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Abstract

Motivation: DNA metabarcoding is a com-
monly applied technique used to infer the species
composition of environmental samples. These
samples can comprise hundreds of organisms
that can be closely or very distantly related in
the taxonomic tree of life. DNA metabarcoding
combines polymerase chain reaction (PCR) and
next-generation sequencing (NGS), whereby
a short, homologous sequence of DNA is
amplified and sequenced from all members of the
community. Sequences are then taxonomically
identified based on their match to a reference
database. Ideally, each species of interest would
have a unique DNA barcode. This short, variable
sequence needs to be flanked by relatively con-
served regions that can be used as primer binding
sites. Appropriate PCR primer pairs would match
to a broad evolutionary range of taxa, such that
we only need a few to achieve high taxonomic
coverage. At the same time however, the DNA
barcodes between primer pairs should be different
to allow us to distinguish between species to
improve resolution. This poses an interesting
optimization problem. More specifically: Given
a set of references R = {R1, R2, ..., Rm}, the
problem is to find a primer set P balancing both:
high taxonomic coverage and high resolution.
This goal can be captured by filtering for frequent
primers and ranking by coverage or variation,
i.e. the number of unique barcodes. Here we
present the software PriSeT, an offline primer
discovery tool that is capable of processing large
libraries and is robust against mislabeled or low
quality references. It tackles the computationally
expensive steps with linear runtime filters and
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efficient encodings.
Results: We first evaluated PriSeT on ref-
erences (mostly 18S rRNA genes) from 19
clades covering eukaryotic organisms that are
typical for freshwater plankton samples. PriSeT
recovered several published primer sets as well
as additional, more chemically suitable primer
sets. For these new sets, we compared frequency,
taxon coverage, and amplicon variation with
published primer sets. For 11 clades we found
de novo primer pairs that cover more taxa than
the published ones, and for six clades de novo
primers resulted in greater sequence (i.e., DNA
barcode) variation. We also applied PriSeT to 19
SARS-CoV-2 genomes and computed 114 new
primer pairs with the additional constraint that
the sequences have no co-occurrences in other
taxa. These primer sets would be suitable for
empirical testing.
Availability: https://github.com/
mariehoffmann/PriSeT
Contact: marie.hoffmann@fu-berlin.de

1. Motivation
In metagenomics, the DNA of hundreds to thousands of
species from a single environmental sample is processed
in parallel and one goal is to identify all species from a
sample. Samples contain many species in what can be very
heterogeneous communities.
Their identification is usually done via DNA metabarcoding
which combines polymerase chain reaction (PCR), next-
generation sequencing (NGS) and identification via DNA
barcodes, i.e. short sequences that are matched against a
reference database. In contrast, single DNA probing and
assembly would be more precise, but are for many reasons
not feasible, e.g., the majority of microorganisms cannot
be clonally cultured – a necessity for assembling reference
genomes (Rappé & Giovannoni, 2003).
Although the decreasing costs of NGS makes DNA metabar-
coding progressively feasible, identification of most mi-
croeukaryotes, such as plankton, continues to be done via
morphology. This still outperforms molecular methods in
some aspects, like abundance estimation, differentiation
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of life stages, or observation of teratological forms. But
metabarcoding of environmental DNA (eDNA) is a far more
sensitive method of species detection compared to tradi-
tional methods (Smart et al., 2015) provided that a suitable
marker is chosen.
In the search for a marker, we know that evolutionary pres-
sure is not consistent within genomes. There are regions
that vary even within species, or on the other extreme, are
conserved for whole clades. For an effective delineation
of taxa using DNA metabarcodes, we are interested in re-
gions that are similar or identical to individuals of the same
species, but distinctive from other species. Such regions
are ideal barcodes, but they need to be surrounded by con-
served regions that contain suitable binding sites for primers.
Primers are short oligomers, ideally 16 to 25 bases long,
which determine the copy starting point of the template. We
need flanking conservation, because we batch-process all
extracted DNA at once and can add only one primer pair per
PCR run1.
The most frequently applied type of NGS in DNA metabar-
coding is the paired-end approach as it allows for longer
sequences and error correction for the low quality ends of
reads. The two types of primers operate independently, one
binds on the forward and the other on the reverse strand of
the template. Both are elongated enzymatically to produce
a complementary copy. In each PCR cycle the number of
amplicons is nearly duplicated.
After about 25-35 cycles the reaction is stopped and the am-
plified DNA amplicons provide a signal for the sequencer
machine that is separable from the noise of the original DNA
material. After digitization of the reads, an analysis pipeline
combines trimming, quality filtering, denoising, and read
merging with the aforementioned error correction. Identi-
cal or similar sequences are then clustered into operational
taxonomic units (OTUs). The underlying hypothesis is that
each OTU corresponds to a taxon in the tree of life. An al-
ternative approach is that each sequence variant is analysed
rather than being clustered into OTUs. The art herein is to
discriminate sequencing errors from variants. A noteworthy
denoising algorithm is the Divisive Amplicon Denoising
Algorithm 2 (DADA 2) (Callahan et al., 2016).
As described earlier, not all barcodes are specific to a single
species and our metabarcoding pipeline will most likely pro-
duce OTUs uniting barcodes from taxonomically distinct lin-
eages, even with similarity thresholds set high (i.e., > 97 %).
Despite these natural imperfections, ecologists found that
the small subunit RNA gene (SSU) is an excellent source for
species-specific markers. Hence a large number of entries
in the NCBI-GenBank nucleotide database originate from
ribosomal subunits (Benson et al., 2012). Schmidt et al.
(2014) demonstrated that OTUs from 16S/18S rRNA reflect

1An exception is the multiplex PCR where multiple non-
interfering primer pairs are added.

the underlying ecological diversity consistently across habi-
tats. In other words, even if OTUs cannot be resolved, their
counts correlate to the sample’s diversity and are roughly
independent from the species composition.
Finding the optimal set of primers in terms of coverage
and resolution takes many costly iterations of trial and er-
ror (Elbrecht et al., 2019). Scientists encounter problems
like missing ground truth and sparsely populated reference
databases. Often they would start with primer sequences
published in previous studies on similar data sets and then
compare OTU diversity between different primer sets.
More formally, primer candidates can be described as k-
mers – DNA oligomers of length k – satisfying a set of
sequence constraints Cs which are relevant for the success
of the PCR and which must hold independent of their match-
ing. Cs comprises range limits for melting temperature,
CG content or low probabilities for self-annealing. When
combining two k-mers to produce a primer pair, both have
to fulfill a second set of constraints Cp arising from their
strand orientation and fitting: avoidance of CG clamps or
low probability of cross-annealing.

A reference sequence of length N contains O(KN2) many
k-mer pairs which need to undergo filtering of Cs and Cp
where K is the k-mer length range. We use the k-mer
frequency computation on the FM index of the library to
quickly identify frequent k-mers – above a threshold z –
which then undergo two processing steps: filtering and com-
bination into pairs.

