 

beneficial variants can be engineered into the crop or incorporated in breeding 36 

programs. Mapping of quantitative trait loci (QTLs), genome-wide association studies 37 

(GWAS) and genomic prediction techniques are some of the currently preferred 38 

means of identifying the genes and variants influencing a phenotypic trait (Korte and 39 

Farlow, 2013; Desta and Ortiz, 2014). All are based on associating genetic variants, 40 

mostly single-nucleotide polymorphisms (SNPs), to observed traits in a genetically 41 

diverse population of the targeted plant species, e.g. a panel of accessions or a 42 

panel of inbred crosses between two or more parental lines (recombinant inbred 43 

lines, RILs).  44 

Although fairly successful in some plant species, e.g. maize, these techniques also 45 

have limitations. They can only detect loci that display genetic variation in the 46 

mapping population. In addition, their resolving power is limited by linkage 47 

disequilibrium (LD), i.e. the non-random association between markers due to genetic 48 

relatedness in the population (Brachi et al., 2011; Korte and Farlow, 2013; Huang 49 

and Han, 2014). As a consequence, loci can often not be resolved to the individual 50 

gene level. GWA studies also have low power for rare alleles and alleles with small 51 

effect sizes, which often account for a substantial proportion of phenotypic variation, 52 

in particular for complex traits such as yield. Moreover, when mapping genotypes 53 

straight to phenotypes, the many intermediate molecular layers that articulate the 54 

phenotype from the genotype, such as the transcriptome or metabolome, are 55 

ignored. Consequently, little mechanistic insight is gained from GWAS or genomic 56 

prediction studies into how a trait is established.  57 

As many variants uncovered in GWA studies appear to be regulating gene 58 

expression (Li et al., 2012; Xiao et al., 2017), recent efforts have sought to 59 

complement GWAS with transcriptome-wide association studies (TWAS) , i.e. 60 

mapping gene expression to phenotypes in a genetically diverse population (Harper 61 

et al., 2012; Koprivova et al., 2014; Pasaniuc and Price, 2017; Havlickova et al., 62 

2018; Kremling et al., 2019). Similarly, several recent studies have used 63 
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transcriptomic or metabolomic prediction in addition to genomic prediction to 64 

associate genes to plant traits, in particular in maize (Guo et al., 2016; Schrag et al., 65 

2018; Azodi et al., 2020). Azodi et al. (2020) found that transcript levels and genetic 66 

marker data have comparable performance for predicting maize phenotypes, and 67 

that performance increased when combining both data layers in a joint model. 68 

However, the use of transcriptomes and other intermediate data layers to aid 69 

genotype-phenotype mapping generally remains underexplored (Baute et al., 2015, 70 

2016; Kremling et al., 2019).  71 

Whereas GWAS and related methods exploit the natural genetic variation within a 72 

species to associate genes with phenotypes, systems biology studies use controlled 73 

perturbations, either genetic, environmental or chemical, in a specific genetic 74 

background to unravel the molecular wiring of plant traits. Since the advent of high-75 

throughput gene expression profiling platforms, massive amounts of data have been 76 

generated on the transcriptomic responses of e.g. Arabidopsis thaliana Col-0 to 77 

various mutations and environmental stresses, with the purpose of unraveling the 78 

molecular processes underlying a variety of traits. However, many independent 79 

perturbations are needed to accurately reconstruct the molecular network underlying 80 

a complex trait, and no datasets exist in which any particular complex plant trait is 81 

systematically assessed molecularly and phenotypically under a large-enough set of 82 

perturbations to unravel more than fragments of its molecular wiring.  83 

The identification of a sufficient set of controlled perturbations informative of a 84 

process of interest is one of the major bottlenecks in present-day systems biology. It 85 

is often practically infeasible to identify, let alone implement, a large enough number 86 

of different controlled perturbations (mutants, stresses) relevant to a trait of interest in 87 

a single plant lineage (in contrast to GWA studies, where the genetic differences 88 

across lineages function as perturbations). Another issue is that such controlled 89 

perturbations are mostly applied in a lab environment, where apart from the imposed 90 

perturbation all other parameters are kept optimal and do not restrict plant growth 91 

and development. This situation does not reflect realistic field conditions, where at 92 

any given time plants are exposed to a combination of different environmental 93 

stressors with highly variable temporal and spatial patterns of occurrence (Mittler and 94 

Blumwald, 2010; Thoen et al., 2017). Increasing evidence is pointing towards the 95 

unique character of plant molecular responses to combinations of stresses, which 96 
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often have non-additive effects on the molecular and phenotypic level (Atkinson and 97 

Urwin, 2012; Rasmussen et al., 2013; Cabello et al., 2014; Johnson et al., 2014; 98 

Suzuki et al., 2014; Barah et al., 2016; Davila Olivas et al., 2017; Thoen et al., 2017). 99 

As a result, perturbation studies performed under controlled laboratory conditions are 100 

often of limited predictive value for phenotypes in the field (Mittler, 2006; Oh et al., 101 

2009; Atkinson and Urwin, 2012; Nelissen et al., 2014; Nelissen et al., 2019). It has 102 

been advocated that to close this lab-field gap, more -omics data and associated 103 

phenotypic data should be generated on field-grown plants (Alexandersson et al., 104 

2014; Nelissen et al., 2019; Zaidem et al., 2019). Several pioneering studies have 105 

already investigated how gene expression is related to environmental stimuli in the 106 

field (Nagano et al., 2012; Richards et al., 2012; Plessis et al., 2015). Large-scale 107 

studies relating field-generated transcriptomes to field phenotypes are however still 108 

lacking. 109 

Here, we propose a new strategy for studying the wiring of plant pathways and traits 110 

directly in the field, involving -omics and phenotype profiling of individual plants of the 111 

same genetic background grown in the same field. Uncontrolled variations in the 112 

micro-environment of the individual plants hereby serve as a perturbation 113 

mechanism. Our expectation is that, in addition to stochastic effects, the individual 114 

plants will be subject to subtly different sets of environmental cues, and will in 115 

response exhibit different molecular profiles and phenotypes. The aim of this study is 116 

to investigate to what extent we can use such individual plant differences in the field 117 

to link genes to biological processes and field phenotypes. Earlier, we found that 118 

gene expression variations among individual Arabidopsis thaliana plants grown under 119 

the same stringently controlled lab conditions contain a lot of information on the 120 

molecular wiring of the plants, on par with traditional expression profiles of pooled 121 

plant samples subject to controlled perturbations (Bhosale et al., 2013). If even gene 122 

expression variability among lab-grown plants contains functionally relevant 123 

information, the molecular and phenotypic variability among field-grown plants may 124 

contain a wealth of information on processes occurring in the field.  125 

We profiled the ear leaf transcriptome, ear leaf metabolome and a number of 126 

phenotypes for individual field-grown maize plants of the same inbred line (Zea mays 127 

B104), and used the resulting data to predict the function of genes and to 128 

quantitatively predict individual plant phenotypes. We find that our single-plant 129 
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transcriptome dataset can predict the function of maize genes as efficiently as 130 

traditional lab-based perturbational datasets. Furthermore, we show that some 131 

quantitative phenotypes, in particular leaf blade width and length, can be predicted 132 

fairly well from the leaf transcriptome and metabolome data generated for the 133 

individual plants. These results open perspectives for the further use of field-134 

generated single-plant datasets to unravel the molecular networks underlying crop 135 

phenotypes and stress responses in the field. 136 

RESULTS 137 

Field trial design and exploratory data analysis 138 

During the 2015 growth season, 560 maize plants of the B104 inbred line were grown 139 

in a field in Zwijnaarde, Belgium (see Methods and Figure 1). At tasseling (VT stage), 140 

the ear leaf and the growing ear were harvested for 200 non-border plants with a 141 

primary ear at leaf 16, and plant height, the number of leaves, the length and width of 142 

the ear leaf (leaf 16) blade, husk leaf length and ear length were measured 143 

(Supplemental Data Set 1). For 60 randomly chosen plants out of these 200, the 144 

transcriptome of mature ear leaf tissue was profiled using RNA-seq. Additionally, for 145 

50 out of those 60 plants, metabolite profiles were generated on the same samples 146 

used for transcriptome profiling. After pre-processing and filtering (see Methods), 147 

data on the levels of 18,171 transcripts and 598 metabolites in mature ear leaf tissue 148 

were obtained for 60 and 50 plants, respectively (Supplemental Data Set 1). 149 

As no differential treatments or control measures were applied to any plant subsets, 150 

no distinct sample groups are expected in our data, with the possible exception of 151 

subsets of plants harvested on different dates (because of developmental differences 152 

between plants, see Methods). Indeed, principal component analysis (PCA) on the 153 

gene expression, metabolite and phenotype data (Figure 1) did not reveal a clear 154 

group structure among the samples, although the date of harvest does have a clear 155 

effect along PC2 of the transcriptome and phenotype profiles of the plants. Despite 156 

the absence of designed major effects in our experimental setup, other than the 157 

harvesting date, we observed substantial variability in the transcriptome and 158 

metabolome profiles and the phenotypes of the individual plants (Figure 2). 159 

Transcript levels have on average a coefficient of variation (CV) of 0.3037 across 160 

plants, metabolite levels have a CV of 0.3128 on average, and all phenotypes have a 161 

CV ≥ 0.0521. This variability could either be caused by technical noise, inherent 162 
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stochasticity of molecular processes within the plant, or external factors such as 163 

variability in the growth micro-environment of the individual plants. The last two 164 

processes are expected to generate biologically meaningful variation that may 165 

propagate from the molecular to the phenotypic level, or vice versa. 166 

If the variability in the data is biological in nature and propagates through the 167 

molecular networks of the plant, plants with similar gene expression profiles may be 168 

expected to also have similar metabolite and phenotype profiles. Indeed, plant-to-169 

plant distances in transcriptome, metabolome and phenotype space were found to be 170 

significantly positively correlated (Supplemental Figure 1). Interestingly, the 171 

phenotype distance between plants was also significantly positively correlated with 172 

the physical distance between plants in the field. All phenotypes were found to be 173 

spatially autocorrelated at q≤0.05 (see Methods, Supplemental Figure 2 and 174 

Supplemental Data Set 2). A weak but borderline significant positive correlation was 175 

also found between the metabolome distance and physical distance between plants, 176 

and 24 out of 592 metabolites exhibit spatial patterning at q≤0.01 (Supplemental 177 

Data Set 2). No significant correlation was found between the physical distance of 178 

plants and their overall distance in transcriptome space (Supplemental Figure 1), 179 

indicating that most genes do not exhibit spatially patterned gene expression. 180 

However, spatial autocorrelation analysis of the transcriptome data revealed that 181 

1,134 out of 18,171 transcripts do exhibit spatial patterning at q≤0.01 (Supplemental 182 

Data Set 2). The spatially autocorrelated transcripts were grouped in 30 co-183 

expression clusters plus one ‘noise’ cluster (see Methods and Supplemental Data 184 

Set 3, cluster 1 is the noise cluster). Significant GO enrichments were found in 17 of 185 

these autocorrelated transcript clusters, e.g. cluster 3 was found enriched in genes 186 

involved in the response to chitin, cluster 16 in reproductive system development 187 

genes, and cluster 31 in chloroplast-associated genes (Supplemental Data Set 3). 188 

This indicates that the activity of several biological processes varied across the field 189 

in a spatially patterned way. Eleven of the 30 autocorrelated transcript clusters 190 

correlated with at least one measured phenotype at q≤0.05 (Supplemental Data Sets 191 

3 and 4). The average gene expression profile of cluster 29 for instance correlates 192 

significantly with ear length (Figure 3). Interestingly, two of the 35 genes in cluster 29 193 

are homeotic transcription factors, and both have previously been associated with 194 

ear development: GRMZM2G171365 (SUPPRESSOR OF OVEREXPRESSION OF 195 

CONSTANS 1, ZmSOC1, ZmMADS1), a MADS-box transcription factor known to 196 
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promote flowering (Zhao et al., 2014; Alter et al., 2016) and also known to be 197 

upregulated in leaves during the floral transition (Alter et al., 2016), and 198 

GRMZM2G034113 (hb126), a homeobox transcription factor previously found in a 199 

GWAS study as a candidate gene for ear height (Li et al., 2016). Overall, the 200 

presence of spatially autocorrelated patterns in the transcriptome, metabolome and 201 

phenotype data indicate that at least part of the variability observed among the 202 

individual plants is due to micro-environmental factors that have a spatial structure. 203 

