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Visualizing the Spatial Clonal Architecture of Tumors
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Fig. 5: A case study using CLONARCH to analyze a hepatocellular carcinoma dataset. (a) Initially, all vertices on the selected tree are visualized
on the grid. (b-c) Clicking on vertices on the tree will hide their corresponding clone to make the grid less cluttered. (d) Hovering over grid points will
reveal the origin of the data point (either the sample name or interpolated). (e) The phylogenetic tree reveals that all driver mutations in this study are
fixed—they occur in every clone; we can adjust their prevalence threshold to see their presence throughout the tumor. (f) Here, we observe our clone of
interest, PPP1R3B, and its parent, MLL and CHUK, from the original tree. We can see that, spatially, the child (PPP1R3B) is closely related to its parent.
(g) The same clone, PPP1R3B, is visualized on a different tree, with its parent as the root. In this example, PPP1R3B does not occur very closely to its
parent. Therefore, we believe that the tree illustrated in (f) is a more likely hypothesis

4.2 Simulations

Although CLONARCH the
architecture assuming a large number of biopsies, we asked the question:
can this tool be applicable to smaller datasets? Applying a simulation that
mimics the invasive glandular model of tumor growth (Noble ez al., 2019),
we generated trees and frequency matrices at grid sizes of 3 X 3and 5 x 5
(Fig. 6a-b). We observe that bilinear interpolation in the marching squares

successfully visualizes spatial ~clonal

algorithm will lead to more inaccurate delineations of clonal compositions
with few biopsies; this is apparent in our 3 X 3 example (Fig. 6a).

We also observe that with less than 25 samples, as shown in the 5 X 5
grid, we begin to see the spatial structure of the tumor. Fig. 6¢c-d shows a

simulated example with ambiguity between two trees. In the first tree (c),
we see that mut_J is a child of mut_I; in the visualized grid, mut_J and
mut_I share a high amount of overlap, indicating that mut_J could have
originated from mut_I. In the second tree (Fig. 6d), mut_J is a child of
mut_E. However, the two clones do not share any overlap in their spatial
architecture, making it more difficult to believe that mut_J could have
originated from mut_I. Therefore, the first tree (Fig. 6¢) seems to be the
more likely hypothesis in this scenario. CLONARCH helps us disambiguate
between multiple trees by allowing users to analyze tumor spatial patterns
according to different phylogeny.
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Fig. 6: Simulations show that applicability of CLONARCH increases with increasing number of biopsies. (a) A simulated 3 x 3 grid. We see

that bilinear interpolation in the marching squares algorithm leads to more inaccurate delineations of clonal compositions with a fewer biopsies. (b) A

simulated 5 X 5 grid shows that spatial structure can be identified with less than 25 samples. (c) With the 5 X 5 simulated example, we attempt to use

CLONARCH to disambiguate between two trees. Here, we see mut_J and its parent, mut_I, according to its tree. The two clones are overlapping with

eachother, showing that it was very likely for mut_J to have originated from mut_I. (d) Here, we see mut_J and its parent, mut_E, as according to the tree.

Unlike the last example, however, the two clones do not overlap, making this phylogenetic tree a less likely hypothesis.

5 Discussion

In this work, we addressed the lack of available visualization tools for
studying the spatial aspects of intra-tumor heterogeneity. We introduced
CLONARCH, a method to interactively visualize the spatial distribution
of clones in a tumor given a set of phylogenetic trees and mutation
frequencies at distinct biopsies. Accounting for multiple trees elucidates
the consequences of non-uniqueness of solutions on spatial clonal
composition and distribution. In particular, CLONARCH facilitates the
prioritization of trees in terms of consistency between evolutionary
relationships of clones and their spatial locations.

We used the marching squares algorithm to draw enclosed boundaries
around clones above a specified threshold at each spatial location. The
analysis tasks outlined in the requirements section guided our design and
implementation of CLONARCH. These decisions were motivated by the
hepatocellular carcinoma case study (Ling et al.l[2015). Although the HCC
dataset contains a large number of biopsies, simulated data illustrates that
CLONARCH can successfully visualize spatial structure of smaller datasets
as well.

Despite these contributions, CLONARCH has some limitations. First,
the current interface works best with about 12 clones before the
visualization starts to look cluttered, and colors become less distinct.
This is an inherent limitation of the chosen visualization approach, and
a tradeoff for accommodating for more clones. To resolve the limitation of
clutter in the future, a zooming and panning feature may be implemented

to view regions in both the tree and spatial grid close up. Second, data
preparation can be complicated. Shaping the spatial data into a form that
can be computationally analyzed is not straightforward. Currently, empty
grid points have to be interpolated, and a boundary of zeros around the
tumor has to be specified for proper interpolation. In future work, we will
address this limitation by developing user-friendly scripts that automate
the process of fitting/interpolating a regular grid given spatial coordinates
of sequencing biopsies. In particular, we plan to develop convex-hull based
algorithms to avoid interpolation artefacts.

Third, CLONARCH requires many biopsies to provide an accurate
spatial representation. As we observed with simulated data, we ideally
require a 5 X 5 grid. Presently, few available datasets have a sufficient
number of samples, thus only one dataset covering one cancer type
(HCC) has been analyzed. However, we observe that recent studies are
beginning to sequence increasing numbers of tumor biopsies, especially
in the context of understanding spatial heterogeneity (Ding et al.| 2019;
Alves et al., 2019), which CLONARCH will be able to visualize. We
expect the number of such high-resolution spatial datasets to increase
with decreasing costs in sequencing technology. Additionally, though our
application treats biopsies locations as 2D coordinates, tumors are actually
3D in nature. The depth of the biopsy needle needs to be accounted
for in order to generate a full, accurate model of the tumor. |Ding et al.
(2019) have utilized a 3D sampling approach; each tumor is evenly
sliced, and then spatially organized samples are collected from each slice.
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To facilitate 3D visualizations, one future direction might be to extend
CLONARCH using the marching cubes algorithm. Fourth, our method
currently only visualizes a single tumor mass. Leveraging recent work in
migration analysis of metastatic cancers (El-Kebir et al.,|2018), it will be of
interest to extend our tool to visualize clonal patterns of metastatic spread
given biopsies from matched primary and metastasis samples. Finally,
while incorporating information on phylogeny and spatial location, our
method loses the temporal aspect that other cancer visualizations include.
Implementing this feature in the future requires biopsies from a tumor mass
at varying slices and differing time points; then, we can explore the tumor
using a slider to view the time axis. In the future, spatial visualizations

may be required to support 4 dimensions— 3D space and time—to
truly represent the spatiotemporal clonal dynamics of tumors as close as
possible.
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