2. Motivation
In metagenomics, the DNA of hundreds to thousands of
species from a single environmental sample is processed
in parallel and one goal is to identify all species from a
sample. Samples contain many species in what can be very
heterogeneous communities.
Their identification is usually done via DNA metabarcoding
which combines polymerase chain reaction (PCR), next-
generation sequencing (NGS) and identification via DNA
barcodes, i.e. short amplicons that are matched against a
reference database. In contrast, single DNA probing and
assembly would be more precise, but are for many reasons
not feasible, e.g., the majority of microorganisms cannot
be clonally cultured – a necessity for assembling reference
genomes (Rappé & Giovannoni, 2003).
Although the decreasing costs of NGS makes DNA metabar-
coding progressively feasible, identification of most mi-
croeukaryotes, such as plankton, continues to be done via
morphology. This still outperforms molecular methods in
some aspects, like abundance estimation, differentiation
of life stages, or observation of teratological forms. But
metabarcoding of environmental DNA (eDNA) is a far more
sensitive method of species detection compared to tradi-
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tional methods (Smart et al., 2015) provided that a suitable
marker is chosen.
In the search for a marker, we know that evolutionary pres-
sure is not consistent within genomes. There are regions
that vary even within species, or on the other extreme, are
conserved for whole clades. For an effective delineation
of taxa using DNA metabarcodes, we are interested in re-
gions that are similar or identical to individuals of the same
species, but distinctive from other species. Such regions
are ideal barcodes, but they need to be surrounded by con-
served regions that contain suitable binding sites for primers.
Primers are short oligomers, ideally 16 to 25 bases long,
which determine the copy starting point of the template. We
need flanking conservation, because we batch-process all
extracted DNA at once and can add only one primer pair per
PCR run2.
The most frequently applied type of NGS in DNA metabar-
coding is the paired-end approach as it allows for longer
sequences and error correction for the low quality ends of
reads. The two types of primers operate independently, one
binds on the forward and the other on the reverse strand of
the template. Both are elongated enzymatically to produce
a complementary copy. In each PCR cycle the number of
amplicons is nearly duplicated.
After about 25-35 cycles the reaction is stopped and the am-
plified DNA amplicons provide a signal for the sequencer
machine that is separable from the noise of the original DNA
material. After digitization of the reads, an analysis pipeline
combines trimming, quality filtering, denoising, and read
merging with the aforementioned error correction. Identi-
cal or similar sequences are then clustered into operational
taxonomic units (OTUs). The underlying hypothesis is that
each OTU corresponds to a taxon in the tree of life. An al-
ternative approach is that each sequence variant is analysed
rather than being clustered into OTUs. The art herein is to
discriminate sequencing errors from variants. A noteworthy
denoising algorithm is the Divisive Amplicon Denoising
Algorithm 2 (DADA 2) (Callahan et al., 2016).
As described earlier, not all barcodes are specific to a single
species and our metabarcoding pipeline will most likely pro-
duce OTUs uniting barcodes from taxonomically distinct lin-
eages, even with similarity thresholds set high (i.e., > 97 %).
Despite these natural imperfections, ecologists found that
the small subunit RNA gene (SSU) is an excellent source for
species-specific markers. Hence a large number of entries
in the NCBI-GenBank nucleotide database originate from
ribosomal subunits (Benson et al., 2012). (Schmidt et al.,
2014) demonstrated that OTUs from 16S/18S rRNA reflect
the underlying ecological diversity consistently across habi-
tats. In other words, even if OTUs cannot be resolved, their
counts correlate to the sample’s diversity and are roughly

2An exception is the multiplex PCR where multiple non-
interfering primer pairs are added.

independent from the species composition.
Finding the optimal set of primers in terms of coverage
and resolution takes many costly iterations of trial and er-
ror (Elbrecht et al., 2019). Scientists encounter problems
like missing ground truth and sparsely populated reference
databases. Often they would start with primer sequences
published in previous studies on similar data sets and then
compare OTU diversity between different primer sets.
More formally, primer candidates can be described as k-
mers – DNA oligomers of length k – satisfying a set of
sequence constraints Cs which are relevant for the success
of the PCR and which must hold independent of their match-
ing. Cs comprises range limits for melting temperature,
CG content or low probabilities for self-annealing. When
combining two k-mers to produce a primer pair, both have
to fulfill a second set of constraints Cp arising from their
strand orientation and fitting: avoidance of CG clamps or
low probability of cross-annealing.

A reference sequence of length N contains O(KN2) many
k-mer pairs which need to undergo filtering of Cs and Cp
where K is the k-mer length range. We use the k-mer
frequency computation on the FM index of the library to
quickly identify frequent k-mers – above a threshold z –
which then undergo two processing steps: filtering and com-
bination into pairs.

2.1. Existing Approaches

There exists computer-assisted approaches in which a
manageable subset of references of organisms that are
expected to show up, is collected and serves as input to
compute a multiple sequence alignment (MSA). Then a
variation or entropy score is computed given the nucleotide
distribution for each position of the alignment. Low entropy
regions are then analyzed for serving as primer templates
and regions with high inter-species entropy as barcodes
(Hadziavdic et al., 2014). MSA approaches require the input
data set to be small, phylogenetically close, and curated in
order to produce meaningful alignments. Needless to say
that in metagenomics this approach is only chosen post
experimentum when analysing organism groups that turned
out to be difficult to detect with PCR.
Online tools like Primer Blast/Primer33 (Ye et al., 2012)
take off the burden to locally set up a software system
by providing primer searches as on online service. Users
provide as input a GenBank accession or a FASTA file.
NCBI’s Primer BLAST uses Primer3 to design primer
sequences and then submits a BLAST search against a
user-provided file. Surprisingly, Primer Blast does not
process files with multiple references and is therefore
inapplicable in a metabarcoding setup.

3www.ncbi.nlm.nih.gov/tools/primer-blast
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The Primer Search Tool4 by Tusnady et al. (2005) uses a
dynamic programming approach inspired by Kaempke et al.
(2001). When combining candidate sequences Kaempke
et al. (2001) make use of the sequence overlap and re-use
computations of the shared substring. The online tool
allows the upload of files containing multiple references,
but produces errors when header lines contain special
characters or sequences contain ambiguous one-letter
encodings. A file of 114 KB sequences took 40 seconds to
be processed including network traffic5. It outputs primer
pairs scored by chemical fitness, but does not optimize
towards coverage or amplicon variation.
PRIMEX (Lexa & Valle, 2004) is intended to provide
querying as an online service. The tool performs internally
a lookup of k-mers derived from the query string in a
prepared library and allows for mismatches. Unfortunately,
PRIMEX is currently not available and it is not capable of
discovering new primer sequences6.
One of the few standalone tools is FastPCR (Kalendar et al.,
2017). It supports a variety of PCR protocols and chemical
checks. It first computes a hash table with k-mers grouped
together by overlap into so called k-tuples with k being
7, 9, or 12 nt long. The derivation of these k-tuples is not
described. In a second step, FastPCR uses a sliding window
approach to search for matches between k-tuples and
reference sequences. Upon match, individual k-tuples are
extended in both directions. FastPCR has no preference for
frequent k-mers – it is designed to work on single genomes.
The authors are not aware of a primer discovery tool
suitable for metabarcoding experiments where the aim is
a high taxonomic coverage and barcode variation and the
input is a directory or source file composed of thousands of
reference sequences. Before we explain in detail the data
structures and algorithm to solve the problem of primer
discovery, we give definitions of some concepts that are
essential to make our approach time-efficient.

Definition k-mer.
With k-mer we refer to a sub-sequence of length k as part
of a biological text T . A sequence of length n contains
n− k + 1 k-mers. For an arbitrary alphabet Σ, there exist
|Σ|k different k-mers, i.e. for DNA 4k unique k-mers.
Since DNA is inherently structured, we do not expect
k-mers to be uniformly distributed.

Definition (k, e)-frequency.
The (k, e)-frequency counts for each of the n − k + 1
k-mers its frequency within the text T with up to e
errors. For example, the (4, 0)-frequency of T =

4http://bisearch.enzim.hu/?m=genompsearch
5compared to 1 second by PriSeT (see Figure 6)
6attempt of accession on 24th February 2020 http://

bioinformatics.cribi.unipd.it/primex

AACGACGATGCAGTACGAT over Σ = {A,C,G,T} is7:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T [i] A A C G A C G A T G C A G T A C
F4,0[i] 1 3 1 1 3 2 1 1 1 1 1 1 1 1 3 2

Definition FM-index.
The FM-index is a substring index over a text. It is based
on the Burrows-Wheeler transform and adds support data
structures that facilitate navigation when searching for query
strings. Its efficiency comes from the adjacent location of
substrings having prefixes in common. A word of length k
can be looked up in O(k) (Ferragina & Manzini, 2000).

Definition rank.
Given a text index i, the rank of a symbol σ ∈ Σ, outputs
the number of letters equal to σ until position i, including
the text position i itself.

rankσ(i) := |{1|T [j] == σ, j ∈ [0 : i]}|

Example: rank1 of T =100101111010001 over Σ =
{0, 1}

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
T [i] 1 0 0 1 0 1 1 1 1 0 1 0 0 0 1
rank1[i] 1 1 1 2 2 3 4 5 6 6 7 7 7 7 8

Definition select1.
Inverse to the rankσ function, selectσ outputs the index of
the k-th occurrence of symbol σ in the text.

selectσ(k) := arg min
i
{i| rankσ(i) == k, i ∈ [0 : n)}

Example: select1 of T =100101111010001 over Σ =
{0, 1}

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
T [i] 1 0 0 1 0 1 1 1 1 0 1 0 0 0 1
k 1 2 3 4 5 6 7 8
select1[k] 0 3 5 6 7 8 10 14

3. Algorithm
PriSeT operates in four steps:

1. FM Index Step. As a preprocessing, we compute the
FM index on the complete corpus of all references.
This needs only to be repeated when the references
change.

