
i
i

“output” — 2020/4/6 — 21:10 — page 1 — #1 i
i

i
i

i
i

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Genomics

ClonArch: Visualizing the Spatial Clonal
Architecture of Tumors
Jiaqi Wu 1 and Mohammed El-Kebir 1,∗

1Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, 61801

∗To whom correspondence should be addressed.

Abstract

Motivation: Cancer is caused by the accumulation of somatic mutations that lead to the formation
of distinct populations of cells, called clones. The resulting clonal architecture is the main cause of
relapse and resistance to treatment. With decreasing costs in DNA sequencing technology, rich cancer
genomics datasets with many spatial sequencing samples are becoming increasingly available, enabling
the inference of high-resolution tumor clones and prevalences across different spatial coordinates. While
temporal and phylogenetic aspects of tumor evolution, such as clonal evolution over time and clonal
response to treatment, are commonly visualized in various clonal evolution diagrams, visual analytics
methods that reveal the spatial clonal architecture are missing.
Results: This paper introduces ClonArch, a web-based tool to interactively visualize the phylogenetic tree
and spatial distribution of clones in a single tumor mass. ClonArch uses the marching squares algorithm
to draw closed boundaries representing the presence of clones in a real or simulated tumor. ClonArch
enables researchers to examine the spatial clonal architecture of a subset of relevant mutations at different
prevalence thresholds and across multiple phylogenetic trees. In addition to simulated tumors with varying
number of biopsies, we demonstrate the use of ClonArch on a hepatocellular carcinoma tumor with ∼280
sequencing biopsies. ClonArch provides an automated way to interactively examine the spatial clonal
architecture of a tumor, facilitating clinical and biological interpretations of the spatial aspects of intra-
tumor heterogeneity.
Availability: https://github.com/elkebir-group/ClonArch
Contact: melkebir@illinois.edu

1 Introduction
Repeated and unchecked somatic mutations in cancer destabilize cells and
lead to tumorigenesis, progression, and ultimately metastasis (Nowell,
1976). During tumorigenesis distinct cell populations, or clones, that
accumulate a distinct set of mutations, arise from an evolutionary process
(Fig. 1a). This phenomenon of intra-tumor heterogeneity is the main cause
of relapse and resistance to treatment (Fisher et al., 2013; Tabassum and
Polyak, 2015). Effective visual exploration by experts is crucial for the
extraction of relevant information from cancer genomics data, including
the discovery of rare genomic events, verification of data quality, or
identification of key players in cancer development (Schroeder et al.,
2013).

Recently, there has been a rise of visual analytics tools developed
to analyze intra-tumor heterogeneity inferred from bulk or single-cell
DNA sequencing data of tumors. Visualizations showing changes in

clonal structure over time have been widely explored (Smith et al., 2017;
Miller et al., 2016; Krzywinski, 2016). The most basic visualization
is a phylogenetic tree, whose leaves correspond to tumor cells at the
present time (clones), and whose edges are labeled by somatic mutations
(Fig. 1b). While a phylogenetic tree provides a qualitative view of tumor
progression, it does not show the prevalence or abundance of each clone.
To overcome this limitation, the fishplot package for R enables the
creation of temporal diagrams, previously done manually in vector-art
programs, in an automated fashion (Miller et al., 2016). Specifically,
fishplot estimates subclonal prevalence at multiple time points (e.g. pre-
treatment, post-treatment and relapse), and outputs a chart that represents
clones at their relative proportions (Fig. 1c). Similarly, Smith et al. (2017)
developed TimeScape, an automated tool that plots clonal prevalences
(vertically) across time points (horizontally) for each clone. Diagrams
of this type support illustration of details from broad trends in evolution
or population dynamics of a few clones (Kvitek and Sherlock, 2013).
However, while capturing the temporal and phylogenetic aspects of the
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Fig. 1: Overview of current and proposed tools for visualizing the clonal architecture of tumors. (a) A tumor is made up of multiple clones,
each of which contains a distinct set of mutations. (b) Phylogenetic trees portray the evolutionary relationships between clones in a tumor. (c)
Temporal representations of cancer evolution show tumor growth and clinical response. In addition, methods such as fishplot Miller et al., 2016
and TimeScape Smith et al., 2017 capture the evolutionary relationships between clones. (d) Presently, spatial representations of cancer evolution,
obtained by methods such as MapScape Smith et al., 2017, illustrate clonal prevalences in different parts of the body after metastasis but do not show
exact locations of clones within each anatomical location. (e) Given a phylogenetic tree and clonal prevalences at each sequencing biopsy, ClonArch
represents the spatial distribution of clones on a grid using filled boundaries.

tumor, these diagrams do not show spatial characteristics. MapScape,
which comes from the same suite as TimeScape, is able to visualize
spatially distinct tumor samples and indicate them on an anatomical
image, or body map (Smith et al., 2017). MapScape uses colors to map
clones to a phylogenetic tree that depicts their evolutionary relationships.
Additionally, clonal composition per anatomical site is proportional to
the corresponding clone’s colored region in the spatial representation
(Fig. 1d). Although MapScape portrays a form of spatial visualization
by representing clonal composition according to its prevalence, it does not
convey the precise locations of each clone in an individual tumor.

