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Abstract

The extent to which phylogenetic diversity (PD) captures feature diversity (FD) is a1

topical and controversial question in biodiversity conservation. In this short paper, we2

formalise this question and establish a precise mathematical condition for FD (based on3

discrete characters) to coincide with PD. In this way, we make explicit the two main4

reasons why the two diversity measures might disagree for given data; namely, the presence5

of certain patterns of feature evolution and loss, and using temporal branch lengths for PD6

in settings that may not be appropriate (e.g. due to rapid evolution of certain features over7

short periods of time). Our paper also explores the relationship between the ‘Fair8

Proportion’ index of PD and a simple index of FD (both of which correspond to Shapley9

values in cooperative game theory). In a second mathematical result, we show that the two10

indices can take identical values for any phylogenetic tree, provided the branch lengths in11

the tree are chosen appropriately.12
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2 WICKE, MOOERS AND STEEL

15

Introduction16

Almost 30 years ago, Dan Faith published a seminal paper that laid out how17

phylogenies might aid in identifying sets of species with maximal “feature diversity”18

(Faith, 1992). Faith’s stated goal was to support practical biodiversity conservation in the19

face of limited resources, coupled with the assumption that maximising feature diversity20

(the total number of unique character states represented by a set of taxa) was a desirable21

conservation target.22

Drawing on the call of Vane-Wright et al. (1991) to consider taxonomic23

distinctiveness when prioritizing species, Faith introduced the phylogenetic diversity (PD)24

metric, simply the sum of the edge lengths of the minimal subtree linking a subset of25

species to the root of the encompassing phylogeny (also called the ‘minimum spanning26

path’ by Faith (1992)). Importantly, these edge lengths were given in units of27

reconstructed character changes under maximum parsimony on the cladogram representing28

a character state matrix with no homoplasy. Faith showed, with an example, that the sum29

of these reconstructed edge lengths would lead to the same total feature diversity as that30

calculated from the character matrix itself. Importantly, if these cladistic edge lengths are31

representative of all features, then maximising PD (e.g. over a given subset size) would32

maximise feature diversity, even in the face of some homoplasy. The bulk of Faith’s 199233

paper was devoted to introducing the machinery to maximise PD.34

Efficient algorithms for finding maximum PD sets are available (Bordewich et al.35

(2008)), the metric has been extended to networks (Minh et al. (2009)), and there are36

countless case studies that both measure and optimize PD for conservation (see, e.g.,37

Pollock et al. (2017)); Faith’s original paper has been cited in excess of 2000 times. A38

recent review (Tucker et al., 2019) considered the literature concerning both the empirical39

correlations between PD and feature diversity, and the expected relationship between PD40
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FORMAL LINKS BETWEEN FD AND PD 3

and various conservation values.41

Surprisingly, though, the necessary conditions under which PD will capture feature42

diversity have never been formalized. Here, by using discrete characters, a model with no43

homoplasy, and appropriate edge lengths, we prove that the PD of a subtree does indeed44

measure feature diversity as defined by (Faith, 1992). This proof allows us to state more45

formally when PD does not necessarily capture feature diversity, thereby allowing for46

further modelling and statistical evaluation of the expected relationship under more47

realistic models. Given the close connection between PD and taxonomic distinctiveness, we48

also consider the conditions under which its phylogenetic measure (specifically the Shapley49

value of evolutionary isolation) can capture its feature-based analogue.50

Preliminaries51

Feature diversity52

Consider a set X of taxa with |X| = n, and suppose that each taxon x ∈ X has an53

associated finite set Fx of ‘features’. To allow extra generality, we will assume that each54

element f ∈ Fx has a corresponding positive score µ(f) ∈ R>0, which might be viewed as a55

measure of the complexity, novelty, or richness of f (the default option is to set µ(f) = 156

for all f). Let F denote the set of all features present amongst the taxa in the collection57

X, and let F = (Fx : x ∈ X) be the ordered n-tuple containing the feature sets of the taxa58

in X. We will sometimes call F a feature assignment as it summarizes how a set of features59

is assigned to each taxon in X.60

Note that F provides the same information as a table showing the presence and61

absence of features across taxa. So if X = {a, b, c}, then the feature assignment62

F = (Fa, Fb, Fc) where Fa = {f1, f2}, Fb = {f1, f3} and Fc = {f2, f3}, corresponds to a63

standard character state matrix where there are two states per feature: presence (1) or64

absence (0) (see Table 1).65
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4 WICKE, MOOERS AND STEEL

Table 1. A standard character state matrix (0 =absence, 1 =presence) representing the as-
signment of three features (f1, f2, f3) across three taxa (a, b, c).

Taxon f1 f2 f3
a 1 1 0
b 1 0 1
c 0 1 1

Given a subset Y of X, let

νF(Y ) :=
∑

f∈∪x∈Y Fx

µ(f).

Thus, νF(Y ) is the sum of the values of the features that are present in at least one66

taxon in Y . We refer to νF(Y ) as the feature diversity (FD) of Y . Note that in this sum,67

each feature is counted only once if present.68

The function νF (which assigns each subset Y of X a non-negative real value νF(Y ))69

clearly satisfies the following two properties: νF(∅) = 0 and νF is monotone (i.e.70

Y ⊆ Y ′ ⇒ νF(Y ) 6 νF(Y ′)). Moreover, νF also satisfies the submodularity inequality:71

νF(Y ∪ Y ′) + νF(Y ∩ Y ′) 6 νF(Y ) + νF(Y ′), (1)

and a proof is provided in the ‘Proofs of Propositions’ section.72

Phylogenetic diversity73

Now consider a rooted phylogenetic X-tree T = (V,E) with root ρ, leaf set X, and74

edge length assignment ` : E → R>0. For technical reasons (by allowing greater generality75

in the statement of our results) we assume that T has an additional ‘stem edge’ (ρ′, ρ)76

where ρ′ is a degree-1 vertex and ρ has in-degree 1 and out-degree at least 2 (see Fig. 1).77