Correlations between the molecular and phenotypic data layers indicate that this 204 

variability propagates from one layer to another. 205 

Variability of gene expression across plants gives insight into biological 206 

processes active in the field  207 

We investigated which genes have highly variable expression levels in the field 208 

setting used, and which ones are stably expressed across the field. We ranked 209 

genes based on the coefficient of variation (CV) of their gene expression profile 210 

across the field (Supplemental Data Set 5), excluding the 5% lowest expressed 211 

genes.  We found that stably expressed genes have on average longer coding 212 

sequences than variably expressed genes and have on average more introns and 213 

exons (Supplemental Table 1). Similar results were previously obtained in a study in 214 

which individual lab-grown Arabidopsis thaliana plants were expression profiled 215 

(Cortijo et al., 2019), and the authors showed that their observations could not be 216 

accounted for by technical artefacts related to differences in the average RNA-seq 217 

coverage of longer versus shorter genes. Similar to Cortijo et al. (2019), we also 218 

found that variably expressed genes are on average connected to 6.54 times more 219 

transcription factors than stably expressed genes in a coexpression network 220 

constructed from the single-plant transcriptome data (see Methods, one-tailed Mann–221 

Whitney U (MWU) test, q = 5.92E-59). This again suggests that at least part of the 222 

observed variability in gene expression levels across plants is biological in nature.  223 

Mann–Whitney U tests (Mann and Whitney, 1947) were performed to determine 224 

which Gene Ontology (GO) biological processes are represented more at the top or 225 

bottom of the CV-ranked gene list than expected by chance (Supplemental Data Set 226 

6). Genes related to cell wall organization, biotic stresses impacting the cell wall 227 

(herbivores, chitin), secondary metabolism, photosynthesis, abscisic acid transport, 228 

brassinosteroid and trehalose metabolism and gibberilic acid signaling were found to 229 
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be among the more variably expressed genes across the field, suggesting that the 230 

harvested leaves were differentially impacted by biotic and possibly abiotic stress 231 

factors. The processes that are most stably expressed across the field are mainly 232 

housekeeping processes related to e.g. the metabolism and transport of proteins and 233 

mRNAs, and chromatin organization (Supplemental Data Set 6). However, not all 234 

genes annotated to ‘stable’ GO processes are stably expressed. The top-10 of most 235 

variably expressed genes for instance includes eight genes involved in chromatin 236 

organization or DNA replication, among which five histones (Supplemental Data Set 237 

5). Interestingly, the GO enrichments obtained for variably and stably expressed 238 

genes in the field-grown maize plant dataset are largely in line with the results 239 

reported by Cortijo et al. (2019) on the variability of gene expression in individual lab-240 

grown A. thaliana plants. Photosynthesis, secondary metabolism, cell wall 241 

organization and defense response genes for instance were also found enriched by 242 

Cortijo et al. (2019)  in several of the highly variable gene sets they compiled for 243 

different sampling time points in a 24h time span, while RNA and protein metabolism 244 

genes feature prominently in some of their lowly variable gene lists.  245 

Hierarchical clustering of the transcriptome and metabolome data offers an overall 246 

view of the molecular variability across the plants profiled (Supplemental Figure 3). 247 

Several clusters were found to be significantly enriched in genes involved in 248 

particular biological processes, further confirming that the single-plant dataset 249 

contains biologically meaningful information (Supplemental Data Set 7). Also the 250 

biclustering approaches ISA (Bergmann et al., 2003), SAMBA (Tanay et al., 2002) 251 

and ENIGMA (Maere et al., 2008) yielded a variety of modules enriched for genes 252 

involved in processes such as photosynthesis, cell wall organization, response to 253 

chitin and others (Supplemental Data Set 7). An example ENIGMA module, enriched 254 

for known reproductive development genes, is shown in Figure 4. In this module and 255 

many others (see e.g. the photosynthesis and response to chitin clusters in 256 

Supplemental Figure 3), different subgroups of plants show clearly different 257 

expression profiles, highlighting that many processes are not homogeneously active 258 

across the field.  259 

Gene function prediction from single-plant transcriptome data 260 

In previous work, we showed that expression variations among individual Arabidopsis 261 

thaliana plants, all grown under the same stringently controlled conditions, can 262 
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efficiently predict gene functions (Bhosale et al., 2013). To investigate whether 263 

expression variations among maize plants grown under uncontrolled field conditions 264 

can similarly be used to predict gene functions, we constructed a network of 265 

significantly coexpressed genes from the transcriptome data, using spatially adjusted 266 

Pearson correlation coefficients between the log2-transformed gene expression 267 

profiles (see Methods). Accounting for the spatial autocorrelation structure of our 268 

field-generated data is necessary to avoid inflation of the false positive rate (Lennon, 269 

2000). The function of any given gene in this coexpression network was predicted 270 

based on the annotated functions of the gene’s network neighbors (see Methods). To 271 

compare the function prediction performance of our single-plant dataset with that of 272 

traditional gene expression datasets on pooled samples of plants grown under 273 

controlled conditions, we ran the same function prediction pipeline on 500 networks 274 

constructed from gene expression datasets on maize leaves available from the Short 275 

Read Archive (SRA) transcriptome database (see Methods and Supplemental Data 276 

Set 8). Each of these 500 networks was inferred from a dataset of the same size as 277 

the single-plant dataset, containing 60 transcriptome profiles sampled from the SRA. 278 

The number of significant edges (Bonferroni-corrected p ≤0.01) inferred from these 279 

sampled datasets was systematically higher than the number of edges inferred from 280 

the single-plant dataset. One factor causing this is that the SRA transcriptome data 281 

exhibits clear groups of experimental conditions for which expression profiles are 282 

more similar within groups than between groups (Supplemental Figure 4), more so 283 

than the single-plant data. This group structure causes inflated correlation p-values in 284 

the sampled networks. Since correlation networks with more edges are biased 285 

towards better function prediction performance (Supplemental Figure 5), the number 286 

of edges included in each sampled network was fixed to the number of significant 287 

edges observed in the single-plant network (771,610 edges). Other network 288 

properties such as the number of nodes, network density, average clustering 289 

coefficient and unannotated gene fraction were not significantly different between the 290 

resulting sampled networks and the single-plant network (Table 1).   291 

The overall gene function prediction performance of all networks was scored using 292 

known GO annotations for maize as the gold standard (see Methods). For each 293 

network, we calculated the fraction of known gene function annotations recovered by 294 

the predictions (recall), the fraction of gene function predictions supported by the gold 295 

standard (precision) and the F-measure (harmonic mean of precision and recall) at 296 
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different false discovery rate (FDR) levels, ranging from q = 0.01 to 10-11 (Figure 5). 297 

Except at the highest-confidence prediction thresholds (q ≤ 10-9), the recall of the 298 

single-plant network was higher than the 75th percentile of the recall values for the 299 

sampled networks, indicating that the single-plant network predictions generally 300 

recover more known gene functions than the sampled network predictions. On the 301 

other hand, the predictions of the single-plant network are generally less precise than 302 

those of most sampled networks, except at lower-confidence prediction thresholds (q 303 

≥ 10-4). As a result, the overall function prediction performance of the single-plant 304 

network (as measured by the F-measure) is higher than that of the majority of 305 

sampled networks for q ≥ 10-6, but lower for q ≤ 10-7. This is mostly due to the lower 306 

precision of the single-plant network predictions at higher confidence levels : 307 

compared to the sampled networks, a bigger proportion of the high-confidence 308 

function predictions made by the single-plant network is not supported by the gold 309 

standard.  310 

There are reasons to believe that not all of these excess false positive predictions 311 

made by the single-plant network at high confidence levels are truly wrong. First, the 312 

GO annotation for maize, used here as the gold standard, is incomplete. Of the 313 

39,479 genes in the maize genome (version V3 5b+), 9,884 have no biological 314 

process assignments in the GO annotation file we compiled (see Methods), and 315 

many others likely have incomplete or faulty annotations (Rhee and Mutwil, 2014; 316 

Wimalanathan et al., 2018). High-confidence gene function predictions labeled as 317 

false positives may therefore be regarded rather as new gene function predictions to 318 

be tested. By itself however, the incompleteness of the gold standard should not lead 319 

to a specific disadvantage for the single-plant network, as all networks are compared 320 

on the same footing. More importantly, the current annotations in GO are mostly 321 

derived from traditional lab-based perturbation experiments on pooled plant samples, 322 

akin to the ones used to construct the sampled networks. This may create a bias in 323 

favor of the sampled networks, in particular for the precision measurements (see also 324 

Discussion). The recall measure should therefore probably get a higher weight when 325 

comparing the gene function prediction performance of the single-plant and sampled 326 

networks.  327 

Single-plant dataset contains information on biological processes that are 328 

active and varying between plants in the field context 329 
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To assess whether the single-plant dataset contains more information on some 330 

biological processes than on others, we investigated how well the gene function 331 

predictions on the single-plant network and sampled networks could recover the 332 

genes involved in specific biological processes (see Methods). The function 333 

prediction performance of all networks was scored for 207 different GO categories, 334 

including the categories investigated in (Bhosale et al., 2013) and 56 GO categories 335 

that were found enriched in one or more of the (bi)clusters obtained from the single-336 

plant dataset (Supplemental Data Set 9).  Figure 6 shows the relative performance of 337 

the single-plant network for a selection of GO categories related to abiotic and biotic 338 

stress responses, hormonal responses and development (see Supplemental Data 339 

Set 9 and 10 for results on other GO categories).  340 

For abiotic stresses, the single-plant network scores very well compared to the 341 

sampled networks for responses to cold and heat, salt stress and drought (water 342 

deprivation), all of which are relevant from a field perspective.  For light responses, 343 

the picture is more nuanced, with very good performance for responses to blue light 344 

and UV light, ambiguous performance for categories related to ‘response to red- and 345 

far-red light’ and very poor performance for ‘response to light intensity’ and 346 

‘photoperiodism’. The overall very good function prediction performance for 347 

‘response to abiotic stimulus’ indicates that there is considerable variation across the 348 

field in the transcriptional activity of the genes concerned, which suggests that the 349 

individual plants were subject to multiple abiotic environmental cues that varied in 350 

intensity across the field.  351 

Concerning responses to biotic stimuli, the single-plant predictions score very well for 352 

the ‘response to herbivore’ and ‘response to bacterium’ categories, average for 353 

‘response to fungus’, and poor for ‘response to nematode’ and ‘response to symbiont’ 354 

(Figure 6 and Supplemental Dataset 9). This indicates that the individual plants may 355 

have been variably exposed to biotic stresses, in particular bacteria and fungi. The 356 

single-plant network also scored very well for some GO categories related to biotic 357 

stimulus responses that are not shown in Figure 6, such as ‘defense response’ and 358 