Cancer genomics datasets with many spatial/regional sequencing
biopsies from the same tumor are becoming increasingly available (Alves
et al., 2019; Ding et al., 2019; Mamlouk et al., 2017; Ling et al., 2015;
Gerlinger et al., 2012, 2014). Using multi-sample cancer phylogeny
inference methods (El-Kebir et al., 2015; Malikic et al., 2015; Deshwar
et al., 2015; Popic et al., 2015), such datasets enable researchers to infer
detailed information on the spatial clonal architecture of individual tumors.
Yet there is currently no method to visualize the spatial structure of a
tumor—–that is, the distribution of clones at different spatial coordinates
within a tumor. Analyzing the clonal composition of a tumor across space
may facilitate clinical and biological interpretations and understanding
of treatment resistance and cancer progression. For instance, structural

information can be important for estimating the amount of genetic and
clonal diversity in the tumor, and identifying the spatial relationships
between driver mutations (Schroeder et al., 2013). Additionally, the
introduction of spatially explicit population genetic models, which attempt
to explain the variety of patterns observed in tumor architecture (Noble
et al., 2019), calls for spatial visualization tools that can validate different
models of tumor evolution.

Here, we fill the gap in available spatial composition tools by
visualizing the spatial distribution of clones, by location, for a single tumor
mass. We introduce ClonArch, a web-based method to interactively
visualize tumor spatial structure given a set of phylogenetic trees and clone
prevalences at distinct biopsies. From sequencing biopsy samples, we use
cancer phylogeny inference methods (El-Kebir et al., 2015; Malikic et al.,
2015; Deshwar et al., 2015; Popic et al., 2015) to obtain phylogenetic
trees. Our proposed visual analytics approach uses the marching squares
algorithm (Lorensen et al., 1987) to draw enclosed boundaries around
clones above a specified threshold at each spatial location (Fig. 1e). We
use ClonArch to analyze the spatial composition of a published human
hepatocellular carcinoma composed of∼280 biopsies (Ling et al., 2015).
In addition, we assess the applicability of ClonArch to datasets with
fewer biopsies using simulations. ClonArch enables researchers to study

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2020. ; https://doi.org/10.1101/2020.04.06.027912doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.06.027912
http://creativecommons.org/licenses/by/4.0/


i
i

“output” — 2020/4/6 — 21:10 — page 3 — #3 i
i

i
i

i
i

Visualizing the Spatial Clonal Architecture of Tumors 3

the spatial aspects of intra-tumor heterogeneity, facilitating clinical and
biological interpretations.

2 Requirements
Our aim is to develop a visual analytics tool to represent the spatial
composition of a tumor in terms of clones and their prevalences. To obtain
such a tool, we need to characterize our input data (Section 2.1) as well as
typical visual analytics tasks (Section 2.2).

2.1 Data Characteristics

Our input data have the following characteristics:

(D1) Mutations are grouped into clusters. Cancer phylogenetics pipelines
group mutations that co-occur and never appear separate from each other
into clusters–—that is, if all clones in the dataset that contain mutation
A also contain mutation B, the two mutations are clustered together.
Specialized methods exist for inferring mutation clusters from single-
cell (Roth et al., 2016) and bulk (Roth et al., 2014; Miller et al., 2014)
DNA sequencing data.

(D2) There are multiple mutation clusters per clone. Clones are
characterized by the accumulation of distinct mutations; a tumor will amass
multiple mutation clusters as it evolves.

(D3) Clones are distinguishable by mutation clusters. Each clone has a
unique set of mutation clusters and thus mutations.

(D4) Non-gridlike pattern of biopsy locations. To infer the spatial
composition and evolutionary history of a tumor, we take multiple biopsies
of a tumor, recording the 2-D spatial coordinate (x, y) of each location.
Biopsy locations may not adhere to a perfect grid-like pattern.

(D5) Clonal evolution described by a phylogenetic tree. From sequencing
data of biopsies, we use cancer phylogeny methods specialized for single-
cell (Ross and Markowetz, 2016; Jahn et al., 2016; El-Kebir, 2018) or
bulk (El-Kebir et al., 2015; Malikic et al., 2015; Deshwar et al., 2015;
Popic et al., 2015) DNA sequencing data to infer a set T of phylogenetic
trees T . The vertices of T correspond to tumor clones, and edges of T are
labeled by mutation clusters.

(D6) Clonal composition known at every biopsy. For each identified treeT
in T , cancer phylogeny methods derive the proportion, or prevalence, of
each clone in each sequencing biopsy. Due to intra-tumor heterogeneity, a
single biopsy typically contains multiple clones.