2. FM Frequency Step. We compute the FM frequency
for k in range [κmin : κmax] and report all those k-mers
exceeding a threshold z.

7suffix of length three no displayed
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Table 1. List of symbols and their units or membership.

z absolute frequency cutoff for
k-mer occurrences N

κmin minimum k-mer length nt
κmax maximum k-mer length nt
Tmmin minimum melting temperature ◦ C
Tmmax maximum melting temperature ◦ C
τmin minimum amplicon length nt
τmax maximum amplicon length nt
∆Tm difference in melting temperatures Kelvin
CG Cytosine or Guanine occurences nt
AT Adenine or Tyrosine occurences nt

3. Filter Step. For each k-mer we check the first set of
constraints Cs, which must hold independently.

4. Combine Step. The remaining k-mers are combined
reference-wise and checked for pair-wise fitting Cp.

In order to handle the vast amount of k-mers and k-mer
combinations, we use space efficient data structures and data
types like bit encoding schemes for k-mers and references,
and apply filters at early stages to reduce the number of
k-mers before forming combinations.

3.1. FM Index Step

For indexing and k-mer report we use the recently published
GenMap v1.0.1 by Pockrandt et al. (2019). As library
input GenMap accepts a FASTA file or directory of FASTA
files. Once computed, the FM index is used to answer
frequency queries for arbitrary values of k. We modified
GenMap to accept a frequency threshold parameter to avoid
temporary storage of low frequent k-mers (see GenMap
fork8). Algorithm 1 describes the call given GenMap’s
interface.

Algorithm 1 FM index transformation of the library.
1: procedure FMINDEXING(Library)
2: z← freq ·|Library|
3: FMIndex← genmap.index(Library)
4: return FMIndex, z

3.2. FM Frequency Step

Having computed the FM index over the library, we can
now submit queries with varying values of k. GenMap’s
frequency computation of k-mers is based on an algorithm
described by Derrien et al. (2012), but introduces runtime
improvements by cutting redundant searches (Pockrandt

8https://github.com/mariehoffmann/genmap

et al., 2019). GenMap provides location information of each
k-mer by outputting the sequence identifier SeqID refer-
ring to the library sequence where a k-mer has been found
and a relative position index SeqPos. These locations are
collected in the Locations map (see Algorithm 2) with
k-mers as keys and an occurrence vector as value.

Algorithm 2 K-mer frequency computation given FM in-
dex and frequency cutoff.

1: procedure FMFREQ(FMIndex, z)
2: Locations← []
3: for all k ← [16:25] do
4: Locations ← Locations + gen-

map.freq(FMIndex, k, z)
5: return Locations

3.3. Filter Step

Each k-mer has to pass a chemical filter which checks
molecular property constraints (see Cs in Table 2) that have
to hold for single primers independent of possible matching
partners. Applying the filter directly after the frequency
step helps to reduce the number of k-mers by orders of
magnitudes before running the combine procedure. The
constraints Cs that are currently checked by PriSeT are
amplicon length range, melting temperature, CG content,
mono- or dinucleotide runs, and self-annealing patterns (see
Table 2). amplicon ranges are constricted, because we first
need to ensure that reads will overlap for the read merging
step in a metabarcoding pipeline, and secondly, reads are
usually trimmed to the same length – a precondition for
most OTU clustering algorithms. The melting temperature
in a PCR corresponds to the state where half of the DNA
duplexes will be dissociated. Only when template DNA
is single stranded, primer sequences can bind and the
enzymatically driven elongation can take place. The
temperature for the denaturation phase can be adjusted, but
too high temperatures will lead to irreversible damage of
the ingredients.
Another criterion for primers being not too associative to
the template is their CG content. Not only are C-G bonds
twice as strong as A-T bonds, they are also more prone
to mis-pairing. The recommended range is 40 - 60 % in
proportion to their length. Mono- or dinucleotide runs are
patterns where a single nucleotide or dinucleotide occurs
consecutively repeated, i.e. σx or (σ1σ2)x with σ ∈ Σ,
σ1 6= σ2, and x ∈ N . These patterns tend to misprime. A
maximal accepted number is four.

Self-annealing (or self-dimerization) occurs when copies of
a primer form stable dimers. If their binding energy is rela-
tively high, a significant amount will rather bind to primers
than to the template and thereby deteriorating template am-
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plification. The free Gibb’s energy is a measure for the
bond strength. It numbers the energy that is released during
bond formation and should not be below -6 Jmol−1. The
amount depends on the positions and types of nucleotides
involved, and can only be determined precisely via experi-
ments. When looking at an alignment of two oligomers or
primers, as a rule of a thumb, there should be not more than
four annealing nucleotides in a row (connected annealing
pattern) or not more than 50 % of the sequence (discon-
nected annealing pattern) involved in the bonding as shown
in Figure 1.

The second set of constraints, Cp, is used when evaluat-
ing primer pair candidates. One k-mer will be determined
to be the forward primer on the minus strand from 5’ to
3’ direction, and the second k-mer the reverse primer on
the plus strand. As mentioned earlier, denaturation and an-
nealing phase temperatures can be adjusted, but we need
to ensure that roughly the same amount of forward and re-
verse primers are dissociated to produce similar amounts of
PCR products by allowing not more than five Kelvin differ-
ences in their melting temperatures. GC clamp refers to the
amount of CG in the 5’-end of a primer. Especially at the
5’-end where the elongation takes place, a primer should
bind stably, but not too strongly. Since C and G bind twice
as strong as A or T, ideally one or two nucleotides should
be C or G, but the last three should not be exclusively A or T
(AT tail). For example, · · ·CGATA-3 and · · · CGTCA-3
are not suitable, whereas · · ·AGTCA-3 is a suitable primer
tail. Cross-annealing refers to the tendency that forward and
reverse primer sequences form dimers (see Figure 1 b) and
d)). The guidelines for avoidance are analogous to ones for
self-annealing. The implementation of the constraint checks
is described in more detail in the subsequent sections.

Table 2. Chemical Constraints for k-mers. The first set of con-
straints Cs applies to k-mers irrespective of their later orientation
(forward or reverse). The second set of constraints Cp depends on
the final orientation and the k-mer matching partner. Cs is applied
in the filter & transform step and Cp checks in the combine step.

Property Recommendation

Cs

Primer Length [16:25]
Read Length [30:800]
Melting Temperature [52:58]
CG content [0.4:0.6]
Runs not more than 4 same nt in a row
Dinucleotide Repeats not more than 4 dinucleotides
Self-annealing less than four consecutive nts and

less than 50 % bond participation

Cp

∆Tm 5
AT tails avoid (A|T)3 tails
CG clamp not more than 3 out of 5 nts at

3’ end are CG
Cross-annealing less than four consecutive nts and

less than 50 % bond participation

The initial amount of k-mers is quite large – up to O((n−
κmin)(κmax − κmin)) k-mers per reference sequence. For
example, the Cryptophyta clade with a library size of 2 MB
produces 3.8 million of k-mers9. We reduce space occu-
pancy by not storing character strings, but a single unsigned
64 bit integer that holds multiple k-mers sharing the same
prefix and location index. For quickly accessing k-mer po-
sitions, we use bit vectors in the length of the reference
sequences. The next subsections describe in detail the en-
codings and how we apply the above described chemical
constraints as filters on these encodings.

3.3.1. ENCODING OF K-MERS

When computing the k-mer frequency with varying values
for k, one notices that for a specific position i in a ref-
erence R, it is likely that we will yield many k-mers of
different lengths which successfully passed the frequency
filter and start at the same index. In fact there are up to
κmax−κmin + 1 many k-mers for the same location index.
We introduce the TKMerID data type stored in a
uint64_t, which primarily encodes the longest k-mer
found at a specific text position (see Figure 3). We use the
two bit encoding scheme shown in Table 3. The reduction to
the four basic nucleotides is justified by the observation that
substrings containing ambiguous nucleotides are meaning-
less, since a single mismatch between primer and template
may lead to an amplification failure. The two-bit encoding
scheme has the property that taking the complement of the
integer produces its DNA complement. We use this property
to implement a k-linear time annealing test.