‘response to chitin’ (Supplemental Data Set 9). The function prediction performance 359 

for other biotic stress categories such as ‘response to insect’ or ‘response to 360 

oomycetes’ could not be assessed because both the sampled and single-plant 361 

datasets did not yield enough predictions (see Methods).  362 
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Similarly, both the sampled and single-plant datasets failed to deliver sufficient 363 

predictions to score the function prediction performance for responses to jasmonic 364 

acid, gibberellins, salicylic acid and strigolactones. Among the hormone responses 365 

for which the gene function prediction performance of the single-plant dataset could 366 

be scored, the responses to abscisic acid (ABA), cytokinin and ethylene score very 367 

well, ‘response to brassinosteroids’ scores average and ‘response to auxin’ scores 368 

very poorly. The very poor function prediction performance for auxin response genes 369 

is consistent with the fact that only mature leaf tissue was profiled in the single-plant 370 

experiment, where auxin signaling is less active (Brumos et al., 2018). In contrast, 371 

the sampled datasets also contain experiments on entire leaves, leaf primordia and 372 

leaf zones such as the division and elongation zone where auxin signaling is more 373 

active (Supplemental Data Set 8). 374 

Regarding developmental processes, the single-plant dataset scores very well for 375 

predicting genes involved in leaf development and embryo development, well for root 376 

development, average for seed and fruit development and very poor for flower 377 

development. The (very) good prediction performances for root and embryo 378 

development may come as a surprise given that only leaf material was profiled, but 379 

one needs to keep in mind that all performances are scored relative to the 380 

performance of the sampled datasets, which also exclusively profiled leaves. Even 381 

then, it may be considered surprising that leaf expression profiles contain any 382 

information at all on developmental processes occurring in other tissues such as 383 

roots, flowers or fruits. However, many genes influencing e.g. root development may 384 

also function in some capacity in leaves (Taniguchi et al., 2017; Yang et al., 2019). 385 

More genuinely surprising is that the single-plant dataset outperforms more than 75% 386 

of the sampled datasets for predicting genes involved in leaf development, both in 387 

terms of precision and recall, despite only profiling mature leaf tissue of ear leaves.  388 

Exploration of new maize genes predicted to be involved in biotic and abiotic 389 

stress responses 390 

In total, 1,620,503 novel gene function predictions (i.e. predictions not matching GO 391 

annotations) were obtained from the single-plant dataset at q ≤ 0.01 (Supplemental 392 

Data set 11). To assess the quality of these predictions, we performed a literature 393 

screen to search for evidence supporting the top-10 regulator predictions for the GO 394 

categories ‘response to chitin’, ‘response to water deprivation’ and ‘C4 395 
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photosynthesis’.  The first two are categories for which the single-plant dataset 396 

exhibited very good gene function prediction performance compared to the sampled 397 

datasets. ‘C4 photosynthesis’ on the other hand scored very poorly in the single-plant 398 

dataset (Supplemental Data Set 9-10). We included this category in the literature 399 

validation effort to assess whether poor gene function prediction performance for a 400 

biological process, as scored based on which genes are already annotated to the 401 

process in GO, also entails that newly predicted links between genes and the 402 

process under study are of poor quality.  403 

‘Response to chitin’ was among the best-scoring GO categories in our assessment of 404 

the gene function prediction performance of the single-plant dataset. Chitin is a main 405 

component of fungal cell walls and insect exoskeletons (Fleet, 1991; Latgé, 2007), 406 

and the response to chitin is therefore closely related to the responses to fungi and 407 

insects. For three out of the top-10 novel transcriptional regulators predicted to be 408 

involved in the response to chitin (Supplemental Table 2), we found indirect evidence 409 

in literature in support of the predictions. ZmWRKY53 (GRMZM2G012724), on the 3rd 410 

position in the ranking, was previously found to be involved in the response of maize 411 

to Aspergillus flavus, a fungal pathogen that affects maize kernel tissues and 412 

produces mycotoxins that are harmful for humans and animals (Fountain et al., 413 

2015). ZmWRKY53 was found to be strongly upregulated in both a susceptible and a 414 

resistant maize line upon inoculation of kernels with Aspergillus flavus (Fountain et 415 

al., 2015). Its putative functional ortholog in Arabidopsis thaliana, AtWRKY33, is 416 

known to regulate defense response genes (Zheng et al., 2006; Birkenbihl et al., 417 

2012), and its putative functional orthologs in Triticum aestivum (TaWRKY53) and 418 

Oryza sativa (OsWRKY53) have previously been suggested to regulate several biotic 419 

and abiotic stress response genes, including chitinases (Van Eck et al., 2014). 420 

Overexpression of OsWRKY53 was also shown to increase the resistance of O. 421 

sativa to herbivory by the brown planthopper Nilaparvata lugens (Hu et al., 2016). 422 

Another WRKY TF in the top-10 list, ZmWRKY92 (GRMZM2G449681, rank 5), was 423 

previously found to be induced upon Fusarium verticillioides inoculation of kernels in 424 

the ear rot-resistant maize inbred line BT-1 (Wang et al., 2016). The 8th gene in the 425 

top-10 list, GRMZM2G042756 (AP2-EREBP-transcription factor 105), was previously 426 

found to be upregulated upon infection of a maize line with Ustilago maydis, a 427 

basidiomycete fungus that causes common smut in maize (Donaldson et al., 2013). 428 
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The second GO category for which we screened literature is ‘response to water 429 

deprivation’. Four of the top-10 transcriptional regulators predicted to be involved in 430 

drought stress responses, but not annotated as such in GO, have previously been 431 

linked to drought stress in other studies (Supplemental Table 3). ZmWRKY40 432 

(GRMZM2G120320, rank 9) was shown to confer drought resistance when it was 433 

overexpressed in A. thaliana (Wang et al., 2018b). ZmXLG3b (GRMZM2G429113, 434 

rank 1), encoding a guanine nucleotide-binding protein predicted to be involved in the 435 

response to desiccation, was found to be downregulated in the drought-tolerant 436 

H082183 line but upregulated in the drought-susceptible maize line Lv28 under 437 

severe drought stress versus control conditions (Zhang et al., 2017). Moreover, 438 

ZmXLG3b was identified as a candidate drought stress response gene in a GWAS 439 

study on 300 inbred maize lines, and its expression level was found to anticorrelate 440 

with drought stress tolerance levels in four tested maize lines (Yuan et al., 2019). 441 

ZmMPK3-1 (GRMZM2G053987, rank 4), a mitogen-activated protein kinase (MAPK), 442 

was previously found to be upregulated in leaf and stem tissue upon drought stress 443 

in maize (Liu et al., 2015b). ZmTPS13.1 (GRMZM2G416836, rank 3), predicted to be 444 

involved in drought recovery in our analysis, encodes a putative trehalose-phosphate 445 

synthase functioning in the trehalose biosynthesis pathway. The trehalose precursor 446 

trehalose-6-phosphate (T6P) is known to function as a signaling molecule 447 

coordinating carbohydrate metabolism and developmental processes in plants 448 

(Ponnu et al., 2011). Trehalose and T6P have also been implicated in protecting 449 

plants from various stresses, including drought stress, but the mechanisms involved 450 

are still unclear (Fernandez et al., 2010; Lunn et al., 2014; Nuccio et al., 2015).  451 

 452 

Finally, we screened literature for the top-10 regulators predicted to be involved in C4 453 

photosynthesis (Supplemental Table 4). Surprisingly, the single-plant dataset 454 

performed very poorly for the light-associated GO categories ‘photosynthesis’ and ‘C4 455 

photosynthesis’ (Supplemental Data Set 9-10), even though several ‘response to 456 

light stimulus’ subcategories scored very well (Figure 6) and though our clustering 457 

analyses revealed several (bi)clusters heavily enriched in photosynthesis genes (see 458 

Supplemental Data Set 7). The performance plots show that the very poor function 459 

prediction performance for photosynthesis categories is due to the single-plant 460 

predictions having a very low precision compared to the predictions from the sampled 461 

datasets, while the number of predictions made by the single-plant data and their 462 
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recall are comparatively very high (Supplemental Data Set 10). As argued above, 463 

recall values may be more indicative for the quality of gene function predictions than 464 

precision values, given the incompleteness of the maize GO annotation we use as a 465 

reference. If this is the case, genes that are predicted with high confidence to be 466 

involved in C4 photosynthesis but were scored as false positives by GO may still offer 467 

valuable leads. Indeed, we found evidence in literature linking three of the top-10 468 

predicted regulators to C4 photosynthesis. ZmCSP41A (GRMZM2G111216, rank 1), 469 

a highly conserved sequence-specific chloroplast mRNA binding protein and 470 

unspecific endoribonuclease, was previously found to be more highly expressed in 471 

bundle sheet chloroplasts than in mesophyll chloroplasts (Friso et al., 2010). In the 472 

genus Flaveria, which contains C3 and C4 species as well as intermediates, a 473 

homolog of ZmCSP41A was found to be downregulated in leaves of C4 species 474 

compared to C3 species (Gowik et al., 2011). Transcripts of ZmCRB 475 

(GRMZM2G165655, rank 2), also accumulate preferentially in bundle sheet cells and 476 

are known to stabilize several chloroplast transcripts, e.g. for photosystem I and II 477 

components (John et al., 2014). ZmSIG5 (GRMZM2G543629, rank 4) encodes a 478 

plastid sigma factor. Several homologous sigma factors in the Flaveria and Cleome 479 

genera were found to be upregulated in leaves of C4 species compared to C3 species 480 

(Gowik et al., 2011). Furthermore, six of the top-10 genes are known to be 481 

chloroplast-localized (GRMZM2G111216, GRMZM2G165655, GRMZM2G543629, 482 

GRMZM2G140288, GRMZM2G010929) or light-responsive (GRMZM2G158662), 483 

increasing the likelihood that they are involved in processes related to 484 

photosynthesis.   485 

 486 
Predicting phenotypic traits of individual plants from leaf transcriptome and 487 

metabolome data.  488 

We investigated to what extent the transcriptome and metabolome data generated on 489 

the individual plants can predict individual plant phenotypes. First, we performed 490 

spatially corrected correlation analyses (see Methods) to identify transcripts that 491 

show a significant linear association with a given phenotype (Supplemental Data Set 492 

12). 1,677 genes exhibit an expression profile that is significantly correlated with leaf 493 

16 blade length, and 411 gene expression profiles are significantly correlated 494 

(q≤0.05) with leaf 16 blade width. Notably, both for blade length and blade width, the 495 

set of significantly negatively correlated genes with R2 > 0.2 is enriched in known leaf 496 
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and flower development genes (q<0.01, Supplemental Data Set 12). 273 genes 497 

exhibit an expression profile in mature leaf 16 tissue that is significantly correlated 498 

with ear length at q≤0.05 (Supplemental Data Set 12). Among those, the set of genes 499 

negatively correlated to ear length with R2 > 0.2 contains 3 genes known to be 500 

involved in cellular iron ion homeostasis (enrichment q = 8.56e-3), but no other 501 

significant GO enrichments were found. 241 genes have an expression profile that 502 

correlates significantly with husk leaf length (Supplemental Data Set 12). The set of 503 

genes whose expression in mature leaf 16 tissue positively correlates to husk leaf 504 

length (q≤0.05, R2 > 0.2) is enriched in genes involved in e.g. the response to 505 

oxidative stress, osmotic stress, UV stress and cell growth (q<0.01, Supplemental 506 

Data Set 12). Only 35 genes exhibited an expression profile in leaf 16 that is 507 

significantly correlated with plant height at q≤0.05, among which only 4 with an R2 508 

value > 0.2, making plant height the phenotype that is least easily connected to the 509 

expression of individual genes in the leaf 16 blade. 510 

The phenotypes of the individual plants can be predicted by the expression patterns 511 

of single genes in the leaf 16 blade with maximum R2 scores ranging from 0.509 (for 512 

blade length) to 0.291 (for plant height, Supplemental Data Set 12). We investigated 513 

whether combinations of genes could lead to a better prediction performance.  Elastic 514 

net and random forest techniques were used to construct models predicting the 515 

phenotypes of individual plants as a function of the transcript and metabolite levels in 516 

the harvested leaf samples (see Methods). Elastic net (e-net) regression is a 517 

shrinkage method that is generally well-suited for use on high-dimensional datasets 518 