2.2 Analysis Tasks

We identify the following analysis tasks.

(A1) Spatial distribution of tumor clones. The user should be able to inspect
the spatial distribution of tumor clones.

(A2) Phylogenetic relationships of tumor clones. The clones of a tumor
arise from an evolutionary process. The user should be able to inspect the
phylogenetic tree(s) that relates the tumor clones.

(A3) Ambiguity of tumor clones described by multiple phylogenetic trees.
Typically, more than one phylogenetic tree can be inferred from the same
sequencing data (Jamal-Hanjani et al., 2017; Pradhan and El-Kebir, 2018).
If the data can be described by multiple trees, the user should be able to
observe the spatial consistency between visualizations from different trees.

(A4) Spatial distribution and phylogenetic relationships of clones
restricted to a subset of relevant mutations. The majority of somatic
mutations are passenger mutations that do not confer a selective advantage

to the tumor as opposed to driver mutations. Similarly, not every somatic
mutation is a drug target. Thus, for clinical and/or biological reasons,
the user should be able to restrict the analysis to a subset Z of relevant
somatic mutations. Original tumor clones that are identical with respect to
this subset Z should be indistinguishable in the visualization.

(A5) Relationship between prevalence and spatial distribution of an
individual tumor clone. The user should be able to visually study the
relationship between prevalence of a single tumor clone and spatial
location. That is, the user should be able to identify the spatial locations
in which a clone of interest occurs at a given prevalence.

(A6) The relationship between prevalence and spatial distribution of
multiple tumor clones. Analysis task (A5) should be extendable to multiple
clones. That is, the user should be able to identify the spatial locations in
which multiple clones of interest occur at possibly distinct prevalences.

(A7) Exporting vector graphics of visualizations. The user should be able
to export high-quality vector graphics of both the phylogenetic tree and
spatial distribution of selected clones/mutations.

3 Methods
Section 3.1 formally defines the input to ClonArch according to the
data characteristics specified in the previous section. Section 3.2 covers
the analysis tasks pertaining to the phylogenetic tree, and the spatial
distribution analysis tasks are described in Section 3.3. Finally, Section 3.4
introduces our visual analytics method that adheres to the outlined data
characteristics and supports the identified analysis tasks.

3.1 Input

Our input is composed of a set T of phylogenetic trees (D5) and a set
[m] = {1, . . . ,m} of spatial biopsies (D6). A phylogenetic treeT is a tree
with n = |V (T )| vertices rooted at vertex r(T ). Each vertex v ∈ V (T )

corresponds to a clone. Each edge (v, w) ∈ E(T ) is labeled by one
or more mutation clusters (D1), indicating the mutations that distinguish
clone v from clonew (D2). Each clone v ∈ V (T ) is composed of exactly
those mutations that occur in the clusters that label the edges of the unique
path from r(T ) to v (D3). As such, the root vertex r(T ) corresponds to
the normal clone, not containing any mutations.

We know the spatial coordinates σ(p) = (x, y) of each biopsy p. Note
that the set of spatial coordinates of all biopsies may not form a perfect
grid (D4). Moreover, we know the clonal composition of every biopsy p.
That is, we are given anm×n prevalence matrix U = [up,v ], where each
entry up,v describes the prevalence of clone v in biopsy p. More formally,
for each biopsy p, we have

∑
v∈V (T ) up,v = 1 and up,v ≥ 0 for each

clone v (D6).

3.2 Phylogenetic Tree

Visualization. To accommodate analysis task A2 and showcase the
phylogenetic relationship between clones, we use dagre-d31 to draw
a phylogenetic tree (Fig. 2). The root of the tree is the normal clone with
no mutations, and the first edge contains the founding/trunk mutation(s).
Each mutation cluster is assigned a symbol. Each vertex represents a
clone, characterized by a color and a set of symbols representing the
mutation clusters that make up the clone (D2). Each edge represents a
newly introduced mutation cluster, and is labeled by the mutation names
and corresponding symbol (D3). We limit the number of displayed labels
per edge to six labels.

1 https://github.com/dagrejs/dagre-d3
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(a) (b)

Fig. 2: Phylogenetic tree describing relationship between clones in ClonArch. (a) Vertices are clones, distinguished by mutation clusters (symbols)
that are introduced on the edges. In addition to displaying the mutation cluster symbol, each edge displays up to 6 mutations present in the cluster.
Hovering over a vertex displays a tool tip listing the mutations in the corresponding clone. (b) Restricting our analysis to a subset of eight mutations
(shown on the edge labels), results in a smaller phylogenetic tree, whose clones encompass multiple original clones.

Interactivity. A drop down menu allows the user to select a tree to visualize,
if there are multiple trees that describe the tumor data. Once selected, on
hover, tree vertices will be drawn with a thicker stroke width and display
a tool tip that summarizes the distinct mutations in that clone (Fig. 2). In
addition, the corresponding clone on the grid is brought to the foreground.
Clicking on a vertex allows a user to show and hide the corresponding
clone on the grid. The fill color of a vertex is set to white when hiding
the clone; the vertex regains the original color upon re-enabling the clone.
Hovering over the vertex highlights the corresponding clone on the grid.