Table 3. Two bit encoding of single nucleotides. Note that the bit-
wise complement operator produces the complement of an encoded
nucleotide.

Nucleotide Encoding Bit DNA
Complement Complement

A 7→ 00 11 T
C 7→ 01 10 G
G 7→ 10 01 C
T 7→ 11 00 A

The encoding consumes two bits per DNA base. Having
at most κmax = 25 nucleotides in a k-mer, 2× 25 bits are
consumed to store the longest accepted k-mer. We add two
closure bits 01 to indicate the head of a k-mer. A prefix of
As (00x) would be ignored (or over-counted) otherwise. The
at most 2× 25 + 2 bits are stored in little-endian ordering
in the suffix of a TKMerID. Two bits of the suffix will
remain unused. The various lengths represented by a single
TKMerID are stored in the preceding 10 bits. The j-th

9after applying a frequency cutoff of 5 %
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Figure 1. Critical annealing patterns. Oligomers in a) and b) have four self-annealing nucleotides in a row. In c) and d) more than half
of the nucleotides participate in bonds. The oligomer orientation can be the same (-/-) or opposite (-/+).

Figure 2. K-Mer encoding scheme. Top: All k-mers with the
same start index also share the prefix. Redundancy is reduced
by encoding the longest k-mer only. Bottom: In this example we
encode the oligomer TAAGGGATCAAAGACAACCAGA with length
bits set for 16, 18, and 22 in the prefix. The underlying data type
is an uint64_t.

highest bit corresponds to k = κmin + j − 1 (see Figure 3).
Whenever we analyse the chemical properties of the encoded
k-mers, we first mask out the prefix and then process the
sequence starting with the lowest two bits. If a chemical
constraint is not fulfilled for some k′, we only delete the
prefix bit that corresponds to length k′. As long as the
prefix is non-zero, we keep processing that TKMerID as a
candidate primer.

3.3.2. ENCODING OF K-MER LOCATIONS

After the FM index computation, the original reference se-
quences are only needed once to lookup and encode frequent
k-mers (see Filter Step). However, when combining k-mer
candidates to form pairs, we need location information –
because k-mers need to refer to the same reference and have
to be in an offset range of [τmin : τmax] nt.
We use two data structures per reference – a list to store
the set of TKMerIDs in order of occurrence and a compact
data structure in form of a bit vector B in the length of the
last k-mer occurrence. A set bit indicates the presence of a
TKMerID. I.e., the i-th set bit in B corresponds to the i-th
TKMerID in the KMerIDs list.
The compact data structure is augmented with rank1 and
select1 support, which have O(1) runtime for queries10.
Figure 3 illustrates the k-mer combination search over the
transformed reference.

3.3.3. FILTER Cs FOR SINGLE K-MERS

After having transformed the frequent k-mers into
TKMerIDs, each k-mer it represents needs to satisfy a
set of constraints which must hold independently (see con-
straint set Cs in Table 2). All these constraint filters process

10Concretely, we use the sdsl::bit_vector by Gog et
al. (2014) combined with sdsl::rank_support_v5 and
sdsl::select_support_mcl occupying at most 0.0625n,
and 0.2n extra bits, respectively (Vigna, 2008; Clark, 1998)
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Figure 3. Encoding of TKMerID locations. Relative to a reference R PriSeT utilizes a sdsl::bit_vector with rank1 and select1
support in O(1). In this example the reference from which the bit vector originates from, has k-mers starting at the indices 0, 2, 3, 6, and
so forth. Note, that in practice, we omit storing trailing zeros and the length of the bit vector corresponds to the position of the last k-mer
occurrence. When searching for possible k-mer combinations to produce forward and reverse primer pairs, we have to parse for each
forward TKmerID at a position i the window [i+ κmin + τmin : i+ κmax + τmax].

TKMerIDs linearly. For computing the melting temperature
we use the Wallace rule which simply combines AT and CG
counts linearly:

Tm := 2AT + 4CG

If for a length kl the melting temperature exceeds Tmmax,
we can reset all length bits corresponding to lengths larger
or equal to kl, because Tm grows monotonously with the
length of the sequence. We count the nucleotides by com-
paring the last two bits with the single nucleotide codes (see
Table 3), and then apply a right shift of two until we reach
the closure bit.
The CG count can then directly be used to check for the
CG content, which is recommended to be in the range of
40-60 %. However, since the CG content is relative to the
sequence length, we have to check it for all encoded lengths
of a TKMerID.
Patterns like mono- or dinucleotide runs are detected by
comparing tailing bits of the code with the two-bit encoded
patterns. For example, code to detect five consecutive cy-
tosines:

uint64_t tail = (0b1111111111 & code);
bool has_run = (tail == 0b0101010101);

These patterns can be infixes of a k-mer. We therefore apply
a right shift and comparison iteratively until 10 bits remain.
In a similar fashion we proceed for dinucleotide runs.

With regard to our encodings, self-annealing can be deter-
mined by checking the shiftings of the original sequence
against itself and its reversed copy (cross-annealing is ana-
log). There are at most 2κmax−2·8 possible alignments and
for each alignment we apply the ⊕ (XOR) operator to trans-
late complementary nucleotides into 0b11 blocks. Critical
self-annealing patterns then correspond to eight consecutive
set bits starting at an even position, or an occurrence count

of 0b11 exceeding k/2. In both cases, the presence can be
detected in O(1) by counting bits in parallel and masking
bits at indices of power of two in three steps.

Algorithm 3 puts together the previously described
encodings of k-mers and their locations. TKMerIDs need
to be in order of occurrence, but k-mers are not processed
in order. The strategy is to first set bits in the reference bit
vector for k-mers, secondly to determine which values of k
occur at a specific index, and thirdly, to fill the TKMerID
vector.

3.4. K-mer Combiner

In the final combining step, we form pairs of two k-mers if
they satisfy the second chemical constraint set Cp (see Ta-
ble 2). We add rank1 and select1 support on every B ∈ B
to directly access single k-mer locations in O(1). When
iterating over TKMerIDs, select1 gives us its position in-
dex relative to the reference sequence. The search window
of combinable reverse primers is then accessed by adding
the amplicon length range. Again we apply rank1 on the
window indices to address the associated TKMerIDs in the
list (see Algorithm 4). Pairs satisfying the matchability con-
straints Cp are output and can be ranked by coverage or
barcode variation.

4. Experiments
We evaluated two scenarios for PriSeT. We applied PriSeT
on an explicitly uncurated data set (data set for plankton)
of short sequences (mostly 18S) taken from large clades to
compute primer pairs exhibiting a large taxonomic coverage,
and on complete viral genomes (SARS-CoV-2 genomes) to
compute primer pairs producing species-distinctive ampli-
cons. As a proof of concept test we additionally searched
the primer result set on plankton data for primer pairs used
in previous metabarcoding studies. At last, PriSeT’s runtime
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Algorithm 3 Lookup and encoding of DNA k-mers and ref-
erences. First the last k-mer occurrence for each reference
is determined and a new bit vector instance resized accord-
ingly. Each location L from the input map is associated with
a concrete value for k and a list of occurrences represented
as tuples of sequence identifiers and positions. The number
of bit vector transformed references is referred to as n. In
the first loop (line 4-6) bits are set in the bit vector for each k-
mer occurrence. The second loop (line 8-12) composes the
prefix by accumulating the length bits. The third loop (line
13-24) does the sequence lookup for the largest k occurring
at a specific position.