(Zou and Hastie, 2005). Its combination of the L1 and L2 penalties of its relatives 519 

lasso and ridge regression, respectively, makes e-net regression capable of selecting 520 

groups of correlated features (transcripts, metabolites) as predictors. Rather than 521 

selecting one representative feature from each group (as in lasso regression), e-nets 522 

can select multiple correlated features (as in ridge regression) while still setting the 523 

regression coefficients of irrelevant features to zero. This makes the resulting models 524 

more biologically interpretable. Random forest regression (Breiman, 2001) was used 525 

in addition because this technique can account for some types of interaction effects 526 

between features and is fairly robust to overfitting. 527 

Both types of models were learned for each phenotype using either the transcript 528 

levels, the metabolite levels or both as features (see Table 2), each time using a 10-529 
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fold nested cross-validation strategy (see Methods). Transcript-based models were 530 

additionally run with either all transcripts or a pre-defined selection of regulatory 531 

transcripts as features (see Methods). The performance of the models was evaluated 532 

in two ways: by pooling the predictions for the test sets in each of the 10 folds into 533 

one dataset and computing the combined ‘out-of-bag’ (oob) R2 (pooled R2), and by 534 

computing the oob R2 on each test fold individually and taking the median (median 535 

R2, see Methods). For each model with a positive pooled or median R2 score, 500 536 

datasets with permuted phenotype data were used to compute an empirical p-value 537 

that reflects whether the R2 score of the model is significantly higher than the R2 538 

scores of models learned on randomized data (see Methods and Table 2).     539 

The blade length and blade width of leaf 16 (the ear leaf) are the phenotypes that are 540 

best predictable from both the transcriptome and metabolome data (Table 2 and 541 

Supplemental Data Sets 13-14). This is not surprising, as these phenotypes are most 542 

closely related to the plant material that was profiled (mature leaf 16 blade tissue). 543 

The whole-transcriptome e-net model for leaf 16 blade width reached a pooled R2 544 

score of 0.659, whereas the ordinary least squares (OLS) R2 value for the best-545 

correlated single gene is only 0.463 (Supplemental Data Set 12). This indicates that 546 

the multi-gene model for blade width performs substantially better than single-gene 547 

models. The performance difference is likely even higher than suggested by the R2 548 

difference, as single gene models have an advantage in this comparison:  multi-gene 549 

model R2 values are based on test data while single-gene model R2 values are based 550 

on training data.  551 

The best-performing whole-transcriptome model for leaf 16 blade length on the other 552 

hand has a pooled R2 score that is only marginally higher than the OLS R2 value for 553 

the best-correlated single gene (pooled R2 = 0.567 for the whole-transcriptome 554 

random forest model versus OLS R2 = 0.509 for the gene GRMZM2G553379, 555 

ZMM15, Supplemental Data Set 12). This suggests that maybe only few genes 556 

contribute substantially to the random forest model performance. Indeed, next to the 557 

aforementioned gene ZMM15, only one other gene, ZAP1 (GRMZM2G148693), has 558 

a median importance score above 0.05 in the random forest model for leaf 16 blade 559 

length (Supplemental Data Set 13). Like ZMM15, ZAP1 is found in the top-10 of 560 

genes that are most significantly anticorrelated with blade length (Supplemental Data 561 

Set 12, see below for model interpretation).  562 
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The models for ear length and plant height have considerably lower oob R² scores 563 

than for the leaf 16-related phenotypes, and for plant height even negative R² scores 564 

were obtained (Table 2). This suggests that the transcriptome of the sampled leaves 565 

may not contain sufficient information to accurately predict phenotypes measured on 566 

other organs at the time of sampling (see also Discussion). Tellingly, the multi-gene 567 

model oob R² scores for both ear length and plant height are much lower than the 568 

best single-gene OLS R² scores, suggesting that the multi-gene models severely 569 

overfit the training data (Supplemental Data Set 12). Husk leaf length on the other 570 

hand is predicted almost equally well as the leaf 16 phenotypes (whole-transcriptome 571 

e-net model, pooled R2 = 0.438, Table 2).  This may be due to the phenotype being 572 

closer to the material that was molecularly profiled, in terms of tissue type or spatial 573 

proximity, than ear length and plant height. However, the best multi-gene model for 574 

husk leaf length merely performs on par with the best single-gene model (OLS R2 = 575 

0.460, Supplemental Data Set 12). In contrast to what was found for leaf 16 blade 576 

length, this is not because only a few genes contribute to the e-net model 577 

performance for husk leaf length (Supplemental Data Set 15).   578 

In general, the models learned on transcriptome and metabolome data have similar 579 

performance for most phenotypes (Table 2). This suggests that both datasets contain 580 

roughly the same amount of information on the phenotypes, despite the fact that 581 

there are many more transcripts (18,171) than metabolites (592) in the data. 582 

Surprisingly, the models learned on both data sources combined did not outperform 583 

the models learned on the transcriptome or metabolome data separately. This 584 

suggests that most of the relevant phenotype information is redundantly present in 585 

both data types. Interestingly, the models learned on the transcriptome data using 586 

only the transcript levels of regulatory genes as features performed generally on par 587 

with the overall transcriptome models (Table 2). This indicates that using the 588 

expression levels of regulatory genes as features may be sufficient to obtain 589 

adequate phenotype predictors, with the advantage that the predictors obtained may 590 

be more interpretable from a mechanistic perspective.     591 

We took a closer look at the best-performing transcriptome models for the blade 592 

length and blade width phenotypes. For blade length, the best-performing model is 593 

the random forest model with only regulators as predictors, with a median R2 score of 594 

0.534 and a pooled R2 score of 0.609 (Figure 7). The two regulators with the highest 595 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 6, 2020. ; https://doi.org/10.1101/2020.04.06.027300doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.06.027300


20 
 

variable importance in this model are the same as the two most important genes in 596 

the whole-transcriptome model, GRMZM2G148693 (ZAP1) and GRMZM2G553379 597 

(ZMM15) (Supplemental Data Set 13). Both are MADS-box transcription factors 598 

homologous to the A. thaliana gene APETALA1, and they exhibit a Pearson 599 

expression correlation of 0.79, which explains why one of the two was given a higher 600 

importance score (the second one contains largely redundant information). Their 601 

correlation with blade length is negative and strong. The heavy reliance of both the 602 

whole transcriptome and regulator random forest models on either of these two 603 

genes also helps explain why the predicted blade length values in Figure 7 exhibit a 604 

distinctly bimodal distribution. Interestingly, ZAP1 was previously found in QTL and 605 

GWA studies as a candidate gene associated with ear length (Xue et al., 2016), ear 606 

height (Vanous et al., 2018), tassel length (Wang et al., 2018a) and flowering time 607 

(Wallace et al., 2016), and it has been implicated in maize domestication, in 608 

particular for temperate maize lines, in which its expression is downregulated (Liu et 609 

al., 2015a).  610 

For blade width, the e-net model built on all transcripts performed best (median R² = 611 

0.726, pooled R2 = 0.659). 235 transcripts have a median coefficient >0.01 in this 612 

elastic net model (Supplemental Data Set 14), but no significant GO enrichments 613 

were found in the corresponding gene set. In the e-net model for blade width run with 614 

only regulators as predictors (Figure 7), 178 transcripts have a median coefficient 615 

above 0.01 (Supplemental Data Set 14). The regulators with the strongest negative 616 

influence are GRMZM2G023625, a putative HIRA histone chaperone, and 617 

GRMZM2G377311, a putative cyclin T. The only A. thaliana homolog of 618 

GRMZM2G023625, AT3G44530 (HIRA), is known to be involved in knox gene 619 

silencing during leaf development, and reduced HIRA expression levels give rise to 620 

transversally curled (pinched) leaves with shorter petioles and often lobes in the 621 

proximal region of the blade (Phelps-Durr et al., 2005). The A. thaliana homologs of 622 

GRMZM2G377311 with the highest sequence similarity, AT4G19600 (CYCT1;4) and 623 

AT5G45190 (CYCT1;5), have been implicated previously in the regulation of leaf and 624 

flower development (Cui et al., 2007). The two regulators with the strongest positive 625 

predicted influence on blade width in the e-net model were GRMZM2G062914 (MAP 626 

KINASE 14, MPK14) and GRMZM2G430780, a putative serine/threonine protein 627 

kinase. 628 
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DISCUSSION 629 

In this study, we molecularly and phenotypically profiled 60 individual maize plants of 630 

the same inbred line (B104) grown in the same field. Our purpose was to investigate 631 

how much information can be extracted from this simple experimental design on the 632 

function of genes, and on how gene and metabolite expression relates to plant 633 

phenotypes. Although one may expect that this design should yield datasets with a 634 

low information content, due to the very limited genetic and environmental variability 635 

employed, substantial variability was found in the transcriptomes, metabolomes and 636 

phenotypes of the individual plants. Standard deviations on the transcript and 637 

metabolite levels across the field were found to be generally in the order of 10-50% 638 

of the mean. The average transcript level CV of ~0.3 is about three times higher than 639 

the transcript level CV of lab-grown A. thaliana plants in a recent study (Cortijo et al., 640 

2019). Genes involved in processes such as photosynthesis and herbivory 641 

responses were found to be more variably expressed across the field than 642 

housekeeping genes involved in e.g. RNA and protein metabolism, and the 643 

expression patterns of 12.1% of the transcripts and 7.1% of the metabolites profiled 644 

exhibited significant spatial patterning, indicating that the variability uncovered is not 645 

merely random noise.  646 

We used the single-plant dataset to predict the function of maize genes from the 647 

function of their coexpression network neighbors (‘guilt-by-association’), and found 648 

that field-grown single-plant transcriptomes overall have similar gene function 649 

prediction power as traditional transcriptome datasets profiling pooled plant 650 

responses to controlled perturbations in a lab. Furthermore, the single-plant dataset 651 

was found to outperform the controlled perturbation datasets for several processes 652 

that were likely variably active in the field setting used, in particular abiotic stress 653 

responses. This suggests that datasets in which processes are perturbed more 654 

subtly around a common baseline may hold an advantage for unraveling gene 655 

functions. One of the issues with harsher perturbations is that their effects may 656 

propagate further in the cellular networks, and essentially swamp more subtle 657 

variations in other, sideways associated processes, decreasing the information 658 

content of the resulting data. Pooling samples, although enhancing experimental 659 

repeatability, may similarly decrease the data information content by smoothing out 660 

subtle variations across samples. 661 
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Comparable results were obtained in an earlier study on individual lab-grown A. 662 

thaliana plants (Bhosale et al., 2013). One notable difference with the Arabidopsis 663 

results however is that the maize single-plant dataset performs better at predicting 664 

gene functions than most of the traditional transcriptome datasets it is compared to at 665 

higher (less stringent) q-value thresholds, whereas it performs worse at lower q-value 666 

thresholds. The opposite trend was observed in Arabidopsis (Bhosale et al., 2013). 667 

This is because, taking the precision of predictions from the traditional datasets as a 668 

baseline for both species, a disproportionately large fraction of the high-confidence 669 

predictions emerging from the maize single-plant dataset are not supported by 670 

existing maize gene function annotations. One potential reason for this surplus of 671 

high-confidence ‘false positives’ is that the maize single-plant dataset, in contrast to 672 

the other maize and Arabidopsis datasets, was generated in a field setting. It is not 673 

unthinkable that lab and field experiments may profile different aspects of gene 674 

function, and therefore lead to complementary predictions. This may help explain 675 

why the lab-generated datasets lead to high-confidence predictions that are more 676 

closely aligned with known gene function annotations, as most of these were also 677 

derived directly or indirectly (in the case of annotations transferred by orthology from 678 

other plant species) from lab experiments. If lab and field experiments indeed profile 679 

complementary aspects of gene function, the novel gene function predictions 680 

obtained from field-generated data could be as valuable as those from lab-generated 681 

data. Confirming the potential value of the novel predictions generated by our field 682 

dataset, we found indirect evidence in literature in support of more than 30% of the 683 

top-10 novel regulator predictions obtained for C4 photosynthesis, the response to 684 

chitin and the response to water deprivation.  685 

Our results indicate that profiling individual plants in the field may also be useful to 686 

identify genes that influence plant phenotypes under field conditions. We used 687 

machine learning models to quantitatively predict phenotypes of individual plants 688 

based on leaf gene expression and metabolome data, and found that leaf 689 

phenotypes could be predicted reasonably well, in particular the blade width of leaf 690 