3.3 Spatial Distribution

Visualization. Recall that entries up,v of m × n matrix U indicate the
prevalence of clone v in biopsy p with spatial coordinates σ(p) = (x, y).
Given the prevalence of a clone v in different biopsies and threshold
τ , our goal is to draw isolines showing the clone at prevalence τ on a
regular grid (A1). To that end, we first define an X × Y regular grid
that can accommodate each biopsy location. We use bilinear interpolation
to infer clonal prevalences for grid points that do not correspond to
biopsies. As such, each point on the grid represents either a prevalence
observed in a biopsy (colored black) or an interpolated value between
biopsies (colored gray, see Fig. 3). Subsequently, we use the open source
MarchingSquares.js2 D3-based implementation of the marching
squares algorithm (Lorensen et al., 1987) to draw isolines.

2 https://github.com/RaumZeit/MarchingSquares.js

For a matrix U with n clones, we draw n sets of clone-specific
isolines, each set corresponding to a clone v and threshold τv . The set
of isolines corresponding to each clone is assigned a different color from
a qualitative color palette from ColorBrewer3. To facilitate the spatial
analysis of multiple clones, we fill the area enclosed by each set of clone-
specific isolines using a transparent color. As such, the filled area is
composed of grid points at which clone v occurs at a prevalence of τv
(Fig. 3a). Currently, up to 12 clones are supported with distinctive colors
from ColorBrewer. More clones may be selected; however, the colors after
the 12th clone may not be qualitatively distinctive.

Interactivity. The user is able to set the prevalence threshold via a slider for
either individual clones (A5) or all clones simultaneously (A6) by selecting
them in the phylogenetic tree. Toggling the threshold sliders will change
the contour of the corresponding clonal boundaries on the grid (Fig. 3b).
Hovering over a clonal boundary will highlight its corresponding vertex
in the phylogeny tree, by thickening stroke-width on both elements, and
vice versa (Fig. 3c-d). Additionally, this will bring the clone to the front
of the grid. Clicking on a clone in the grid will “select” the clone, fix it
to the foreground on the grid, bring up the corresponding clone-specific
threshold slider, and increase the stroke width of the corresponding vertex
in the phylogenetic tree. Hovering over a grid point will display a tool tip
with the sample name at that coordinate.

3 http://colorbrewer2.org
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(a) (b) (c) (d)

Fig. 3: Visualization of spatial distribution of tumor clones. (a) We construct a regular grid accommodating the sequenced biopsies (black), followed
by interpolation to obtain clonal prevalences at unsequenced grid points (gray). Given a threshold τ = 65%, we draw a set of isolines at which the clone
occurs at the specified prevalence. Then, we fill the area enclosed by the set of isolines such that each grid point inside the filled area contains the clone at
a prevalence of at least τ . (b) Decreasing the prevalence threshold τ to 20% results in a larger area. (c-d) Hover and click interactions bring corresponding
boundary lines to the front of the grid.

3.4 Additional Tasks

In line with task A4, the user may restrict the analysis to a subset Z
of biologically or clinically relevant mutations. Upon specifying Z, the
phylogenetic tree and the grid will be redrawn using a new set of clones
that are defined in terms of Z. Specifically, we intersect the mutations
contained in each original clone with Z. Clones with the same set of
resulting mutations will be merged and their clonal prevalences summed
for each grid point (Fig. 2b). It is important to note that this feature allows
the user to identify the presence of clones of interest on the visualization
grid. In collapsing non-selected clones, each vertex on the phylogenetic
tree will represent a group of clones, rather than an individual clone.

Following task A7, the user may export an SVG file containing the
phylogenetic tree and/or the grid.

3.5 ClonArch

ClonArch is a web-based tool that implements the functionality
described above using D34. The input to ClonArch is a JSON file,
containing both the setT of phylogenetic trees and the frequency matrixF .
ClonArch is open source and is available at: https://github.
com/elkebir-group/ClonArch.

4 Results

4.1 Analysis of a Hepatocellular Carcinoma Tumor using
ClonArch

We demonstrate how ClonArch enables one to study the spatial clonal
architecture of tumors using a recent hepatocellular carcinoma (HCC)
dataset (Ling et al., 2015). Ling et al. (2015) sequenced a total of 286 spatial
biopsies in addition to a nearby matched normal sample. In their initial
analysis, the authors identified 269 single-nucleotide variants (SNVs) in a
subset of 23 whole-exome sequenced biopsies. They designated 209 SNVs
as fixed, i.e. occurring in every tumor clone. From the remaining SNVs,
Ling et al. (2015) selected a subset of 35 SNVs for targeted sequencing in
the remaining286−23 = 263 biopsies, yielding a variant allele frequency
(VAF) for each of the 35 SNVs in each of the 263 biopsies. The authors
then discretized the obtained VAFs and used a combination of neighbor

4 https://d3js.org

joining and maximum parsimony to infer a phylogenetic tree T . Finally,
the authors manually constructed a map of the clonal architecture of the
tumor. Using the discretized frequencies, ClonArch is able to faithfully
recreate the manually-constructed tumor spatial figure from Ling et al.
(2015) on a grid (Fig. 4b), providing additional interactivity.