1: procedure FILTER AND TRANSFORM(Locations, Text)
2: B ←[~0]n . initialize bit vectors
3: KMerIDs← [[]]n
4: for all L← Locations do
5: for all SeqID, SeqPos← L.occurences() do
6: B[SeqID][SeqPos]← 1
7: Loc2k← {} . dictionary to collect values of k per

index
8: for all L← Locations do
9: k← L.k()

10: for all SeqID, SeqPos← L.occurences() do
11: prefix← Loc2k[(SeqID, SeqPos)]
12: prefix← prefix | (1� (63− k + κmin))
13: Loc2k[(SeqID, SeqPos)]← prefix
14: for all SeqID, B← enumerate(B) do
15: for all r←[1:B.rank1(|B|)] do
16: SeqPos← B.select1(r)
17: prefix← Loc2k[(SeqID, SeqPos)]
18: kmax ← κmax - ffs(prefix� 54) + 1
19: dna← lookup(Text, SeqID, SeqPos, kmax)
20: code← encode(dna) . encode DNA seq
21: TKMerID← prefix | code
22: if Cs(TKMerID) then
23: KMerIDs.push(TKMerID)
24: else
25: B[SeqPos]← 0 . reset bit if not passing
26: return B, KMerIDs

Algorithm 4 Combine k-mers sequence-wise. For each po-
sition referring to a TKMerID in the bit vector transformed
reference, we address candidates by adding an offset in the
target amplicon length range. By using the rank1 on the
window range, we only iterate over indices associated with
TKMerIDs. Then for each forward and reverse k-mer com-
bination encoded by TKMerID1 and TKMerID2 (up to 100
combinations), we report chemically fitting pairs.

1: procedure COMBINE(B, KMerIDs)
2: Pairs← [[]]n
3: for all B← B do
4: for all r1← [1:B.rank1(|B|)] do
5: i← B.select1(r1)
6: wstart ← i+ κmin + τmin

7: wend ← i+ κmax + τmax

8: for all r2 ← [B.rank1(wbeg) :
B.rank1(wend)] do

9: TKMerID1← TKMerIDs[r1]
10: TKMerID2← TKMerIDs[r2]
11: for all (k1, k2) ← [TKmerID1, TK-

MerID2] do
12: if Cp(k1, k2) then
13: Pairs← Pairs + [(k1, k2)]
14: return Pairs

was analized on the plankton data set.

4.1. Data Set for Plankton

As a reference library, we sampled from NCBI GenBank’s nt
dataset (Benson et al., 2012)11, which contains non-human
sequences from various sources. The prevalent sequence
length range is between 400 to 2500 bases. We picked
19 clades that include Eukarya typically found in freshwa-
ter plankton samples ranging from phyto- to zooplankton
and fungi. For each taxon within a clade that contained
at least one accession assigned to it, we sampled at most
three accessions to remove the sequence bias introduced by
highly populated taxa. Table 4 lists the clades, the number
of taxa, taxa with at least one accession (Covered), the to-
tal number of accessions and the library size in megabytes
(MB). Between 1.38 (Rotifera) to 2.5 (Charophyceae) ac-
cessions were sampled from covered nodes, which indicates
the sparse population of the reference library.

4.2. Verifying Established Primer Pairs for Plankton

Bacillariophyta (diatoms) and green algae (mostly
Chlorophyta) are among the most abundant organisms in
freshwater and marine plankton communities. Bacillar-
iophyta are small (2 - 200 µm) and their characteristic
silica cell walls allow morphological identification by

11accessed on 29.03.2019
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Table 4. Data set used for the primer verification test, the de novo search, and the runtime analysis. Taxonomic identifiers in the clade
column follow the NCBI nomenclatura, Taxa refers to the total number of nodes (including virtual ancestors), Covered the number of taxa
having at least one accession assigned to it, Accs to the total number of collected accessions and Lib Size to the size of the fasta file
containing all accessions.

Clade Name Taxa Covered Accs Lib Size
Ph

yt
op

la
nk

to
n

33849 Bacillariophyta 2,060 1,724 3,474 4.98 MB
304574 Charophyceae 153 138 350 0.42 MB

3041 Chlorophyta 10,490 9,466 15,377 31.79 MB
2825 Chrysophyceae 428 339 507 0.89 MB
3027 Cryptophyta 396 344 653 1.97 MB
2864 Dinophyceae 6,147 4,630 7,151 6.24 MB

33682 Euglenozoa 1,912 1,710 3,254 19.29 MB
5747 Eustigmatophyceae 250 215 344 1.4 MB

Z
oo

pl
an

kt
on

554915 Amoebozoa 3,211 2,817 3,898 4.63 MB
33651 Bicosoecida 101 79 119 0.15 MB
28009 Choanoflagellata 131 88 186 0.28 MB

136419 Cercozoa 1,221 953 1,562 2.34 MB
5878 Ciliophora 4,101 2,977 4,868 6.94 MB
6657 Crustacea 45,058 25,643 50,163 38.85 MB
6231 Nematoda 13,954 12,086 20,975 82.44 MB

27999 Perkinsidae 81 75 114 0.13 MB
10190 Rotifera 1,429 1,254 1,727 1.57 MB

Fu
ng

i 451864 Dikarya 141,097 129,254 209,449 518.44 MB

112252 Fungi i. s. 7,169 5,948 9,149 10.21 MB

trained experts. Their role in ecosystem function and for
environmental monitoring and water quality assessment
cannot be underestimated – they contribute approximately
20 % of global oxygen production and represent nearly half
of the organic material in the oceans. The DIV4 primer pair
(see Table 5) was specifically designed for Bacillariophyta
by Visco et al. (2015) with an expected amplicon length
of ∼280 nt. Hadziavdic et al. (2014) optimized primers
towards a large Eukaryota coverage (universal eukaryotic
primers) by aligning all sequences from the SILVA database
and computing the entropy at each alignment position.
From the regions with low entropy they identified eight
forward, and six reverse primer candidates. Here we use
F-566a as forward, and R-1200 as reverse primer (E14
hereafter).
Other tested primers are 23S by Yoon et al. (2016)
developed for marine phytoplankton (23S hereafter),
ChloroF/R by Moro et al. (2009) for Chlorophyceae
and Bacillariophyceae (CHL hereafter), CVfor/rev by
Boscaro et al. (2017) for freshwater ciliates (CV hereafter),
D512for/D978rev by Zimmermann et al. (2011) for diatoms
(DIA hereafter), TAReuk454FWD1/ TAReukREV3
by Stoeck et al. (2010) for the V9 region of marine
Eukaryota, EUKAF/R by Moreno et al. (2018) for the
18S region of Protozoa (EA hereafter), G18S4/22R by

Blaxter et al. (1998) for Nematoda (nSSU hereafter),
and SSU556F/SSU911R by Kirsty et al. (2017) for
Dinoflagellata (SSU hereafter). Some of these primers were
designed with respect to a specific organism group, how-
ever, it is expected that they are also effective in other clades.

Table 5 lists the 10 selected primer pairs targeting 18S that
we searched for in the reference library. It is remarkable that
not a single pair has chemically optimal properties. At least
one sequence of a pair shows a self-annealing pattern, seven
pairs differ significantly in melting temperatures (indepen-
dent of computation method, i.e. Wallace rule or nearest-
neighbour method), three sequences have CG clamps at their
3’ ends, eight sequences have exceeding CG contents, 23S
forward contains a run of five adenine bases (R substitutes A
or G), and SSU911R has an (A|T)3 tail. We therefore relaxed
the chemical constraints for the verification experiment by
allowing a larger melting temperature range and difference
in ∆Tm, a larger CG content range, and we deactivated the
self-annealing filter (see column ‘Verification’ in Table 6).

Given the sampled library, we first computed the ground
truth by searching directly for the known primer sequences.
We used a simple linear text search and marked all data
sets having at least one accession with forward and reverse
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Table 5. Selected primer sequences for the verification experiment. Sequences are noted in 5’ to 3’ direction. Melting temperatures are
computed using a modified nearest-neighbor method described by Breslauer et al. (1986) assuming a primer concentration of 0.5 µm
and salt 50 mM. For ambiguous encodings, the average of both extrema is computed. Sequence parameters violating primer design
recommendations are written bold. Critical structures are marked: self-annealing (α), mononucleotid runs (β), CG clamps (γ), exceeding
∆Tm (δ), (A|T)3 tails (ε), and exceeding CG content ranges (γ).