The phylogenetic diversity (PD) of a subset Y of X is usually defined as the sum of the78

lengths of the edges in the minimal subtree of T that contains the leaves in Y and the root79

ρ of T . Here, we extend this definition by also including the length of the stem edge (ρ′, ρ)80

in the calculation of PD for any subset Y ⊆ X with |Y | > 1. This adds a constant, namely81

`((ρ′, ρ)), to all subsets Y ⊆ X \ ∅ but does not affect properties of PD, such as its82

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2020. ; https://doi.org/10.1101/2020.04.06.027953doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.06.027953
http://creativecommons.org/licenses/by-nc-nd/4.0/


FORMAL LINKS BETWEEN FD AND PD 5

monotonicity or submodularity.83

e0

e1

ek
ρ

ek+1

ρ′

i

Fig. 1. Representing a phylogenetic X-tree T relative to a reference leaf i. Note that T is not assumed to be binary.

Linking feature diversity to phylogenetic diversity84

Next consider a model, based on a rooted phylogenetic X–tree T in which (i) each85

feature in F arises on exactly one edge of T and (ii) each feature that arises is never lost86

and is passed down to all descendant vertices (including the leaves). This is just a model87

where every feature is a perfect synapomorphy.88

We can describe this more precisely by specifying a map h : F → E, which indicates89

which edge each given feature arises on (note that several features may arise on the same90

edge). Thus h−1(e) denotes the set of features that arise on edge e. Here, we assume that91

h−1(e) 6= ∅ for all interior edges of T (i.e., each interior edge of T gives rise to at least one92

feature). Notice that this is equivalent to allowing interior edges with ‘no event’ (i.e.,93

without a feature arising on them) and then contracting all interior ‘no event’ edges.94

Note, however, that there may be pendant edges incident to leaves of T , on which95

no features arise. Furthermore, we also consider the stem edge (ρ′, ρ) of T to be a pendant96

edge; in particular, no features arise on this stem edge precisely when there is no feature97

that is present in every taxon.98

Under this model, Fx is then equal to the union of the sets h−1(e) over all the edges99
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6 WICKE, MOOERS AND STEEL

e on the (unique) path from ρ′ to leaf x.100

When a feature assignment F can be realized in this way, we will denote this by101

writing F = F [T, h]. Not every feature assignment F can be realized in this way (on any102

tree). As an example, consider the feature assignment described by the character state103

matrix above (Table 1). In this case, there is no rooted phylogenetic X–tree T = (V,E)104

and map h : {f1, f2, f3} → E for which (Fa, Fb, Fc) = F [T, h].105

Fortunately, it is easy to characterise precisely when a feature assignment F can be106

realized as F [T, h], and where T is either stipulated or not. The required condition107

corresponds to the well-known structure of characters necessary (and sufficient) to108

perfectly fit a common phylogenetic tree, namely that character states are arranged among109

taxa as a set of nested apomorphies.110

To describe this, we first introduce some additional notation. Let111

Xf := {x ∈ X : f ∈ Fx} denote the subset of taxa in X that have feature f . Moreover, let112

CF := {Xf : f ∈ F} be the collection of the sets Xf . The following result easily follows113

from other well-known results in phylogenetics; however, for completeness a self-contained114

proof is given in the ‘Proofs of Propositions’ section.115

Proposition 1116

(i) F = F [T, h] for some h : F → E if and only if Xf corresponds to a cluster of T for117

each feature f ∈ F . Moreover, when F = F [T, h], the map h is uniquely determined:118

for each f ∈ F , h(f) is the edge directly above the most recent common ancestor of119

the taxa in Xf .120

(ii) There exists a tree T and map h such that F = F [T, h] if and only if CF is a121

hierarchy on X. In other words, for all pairs Xf , Xf ′ ∈ CF , we have122

Xf ∩Xf ′ ∈ {∅, Xf , Xf ′} (i.e. Xf and Xf ′ are either disjoint or nested).123
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FORMAL LINKS BETWEEN FD AND PD 7

First main result124

We can now describe the relationship between FD and PD in a precise way.125

Theorem 1 Let T be a rooted phylogenetic X–tree and let F be an assignment of features126

across the taxa in X.127

(i) F = F [T, h] for some function h : F → E if and only if νF is exactly equal to the PD128

function for some edge length assignment ` of T that assigns strictly positive lengths129

to all interior edges of T and non-negative lengths to all pendant edges and the stem130

edge (ρ′, ρ) (i.e. νF(Y ) = PD(T,`)(Y ) for all subsets Y of X).131

(ii) When (i) holds, h and ` are both uniquely determined. In particular, ` = `h, where,132

for each f ∈ F , `h(e) :=
∑

f :h(f)=e µ(f) (and `h(e) = 0 for each pendant edge e of T133

with h−1(e) = ∅).134

Proof of Theorem 1.135

The proof of Theorem 1 relies on three lemmas (whose proof is given in the136

Appendix). We state these lemmas now, and then use them to establish Theorem 1.137

Lemma 1 Given a rooted phylogenetic X–tree T , suppose that F = F [T, h] for some map

h : F → E. Let `h : E → R>0 be defined by setting

`h(e) :=
∑

f :h(f)=e

µ(f),

for each edge e of T (where `h(e) := 0 if h−1(e) = ∅). Then, for all subsets Y of X we have:

νF(Y ) = PD(T,`h)(Y ).