In the following, we show that ClonArch does not require one to
discretize VAFs and clonal prevalences, enabling a more fine-grained and
interactive view of the spatial clonal architecture.

Data preparation. Recall that ClonArch takes as input a set T of
phylogenetic trees and a frequency matrixF . For each tree T ∈ T , matrix
U describes the clonal prevalence of each biopsy on a regular grid. While
Ling et al. (2015) inferred T from discretized VAFs F̂ , they did not infer
U . In addition to describing how we computed U from T and F , we will
describe how we obtained prevalences for each point on a regular grid.

Inspecting the provided tree T reveals that SNVs are homoplasy-free,
i.e. are introduced exactly once on the tree and never subsequently lost.
To simplify inference ofU , we restrict our attention to copy-neutral SNVs
on autosomes. SNVs present in copy-neutral autosomal regions have at
most two chromosomal copies in each tumor cell. Under the assumption
of no-homoplasy, at most one of these two copies will contain the SNV,
amounting to a maximum VAF of 0.5. Inspection of F reveals that VAFs
are ≤ 0.5 with the exception of 6 SNVS (OTOA, CLEC18A, GJC1,
CHMP1B, PLEKHG6, OSTM1). In addition to excluding these 6 SNVs,
we excluded 3 SNVs on the X chromosome (HEPH, ZMAT1, MSN),
yielding frequency matrix F .

Next, we manually fit a regular grid to all sequenced biopsies, resulting
in a41×43grid. After drawing a circular boundary with clonal prevalences
set to 0, we used bilinear interpolation to infer missing values in U . This
resulted in a total of about 400 real data points (a sequencing biospy may
be covered by multiple grid points) and 1100 empty data points that were
interpolated. Implementation details of both steps are in a Jupyter notebook
on the git repository.

Assuming that the remaining 26 SNVs are copy-neutral and using an
average of 0.7 purity obtained by multiplying the average VAFs of the
trunk mutations by 2 (Ling et al., 2015) for the WES samples, we solved
a linear program on the interpolated matrix to compute a frequency matrix
F that best explains SNV frequencies. Running the tree enumeration tool
SPRUCE (El-Kebir et al., 2016) on values from our interpolated frequency
matrix F yields a set T of two trees that describe our data and includes
the tree reported by Ling et al. (2015).
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(a) (b)

Fig. 4: ClonArch automates the process of visualizing the spatial clonal architecture of a tumor. (a) Ling et al. (2015) manually visualized the
spatial architecture of an HCC tumor using discretized mutation frequencies and a tree obtained by neighbor joining and maximum parsimony in disctinct
biopsies of the tumor (figure adapted from Ling et al. (2015)).(b) ClonArch’s automated reconstruction of the figure with added interactivity, alongside
the corresponding phylogenetic tree.

Use case. In the following use case, we used ClonArch to analyze the
spatial clonal architecture of this tumor, taking as input the set T of trees
and interpolated frequency matrix F . A screencast of this use case is
available athttps://elkebir-group.github.io/ClonArch/
screencast.html.

(i) Phylogenetic tree overview. Initially, ClonArch shows a phylogenetic
tree according to the default clones selected by the user (Fig. 5a-b). On
hovering over a tree vertex, ClonArch shows a list of mutations at
the corresponding clone (Fig. 2a). This enables the user to explore the
phylogenetic relationships between clones (A2).

(ii) Exploring the spatial distribution of different clones. At the same time,
ClonArch shows a grid portraying the spatial distributions of tumor
clones (Fig. 5a), in line with analysis task A1. We observe similarities
between clones in the discretized reconstruction of Ling et al. (2015)’s
figure (Fig. 4a) and the spatial plot with real frequencies; namely, mutation
clusters containing MUC16, MLL and CHUK, and RIMS2 appear in
similar regions of the grid. Clones that are displayed on the grid correspond
to the clones activated by the user in the phylogenetic tree. That is,
clicking on different vertices in the tree toggles the visualization of the
corresponding clones on the grid. To avoid clutter, we select only five
clones to show on the grid; these are the vertices with incoming edges
labeled with mutations: RIMS2, C15orf42 and JAK2, FLNB, GCK, and
PPP1R3B. This version of the grid is much more straightforward; each
clone is clearly distinguished on the grid (Fig. 5b-c).