16 (max. median oob R2 score = 0.726, max. Pearson correlation (PCC) between 691 

predicted and observed values = 0.821). This is fairly remarkable given that the 692 

models were learned on data for only 60 plants. For comparison, a recent study in 693 

which maize phenotypes were predicted from genetic marker and transcriptome data 694 

for 388 different maize lines reported PCC values of 0.56 to 0.66 between predicted 695 
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and measured phenotypes when using both genetic markers and transcript levels as 696 

features, and PCC values of 0.51 to 0.61 when using only transcript levels as 697 

features (Azodi et al., 2020). An important difference however is that the (Azodi et al., 698 

2020) study predicted mature plant phenotypes (final plant height, final yield, 699 

flowering time) from seedling data, whereas we predicted actively developing 700 

phenotypes from contemporarily profiled leaf transcriptome data. Whereas we could 701 

generate decent predictive models for phenotypes that were closely related to the 702 

plant material that was molecularly profiled (length and width of the ear leaf blade, 703 

and to a lesser extent the length of the developing husk leaf), models learned for 704 

more distant phenotypes such as plant height and ear length at sampling time did not 705 

perform well. This discrepancy between the (Azodi et al., 2020) study and ours 706 

suggests that intermediate phenotypes may be inherently less predictable than final 707 

phenotypes, unless the plant material profiled is directly associated with the 708 

phenotype under study. Follow-up experiments will be necessary to assess whether 709 

individual plant datasets can be used as efficiently as genomic prediction datasets 710 

(Azodi et al., 2020) for predicting final plant phenotypes from molecular data profiled 711 

at an earlier developmental stage.  712 

Together, our results show that profiling individual plants in the field is a promising 713 

addition to the toolbox we have at our disposal to study the molecular wiring of plants 714 

and relationships between genes and phenotypes, in particular in a field context. 715 

More steps will have to be taken however to realize the full potential of this new 716 

experimental design. A major bottleneck in all transcriptome profiling-based 717 

strategies to associate genes with phenotypes, not only the single-plant setup but 718 

also TWAS and classical systems biology strategies, is that the models they produce 719 

are correlational rather than causal in nature. A shift to more causal modeling 720 

approaches is direly needed, but not straightforward, as causal inference from the 721 

high-dimensional datasets generated by transcriptome profiling, which are frequently 722 

observational in nature and contain lots of hidden variables and confounders, is 723 

notoriously difficult. Profiling additional data layers in the single-plant setup, such as 724 

micro-environmental variables, may further improve modeling performance and 725 

enhance causal interpretability.  726 

Up to now, we only profiled a limited amount of plants of one cultivar in one season 727 

and field environment. It remains to be seen to what extent the resulting models can 728 
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be generalized to other cultivars and growth environments. The fact that the single-729 

plant setup only profiles one specific cultivar at a time may be seen as a 730 

disadvantage with respect to the classical TWAS setup, in which multiple cultivars 731 

are modeled simultaneously. On the other hand, as the phenotypic effects of 732 

expression variants often depend on the genetic background (epistasis) and 733 

environment in which they are introduced, it might in fact make sense to study the 734 

molecular wiring of a trait in a specific cultivar and environment before attempting 735 

generalizations to other cultivars or growth environments, in particular for plant 736 

species with large pan-genomes such as maize (Gore et al., 2009; Hirsch et al., 737 

2014; Lu et al., 2015). The single-plant setup might for instance be used for studying 738 

an elite cultivar directly in a target field environment in which yield or stress tolerance 739 

improvements are desired. 740 

 741 

 742 

 743 

 744 

METHODS 745 

Field trial setup, sampling and phenotyping 746 

During the summer of 2015, 560 B104 maize inbred plants were grown under 747 

‘uncontrolled’ field conditions at a site in Zwijnaarde, Belgium (51°00'35.2"N, 748 

3°42'56.5"E) with a sowing density of approximately 177,778 plants per hectare. 749 

Plants were sown by hand in ten adjacent rows of 5.5 m length, 75 cm apart and 750 

each containing 56 maize B104 plants. To the North and West of the B104 plants the 751 

commercial hybrid ‘Ricardino’ was sown, while to the East more B104 plants were 752 

grown and to the South other hybrids and recombinant inbred lines were grown, 753 

separated from the B104 plants by a 2.5 m-wide path (Figure 1A). 754 

In total, 200 non-border plants that exhibited a primary ear at leaf 16 were harvested 755 

at the VT (tasseling) stage. Since not all plants reached this stage at the same time, 756 

plants were harvested on two different dates, 2015-08-25 (164 plants) and 2015-09-757 

02 (36 plants). On each of these days, harvesting and sampling occurred from 10 am 758 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 6, 2020. ; https://doi.org/10.1101/2020.04.06.027300doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.06.027300


25 
 

until noon. Damaged plants were discarded to avoid outliers in the data. The position 759 

in the field was recorded for the harvested plants, and plant height was measured 760 

from the plant base to the collar of the top leaf. The primary ear leaf (leaf 16) of each 761 

selected plant was cut off at the ligule. Leaf 16 blade length was measured from the 762 

ligule to the tip of the leaf while leaf 16 blade width was measured in the middle 763 

between the ligule and the leaf tip. For molecular data generation, a 10 cm-long part 764 

of the leaf was cut from the middle of the leaf 16 blade, the midrib was removed (to 765 

avoid detection of exogenous metabolites during untargeted metabolite profiling) and 766 

the resulting mature leaf samples were stored in liquid nitrogen on the field. Primary 767 

ears were also cut off from the plants, and the length of the ears and husk leaves 768 

(from base to tip) was measured on the field. 769 

RNA sequencing 770 

Sixty of the 200 leaf samples for individual plants were randomly selected for RNA 771 

sequencing. Total RNA was isolated with the guanidinium thiocyanate-phenol-772 

chloroform extraction method using TRI-reagent (Sigma-Aldrich). Total RNA was 773 

sent to GATC Biotech for RNA-sequencing. Library preparation was done using the 774 

NEBNext Kit (Illumina). In brief, purified poly(A)-containing mRNA molecules were 775 

fragmented, randomly primed strand-specific cDNA was generated and adapters 776 

were ligated. After quality control using an Advanced Analytical Technologies 777 

Fragment Analyzer, clusters were generated through amplification using cBOT 778 

(Cluster Kit v4, Illumina), followed by sequencing on an Illumina HiSeq2500 with the 779 

TruSeq SBS Kit v3 (Illumina). Sequencing was performed in paired-end mode with a 780 

read length of 125�bp. 781 

The raw RNA-seq data was processed using a custom Galaxy pipeline (Goecks et 782 

al., 2010) implementing the following steps. First, the fastq files were quality-checked 783 

using FastQC (v:0.5.1) (Andrews, 2010). Next, Trimmomatic (v:0.32.1) (Bolger et al., 784 

2014) was used to remove adapters, read fragments with average quality below 10 785 

and trimmed reads shorter than 20 base pairs. The trimmed and filtered reads were 786 

mapped against the Zea mays AGP genome annotation v:3.23 (Schnable et al., 787 

2009) using GSNAP v:2013-06-27 (Wu and Nacu, 2010). A k-mer size of 12 was 788 

used, the ‘local novel splicing event’ parameter was set to 50,000, and default values 789 

were used for the rest of the parameters. The option for splitting the bam files into 790 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 6, 2020. ; https://doi.org/10.1101/2020.04.06.027300doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.06.027300


26 
 

unique and multiple alignments was activated, and only the uniquely mapping reads 791 

were kept for the following analyses. The mapping files were quantified using HTSeq 792 

v:0.6.1p1 (Anders et al., 2015) with the option ‘Intersection-strict’ and using the Zea 793 

mays AGP genome annotation v:3.23 (Schnable et al., 2009). The resulting raw 794 

counts were filtered to only keep genes with at least 5 counts per million in at least 1 795 

sample. Then, raw counts were divided by size factors calculated by DEseq2 796 

(v:1.14.1) (Love et al., 2014), resulting in library size-corrected gene expression 797 

values for 18,171 genes across 60 plants. Pseudocounts of 0.5δ, with δ the smallest 798 

non-zero value in the normalized expression matrix, were added to all gene 799 

expression values. For all downstream analyses except coefficient of variation (CV) 800 

calculations, the resulting expression matrix was log2-transformed.   801 

Metabolome Profiling 802 

Fifty of the 60 leaf samples selected for RNA sequencing were additionally 803 

metabolome-profiled. For metabolome analysis, 100 mg of frozen, grinded mature 804 

leaf 16 material for the selected maize plants was sent to Metabolon Inc. (Durham, 805 

NC, USA). Sample extracts were prepared using the automated MicroLab STAR® 806 

system from Hamilton Company and divided into five fractions. Samples were 807 

normalized based on dry weight and further processed and analyzed by Metabolon 808 

for untargeted metabolic profiling involving a combination of four independent 809 

approaches: two separate reverse phase (RP)/UPLC-MS/MS analyses with positive 810 

ion mode electrospray ionization (ESI), RP/UPLC-MS/MS analysis with negative ion 811 

mode ESI and HILIC/UPLC-MS/MS analysis with negative ion mode ESI. All 812 

methods utilized a Waters ACQUITY ultra-performance liquid chromatographer 813 

(UPLC) and a Thermo Scientific Q-Exactive high resolution/accuracy mass 814 

spectrometer interfaced with a heated electrospray ionization (HESI-II) source and an 815 

Orbitrap mass analyzer operated at a mass resolution of 35,000. Sample extracts 816 

were dried and then reconstituted in solvents compatible to each of the four methods. 817 

Each reconstitution solvent contained a series of standards at fixed concentrations to 818 

ensure injection and chromatographic consistency. One aliquot was analyzed using 819 

acidic positive ion conditions, chromatographically optimized for more hydrophilic 820 

compounds. In this method, the extract was gradient eluted from a C18 column 821 

(Waters UPLC BEH C18-2.1x100 mm, 1.7 µm) using water and methanol, containing 822 

0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). Another aliquot 823 
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was analyzed using acidic positive ion conditions, chromatographically optimized for 824 

more hydrophobic compounds. In this method, the extract was gradient eluted from 825 

the same aforementioned C18 column using methanol, acetonitrile, water, 0.05% 826 

PFPA and 0.01% FA and was operated at an overall higher organic content.  Another 827 

aliquot was analyzed using basic negative ion optimized conditions using a separate 828 

dedicated C18 column.   The basic extracts were gradient eluted from the column 829 

using methanol and water, however with 6.5mM Ammonium Bicarbonate at pH 8. 830 

The fourth aliquot was analyzed via negative ionization following elution from a HILIC 831 

column (Waters UPLC BEH Amide 2.1x150 mm, 1.7 µm) using a gradient consisting 832 

of water and acetonitrile with 10mM Ammonium Formate, pH 10.8. The MS analyses 833 

alternated between MS and data-dependent MS scans using dynamic exclusion.  834 

The scan range varied slighted between methods but covered 70-1,000 m/z. Raw 835 

data was extracted, peak-identified and QC processed using Metabolon’s hardware 836 

and software. Compounds were identified by comparison to library entries of more 837 

than 3,300 purified standards or recurrent unknown entities. Metabolon’s library was 838 

based on authenticated standards that contain the retention time/index (RI), mass to 839 

charge ratio (m/z), and chromatographic data (including MS/MS spectral data) of all 840 

molecules present in the library.  841 

The metabolite profiles used in the downstream analyses were obtained from the raw 842 

data delivered by Metabolon Inc. as follows.  Log2 transformation was applied to the 843 

initial matrix containing the levels of 601 metabolites across 50 samples. Outliers 844 

were identified iteratively using two-tailed Grubbs tests (threshold for outlier detection 845 

was p = 0.01) and converted to missing values (NA). Metabolites with missing values 846 

for more than half of the samples were removed, resulting in a matrix containing the 847 

levels of 592 metabolites across 50 samples. To deal with residual missing values, 848 

imputation was performed using Bayesian principal component analysis (BPCA) with 849 