Lemma 2 Given a rooted phylogenetic X-tree T , suppose that the identity

νF(Y ) = PD(T,`)(Y )

holds for all subsets Y ⊆ X, where ` : E → R>0 is such that the interior edges of T are138
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8 WICKE, MOOERS AND STEEL

assigned strictly positive lengths and pendant edges (including the stem edge) are assigned139

non-negative lengths. Then, there exists a map h : F → E such that F = F [T, h].140

Lemma 3 Let T be a rooted phylogenetic X-tree (with additional stem edge). Then, the141

edge lengths of T are uniquely determined by the induced PD scores of all subsets Y ⊆ X142

with |Y | 6 2.143

We now show that Theorem 1 follows from these lemmas. Part (i) of Theorem 1,

namely

F = F [T, h]⇔ νF(Y ) = PD(T,`)(Y )∀Y ⊆ X

follows from Lemmas 1 and 2 (the ‘only if’ implication is implied by Lemma 1 and the ‘if’144

implication is implied by Lemma 2).145

For Part (ii), the uniqueness of ` (i.e., ` = `h), follows by combining Lemmas 1 and146

3. More precisely, Lemma 1 states that assigning edge lengths according to `h induces the147

equality of νF(Y ) and PD(T,`h)(Y ) for all Y ⊆ X, whereas, by Lemma 3, the edge lengths148

of a given tree T are uniquely determined by the induced PD scores of all Y ⊆ X (indeed,149

even those with size at most 2 suffice). Moreover, the uniqueness of h is implied by150

Proposition 1, Part (i). This completes the proof. �151

Diversity indices152

A diversity index for FD (or PD) is a score assigned to each taxon x ∈ X that sums153

to the total FD (or PD, respectively) of X. Diversity indices can be viewed as a way to154

apportion FD (or PD) fairly among the extant taxa. Although there are various ways to do155

this, we focus on one that is characterised by simple axioms, namely, the Shapley value156

(from cooperative game theory), which coincides, in the PD setting, with the well-known157

Fair Proportion index (described below).158
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FORMAL LINKS BETWEEN FD AND PD 9

Feature diversity index159

Given F, let

ϕF : X → R>0

be the function defined by:

ϕF(x) :=
∑
f∈Fx

µ(f)

n(f)
,

where n(f) is the number of taxa that have feature f (i.e. n(f) = |Xf |). In words, ϕF(x)160

assigns to each taxon x a sum of scores — one score for each of its features — where the161

score for feature f is µ(f) if x is the only taxon having this feature; otherwise, the score162

equals µ(f) divided by the total number of taxa having feature f .163

The following result provides a formal justification for regarding ϕF as a natural164

index of FD. Note that this index does not depend on any underlying phylogeny, or on165

assumptions concerning feature evolution, and is easily computed.166

The result is phrased within the general framework of cooperative game theory (a167

topic more well-known in economics than biology, though it has recently been applied to168

PD, as we discuss below). In this general framework, one has a finite set X and a function169

s that assigns to each subset Y of X a corresponding score s(Y ) with s(∅) = 0 (in our170

current setting s(Y ) = νF(Y )). Given the pair (X, s), one seeks to apportion the score of171

the full set X among each of its elements according to an index (i.e., a value for each172

element of X) in a way that reflects the contribution each element makes to the total173

score. In this general framework, there is a particular index, called the Shapley value, that174

is uniquely determined by well-motivated axioms, and which is given by an explicit (if175

somewhat complex) combinatorial expression (Shapley, 1953).176

Proposition 2 The FD index ϕF is precisely the Shapley value for the pair (X, νF). In177

particular,
∑

x∈X ϕF(x) = νF(X).178

The proof of Proposition 2 is provided in the ‘Proofs of Propositions’ section.179
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10 WICKE, MOOERS AND STEEL

Phylogenetic diversity index180

Given the pair (T, `), the Fair Proportion index (FP) (from Redding (2003) and

Redding et al. (2007), see also Isaac et al. (2007)) for taxon x is given by:

FP(T,`)(x) =
∑

e∈P (T ;ρ′,x)

1

n(e)
· `(e),

where P (T ; ρ′, x) denotes the unique path from ρ′ to x and where n(e) is the number of181

leaves descending from the endpoint of edge e closest to the leaves.182

It turns out that the FP index coincides exactly with the Shapley value based on183

PD (i.e. when PD is used as the characteristic function in the underlying cooperative184

game), a result first shown by Fuchs and Jin (2015). As ϕF is (by Proposition 2) equivalent185

to the Shapley value based on FD, Theorem 1 thus has the interesting implication that if a186

feature assignment F can be realized on a tree (i.e., if F = F [T, h]), then the Shapley187

values based on PD and FD coincide.188

Proposition 3 If F = F [T, h], then ϕF(x) is equal to the Fair Proportion index for taxon x189

on tree T for the edge length assignment `h.190

Proof. Let F = F [T, h] and let x ∈ X. As noted above, we have:

FP(T,`h)(x) =
∑

e∈P (T ;ρ′,x)

1

n(e)
· `h(e).

Importantly, we can also write ϕF(x) as follows:

ϕF(x) =
∑
f∈Fx

µ(f)

n(f)
=

∑
e∈E(T ):

∃f∈Fx with h(f)=e

`h(e)

n(f)
.