(iii) Hovering over grid points. To further explore the spatial distributions
of these six clones, we take a closer look at the grid points they are drawn
on. The different color of grid points indicates whether the data point was
from a biopsy (black), or interpolated (gray). Hovering over the grid points
also brings up a tool tip that specifies whether the point is from a biopsy,
and if so, the name of the sample (Fig. 5d).

This information helps gauge the validity of a boundary shape. An
oddly-shaped clonal boundary is less likely to be an artifact of interpolation
if it contains a fairly distributed amount of real biopsy samples. Following
our example, the shape of the dark green clone (C15orf42 and JAK2) seems
to be well-supported by an even distribution of real samples (Fig. 5c). In
contrast, the upper boundary region of the light green clone (RIMS2) has

irregular spikes towards the top and left sides that contain interpolated
values; it seems likely that this is an artifact of interpolation (Fig. 5c).

(iv) Selecting driver mutations. Next, we select a subset of interesting
mutations to look at (A4). Ling et al. (2015) reported six driver mutations
in this dataset: CPXM2, TMPRSS13, DNAH7, TSC1, TP53, and CCAR1,.
Selecting these mutations updates the phylogenetic tree, revealing that all
are fixed mutations (Fig. 5e). That is, they are present in every clone in
the sample. In line with analysis task A5, we may adjust the prevalence
threshold to observe the distribution of the clones containing these driver
mutations at different levels (Fig. 5e).

(v) Selecting additional mutations. To add more clones onto the grid, we
can select additional mutations to closely examine. In general, the selection
of mutations will be driven by biological and clinical reasons, such as the
driver status of the mutation or its neo-antigenic potential. Here, besides
the six drivers, CCAR1, CPXM2, DNAH7, TMPRSS13, TP53, and TSC1,
we add two more mutation clusters: MLL and CHUK, and PPP1R3B (Fig.
5f). With multiple clones now on the grid, we may choose to examine
either clone-specific or global prevalence at different thresholds (A6).

(vi) Exploring different phylogeny to describe spatial data. In cases
where mutation frequencies are ambiguous, we may find that multiple
phylogenetic trees describe the data. ClonArch can visualize the spatial
architecture of tumors according to different phylogenetic trees, allowing
us to potentially disambiguate between multiple trees (A3). Fig. 5f
visualizes PPP1R3B with its parent, MLL and CHUK. The child clone
is completely overlapped by the parent, which illustrates a likely scenario.
Meanwhile, Fig. 5g represents a second tree that also describes this data;
here, PPP1R3B is a child of the root. Distribution of clones on the grid
show that the child clone does not overlap with the parent at all. Spatial
analysis suggests the tree illustrated in Fig. 5f is a more likely hypothesis.

(vii) Saving results. Finally, we download the resulting grid and
phylogenetic tree as SVG files (A7). These elements may be useful later
as a reference, or a point of comparison to a new dataset or different subset
of clones/mutations.
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(a) (b) (c)

(d) (e)

(f) (g)

Fig. 5: A case study using ClonArch to analyze a hepatocellular carcinoma dataset. (a) Initially, all vertices on the selected tree are visualized
on the grid. (b-c) Clicking on vertices on the tree will hide their corresponding clone to make the grid less cluttered. (d) Hovering over grid points will
reveal the origin of the data point (either the sample name or interpolated). (e) The phylogenetic tree reveals that all driver mutations in this study are
fixed—they occur in every clone; we can adjust their prevalence threshold to see their presence throughout the tumor. (f) Here, we observe our clone of
interest, PPP1R3B, and its parent, MLL and CHUK, from the original tree. We can see that, spatially, the child (PPP1R3B) is closely related to its parent.
(g) The same clone, PPP1R3B, is visualized on a different tree, with its parent as the root. In this example, PPP1R3B does not occur very closely to its
parent. Therefore, we believe that the tree illustrated in (f) is a more likely hypothesis

4.2 Simulations

Although ClonArch successfully visualizes the spatial clonal
architecture assuming a large number of biopsies, we asked the question:
can this tool be applicable to smaller datasets? Applying a simulation that
mimics the invasive glandular model of tumor growth (Noble et al., 2019),
we generated trees and frequency matrices at grid sizes of 3×3 and 5×5

(Fig. 6a-b). We observe that bilinear interpolation in the marching squares
algorithm will lead to more inaccurate delineations of clonal compositions
with few biopsies; this is apparent in our 3× 3 example (Fig. 6a).