48 components (using the pca function of the pcaMethods R package, v:1.76.0 with 850 

method=”bpca”, scaling=”uv” (unit variance), npcs=48). Finally, quantile normalization 851 

was applied to give each sample the same data distribution. This matrix was used for 852 

downstream analysis, except for CV calculations where the raw metabolite values 853 

were used instead. 854 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 6, 2020. ; https://doi.org/10.1101/2020.04.06.027300doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.06.027300


28 
 

Clustering analyses 855 

The transcriptome and metabolome datasets were z-scored and jointly clustered 856 

using the ward.D2 hierarchical clustering method (Murtagh and Legendre, 2014) 857 

included in the R stats package (v:3.6.0), and using squared Euclidean distance as 858 

the distance measure. The same protocol was used for clustering the RNA-seq 859 

datasets sampled from the Short Read Archive v. 2018/01/30 (Leinonen et al., 2011) 860 

(see further). Additionally, the single-plant transcriptome dataset was analyzed using 861 

the biclustering algorithms ISA (Bergmann et al., 2003), SAMBA (Tanay et al., 2002), 862 

both part of EXPANDER v:7.1 (Hait et al., 2019), and ENIGMA v:1.1 (Maere et al., 863 

2008). For biclustering, the log2 expression values were transformed to log2 fold 864 

changes with respect to the mean log2 gene expression across the individual plants. 865 

Default parameters were used for running ISA. For SAMBA, default parameter 866 

settings were used except for the setting ‘use option files of type’ = valsp_3ap. For 867 

ENIGMA, default parameters were used, except for ‘fdr’=0.001, ‘fdrBiNGO’=0.01, 868 

‘namespaces’=biological_process and ‘pvalThreshold’ = 0.6296976. The latter 869 

threshold is the standard deviation of the log2 fold changes across the entire RNA-870 

seq dataset, which, by lack of differential expression p-values for the single plants, is 871 

used by ENIGMA as a threshold for discretizing transcript log2 fold changes into the 872 

categories ‘upregulated’, ‘downregulated’ and ‘unchanged’. 873 

Gene Ontology (GO) enrichment analyses 874 

The gene ontology file used for GO enrichment analyses was downloaded on 30th 875 

August 2016 from the Gene Ontology website (The Gene Ontology Consortium, 876 

2017). A GO annotation file for AGP maize genome version 3.23 was parsed from 877 

the functional annotations provided by PLAZA (Proost et al., 2015), development 878 

version cnb 02, on 27th November 2017. To ensure that all the functional annotations 879 

found for the genes in the AGP maize genome version 2 were included in our 880 

analyses, we also included the maize gene functional annotations provided by the 881 

older PLAZA 3.0 platform (Proost et al., 2015), taking into account gene identifier 882 

changes from maize genome version 2 to version 3 as recorded in MaizeGDB 883 

(Portwood et al., 2018). Given the lack of maize genes annotated to the C4 884 

photosynthesis category in GO,  we manually added annotations to this category for 885 

78 genes identified as C4 genes by Li et al. (2010). In all GO enrichment analyses, 886 
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enrichment p-values were calculated using hypergeometric tests and adjusted for 887 

multiple testing (q-values) using the Benjamini-Hochberg (BH) procedure (Benjamini 888 

and Hochberg, 1995), which controls the false discovery rate (FDR). For GO 889 

enrichment analyses on (bi)clustering results, multiple testing correction was done for 890 

each cluster separately. Genes annotated to the categories ‘DNA binding 891 

transcription factor activity’ (GO:0003700), ‘signal transducer activity’ (GO:0004871) 892 

and ‘regulation of transcription - DNA-templated’ (GO:0006355) were combined in a 893 

list of potential regulators (Supplemental Data Set 16), for use in the ENIGMA 894 

analysis, the literature screen for evidence supporting our gene function predictions, 895 

and some of the phenotype prediction models, namely those that use a predefined 896 

list of regulators as potential predictors (see further). 897 

Spatial autocorrelation analyses and correlation network generation  898 

Spatially autocorrelated transcripts, metabolites and phenotypes were detected using 899 

Moran’s I with an inverse distance-weighted matrix in the Ape package (v:5.2) in R 900 

(v:3.6.0)  (Paradis and Schliep, 2018). The p-values computed by the Ape package 901 

were adjusted for multiple testing with the BH method. The z-scored profiles of all 902 

transcripts with q ≤ 0.01 were assigned to clusters using the Tight Clustering 903 

algorithm (Tseng and Wong, 2005) (parameters: seed = 1, kmin = 35, nstart = 50, 904 

resamp = 10). Associations between a given spatially autocorrelated transcript 905 

cluster and any phenotypes were assessed by testing for Pearson correlation 906 

between the average z-scored gene expression profile of the cluster and the 907 

phenotype profiles. The resulting p-values were corrected per phenotype using the 908 

BH method. 909 

For each pair of genes x and y in the single-plant transcriptome dataset, a ‘spatially 910 

adjusted Pearson correlation’ was computed by z-scoring the log2 gene expression 911 

profiles of both genes and fitting the following model to the data: 912 � � �� �  � 

with β the correlation coefficient and ε an error term with a spherical covariance 913 

structure. That is, ε is assumed to follow a 60-dimensional (= number of plant 914 

samples) multivariate normal distribution with mean zero and a covariance matrix 915 

given by: 916 

cov��, �� � �� � �� � �1 � �� � corSpher��, ��� 
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where σ is the magnitude of the noise (comparable to the standard deviation of an 917 

independent normal distribution), the nugget n determines which proportion of the 918 

residuals is governed by spatial auto-covariance, and corSpher��, �� is given by: 919 

corSpher��, �� � ���� � �, 1 � 1.5 � ��� � � 0.5 � "��� � #�

��� $ �, 0 % 
with dij the physical distance between plants i an j in the field. The range parameter r 920 

is related to the distance at which two plants become independent of one another. 921 

The spherical covariance structure was chosen as it gave the most meaningful range 922 

estimates (within bounds of the field when n ≠ 1) and the best overall performance as 923 

measured by the Bayesian Information Criterion (BIC). All four parameters (β, r, n, σ) 924 

were optimized with restricted maximum likelihood optimization using the nlme 925 

package (Linear and Nonlinear Mixed Effects Models, v:3.1-140) (Pinheiro et al., 926 

2019) in R (v:3.6.0). Although there is an asymmetry in the regression equation, 927 

swapping x and y for gene pairs with a range estimate r above zero gave parameter 928 

estimates that were not meaningfully different.  929 

For most gene pairs r converged to zero or n converged to 1, which means the best-930 

fit model is one without spatial covariance, yielding the exact same correlation 931 

coefficient β and corresponding p-value as a normal ordinary least-squares (OLS) 932 

regression or Pearson correlation on the z-scored variables (up to rounding errors). 933 

Only for about 10% of the gene pairs, r converged to a non-zero distance. This 934 

means that for about 10% of gene pairs, there would be spatial structure left in the 935 

residuals of an OLS regression, violating the assumption of independence in OLS 936 

regression. All p-values were Bonferroni-corrected, and correlations with corrected p-937 

values ≤ 0.01 were included as edges in the correlation network.    938 

The correlation network obtained from the single-plant datasets was compared with 939 

networks obtained from traditional RNA-seq datasets sampled from the Short Read 940 

Archive v. 2018/01/30 (Leinonen et al., 2011). The raw RNA-seq data downloaded 941 

from the SRA in first instance involved all transcriptome data on Zea mays profiled 942 

with Illumina sequencing platforms. Only runs profiling mRNA (as opposed to e.g. 943 

small RNAs) with an average read length > 30 bp and ≥ 4.106 reads were retained. In 944 

many cases, the meta-information obtained from SRA did not specify the genotype 945 
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and tissue profiled in the RNA-seq experiments. We therefore used information from 946 

the BioSample database (https://www.ebi.ac.uk/biosamples/, v. 2018/02/28) to select 947 

only RNA-seq datasets produced on leaves of the maize inbred line B73, discarding 948 

crosses, mutants and NILS. Only samples with a unique BioSample ID were retained 949 

to avoid data replication. This led to a compendium of 470 unique RNA-seq samples 950 

(Supplemental Data Set 8), which were preprocessed and normalized in the same 951 

way as the single-plant samples. As an additional data quality filtering step, samples 952 

with <80% uniquely mapping reads, samples with a clearly divergent data distribution 953 

and samples with less than 20,000 expressed genes were discarded. This resulted in 954 

a compendium of 407 RNA-seq samples, which we randomly sampled without 955 

replacement to extract 500 compendia of 60 samples. For each of these randomly 956 

sampled compendia, a correlation network was built using Pearson correlation. Note 957 

that in contrast to the single-plant dataset, spatial autocorrelation correction is not 958 

necessary for the datasets sampled from SRA. Every sampled network was 959 

thresholded to obtain the same number of edges as obtained for the single-plant 960 

network.      961 

Gene function prediction 962 

Gene functions (GO Biological Process annotations) were predicted from the single-963 

plant correlation network and all 500 sampled networks using a command-line 964 

version of PiNGO (v:1.11) (Smoot et al., 2011). PiNGO predicts the function of a 965 

given gene based on the GO annotations of its neighbors in a given network, using 966 

hypergeometric GO enrichment tests on the gene’s network neighborhood. The 967 

resulting p-values were adjusted for multiple testing (for each input network 968 

separately) using the BH method. The overall function prediction performance of the 969 

single-plant and sampled networks was calculated as in (Bhosale et al., 2013). Recall 970 

and precision of the functional predictions for a given gene in a given network were 971 

calculated as described by (Deng et al., 2004) using the known maize GO 972 

annotations as gold standard, and the overall recall and precision values for the 973 

given network were obtained by averaging across all genes in the network. Next to 974 

this overall analysis of gene function prediction performance, we also assessed how 975 

accurately the networks predicted genes involved in specific GO Biological 976 

Processes. For these analyses, recall (R) and precision (P) were calculated in the 977 

traditional way as & � '(/�'( � *�� and + � '(/�'( � *(� with tp the number of true 978 
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positives, fp the number of false positives and fn the number of false negatives 979 

identified.  980 

For every GO category and overall, the recall, precision, and F-measure (harmonic 981 

mean of recall and precision) of the predictions were calculated for every network at 982 

prediction q-value thresholds ranging from 10-2 to 10-11. Undefined precisions and F-983 

measures, resulting from a network not producing any predictions at a given q-value 984 

threshold, were set to 0 in order to reflect poor performance of the network at the q-985 

value concerned. The relative prediction performance of the single-plant network with 986 

respect to the sampled networks was classified as very good, good, average, poor, 987 

or very poor based on the root mean square deviation of the single-plant network F-988 

measures from the 25th, 50th, and 75th percentiles of the sampled network F-989 

measures over the FDR subrange in which either the single-plant network or at least 990 

250 of the 500 sampled networks, or both, exhibited non-zero F-measures.  991 

Predictive models for phenotypes 992 

Phenotypes were regressed on the expression of single genes using a mixed model 993 

with the following formulation: 994 

� � �� �  �� �  � 

with x the log2 expression of a given gene and y the phenotype value. The error ε is 995 

assumed to follow a multivariate normal distribution with a rational quadratic 996 

distance-based covariance function. That is, the covariance of ε is described by: 997 

cov��, �� � �� � �� � �1 � �� � corRatio��, ��� 

Where σ  is the magnitude of the noise and n determines which proportion of the 998 

residuals is governed by spatial auto-covariance. The correlation function 999 01�&2'�1��, �� between two samples i and j is given by: 1000 

corRatio��, �� �  1 31 �  "��� � #�45  

with dij the physical distance between plants i an j in the field. The range parameter r 1001 

is related to the distance at which two plants become independent of one another. 1002 

The ratio kernel was chosen because it gave meaningful range estimates 1003 
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(Supplemental Figure 6) and the best overall performance as measured by BIC. 1004 

Regression analyses were performed using the nlme package (v:3.1-140)(Pinheiro et 1005 

al., 2019) in R (v:3.6.0). p-values were adjusted for each phenotype separately using 1006 

the BH method. 1007 

Elastic net and random forest methods were used to learn multi-feature predictive 1008 

models for the phenotypes using transcript levels, metabolite levels or both as 1009 

features. Elastic net and random forest models were also built using as features only 1010 

the transcript levels of a predefined set of regulators (Supplemental Data Set 16). 1011 