Now, since F = F [T, h], all the edges on which features present in Fx arise must lie on the191

unique path from ρ′ to x. Moreover, a feature f ′ not contained in Fx, cannot have arisen192

on this path. More precisely, if a feature f arises on edge e, then a taxon x ∈ X has this193

feature if and only if it is a descendant of e. In particular, n(f) = n(e). In summary, this194

implies that ϕF(x) = FP(T,`h)(x). �195
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FORMAL LINKS BETWEEN FD AND PD 11

We now establish a further result. We show that ϕF(x) can always be interpreted as196

FP(T,`)(x) for any tree T (even if F 6= F [T ′, h] for any tree T ′).197

Theorem 2 Let F be a feature assignment such that Fx 6= ∅ for all x ∈ X, and let T be any198

rooted phylogenetic X-tree (with additional stem edge). Then, there exists an edge length199

assignment ` : E → R>0 that assigns strictly positive lengths to all edges of T , such that200

ϕF(x) = FP(T,`)(x) for all x ∈ X.201

The proof of Theorem 2 is provided in the Appendix, however we provide an outline202

of the argument here. First observe that if T is a star tree then Theorem 2 clearly holds,203

since we can simply assign edge length ϕF(x) to the edge incident with leaf x and obtain204

ϕF(x) = FP(T,`)(x) for all x ∈ X. If T is not a star tree, then we could assign edge length 0205

to all the interior edges and the stem edge, and apply the same trick to obtain the required206

identity. The non-trivial part of the proof of Theorem 2 is to show that one can ‘lift’ some207

fraction of the lengths of the pendant edges so as that (i) all edges of T have strictly208

positive length, and in such a way that (ii) the required identity between the FD and PD209

diversity indices holds for each taxon x.210

Discussion211

It would be a mistake to interpret Theorem 1 above as stating that feature diversity212

coincides with phylogenetic diversity (on a given tree with suitably chosen branch lengths)213

only under evolutionary scenarios in which features arise once in the tree and are never214

lost. Instead, Theorem 1 states that these two measures coincide precisely when the215

distribution of features across taxa can be described by such a single-gain-and-no-loss216

model, even if the underlying reality might be different. For instance, a feature can arise217

along a stem edge, be lost in one of the two descendant edges, but arise again in its218

descendants such that the entire crown clade expresses the feature. The feature’s true219

history is obscured but its distribution is still perfectly congruent with the underlying tree220
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12 WICKE, MOOERS AND STEEL

and thus meets the conditions of Proposition 1.221

This points to one scenario where Theorem 1 will not hold, where the rate of222

evolution is high enough and the state space is small enough (e.g., features are discrete and223

can be both gained and lost) that at least some features have non-trivial probabilities of224

arising more than once on a tree. Faith (1992) astutely pointed out that such convergent225

features “are not predictive of similarities of other features,” such that “greater226

phylogenetic diversity will, on average, imply greater feature diversity as defined by any227

particular collection of features.” Because empirical measures of PD and measured FD228

need not coincide (Devictor et al. (2010); see also the discussion in Winter et al. (2013)),229

one critical question is whether there are subsets of features that simultaneously (i) are230

more valuable to conservation than the average feature and (ii) are (or are likely to be)231

convergent, perhaps due to parallel adaptation (Mazel et al. (2018, 2019); Owen et al.232

(2019)). To the extent that there are, the force of Faith’s all-important “average” PD = FD233

statement weakens. However, answering the question is non-trivial because it requires that234

we know about the mode of evolution of conservation-relevant features in a focal clade. The235

only attempt to test this we know of is by Forest et al. (2007) for Southern African plants,236

where the patterns supported Faith’s average argument. More tests would be welcome.237

A second (related) reason why Theorem 1 allows PD and FD to diverge in238

applications is that even when F = F [T, h], the edge lengths must be suitably chosen.239

Under a stochastic process in which features arise independently at a constant (and very240

small) rate r, then conditional on a feature arising (at least) once in the tree, as r → 0, the241

expected number of features that arise on an edge will be proportional to the temporal242

length of that edge (and each trait will arise exactly once in the tree). This (coupled with243

Faith’s “average” argument) is the justification for using time-calibrated ultrametric244

phylogenetic trees when comparing PD scores. However, the evolution of some important245

subset of features may not be captured with this model at all (Mazel et al. (2017)), or,246

more prosaically, may simply evolve at such a high rate that the time-calibrated247
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FORMAL LINKS BETWEEN FD AND PD 13

ultrametric tree edge lengths are not predictive of the number and placement of features248

(for example, due to saturation). Here again, both theoretical (see e.g. Tucker et al.249

(2018)) and empirical tests using features of known conservation value are needed.250

Two observations can be made on the basis of Theorem 2. The first is that the251

compact expression for the ϕF(x) measure of feature diversity does not require any252

particular model of feature evolution on a tree: different features and different subtrees can253

be governed by different processes. While we might still require Faith (1992)’s “average”254

argument, namely, that the distribution of measured features mirrors the features of255

conservation concern more generally, this might expand its usefulness. Once again, this is256

open to empirical testing. However, the Shapley value is quite specific in what it measures:257

it is the expected contribution (here, of features) to all possible future subsets of taxa,258

where subset sizes are equiprobable (Steel, 2016). This is a strong assumption that bears259

further scrutiny (see also Faith (2008)).260

In conclusion, our paper provides a precise mathematical framework to help address261

some fundamental questions and possible future approaches concerning the link between262

feature and phylogenetic diversity, a critical connection for phylogeny-oriented263

conservation triage.264

Proofs of Propositions265

Proof of Proposition 1.266

(i) First, suppose that F = F [T, h], and let f ∈ F be an arbitrary feature. Moreover, let267

e = h(f) be the edge f arose on. Then, precisely those leaves of T that are268

descendants of e contain feature f . In particular, Xf corresponds to a cluster of T269

(namely, to the cluster of leaves descending from e).270

Now, suppose that Xf corresponds to a cluster of T for each feature f ∈ F . Then we271

can realize F on T by setting h(f) to the edge directly above the most recent272
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14 WICKE, MOOERS AND STEEL

common ancestor of the taxa in Xf for each f ∈ F . In particular, F = F [T, h].273