We also observe that with less than 25 samples, as shown in the 5× 5

grid, we begin to see the spatial structure of the tumor. Fig. 6c-d shows a

simulated example with ambiguity between two trees. In the first tree (c),
we see that mut_J is a child of mut_I; in the visualized grid, mut_J and
mut_I share a high amount of overlap, indicating that mut_J could have
originated from mut_I. In the second tree (Fig. 6d), mut_J is a child of
mut_E. However, the two clones do not share any overlap in their spatial
architecture, making it more difficult to believe that mut_J could have
originated from mut_I. Therefore, the first tree (Fig. 6c) seems to be the
more likely hypothesis in this scenario. ClonArch helps us disambiguate
between multiple trees by allowing users to analyze tumor spatial patterns
according to different phylogeny.
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(a) (b)

(c) (d)

Fig. 6: Simulations show that applicability of ClonArch increases with increasing number of biopsies. (a) A simulated 3 × 3 grid. We see
that bilinear interpolation in the marching squares algorithm leads to more inaccurate delineations of clonal compositions with a fewer biopsies. (b) A
simulated 5 × 5 grid shows that spatial structure can be identified with less than 25 samples. (c) With the 5 × 5 simulated example, we attempt to use
ClonArch to disambiguate between two trees. Here, we see mut_J and its parent, mut_I, according to its tree. The two clones are overlapping with
eachother, showing that it was very likely for mut_J to have originated from mut_I. (d) Here, we see mut_J and its parent, mut_E, as according to the tree.
Unlike the last example, however, the two clones do not overlap, making this phylogenetic tree a less likely hypothesis.

5 Discussion
In this work, we addressed the lack of available visualization tools for
studying the spatial aspects of intra-tumor heterogeneity. We introduced
ClonArch, a method to interactively visualize the spatial distribution
of clones in a tumor given a set of phylogenetic trees and mutation
frequencies at distinct biopsies. Accounting for multiple trees elucidates
the consequences of non-uniqueness of solutions on spatial clonal
composition and distribution. In particular, ClonArch facilitates the
prioritization of trees in terms of consistency between evolutionary
relationships of clones and their spatial locations.

We used the marching squares algorithm to draw enclosed boundaries
around clones above a specified threshold at each spatial location. The
analysis tasks outlined in the requirements section guided our design and
implementation of ClonArch. These decisions were motivated by the
hepatocellular carcinoma case study (Ling et al., 2015). Although the HCC
dataset contains a large number of biopsies, simulated data illustrates that
ClonArch can successfully visualize spatial structure of smaller datasets
as well.

Despite these contributions, ClonArch has some limitations. First,
the current interface works best with about 12 clones before the
visualization starts to look cluttered, and colors become less distinct.
This is an inherent limitation of the chosen visualization approach, and
a tradeoff for accommodating for more clones. To resolve the limitation of
clutter in the future, a zooming and panning feature may be implemented

to view regions in both the tree and spatial grid close up. Second, data
preparation can be complicated. Shaping the spatial data into a form that
can be computationally analyzed is not straightforward. Currently, empty
grid points have to be interpolated, and a boundary of zeros around the
tumor has to be specified for proper interpolation. In future work, we will
address this limitation by developing user-friendly scripts that automate
the process of fitting/interpolating a regular grid given spatial coordinates
of sequencing biopsies. In particular, we plan to develop convex-hull based
algorithms to avoid interpolation artefacts.

Third, ClonArch requires many biopsies to provide an accurate
spatial representation. As we observed with simulated data, we ideally
require a 5 × 5 grid. Presently, few available datasets have a sufficient
number of samples, thus only one dataset covering one cancer type
(HCC) has been analyzed. However, we observe that recent studies are
beginning to sequence increasing numbers of tumor biopsies, especially
in the context of understanding spatial heterogeneity (Ding et al., 2019;
Alves et al., 2019), which ClonArch will be able to visualize. We
expect the number of such high-resolution spatial datasets to increase
with decreasing costs in sequencing technology. Additionally, though our
application treats biopsies locations as 2D coordinates, tumors are actually
3D in nature. The depth of the biopsy needle needs to be accounted
for in order to generate a full, accurate model of the tumor. Ding et al.
(2019) have utilized a 3D sampling approach; each tumor is evenly
sliced, and then spatially organized samples are collected from each slice.
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To facilitate 3D visualizations, one future direction might be to extend
ClonArch using the marching cubes algorithm. Fourth, our method
currently only visualizes a single tumor mass. Leveraging recent work in
migration analysis of metastatic cancers (El-Kebir et al., 2018), it will be of
interest to extend our tool to visualize clonal patterns of metastatic spread
given biopsies from matched primary and metastasis samples. Finally,
while incorporating information on phylogeny and spatial location, our
method loses the temporal aspect that other cancer visualizations include.
Implementing this feature in the future requires biopsies from a tumor mass
at varying slices and differing time points; then, we can explore the tumor
using a slider to view the time axis. In the future, spatial visualizations
may be required to support 4 dimensions—– 3D space and time–—to
truly represent the spatiotemporal clonal dynamics of tumors as close as
possible.

Funding
M.E-K. was supported by the National Science Foundation (grant: CCF
18-50502).

References
Alves, J. M. et al. (2019). Rapid evolution and biogeographic spread in a

colorectal cancer. Nature Communications, 10(1), 5139.
Deshwar, A. G. et al. (2015). PhyloWGS: Reconstructing subclonal

composition and evolution from whole-genome sequencing of tumors.
Genome Biology, 16(1), 35.