Both types of models were built with the scikit-learn package (v:0.21.0) (Pedregosa 1012 

et al., 2011) in Python. For elastic net models, the maximum number of iterations 1013 

(parameter ‘max_iter’) was set to 106. For random forest models, the number of 1014 

estimators, i.e. the number of averaged trees, was set to 500, the ‘criterion’ 1015 

parameter was set to 'mse' and the ‘bootstrap’ parameter was set to ‘True’. For each 1016 

phenotype, models were built with each method on each feature set using 10-fold 1017 

nested cross-validation. For each of the 10 outer folds, 4 inner folds were used to 1018 

tune the model hyperparameters (the shrinkage parameter α and the L1-ratio ρ for 1019 

elastic nets ; the ‘max_features’ parameter with possible values 'sqrt', 0.33, 'log2' and 1020 

'None' and the ‘min_samples_split’ parameter with possible value 2, 3, 4 and 5 for 1021 

random forests). After completing the inner cross-validation, the combination of 1022 

hyperparameters that scored best on test data across the 4 folds were used to retrain 1023 

the model on all 4 folds combined, yielding 10 trained models with optimized 1024 

hyperparameters per phenotype (GridSearchCV function in scikit-learn). Each of the 1025 

10 models was used to predict the phenotypes of the 6 hold-out samples for the fold 1026 

it was trained on, yielding 60 ‘test data’ predictions in total, one for each sample.   1027 

The ‘out-of-bag’ (oob) R2 score, defined as &� � 1 �  ∑��� � �7� �� ∑��� �  �8��⁄  where 1028 �7� and �� are the predicted and observed phenotypes for sample i, respectively, and 1029 

where � is the mean of the observed phenotypes, was used to measure how well the 1030 

predictions align with the true phenotypes. Note that the meaning of this oob R2 is 1031 

different from the classical meaning of R2, which is the percentage of variance 1032 

explained by a linear model. As opposed to the classical R2, the oob R2 can become 1033 

negative when the sum of squared errors (numerator) is larger than the variance of 1034 

the data (denominator). When all predictions �7� equal the mean �8, the oob R2 equals 1035 

zero. A negative oob R2 score indicates that the model does worse than assigning 1036 
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the mean phenotype value of the training samples to the unseen samples. Positive 1037 

oob R2 scores indicate that the model does better than predicting the mean, and a 1038 

model that perfectly predicts the unseen phenotypes has an oob R2 score of one. We 1039 

report two oob R2 scores for each model, the ‘pooled R2’ score and the ‘median R2’ 1040 

score. For calculating the pooled R2, the test set predictions of all folds were taken 1041 

into account together to calculate one oob R2 value that summarizes all folds. The 1042 

‘median R2’ score is the median of the oob R2 scores calculated for each fold 1043 

independently.  1044 

For modeling methods that use built-in feature selection/reduction techniques, such 1045 

as elastic nets and random forests, an analytical statistical framework to assess 1046 

whether models perform better than expected by chance is lacking. A typical solution 1047 

used is to compute empirical p-values by applying the same data analysis to a large 1048 

number of datasets that follow the null hypothesis of no relation between the 1049 

dependent and independent variables, and comparing the parameter values and 1050 

performance measures of the model to their empirical null distributions (Ojala and 1051 

Garriga, 2010; Steinfath et al., 2010; Riedelsheimer et al., 2012). 500 datasets 1052 

following the null hypothesis of no relation between gene expression and phenotypes 1053 

were generated by randomly permuting the phenotypes among the 60 plants. The 1054 

following formula (Ojala and Garriga, 2010) was used to calculate p-values for the 1055 

original oob R2 scores: 1056 

( � n � 1; � 1 

Where n is the number of times that a permuted model gave an equal or better R2 1057 

score than the ‘true’ model. Following (Ojala and Garriga, 2010), the standard 1058 

deviation on the empirical p-value can be calculated as <����	��


�
, where k is the 1059 

number of permutations and p* is the true p-value. This underlying true p-value is 1060 

unknown, but at the critical p* = 0.05, the calculated standard deviation on the 1061 

empirical p-value when using 500 permutations is 0.0097, which is sufficiently low for 1062 

our purposes.  1063 

Accession Numbers 1064 

RNA-seq data have been deposited in the ArrayExpress database at EMBL-EBI 1065 

(www.ebi.ac.uk/ arrayexpress) under accession number E-MTAB-8944. Sequence 1066 
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data from this article can be found in the Maize Genetics and Genomics Database 1067 

(MaizeGDB) or GenBank/ EMBL databases under the following accession numbers: 1068 

MADS1 (GRMZM2G171365), hb126 (GRMZM2G034113), WRKY53 1069 

(GRMZM2G012724), WRKY92 (GRMZM2G449681), AP2-EREBP 1070 

(GRMZM2G042756), WRKY40 (GRMZM2G120320), XLG3b (GRMZM2G429113), 1071 

MPK3-1 (GRMZM2G053987), TPS13.1 (GRMZM2G416836), CSP41A 1072 

(GRMZM2G111216), CRB (GRMZM2G165655), SIG5 (GRMZM2G543629), prh2 1073 

(GRMZM2G140288), hb26 (GRMZM2G010929), PHR2 (GRMZM2G158662), 1074 

ZMM15 (GRMZM2G553379), ZAP1 (GRMZM2G148693), unknown 1075 

(GRMZM2G023625), unknown (GRMZM2G377311), MPK14 (GRMZM2G062914), 1076 

unknown (GRMZM2G430780) 1077 

Supplemental Data 1078 

Supplemental Data Set 1. Transcriptome, metabolome, field position and phenotype 1079 

data for the individual plants profiled in this study. 1080 

Supplemental Data Set 2. Spatially autocorrelated transcripts, metabolites and 1081 

phenotypes in the single-plant dataset. 1082 

Supplemental Data Set 3. Spatially autocorrelated gene clusters in the single-plant 1083 

dataset. 1084 

Supplemental Data Set 4. Significant correlations between the average expression 1085 

profiles of spatially autocorrelated gene clusters and phenotypes. 1086 

Supplemental Data Set 5. Gene expression statistics for single-plant dataset. 1087 

Supplemental Data Set 6. Functional enrichment analysis of variably and stably 1088 

expressed genes. 1089 

Supplemental Data Set 7. GO enrichment analysis of clusters and biclusters 1090 

obtained from the single-plant transcriptome data. 1091 

Supplemental Data Set 8. List of Sequence Read Archive (SRA) samples used to 1092 

calculate sampled networks. 1093 

Supplemental Data Set 9. List of target GO terms used for category-specific gene 1094 

function predictions. 1095 
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Supplemental Data Set 10. Gene function prediction performance plots for the GO 1096 

categories listed in Supplemental Data Set 9. 1097 

Supplemental Data Set 11. Novel gene function predictions based on the single-1098 

plant co-expression network. 1099 

Supplemental Data Set 12. Transcripts significantly correlated with plant 1100 

phenotypes. 1101 

Supplemental Data Set 13. Elastic net and random forest feature importance scores 1102 

for blade length predictive models. 1103 

Supplemental Data Set 14. Elastic net and random forest feature importance scores 1104 

for blade width predictive models. 1105 

Supplemental Data Set 15. Elastic net and random forest feature importance scores 1106 

for husk leaf length predictive models. 1107 

Supplemental Data Set 16. List of regulatory genes annotated to the GO categories 1108 

GO:0003700, GO:0006355 or GO:0004871. 1109 
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FIGURE LEGENDS 1120 

 1121 

Figure 1. Field trial design and exploratory data analysis. (A) Layout of the field 1122 

trial. A total of 560 Zea mays B104 plants were grown in a grid of 10 rows by 56 1123 

columns. Border rows 0 and 9 are not shown on the plot, and the dimensions on the 1124 

figure are not to scale. Phenotypic data was measured for 200 plants (p). 1125 

Transcriptome (RNA-seq) data was profiled for 60 out of those 200 plants (t+p). 1126 

Metabolome data is available for 50 out of those 60 plants (t+m+p). Some plants 1127 

were harvested later (see Methods), as indicated by a thicker cell border. (B) Plot 1128 

showing the first two principal components (PCs) in a PCA of the 60 single-plant 1129 

transcriptomes. (C) Plot showing the first two principal components (PCs) in a PCA of 1130 

the 50 single-plant metabolomes. (D) Plot showing the first two principal components 1131 

(PCs) in a PCA of the 200 plant phenomes. Light grey markers in panel (D) indicate 1132 

plants for which only phenotype information is available. Only plants for which 1133 

transcriptome data is available are numbered in plots (B)-(D), according to the 1134 

numbering in panel (A). Crosses in panels (B)-(D) indicate plants harvested on the 1135 

second harvest day. 1136 

 1137 

Figure 2. Transcriptomic, metabolic and phenotypic variability among 1138 

individual field-grown maize plants. In panels (A) to (E), violin plots show the 1139 

variability in continuous leaf 16, ear and plant height phenotypes among individual 1140 

plants. Panel (F) depicts the variability in harvesting date among plants, as well as 1141 

the variability in two discrete phenotypes, namely the number of leaves at harvest 1142 

and whether or not leaf 16 was kinked. Panel (G) shows violin plots for the 1143 

distribution of the coefficient of variance (CV) across the sampled plants for the levels 1144 

of individual transcripts and metabolites. For visualization purposes, the transcript CV 1145 

was capped at 2.0. In all violin plots, the median is indicated by the white circle. The 1146 

black box extends from the 25th to the 75th percentile, and black whiskers extend 1147 

from each end of the box to the most extreme values within 1.5 times the interquartile 1148 

range from the respective end. Data points beyond this range are shown as black 1149 

dots. The red open circle indicates the mean of the distribution, with red whiskers 1150 

extending to 1 standard deviation above and below the mean. 1151 

 1152 
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Figure 3. Gene expression patterns in cluster 29 correlate with ear length. The 1153 

top panel displays the average z-scored gene expression profile of spatially 1154 

autocorrelated gene cluster 29 (35 genes), mapped to the field. The bottom panel 1155 

displays the ear length phenotype on the field (only for plants that were transcriptome 1156 

profiled). Shown on top are the Pearson’s correlation (r) between the cluster 29 1157 

expression profile and ear length, the corresponding p-value (computed using 1158 

cor.test in R) and the corresponding q-value (computed using the Benjamini-1159 

Hochberg method on all comparisons of cluster gene expression profiles with the ear 1160 

length profile). The scales on the top and to the right of the field maps give field plot 1161 

dimensions in cm. 1162 

 1163 

Figure 4. Example ENIGMA module learned from the single-plant transcriptome 1164 

dataset. Yellow/blue squares indicate higher/lower gene expression with respect to 1165 

the average expression of a gene across plants. The bottom grid shows the 1166 

expression profiles of the module genes, while the top grid contains the expression 1167 

profiles of predicted regulators of the module. Significant co-differential expression 1168 

links between the regulators and the module genes are indicated in the red/green 1169 

matrix to the right (green = positively correlated, red = negatively correlated). Gene 1170 

names highlighted in red indicate regulators that are part of the module. Genes 1171 

indicated as core genes belong to the original module seed, other genes were 1172 

accreted by the seed in the course of module formation (Maere et al., 2008). 1173 

Enriched GO categories in the module gene set are displayed on the right, with 1174 

orange squares depicting which module genes are annotated to these GO 1175 

categories. This particular module is significantly enriched (q ≤ 0.01) in known 1176 

reproductive system development genes, mostly regulators. 1177 

 1178 

Figure 5. Global gene function prediction performance. Panels (A) to (D) depict 1179 

the gene function prediction performance of the single-plant network (solid line) and 1180 

500 sampled networks (box-and-whisker plots) averaged across all genes in a given 1181 

network. Boxes extend from the 25th to the 75th percentile of the sampled networks, 1182 

with the median indicated by the central black line. Whiskers extend from each end of 1183 

the box to the most extreme values within 1.5 times the interquartile range from the 1184 

respective end. Data points beyond this range are displayed as open black circles. 1185 