Moreover, when F = F [T, h], h(f) must be the edge, say e, directly above the most274

recent common ancestor of the taxa in Xf . If f had arisen above e, say on some edge275

e′, there would be at least one taxon x in the cluster cT (e′) induced by e′ (i.e. in the276

set of leaves of T that are separated from the root of T by e′) with x ∈ cT (e′) \Xf .277

This, however, would imply that f was lost on the way from e′ to x, which is a278

contradiction. Similarly, if f had arisen below edge e, say on some edge e′′, this279

would imply that the cluster cT (e′′) induced by e′′ was a strict subset of Xf , i.e.280

cT (e′′) ⊂ Xf . In other words, there would be at least one taxon y ∈ Xf \ cT (e′′),281

which implies that f arose at least twice in T . This is again a contradiction.282

(ii) First, suppose that F = F [T, h]. By Part (i) of this Lemma, this implies that the set283

Xf corresponds to a cluster of T for all f ∈ F . In particular, CF = {Xf : f ∈ F} is a284

set of clusters induced by a rooted phylogenetic X-tree T , which implies that CF is a285

hierarchy on X (cf. Proposition 2.1 in Steel (2016)).286

Now, suppose that CF is a hierarchy on X. This implies (again by Proposition 2.1 in287

Steel (2016)) that CF is the set of clusters of some rooted phylogenetic X-tree T . By288

Part (i) of this Lemma, this in turn implies that F = F [T, h].289

�290

Proof of Proposition 2:. Notice that both ϕF(x) and νF(Y ) (with Y ⊆ X) are linear

functions in µ(f). More precisely,

ϕF(x) =
∑
f∈F

γ(x, f) · µ(f), where γ(x, f) =

{
1

n(f)
, if f ∈ Fx;

0, otherwise.

Analogously,

νF(Y ) =
∑
f∈F

γ′(Y, f) · µ(f), where γ′(Y, f) =

{
1, if f ∈ ∪x∈Y Fx;
0, otherwise.

Thus, by linearity (see also Lemma 6.14 in Steel (2016)), it suffices to show the statements291

for the case that one element of F , say fi, has score µ(fi) = 1, whereas µ(fj) = 0 for all292
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fj ∈ F \ {fi} (note that µ was earlier defined to be strictly positive, but we are here293

relaxing this for algebraic convenience).294

For the first part of the proof, recall that given the cooperative game (X, νF), the295

Shapley value of x ∈ X is defined as (Shapley (1953))296

SVνF(x) =
1

n!

∑
S⊆X:x∈S

(|S| − 1)! (n− |S|)! ∆(S, x), (2)

where ∆(S, x) = νF(S)− νF(S \ {i}). We now show that SVνF(x) = ϕF(x) (where we297

assume that µ(fi) = 1 and µ(fj) = 0 for all fj ∈ F \ {fi}).298

We can distinguish two cases:299

• If fi /∈ Fx, then ∆(S, x) = 0 for all S, and thus, SVνF(x) = 0. On the other hand, we300

clearly also have ϕF(x) = 0.301

• If fi ∈ Fx, then ∆(S, x) = 1 if (i) x ∈ S and (ii) there is no y ∈ S with fi ∈ Fy;

otherwise ∆(S, x) = 0. Let C ⊆ X be the set of taxa that have feature fi, i.e.,

C = {y ∈ X : fi ∈ Fy}, and so n(fi) = |C|. Then, SVνF can be written as

1

n!

∑
S:x∈S

S\{x}⊆X\C

(|S| − 1)! (n− |S|)! · 1

=
1

n!

n−n(fi)+1∑
k=1

(
n− n(fi)

k − 1

)
(k − 1)! (n− k)! =

1

n(fi)
,

where the last equality follows from the fact that 1
n!

∑n−r
j=0

(
n−r
j

)
j!(n− 1− j)! = 1

r
for302

1 6 r 6 n (Lemma 6.15 in Steel (2016)) (here: j = k − 1 and r = n(fi)). On the303

other hand, ϕF(x) = µ(fi)
n(fi)

= 1
n(fi)

, which completes the proof.304

The second part of Proposition 2, follows directly from properties of the Shapley

value; however we give a direct proof. Again, it suffices to consider the case where

µ(fi) = 1 and µ(fj) = 0, for all j 6= i, in which case we obtain the required equality:∑
x∈X

ϕF(x) =
∑
x∈X:
fi∈Fx

ϕF(x) +
∑
x∈X:
fi /∈Fx

ϕF(x) =
∑
x∈X:
fi∈Fx

µ(fi)

n(fi)
+ 0 = µ(fi) = 1 = νF(X).
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16 WICKE, MOOERS AND STEEL

�305

Proof of Inequality (1). Let W (Y ) :=
⋃
x∈Y Fx. From the proof of Proposition 2 we have:

νF(Y ) =
∑
f∈F

γ′(Y, f) · µ(f), where γ′(Y, f) =

{
1, if f ∈ W (Y );

0, otherwise.

Now,

W (Y ∪ Y ′) = W (Y ) ∪W (Y ′),

and

W (Y ∩ Y ′) ⊆ W (Y ) ∩W (Y ′),

(and the containment can be strict). It follows that for all f ∈ F and all Y, Y ′ ⊆ X.:

γ′(Y ∪ Y ′, f) + γ′(Y ∩ Y ′, f)− γ′(Y, f)− γ′(Y ′, f) 6 0.