Ding, X. et al. (2019). Genomic and epigenomic features of primary and
recurrent hepatocellular carcinomas. Gastroenterology, 157(6), 1630–
1645.e6.

El-Kebir, M. (2018). SPhyR: tumor phylogeny estimation from single-cell
sequencing data under loss and error. Bioinformatics, 34(17), i671–i679.

El-Kebir, M. et al. (2015). Reconstruction of clonal trees and tumor
composition from multi-sample sequencing data. Bioinformatics,
31(12), i62–i70.

El-Kebir, M. et al. (2016). Inferring the Mutational History of a Tumor
Using Multi-state Perfect Phylogeny Mixtures. Cell Systems.

El-Kebir, M. et al. (2018). Inferring parsimonious migration histories for
metastatic cancers. Nature Genetics, 50(5), 718–726.

Fisher, R. et al. (2013). Cancer heterogeneity: implications for targeted
therapeutics. British journal of cancer, 108(3), 479–485.

Gerlinger, M. et al. (2012). Intratumor heterogeneity and branched
evolution revealed by multiregion sequencing. N Engl J Med, 366(10),
883–92.

Gerlinger, M. et al. (2014). Genomic architecture and evolution of clear
cell renal cell carcinomas defined by multiregion sequencing. Nat Genet,

46(3), 225–33.
Jahn, K. et al. (2016). Tree inference for single-cell data. Genome biology,

17(1), 86.
Jamal-Hanjani, M. et al. (2017). Tracking the Evolution of Non-Small-Cell

Lung Cancer. New England Journal of Medicine, 376(22), 2109–2121.
Krzywinski, M. (2016). Visualizing Clonal Evolution in Cancer.

Molecular Cell.
Kvitek, D. J. and Sherlock, G. (2013). Whole Genome, Whole Population

Sequencing Reveals That Loss of Signaling Networks Is the Major
Adaptive Strategy in a Constant Environment. PLOS Genetics.

Ling, S. et al. (2015). Extremely high genetic diversity in a single tumor
points to prevalence of non-darwinian cell evolution. PNAS.

Lorensen, W. E. et al. (1987). Marching cubes: A high resolution 3D
surface construction algorithm, volume 21. ACM.

Malikic, S. et al. (2015). Clonality inference in multiple tumor samples
using phylogeny. Bioinformatics, 31(9), 1349–1356.

Mamlouk, S. et al. (2017). Dna copy number changes define spatial
patterns of heterogeneity in colorectal cancer. Nature Communications,
8(1), 14093.

Miller, C. A. et al. (2014). Sciclone: Inferring clonal architecture and
tracking the spatial and temporal patterns of tumor evolution.

Miller, C. A. et al. (2016). Visualizing tumor evolution with the fishplot
package for r. BMC Genomics.

Noble, R. et al. (2019). Spatial structure governs the mode of tumour
evolution. bioRxiv.

Nowell, P. C. (1976). The clonal evolution of tumor cell populations.
Science, 194(4260), 23–8.

Popic, V. et al. (2015). Fast and scalable inference of multi-sample cancer
lineages. Genome biology, 16(1), 91.

Pradhan, D. and El-Kebir, M. (2018). On the Non-uniqueness of Solutions
to the Perfect Phylogeny Mixture Problem. RECOMB.

Ross, E. M. and Markowetz, F. (2016). OncoNEM: inferring tumor
evolution from single-cell sequencing data. Genome biology, 17(1),
69.

Roth, A. et al. (2014). PyClone: statistical inference of clonal population
structure in cancer. Nature methods, 11(4), 396–398.

Roth, A. et al. (2016). Clonal genotype and population structure inference
from single-cell tumor sequencing. Nature methods, 13(7), 573–576.

Schroeder, M. P. et al. (2013). Visualizing multidimensional cancer
genomics data.

Smith, M. A. et al. (2017). E-scape: interactive visualization of single-cell
phylogenetics and cancer evolution. Nature Methods.

Tabassum, D. P. and Polyak, K. (2015). Tumorigenesis: it takes a village.
Nature Reviews Cancer, 15(8), 473–483.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2020. ; https://doi.org/10.1101/2020.04.06.027912doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.06.027912
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Requirements
	Data Characteristics
	(D1)
	(D2)
	(D3)
	(D4)
	(D5)
	(D6)


	Analysis Tasks
	(A1)
	(A2)
	(A3)
	(A4)
	(A5)
	(A6)
	(A7)



	Methods
	Input
	Phylogenetic Tree
	Visualization.
	Interactivity.


	Spatial Distribution
	Visualization.
	Interactivity.


	Additional Tasks
	ClonArch

	Results
	Analysis of a Hepatocellular Carcinoma Tumor using ClonArch
	Data preparation.
	Use case.
	(i)
	(ii)
	(iii)
	(iv)
	(v)
	(vi)
	(vii)


	Simulations

	Discussion