Primer Name Sequence Tm [◦ C] CG [%]

23S A23SrVF1 GGACARAAAGACCCTATGβ 54.9 47.2
A23SrVR1 AGATCAGCCTGTTATCCα 52.6 47.1

CHL ChloroF TGGCCTATCTTGTTGGTCTGTα 63.8 47.6
ChloroR GAATCAACCTGACAAGGCAAC 63.8 47.6

CV CVfor CCAGCASCCGCGGTAATWCC 71.6δ 65.0γ
CVrev TCTGRTYGTCTTTGATCCCYTA 62.8δ 43.2

DIA D512for ATTCCAGCTCCAATAGCGα 60.9δ 50.0
D978rev GACTACGATGGTATCTAATC 50.7δ 40.0

DIV4 DIV4for GCGGTAATTCCAGCTCCAATAGα 65.8δ 50.0
DIV4rev3 CTCTGACAATGGAATACGAATA 58.7δ 36.4γ

E14 F-566a CAGCAGCCGCGGTAATTCCα 70.2δ 63.2γ
R-1200 CCCGTGTTGAGTCAAATTAAGCγ 64.7δ 45.5

E15 TAReuk454FWD1 CCAGCASCYGCGGTAATTCCα 70.8δ 62.5γ
TAReukREV3 ACTTTCGTTCTTGATYRA 53.3δ 33.3γ

EA EUKAF GCCGCGGTAATTCCAGCTCα 69.2δ 63.2γ
EUKAR CYTTCGYYCTTGATTRA 55.2δ 41.2

nSSU G18S4 GCTTGTCTCAAAGATTAAGCCα 60.0δ 42.9
22R GCCTGCTGCCTTCCTTGGAγ 70.3δ 63.2γ

SSU SSU556F CGCGGTAATTCCAGCTYCαγ 64.8 58.3
SSU911R ATYCAAGAATTTCACCTCTGACαε 60.2 38.6γ
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Table 6. Filter Settings in PriSeT. Unlisted properties follow the
recommended ones in Table 2.

Filter
Settings

Plankton SARS-CoV-2
Verification De Novo De Novo

k [16:25] [16:25] [18:24]
τ [nt] [30:800] [30:800] [60:150]
Tm [◦ C] [50:60] [52:58] [55:63]
CG [%] [35:65] [40:60] [50:60]
4-Runs of C or G no no yes
Self-Annealing off on on

∆Tm [K] 10 5 5
Self-Annealing off on on

primers matching as indicated by a presence (1) or absence
(0) bit in the denominator of each cell in Table 7. We
then ran PriSeT with the relaxed constraints listed in the
Verification column of Table 6 and searched its result set for
the published primers listed in Table 5. We indicated their
presence or absence in the nominator.
We could recover all those primer sequences that satisfied
the relaxed constraints. The forward primer of DIV4, and
both primers of CV did not pass the relaxed Tm filter (above
65◦ C) and failed therefore for Cs, and the primer pairs E15
and EA failed for Cp because of their excessive differences
for Tm (more than 8 Kelvin).

4.3. De Novo Computation for Plankton

To yield chemically uncritical primer pairs, we reset the
constraints to the recommended ranges (see column ‘De
Novo’ of Table 6) and reported the 50 most frequent k-mer
pairs for each clade (labeled with hash values computed
from forward and reverse sequence). We additionally com-
puted frequency, coverage, and variation for the published
primers (Table 5) via text search without that they under-
went PriSeT’s filtering.
The de novo and published primer result sets were either
ranked by taxon coverage (columns 2-4 in Table 8) or by
amplicon variation (columns 5-7 in Table 8). From the de
novo set and the published primers set, we reported only
the highest ranked ones. For example, for Charophyceae
(clade 304574), the highest ranked primer by coverage is
d8d47dc9b873d02b – a de novo computed primer, and
the highest ranked published primer is EUK14. In the joint
set, however, there are more de novo primer pairs that have
a higher rank than EUK14, but are not reported here for the
sake of briefty. When ranking by coverage, for 11 out of 19
clades a de novo primer outperformed all published primers.
Since coverage optimizes towards broadness and variation
towards amplicon distinguishability, we expect that the top

primers for the two ranking methods may differ. In 14 out
of 38 cases the top primers of the de novo or published
sets are identical. In 24 cases higher variation is paid with
lower coverage and vice versa. When ranking by number
of unique amplicons (variation), we could identify seven de
novo primers that performed equally well (see Table 8).
In spite of the reference sparsity and sequential diversity
– references not only come from 18S, but other genomic
regions, PriSeT could identify for some clades new primer
pairs that fit chemically while having a greater coverage or
variation. Because of the known problem of data sparseness
for plankton clades and the obvious fact that GenBank’s
reference sequences stem from PCR amplicons with already
published primer sets, we had lower expectations.
Published primers outperform de novo primers by at most
7 %, and de novo the published ones by at most 70 %
for coverage. However, there may exist other performant
primer pairs for specific clades that we are not aware
of. We chose the most promising ones found in the PR2
database12. We also tested EUKA/B from Medlin et al.
(1988), Cerc479F/Cerc750R by Harder et al. (2016), and
DimA/DimB by Cannon et al. (2018), which either did not
show up or they occurred with very low frequencies.
From the published primer set EUK14 and EUKA seem to
be very versatile primer pairs. However, they do not satisfy
Cs or Cp and might require more experience when applied
in a PCR. The complete list of top performing primers is
available on GitHub13.

4.4. Dataset for SARS-CoV-2

We selected 19 complete SARS-CoV-2 genomes14 from the
subgenus Sarbecovirus for PriSeT to compute primer pairs
satisfying the RT-PCR constrains listed in Table 6. The sin-
gle genome size was roughly 30,000 bp. In order to filter for
primer pairs producing amplicons with no occurrences in
other Orthocoronavirinae genomes, we selected all available
genomes from GenBank – 24 Alphacoronavirus, 5 Betacoro-
navirus (excluding Sarbecovirus), and 2 Gammacoronavirus
genomes (see Figure 4).

4.5. De Novo Computation for SARS-CoV-2

PriSeT produced 286 primer pairs. We subsequently fil-
tered for those producing sequences that cannot be found
in one of the other 39 coronavirus genomes based on a 100
% sequence identity. For the 114 remaining primer pairs,
we ensured amplicon distinction by launching two BLAST
queries for each of the 114 amplicons against GenBank’s

12https://pr2-database.org
13https://github.com/mariehoffmann/PriSeT_

denovo
14Downloaded from GenBank on 3rd April 2020. Concrete

accession identifiers can be requested from the first author.
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Table 7. Primer presence test for established primer pairs. x/y refers to found by PriSeT (x = 1) or not (x = 0) versus found in the
library (y = 1) or not (y = 0). Primers not discovered by PriSeT did not pass either the first chemical filter set Cs (labeled with ∗) or the
pair filter set Cp (labeled with ∗∗).

Clade 23S CHL CV∗ DIA DIV4∗ E14 E15∗∗ EA∗∗ nSSU SSU
Ph

yt
op

la
nk

to
n

33849 1/1 0/0 0/0 1/1 0/1 1/1 0/1 0/1 1/1 1/1
304574 1/1 0/0 0/0 0/0 0/0 1/1 0/1 0/1 0/0 1/1

3041 1/1 1/1 0/0 1/1 0/0 1/1 0/1 0/1 1/1 1/1
2825 0/0 0/0 0/0 1/1 0/1 1/1 0/1 0/1 1/1 1/1
3027 1/1 0/0 0/0 0/0 0/0 1/1 0/1 0/1 1/1 1/1
2864 1/1 0/0 0/1 1/1 0/1 1/1 0/1 0/1 1/1 1/1

33682 1/1 0/0 0/0 0/0 0/0 1/1 0/1 0/0 0/0 0/0
5747 1/1 1/1 0/0 1/1 0/0 1/1 0/1 0/1 1/1 1/1

Z
oo

pl
an

kt
on

554915 0/0 0/0 0/1 0/0 0/0 1/1 0/1 0/1 1/1 1/1
33651 0/0 0/0 0/0 0/0 0/0 1/1 0/1 0/1 1/1 1/1
28009 0/0 0/0 0/0 0/0 0/0 1/1 0/1 0/1 1/1 1/1

136419 0/0 0/0 0/0 0/0 0/0 1/1 0/1 0/1 1/1 1/1
5878 0/0 1/1 0/1 0/0 0/0 1/1 0/1 0/1 1/1 1/1
6657 0/0 0/0 0/0 0/0 0/0 1/1 0/1 0/1 1/1 1/1
6231 0/0 0/0 0/0 0/0 0/0 1/1 0/1 0/1 1/1 0/0

27999 0/0 0/0 0/0 0/0 0/0 1/1 0/1 0/1 0/0 1/1
10190 0/0 0/0 0/0 0/0 0/0 1/1 0/1 0/1 0/0 0/0