Since νF(Y ∪ Y ) + νF(Y ∩ Y ′)− νF(Y )− νF(Y ′) is a positive weighted sum of the306

corresponding γ′ quantities above, Inequality (1) now follows.307

�308
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Appendix: Proof of Lemmas 1–3, and Theorem 2.371

Proof of Lemma 1. Suppose that F = F [T, h]. For each f ∈ F , let Xf be the set of taxa372

that have feature f . Then,373

νF(Y ) =
∑
f∈F :

Xf∩Y 6=∅

µ(f) =
∑

e∈E(T ):
∃f∈F :h(f)=e and Xf∩Y 6=∅

`h(e), (3)

where the last equality follows from the fact that F = F [T, h].374

On the other hand,375

PD(T,`h)(Y ) =
∑

e∈E(T ):
cT (e)∩Y 6=∅

`h(e), (4)

where cT (e) denotes the set of leaves of T that are separated from the root of T by e. Now,376

as F = F [T, h], when e = h(f), cT (e) corresponds to the set Xf . Thus, for e ∈ E(T ), we377

can conclude that cT (e) ∩ Y 6= ∅ precisely if378

• ∃f ∈ F : h(f) = e and Xf ∩ Y 6= ∅, or379

• @f ∈ F : h(f) = e and e is a pendant edge incident to a leaf y ∈ Y (in which case380

`h(e) = 0).381

Thus, we can re-write Eqn. (4) as

PD(T,`h)(Y ) =
∑

e∈E(T ):
∃f∈F :h(f)=e and Xf∩Y 6=∅

`h(e) = νF(Y ),

where the last equality follows from Eqn. (3). This completes the proof. �382

Proof of Lemma 2:. We will prove this statement by contradiction. Thus, assume that383

νF(Y ) = PD(T,`)(Y ) for all Y ⊆ X but there is no map h : F → E such that F = F [T, h].384

We now distinguish two cases: (i) F cannot be explained by T , but by some other tree T ′,385

i.e. F = F [T ′, h′], or (ii) the collection of sets CF = {Xf : f ∈ F} does not form a hierarchy386

and cannot be explained by any tree (cf. Proposition 1, Part (ii)).387

(i) First, suppose that F 6= F [T, h] but F = F [T ′, h′], and νF(Y ) = PD(T,`)(Y ) for all388
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Y ⊆ X. Now, as T 6= T ′, there must be some i, j, k ∈ X such that restricting T and389

T ′ to {i, j, k} yields distinct trees. More precisely, there exist i, j, k ∈ X such that390

(a) T |{i,j,k} is either the caterpillar tree on three leaves with cherry [i, j] or the391

rooted star tree on {i, j, k},392

(b) T ′|{i,j,k} is either the caterpillar tree on three leaves with cherry [i, k] or the393

rooted star tree on {i, j, k},394

(c) T |{i,j,k} 6= T ′|{i,j,k} (in particular, T |{i,j,k} and T ′|{i,j,k} are not both star trees).395

Let ∆F(x, x′) := νF({x}) + νF({x′})− νF({x, x′}), for each distinct pair x, x′ ∈ X.396

Then as νF(Y ) = PD(T,`) for all Y ⊆ X, we have from (a) that:397

∆F(i, j)

{
= ∆F(i, k), if T |{i,j,k} is a star tree;

> ∆F(i, k), otherwise.
(5)

On the other hand, as F = F [T ′, h′], we have by Lemma 1, that398

νF(Y ) = PD(T ′,`h′ )
(Y ) for all Y ⊆ X (where `h′(e) =

∑
f :h′(f)=e µ(f); in particular,399

`h′(e) > 0 for each interior edge e of T ′). This implies that:400

∆F(i, k)

{
= ∆F(i, j), if T ′|{i,j,k} is a star tree;

> ∆F(i, j), otherwise.
(6)

Comparing Eqns. (5) and (6), and using the fact that T |{i,j,k} and T ′|{i,j,k} cannot401

both be star trees, this yields a contradiction. As (i, j, k) was an arbitrary triple of402

leaves for which T |{i,j,k} 6= T ′|{i,j,k}, this contradiction implies that the initial403

assumption was wrong. In particular, F = F [T, h].404

(ii) Now, assume that νF(Y ) = PD(T,`)(Y ) for all Y ⊆ X, but CF = {Xf : f ∈ F} does405

not form a hierarchy. This implies that there exists f1, f2 ∈ F such that406

(a) There exists a taxon x1 ∈ X such that x1 ∈ Xf1 ∩Xf2 .407

(b) There exists a taxon x2 ∈ X such that x2 ∈ Xf1 \Xf2 .408

(c) There exists a taxon x3 ∈ X such that x3 ∈ Xf2 \Xf1 .409
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We now partition the feature set F into eight pairwise disjoint subsets A, . . . , G,

where

A := {f ∈ F : f ∈ Fx1 \ (Fx2 ∪ Fx3)}

B := {f ∈ F : f ∈ Fx2 \ (Fx1 ∪ Fx3)}

C := {f ∈ F : f ∈ Fx3 \ (Fx1 ∪ Fx2)}

D := {f ∈ F : f ∈ (Fx1 ∩ Fx2) \ Fx3}

E := {f ∈ F : f ∈ (Fx1 ∩ Fx3) \ Fx2}

F := {f ∈ F : f ∈ (Fx2 ∩ Fx3) \ Fx1}

G := {f ∈ F :
3⋂
i=1

Fxi}

H := {f ∈ F : f /∈
3⋃
i=1

Fxi}

Note that D 6= ∅ (because by (a)–(c), f1 ∈ (Fx1 ∩ Fx2) \ Fx3). Analogously, E 6= ∅410

(because f2 ∈ (Fx1 ∩ Fx3) \ Fx2).411

Given a set of features S, let µ(S) :=
∑

f∈S µ(f) denote the sum of scores of features412

present in S. As µ(f) > 0 for all f ∈ F , by the preceding argument, in particular413

µ(D), µ(E) > 0.414

We now compute νF(Y ) for all Y ⊆ {x1, x2, x3} with |Y | > 1, and compare it to415