Panels (A), (B) and (C) respectively represent the recall, precision and F-measure of 1186 
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the network-based gene function predictions as a function of the prediction FDR 1187 

threshold (q). Panel (D) depicts the number of gene functions predicted from each 1188 

network (predicted positives = true positives + false positives) as a function of the 1189 

prediction FDR threshold. As multiple gene functions can be predicted per gene, the 1190 

number of predicted positives is generally higher than the number of genes. 1191 

 1192 

Figure 6. Gene function prediction performance for specific GO categories. 1193 

Panels (A) to (D) show the gene function prediction performance of the single-plant 1194 

network versus sampled networks for GO categories related to abiotic stimulus 1195 

responses, development, biotic stimulus responses and hormone responses, 1196 

respectively. Categories are shown in the context of the GO hierarchy and colored 1197 

according to how well the single-plant network performs in comparison with 500 1198 

sampled networks (see Methods). Solid arrows represent direct parent-child 1199 

relationships in GO, dashed arrows represent indirect relationships. Grey nodes 1200 

depict untested GO categories. White nodes depict GO categories for which there 1201 

was insufficient information to score the performance of the single-plant network 1202 

versus the sampled networks, i.e. categories for which the single-plant network and 1203 

more than half of the sampled networks did not give rise to any predictions at q ≤ 1204 

10e-2. 1205 

 1206 

Figure 7. Predictive models for leaf 16 blade length and width. Graphs plotting 1207 

predicted versus measured phenotypes are shown for (A) the random forest model 1208 

for leaf 16 blade length using only transcript levels of regulators as predictors, and 1209 

(B) the e-net model for leaf 16 blade width using only transcript levels of regulators 1210 

as predictors. The dot colors represent different outer cross-validation folds. Perfect 1211 

predictions are located on the diagonal line in each panel. 1212 

  1213 
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TABLES 1214 

Table 1. Topological parameters for the single-plant and sampled expression 1215 

correlation networks. The ‘predicted positives’ column indicates the amount of true 1216 

positive plus false positive predictions made by each type of network at q ≤ 0.01. 1217 

  
# nodes # edges network 

density 

average 
clustering 
coefficient 

unannotated 
gene 

fraction 

predicted 
positives 

single-plant network 10,951 771,610 0.012869 0.477319 0.087024 253,430 

sampled networks mean 9,756 771,610 0.016831 0.475485 0.090594 152,427 

sampled networks sd 1,132 0 0.003635 0.022108 0.004078 23,167 

p-value 0.146 - 0.146 0.476 0.198 0.002 

 1218 

 1219 

 1220 

 1221 

  1222 
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Table 2. Performance of e-net and random forest models for phenotype 1223 
prediction. Three different sections of the table show the pooled R2, median R2 and 1224 
Pearson correlation (PCC) measures for the prediction performance of the models 1225 
learned for all phenotypes using all transcripts (Transcripts), only regulatory 1226 
transcripts (Regulators), all metabolites (Metabolites), and both transcripts and 1227 
metabolites (Both) as features. Numbers between parentheses indicate p-values for 1228 
the oob R2 values obtained, derived from permutation tests. No permutation tests 1229 
were performed for the ear length and plant height phenotypes, given the poor oob 1230 
R2 values of the models concerned. 1231 

Pooled R
2
 

Trait Transcripts Regulators Metabolites Both 

Blade 16 

length 

Elastic Net  0.345 (0.002) 0.409 (0.002) 0.412 (0.002) 0.226 (0.004) 

Random Forest 0.567 (0.002) 0.609 (0.002) 0.323 (0.004) 0.474 (0.002) 

Blade 16 

width 

Elastic Net  0.659 (0.002) 0.582 (0.002) 0.611 (0.002) 0.622 (0.002) 

Random Forest 0.274 (0.002) 0.312 (0.002) 0.388 (0.002) 0.229 (0.004) 

Husk leaf 

length  

Elastic Net  0.438 (0.002) 0.445 (0.002) 0.519 (0.002) 0.412 (0.002) 

Random Forest 0.274 (0.002) 0.337 (0.002) 0.461 (0.002) 0.315 (0.002) 

Ear 

length  

Elastic Net  0.057 0.084 0.082 0.129 

Random Forest 0.115 0.091 0.162 0.137 

Plant 

height 

Elastic Net  -0.058 -0.045 -0.036 -0.043 

Random Forest -0.061 -0.059 0.008 -0.096 

Median R
2
 

Trait Transcripts Regulators Metabolites Both 

Blade 16 

length 

Elastic Net  0.234 (0.002) 0.318 (0.002) 0.314 (0.002) -0.199 (0.471) 

Random Forest 0.531 (0.002) 0.534 (0.002) 0.325 (0.004) 0.379 (0.002) 

Blade 16 

width 

Elastic Net  0.726 (0.002) 0.582 (0.002) 0.481 (0.002) 0.641 (0.002) 

Random Forest 0.279 (0.002) 0.322 (0.002) 0.521 (0.002) 0.192 (0.004) 

Husk leaf 

length  

Elastic Net  0.501 (0.002) 0.471 (0.002) 0.295 (0.002) 0.392 (0.002) 

Random Forest 0.280 (0.002) 0.267 (0.002) 0.431 (0.002) 0.197 (0.002) 

Ear 

length  

Elastic Net  0.149 0.129 -0.045 -0.054 

Random Forest 0.122 0.029 -0.047 -0.154 

Plant 

height 

Elastic Net  -0.205 -0.169 -0.433 -0.336 

Random Forest -0.213 -0.261 -0.291 -0.375 

PCC 

Trait  Transcripts Regulators Metabolites Both 

Blade 16 

length 

Elastic Net  0.592 0.641 0.645 0.477 

Random Forest 0.782 0.789 0.586 0.726 

Blade 16 

width 

Elastic Net  0.821 0.765 0.784 0.808 

Random Forest 0.560 0.573 0.664 0.542 

Husk leaf 

length 

Elastic Net  0.670 0.669 0.734 0.665 

Random Forest 0.605 0.630 0.704 0.638 

Ear 

length 

Elastic Net  0.295 0.304 0.299 0.361 

Random Forest 0.341 0.305 0.404 0.376 

Plant 

height 

Elastic Net  -0.168 -0.161 0.106 -0.091 

Random Forest 0.021 0.053 0.160 -0.105 

1232 
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Figure 1. Field trial design and exploratory data analysis. (A) Layout of the field trial. A total 
of 560 Zea mays B104 plants were grown in a grid of 10 rows by 56 columns. Border rows 0 
and 9 are not shown on the plot, and the dimensions on the figure are not to scale. Phenotypic 
data was measured for 200 plants (p). Transcriptome (RNA-seq) data was profiled for 60 out 
of those 200 plants (t+p). Metabolome data is available for 50 out of those 60 plants (t+m+p). 
Some plants were harvested later (see Methods), as indicated by a thicker cell border. (B) Plot 
showing the first two principal components (PCs) in a PCA of the 60 single-plant 
transcriptomes. (C) Plot showing the first two principal components (PCs) in a PCA of the 50 
single-plant metabolomes. (D) Plot showing the first two principal components (PCs) in a PCA 
of the 200 plant phenomes. Light grey markers in panel (D) indicate plants for which only 
phenotype information is available. Only plants for which transcriptome data is available are 
numbered in plots (B)-(D), according to the numbering in panel (A). Crosses in panels (B)-(D) 
indicate plants harvested on the second harvest day. 
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Figure 2. Transcriptomic, metabolic and phenotypic variability among individual field-
grown maize plants. In panels (A) to (E), violin plots show the variability in continuous leaf 
16, ear and plant height phenotypes among individual plants. Panel (F) depicts the variability 
in harvesting date among plants, as well as the variability in two discrete phenotypes, namely 
the number of leaves at harvest and whether or not leaf 16 was kinked. Panel (G) shows violin 
plots for the distribution of the coefficient of variance (CV) across the sampled plants for the 
levels of individual transcripts and metabolites. For visualization purposes, the transcript CV 
was capped at 2.0. In all violin plots, the median is indicated by the white circle. The black box 
extends from the 25th to the 75th percentile, and black whiskers extend from each end of the 
box to the most extreme values within 1.5 times the interquartile range from the respective 
end. Data points beyond this range are shown as black dots. The red open circle indicates the 
mean of the distribution, with red whiskers extending to 1 standard deviation above and 
below the mean. 
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Figure 3. Gene expression patterns in spatially autocorrelated gene cluster 29 correlate with 
ear length. The top panel displays the average z-scored gene expression profile of spatially 
autocorrelated gene cluster 29 (35 genes), mapped to the field. The bottom panel displays 
the ear length phenotype on the field (only for plants that were transcriptome profiled). 
Shown on top are the Pearson’s correlation (r) between the cluster 29 expression profile and 
ear length, the corresponding p-value (computed using cor.test in R) and the corresponding 
q-value (computed using the Benjamini-Hochberg method on all comparisons of cluster gene 
expression profiles with the ear length profile). The scales on the top and to the right of the 
field maps give field plot dimensions in cm. 
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Figure 4. Example ENIGMA module learned from the single-plant transcriptome dataset. 
Yellow/blue squares indicate higher/lower gene expression with respect to the average 
expression of a gene across plants. The bottom grid shows the expression profiles of the 
module genes, while the top grid contains the expression profiles of predicted regulators of 
the module. Significant co-differential expression links between the regulators and the 
module genes are indicated in the red/green matrix to the right (green = positively correlated, 
red = negatively correlated). Gene names highlighted in red indicate regulators that are part 
of the module. Genes indicated as core genes belong to the original module seed, other genes 
were accreted by the seed in the course of module formation (Maere et al., 2008). Enriched 
GO categories in the module gene set are displayed on the right, with orange squares 
depicting which module genes are annotated to these GO categories. This particular module 
is significantly enriched (q ≤ 0.01) in known reproductive system development genes, mostly 
regulators. 
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Figure 5. Global gene function prediction performance. Panels (A) to (D) depict the gene 
function prediction performance of the single-plant network (solid line) and 500 sampled 
networks (box-and-whisker plots) averaged across all genes in a given network. Boxes extend 
from the 25th to the 75th percentile of the sampled networks, with the median indicated by 
the central black line. Whiskers extend from each end of the box to the most extreme values 
within 1.5 times the interquartile range from the respective end. Data points beyond this 
range are displayed as open black circles. Panels (A), (B) and (C) respectively represent the 
recall, precision and F-measure of the network-based gene function predictions as a function 
of the prediction FDR threshold (q). Panel (D) depicts the number of gene functions predicted 
from each network (predicted positives = true positives + false positives) as a function of the 
prediction FDR threshold. As multiple gene functions can be predicted per gene, the number 
of predicted positives is generally higher than the number of genes. 
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Figure 6. Gene function prediction performance for specific GO categories. Panels (A) to (D) 
show the gene function prediction performance of the single-plant network versus sampled 
networks for GO categories related to abiotic stimulus responses, development, biotic 
stimulus responses and hormone responses, respectively. Categories are shown in the 
context of the GO hierarchy and colored according to how well the single-plant network 
performs in comparison with 500 sampled networks (see Methods). Solid arrows represent 
direct parent-child relationships in GO, dashed arrows represent indirect relationships. Grey 
nodes depict untested GO categories. White nodes depict GO categories for which there was 
insufficient information to score the performance of the single-plant network versus the 
sampled networks, i.e. categories for which the single-plant network and more than half of 
the sampled networks did not give rise to any predictions at q ≤ 10e-2. 
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Figure 7. Predictive models for leaf 16 blade length and width. Graphs plotting predicted 
versus measured phenotypes are shown for (A) the random forest model for leaf 16 blade 
length using only transcript levels of regulators as predictors, and (B) the e-net model for leaf 
16 blade width using only transcript levels of regulators as predictors. The dot colors 
represent different outer cross-validation folds. Perfect predictions are located on the 
diagonal line in each panel. 
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