Fu
ng

i 451864 0/0 0/0 0/1 0/0 0/1 1/1 0/1 0/1 1/1 1/1
112252 0/0 0/0 0/1 1/1 0/0 1/1 0/1 0/1 1/1 1/1

Figure 4. Taxonomy of Orthocoronavirinae to subgenus level.
The numbers indicate how many complete genomes were used
for the primer de novo search of each subgenus. From the Sar-
becovirus subgenus all 19 genomes are assigned to the species
SARS-CoV-2. Their proximity to Bat SARSr-CoV (another Sarbe-
covirus) was observed in the amplicon analysis (see experimental
section.

nucleotide collection (nt/nr) online15. The first query was
run on the complete nt/nr data set and the second on the
complete nt/nr data set except SARS-CoV-2 (taxid 2697049)
to ensure that we did not miss relevant matches with non
SARS-CoV-2 entries.
None of the primer pairs produced amplicons with 100 %
identity and 100 % coverage for non Sarbecoviruses. Of
the 114 primer pairs 5 pairs had 100 % sequence identity
with a single accession of a Sarbecovirus isolated from the

15on 3rd of April 2020

pangolin, but no other relevant matches. There were 109
primer pairs producing amplicons with no other occurrences.
Out of the 109 primer pairs, there were 12 pairs with ampli-
cons that were distant from even closely related viruses, i.e.
sequence identity < 97 %, and 97 had a proximity (but not
identity) to at most two other accessions, namely, two Sar-
becovirus species isolated from a bat and the pangolin. The
first one is associated with the recent pneumonia outbreak
(Zhou et al., 2020).

The complete list of primer sequences, amplicons, and com-
ments about closest matches can be found in the supple-
ments (primer_priset_covid19.csv). The approx-
imate amplicon locations relative to the genome are shown
in Figure 5. For the sake of brevity only the first four digits
of the primer identifier (first column in corresponding file)
is noted down.

4.6. Performance on Plankton Data Set

For each clade we measured the step-wise runtimes and
the total runtime excluding the FM index computation (see
Figure 6). The index computation needs to be done only
once and upon updates of the original library. For our data
set, the FM index consumed about 4.2 times more space
than the library it is computed on.

We set the relative frequency cutoff to 5%. The number of
k-mer locations grows therefore linearly with the library
size. We have chosen not to show the performance on a
synthetic data set, because k-mer frequencies and dropout
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Table 8. De novo computation and statistical comparison with published primers ranked by Coverage (left) or Variation (right). Of both
sets the top performing primer pair in terms of coverage or variation were picked. Frequency reflects the raw number of occurrences in the
clade, whereas Coverage computes how many taxa of each clade were covered in proportion to taxa with references, and Variation the
total number of amplicons. Note, that PriSeT computed primer pairs with narrowed constraints – primer pairs like SSU, EUKA, etc.,
would not emerge in the result set (see Table 6). When ranking by coverage, for 11 out of 19 clades PriSeT identifies at least one new
primer pair with a higher coverage rate than the published primers. Whereas when ranking by amplicon variation for seven out of 19
clades PriSeT found at least one more or equally performant primer pair.

Clade Primer Frequency Coverage ↑ Variation Primer Frequency Coverage Variation ↑

33849 SSU 768 0.43 (734/1724) 631 EUK14 755 0.42 651
b099967d0f5ac180 750 0.39 (673/1724) 27 33c14baf2ac76276 675 0.38 591

304574 eb59a790ece1766 35 0.23 (32/138) 13 d8d47dc9b873d02b 31 0.22 25
EUK14 30 0.21 (29/138) 25 EUK14 30 0.21 25

3041 SSU 3615 0.36 (3404/9466) 1715 EUK14 3217 0.32 1835
b7488789aaf96d7b 3051 0.3 (2824/9466) 902 1426f6f9b97f501a 2572 0.26 1425

3027 412d47502c9c1b 248 0.66 (226/344) 124 EUK14 237 0.65 153
EUK14 237 0.65 (223/344) 153 8d14274d691d15e5 234 0.64 152

2825 SSU 241 0.69 (235/339) 181 SSU 241 0.69 181
96c04483d9557b08 234 0.65 (222/339) 66 cce22a01d74086cd 197 0.58 168

2864 EUK15 848 0.16 (756/4630) 608 EUK14 821 0.16 634
24555f6837b9651f 860 0.16 (742/4630) 408 d90e133cfe247ad5 693 0.14 564

33682 b805fd5bf8167cc7 539 0.27 (465/1710) 25 af8f7968a5ee777e 367 0.20 129
23S 114 0.07 (113/1710) 107 23S 114 0.07 107

5747 EUKA 140 0.61 (132/215) 73 EUK14 138 0.61 84
35050c2634d666c7 145 0.61 (131/215) 3 fcb8901444edb4b0 141 0.61 13

554915 6f74c4dbf4ceae12 940 0.31 (885/2817) 57 EUKA 676 0.23 523
EUKA 676 0.2307 (650/2817) 523 4dbdfed2605e324 788 0.27 116

33651 f83f6dae50175268 64 0.7342 (58/79) 23 EUKA 59 0.71 47
EUKA 59 0.7089 (56/79) 47 f83f6dae50175268 64 0.73 23

28009 2afb9ade5ef548f 49 0.5455 (48/88) 47 2afb9ade5ef548f 49 0.55 47
EUKA 48 0.5341 (47/88) 47 EUK14 47 0.53 47

136419 EUKA 503 0.5026 (479/953) 412 EUKA 503 0.50 412
24555f6837b9651f 440 0.4313 (411/953) 298 cb6c82029453de6a 378 0.38 326

5878 EUKA 2056 0.6351 (1890/2976) 1501 EUKA 2056 0.64 1501
5f5fdc94bf3f7db4 1901 0.5628 (1675/2976) 1087 c2ee8143ec040d5a 1494 0.47 1188

6657 38f9227a340f05e 2696 0.10 (2617/25643) 1651 38f9227a340f05e 2696 0.10 1651
EUK14 1745 0.07 (1719/25643) 1458 EUK14 1745 0.07 1458

6231 edcd39cccec9d72a 3158 0.24 (2883/12086) 2133 edcd39cccec9d72a 3158 0.24 2133
EUKA 2452 0.19 (2350/12086) 1949 EUKA 2452 0.19 1949

27999 ecb3cb9fe242b24e 63 0.71 (53/75) 15 7aab6403d6856205 61 0.69 22
EUK15 6 0.08 (6/75) 5 EUK15 6 0.08 5

10190 57bc43fe1080644d 224 0.18 (224/1254) 1 EUKA 69 0.05 66
EUKA 69 0.05 (66/1254) 66 bbcb9dc15a5fc34c 216 0.17 40

451864 3f32736b9d094915 24868 0.17 (22387/129253) 12378 3f32736b9d094915 24868 0.17 12378
SSU 5533 0.04 (5255/129253) 3007 SSU 5533 0.04 3007

112252 EUKA 1017 0.17 (990/5948) 882 EUKA 1017 0.17 882
7e079b504409f8c0 979 0.15 (908/5948) 822 4dbdfed2605e324 788 0.27 116
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Figure 5. Approximate amplicon locations of de novo computed primer pairs for SARS-CoV-2. The amplicon identifiers are the first
four digits of the primer pair identifiers in the supplemental file primer_priset_SARS-CoV-2.csv.