PD(T,`)(Y ). Recall that PD(T,`)(Y ) for Y ⊆ X is computed by considering the sum of416

edge lengths in the minimum subtree of T connecting the taxa in Y and ρ′. Without417

loss of generality, we can assume that the subtree induced by {x1, x2, x2} has the418

structure depicted in Fig. 2 (otherwise, we exchange leaf labels).419

Now, by assumption νF(Y ) = PD(T,`)(Y ) for all Y ⊆ X. For Y ⊆ {x1, x2, x3} with

|Y | > 1, this gives rise to a system of 7 linear equations (where `(p) denotes the
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p′

p

x1

x3x2

p1

p3p2

p4

p5

v

w

ep

Fig. 2. Subtree induced by taxa x1, x2, and x3 in the proof of Lemma 2. v denotes the most recent common
ancestor of x2 and x3. Analogously, w denotes the most recent common ancestor of x1, x2, and x3. Furthermore, p1
denotes the unique path from w to x1, p2 denotes the unique path from v to x2 and so forth.

length of path p):

νF({x1}) = PD(T,`)({x1})

⇔ µ(A) + µ(D) + µ(E) + µ(G) = `(p1) + `(p5) + `(eρ)

νF({x2}) = PD(T,`)({x2})

⇔ µ(B) + µ(D) + µ(F ) + µ(G) = `(p2) + `(p4) + `(p5) + `(eρ)

νF({x3}) = PD(T,`)({x3})

⇔ µ(C) + µ(E) + µ(F ) + µ(G) = `(p3) + `(p4) + `(p5) + `(eρ)

νF({x1, x2}) = PD(T,`)({x1, x2})

⇔ µ(A) + µ(B) + µ(D) + µ(E) + µ(F ) + µ(G) = `(p1) + `(p2) + `(p4) + `(p5) + `(eρ)

νF({x1, x3}) = PD(T,`)({x1, x3})

⇔ µ(A) + µ(C) + µ(D) + µ(E) + µ(F ) + µ(G) = `(p1) + `(p3) + `(p4) + `(p5) + `(eρ)

νF({x2, x3}) = PD(T,`)({x2, x3})

⇔ µ(B) + µ(C) + µ(D) + µ(E) + µ(F ) + µ(G) = `(p2) + `(p3) + `(p4) + `(p5) + `(eρ)

νF({x1, x2, x3}) = PD(T,`)({x1, x2, x3})

⇔ µ(A) + µ(B) + µ(C) + µ(D) + µ(E) + µ(F ) + µ(G)

= `(p1) + `(p2) + `(p3) + `(p4) + `(p5) + `(eρ)
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Solving this system of linear equations for µ(A), . . . , µ(G) yields µ(A) = `(p1),420

µ(B) = `(p2), µ(C) = `(p3), µ(D) = µ(E) = 0, µ(F ) = `(p4), and421

µ(G) = `(p5) + `(eρ).422

However, as our assumption implies that µ(D), µ(E) > 0, this is a contradiction.423

Thus, the initial assumption was false. In particular, {Xf : f ∈ F} forms a hierarchy.424

Thus, by Proposition 1, Part (ii), there exist T ′ and h′ such that F = F [T ′, h′]. Now,425

by case (i) of this proof, this implies F = F [T, h]. This completes the proof.426

�427

Proof of Lemma 3:. Let T be a rooted phylogenetic X-tree (with additional stem edge),428

and assume that PDT (Y ) is given for all Y ⊆ X with |Y | 6 2. We now show that we can429

uniquely infer the edge lengths of T from these scores. Let i ∈ X be a leaf of T . Then,430

there is a unique path ek+1, ek, . . . , e1, e0 from ρ′ to i in T (see Fig. 1), and we can infer the431

lengths of these edges in a ‘top-down‘ approach (i.e., starting with edge ek+1 and moving432

down the tree towards edge e0).433

For `(ek+1), let j be a leaf that is not a descendant of edge ek (in other words, j is

not in the same maximal pending subtree as i). Then, clearly,

PDT ({i, j}) = PDT ({i}) + PDT ({j})− `(ek+1),

(because `(ek+1) contributes twice to the sum PDT ({i}) + PDT ({j}), but only once to434

PDT ({i, j})). In other words, `(ek+1) = PDT ({i}) + PDT ({j})− PDT ({i, j}).435

Now, let ei = (u, v) be an interior edge in the path from ρ′ to i, for which the436

lengths of its preceding edges are already determined, i.e., `(ek+1), . . . , `(ei+1) are known.437

Moreover, let j be a leaf that is a descendant from ei, but not from ei−1.438

Then, with a similar argument as in the previous case, we have

PDT ({i, j}) = PDT ({i}) + PDT ({j})− `(P (T ; ρ′, v)),

where `(P (T ; ρ′, v)) denotes the length of the unique path from ρ′ to v in T (which439

contributes twice to the sum PDT ({i}) + PDT ({j}), but only once to PDT ({i, j})). In440
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other words, `(P (T ; ρ′, v)) = PDT ({i}) + PDT ({j})− PDT ({i, j}). On the other hand,441

`(P (T ; ρ′, v)) = `(ek+1) + `(ek) + . . .+ `(ei+1) + `(ei), and as `(ek+1), . . . , `(ei+1) are known,442

we can uniquely infer `(ei).443

Finally, after inferring the lengths of the edges ek+1, ek, . . . , e1 as described above,444

we can also uniquely infer the length of the pendant edge e0 incident to i as445

`(e0) = PDT ({i})−
∑k+1

j=1 `(ej).446

In summary, we can uniquely infer all edge lengths of edges in the path from ρ′ to i447

from the PD scores of subsets of X of size at most 2. As i was an arbitrary leaf of T , this448

completes the proof. �449

Proof of Theorem 2.450

Let F be a feature assignment and let T be a rooted phylogenetic X-tree. First,451

note that we can always achieve ϕF(x) = FP(T,`′)(x) for all x ∈ X when we consider an452

edge length assignment `′ that allows edges to be assigned length zero because, in this453

case, if ex denotes the pendant edge incident to x, we can set `′(ex) = ϕF(x) for each454

x ∈ X, and `′(e) = 0 for all interior edges and the stem edge, which clearly results in455

ϕF(x) = FP(T,`′)(x) for all x ∈ X.456

We now show that we can obtain an edge length assignment ` assigning strictly457

positive lengths to all edges of T from `′ by redistributing lengths in a ‘bottom-up’458

approach (i.e. moving from pendant edges towards the stem edge).459

First, for each pendant edge ex, set `(ex) = `′(ex), which is strictly positive, due to460

the assumed condition Fx 6= ∅, along with the fact that µ takes strictly positive values.461

Now, let e be an edge of T such that all edges descending from e already have strictly462

positive lengths, whereas all edges above e (if they exist) still have length zero. Let463

e1, . . . , ek denote the descending edges incident to e, and let t1, . . . , tk denote the subtrees464

pending from e (where tree ti has stem edge ei for i = 1, . . . , k). Moreover, for i = 1, . . . , k,465

let δei := `(ei)
n(ei)

denote the ratio between the length of ei and the number of leaves466

descending from it. Without loss of generality, we may assume that edge e1 minimizes this467
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ratio (else we exchange edge labels). Furthermore, let 0 < c < 1. We now re-assign edge468

lengths to e1, . . . , ek and e as follows (where `old(ei) refers to the edge length ei is currently469

assigned):470

1. `new(e) := (1− c) · `old(e1) · n(e)n(e1)
471

2. `new(e1) := c · `old(e1),472

3. `new(ei) := `old(ei)− n(ei)
n(e)
· `new(e) for i = 2, . . . , k.473

Now, in order to show that this is a valid re-distribution of edge lengths, we need to show474

that475

(i) `new(e) > 0 and `new(ei) > 0 for i = 1, . . . , k.476

(ii) FP(T,`old)(x) = FP(T,`new)(x) for all x ∈ X.477

First, consider (i). As `old(e1) > 0 by assumption, and 0 < c < 1, we clearly have

`new(e) > 0, and `new(e1) > 0. Now, consider ei for i ∈ {2, . . . , k}. Here, we have

`new(ei) = `old(ei)−
n(ei)

n(e)
· `new(e)

= `old(ei)−
n(ei)

n(e)
· (1− c) · `old(e1) ·

n(e)

n(e1)

= `old(ei)−
`old(e1)

n(e1)
· n(ei) · (1− c)

> `old(ei)−
`old(ei)

n(ei)
· n(ei) · (1− c) (because e1 minimizes δei = `old(ei)/n(ei))

= `old(ei)− `old(ei) · (1− c) = c · `old(ei) > 0,

where the last inequality again follows from the fact that (by assumption) `old(ei) > 0 and478

0 < c < 1. This completes the proof of (i).479

For (ii) note that the FP indices of taxa not descending from e are not affected by

the re-assignment of edge lengths, so it suffices to consider all x ∈ cT (e). In the following,

let ti \ ei be the rooted phylogenetic tree obtained from ti by deleting its stem edge. Then,
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we clearly have for all x ∈ cT (e):

FP(T,`old)(x) = FP(t\ei,`old)(x) +
`old(ei)

n(ei)
,

(because by assumption all edges above ei have length zero before the re-assignment of

edge lengths according to steps 1–3). On the other hand, we have for all x ∈ cT (e):

FP(T,`new)(x) = FP(t\ei,`new)(x) +
`new(ei)

n(ei)
+
`new(e)

n(e)
.

Note that FP(t\ei,`old)(x) = FP(t\ei,`new)(x) for all x ∈ cT (e) (because the lengths of edges in

ti \ ei are not changed). We now show that FP(T,`old)(x) = FP(T,`new)(x) for all x ∈ X.

First, let x ∈ t1. Then, we have

FP(T,`new)(x) = FP(t\e1,`new)(x) +
`new(e1)

n(e1)
+
`new(e)

n(e)

= FP(t\e1,`old)(x) +
c · `old(e1)

n(e1)
+

(1− c) · `old(e1) · n(e)n(e1)

n(e)

= FP(t\e1,`old)(x) + c · `old(e1)

n(e1)
+ (1− c) · `old(e1)

n(e1)

= FP(t\e1,`old)(x) +
`old(e1)

n(e1)
= FP(T,`old)(x).

Now, let x ∈ ti for i ∈ {2, . . . , k}. Then, we have

FP(T,`new)(x) = FP(t\ei,`new)(x) +
`new(ei)

n(ei)
+
`new(e)

n(e)

= FP(t\ei,`old)(x) +
`old(ei)− n(ei)

n(e)
· `new(e)

n(ei)
+
`new(e)

n(e)

= FP(t\ei,`old)(x) +
`old(ei)

n(ei)
− `new(e)

n(e)
+
`new(e)

n(e)

= FP(T,`old)(x).

In summary, re-assigning edge lengths according to the conditions 1–3 (listed480

above) is valid (because conditions (i) and (ii) hold). Thus, for each edge e whose length481

was changed, we now simply set `(e) = `new(e) and repeat the procedure. In this way, we482

can construct an edge length assignment ` that assigns strictly positive lengths to all edges483

of T (including pendant edges and the stem edge), such that ϕF(x) = FP(T,`)(x) for all484

x ∈ X. This completes the proof. �485
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