rates are defined by inherent sequence properties (entropy,
repeats, etc.), which are obviously not homogeneous over
all clades. A single clade or synthetic data set would
produce non-representative, and even misleading results.
For example clade 6657 has a library being 7 MB larger
than the one of clade 3041. Surprisingly, clade 6657
produces only 4.83 million k-mers, compared to 43,9
million k-mers of clade 3041 (see Figure 7). For the largest
data set (clade 451864 of Dikarya), we had to raise the
frequency cutoff to 10 %, for not running into memory
issues caused by the vast amount of k-mers (see Discussion
5).
We sorted the data sets by size (abscissa) and log2-scaled
abscissa and ordinate for readability. The total runtime for
the smallest data set Perkinsidae (clade 27999 with 0.13
MB) is ≤ 1 second, for Fungi (clade 112252 with 10.21
MB) 33 seconds, and for a large dataset like Nematoda
(clade 6231 with 82.55 MB) 70 min.
The frequency computation contributes the most to the
total runtime. This is due to the large number of possible
k-mers within a library. After the filter & transform
step the number of k-mers is reduced drastically, s.t. the
expensive combine step with a runtime in the size of all
k-mer positions times the window size remains relatively
low.
The k-mer dropout rate during filter & transform and
combine is highly dependent on the sequence structure
within the clades as indicated by the non-linearity of
filter & transform and combine runtimes in proportion to
the original library size.
Theoretical upper limits can be seen in Table 9. The
frequency computation performs a single k-mer look-up
in O(k) where k is the length of the k-mer to be looked
up. Additionally, all occurrence locations need to be

gathered, which depend on the number of occurrences
occ and the total library length N . This can be done in
O(k + occ) by exploiting the lexicographical ordering of
the index (Ferragina & Manzini, 2000). Taking into account
at most N − k + 1 different k-mers, the upper limit is
O(N(k + occ)) (see Table 9).
All chemical filters in the filter & transform step analyse
the encoded sequences in a single- or multi-pass fashion.
Some require simple counting (Tm, CG content) or pattern
match (dinucleotide runs, (A|T)3 tails). The most complex
one is the self-annnealing filter in which a k-mer is shifted
at most 2k times and XORed against its complement or
reverse complement. The identification of a connected
self-annealing pattern of size four (corresponding to a
0b11111111 pattern) can be done in constant time by
using bit parallelism (see code on GitHub for details).
Filtering is done on at most N k-mers, giving us a total
runtime of O(kN). For storing the bit vector transformed
references, and the ranked TKmerIDs we need O(N) space.
During the combine step we additionally store matching
k-mers. A reference has an expected length of N

n bases.
For each forward k-mer we search with an offset of τmin a
candidates’ window of size τmax − τmin. Hence, we have
at most O((Nn − τmin)(τmax − τmin)) pairs per reference
(κmin, κmax are dropped here). For each pair a matchability
check is done linear in the expected length of the two
k-mers, i.e. in O(k) (see Cp in Table 2). Altogether we
have n references, giving us a total combination runtime of
O(nk(Nn − τmin)(τmax − τmin)).
Space occupancy is linear for the FM index, frequency,
and filter & transform steps. Per text position we use at
most one 64 bit unsigned integer independent of how many
k-mers with varying lengths occur at a specific position
(see compression scheme described in Section 3.3.1) and
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bit vectors for location encoding in the length of the library
(see Section 3.3.2). In the filter & transform step k-mers
get cancelled out by resetting length bits in the prefixes of
the k-mer codes; no additional space is required. When
finally combining the remaining set of k-mers, we have up
toO(n(Nn − τmin)(τmax− τmin)) many pairs as described
above in detail.

5. Discussion
Despite the reference database has a low sequence coverage
for plankton taxa, we found some new primer pairs offering
a larger coverage or barcode variation than published ones
and are chemically suitable for a paired-end PCR (see Table
2). PriSeT correctly output primer pairs that are known to
be present in the library if and only if they pass the con-
straint sets Cs and Cp (see Table 2). When having complete
genomes available for primer discovery too many candidates
are produced and it is necessary to narrow down the primer
sequence constraints or filter in a post-processing step, e.g.,
for pairs producing amplicons that are distinctive or span
exons.
The experiments showed that when searching primer pairs
for metabarcoding experiments, it is appropriate to use fre-
quency as an initial filtering heuristic. Only k-mers occur-
ring with a minimum frequency will later satisfy sufficient
coverage or amplicon variation. The FM index is a trans-
formation that supports frequency queries with lower costs
compared to a seed-and-extend approach, e.g. FastPCR by
Kalendar et al. (2017), or a MSA-based approach, which
requires manageable data sets in order to identify conserved
regions serving as primer binding sites.
None of the existing primer search tools that we found is ca-
pable of processing multi-sequence libraries and optimizing
for frequent primer pairs at the same time. PriSeT is built to
fill this gap. Its heuristic approach additionally avoids the
necessity to curate an existing library and makes it robust
against mislabeled or poor quality references. This in turn
gives users more resources to focus on the actual analysis.
With sinking costs of NGS, databases are growing on a daily
basis, making curation even infeasible and with regard to
the sparseness of some clades, we cannot afford to exclude
resources.
Since GenBank has no standard specification for labeling
sequences by their origin upon upload (e.g. as 18S or COI),
our sampling approach also collected non-18S sequences,
which explains the relatively low values for coverage and
amplicon variation. When a user evaluates PriSeT’s com-
puted primer pairs and their statistics, the heterogeneity of
the database has to be taken into consideration.
The PriSeT version at hand does not include coverage or
amplicon variation criteria into the filtering for not limiting
options – the benefit of a higher coverage is in many cases
paid with a lower number of distinct reads (see results in

Table 8). We leave it up to the user to decide when coverage
is favored over amplicon variation and vice versa. However,
the recent coronavirus outbreak demonstrated the impor-
tance of scenarios where the goal is to yield barcodes being
discriminators of clades.

6. Outlook
PriSeT operates batch-wise, i.e. all k-mers with frequen-
cies exceeding z are collected at once into a single data
structure, filtered chemically, and combined reference-wise.
To give an example, Dikarya from the Fungi realm (clade
451864) produces 119.4 million k-mers. The main memory
occupation of the location map received from GenMap rep-
resents the current bottleneck of PriSeT. Processing libraries
beyond 500 MB is currently only feasible when increasing
the k-mer frequency cutoff, s.t. not more than roughly 120
million k-mers (≈ 1 Gigabyte) are produced16.
In a future PriSeT version this can be tackled by interweav-
ing k-mer frequency and filtering: a frequent k-mer immedi-
ately undergoes filtering, and is only collected when satisfy-
ing the frequency threshold z and constraint set Cs. This
reduces the overall amount of temporarily stored k-mers.
Input libraries composed of multiple reference sequences
would additionally profit from reference-wise partitioning
approach. This strategy can be carried on to the combine
step, since k-mers are only combinable if they refer to the
same sequence; each of the references is processible in par-
allel. The current version of PriSeT does not use any thread
or process parallelism.
The computationally most expensive part of PriSeT is the
combine step with a runtime quadratic in N where the win-
dow size plays in. It is therefore important to set the target
read lengths sizes as tight as possible (see Table 9).
Stable binding of primer to template is crucial for the suc-
cess of a PCR. A single mismatch, especially at the 3’-end,
may result in an ineffective PCR. On that account PriSeT
is using the (k, 0)-frequency to gather only k-mer locations
with 100 % sequence identity. A future version of PriSeT
may allow for up to four errors e (or mismatches) for primer
sequences in case there are calls for it. When allowing er-
rors, a single k-mer occurrence is counted into all location
collections associated to k-mers with Hamming distances
≤ e. This has a huge impact on the collection sizes and will
have to be chosen carefully.
In metabarcoding we are sometimes interested in primer
pairs enclosing barcodes which allow guaranteed distinction
of species from clade X from species of another clade Y. If
we take as an example the recent SARS-CoV-2 outbreak,
one question is, given a sputum sample of a person with
flu-like symptoms, does it contain viruses of influenza or
corona? We do not want the test to produce false negatives,

16exemplary for a desktop computer with 16 GB RAM
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Figure 6. Runtimes for all clade data sets broken down to frequency computation, filter & transform, and combine step. The
k-mer frequency cutoff was set to 5% w.r.t. the number of references per clade. The results for Fungi (clade 451864, 500 MB large) are
omitted here due to the necessity of setting the cutoff to 10%, which results in runtimes comparable with clade 6231 (82 MB). Both axes
are log2-scaled.

Figure 7. K-mer Counts for all clade data sets broken down to frequency computation, filter & transform, and combine step.
K-Mers for all clade data sets counted after the frequency computation, filter & transform, and combine steps. For the combine step
pairs are counted, not k-mers. The settings are the same as for Figure 6.

Table 9. Runtime classes and space occupation module-wise with N as the total library size, n the number of references per library, κmax

the largest k-mer length, ω the window width, and τ the amplicon length.

FM Index FM Frequency Filter & Transform Combine

Runtime O(N) O(N(κmax + occ)) O(κmaxN) O(nκmax(Nn − τmin)(τmax − τmin))

Space O(N) O(N) O(N) O(n(Nn − τmin)(τmax − τmin))
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because the variant is either not sequenced yet or the ampli-
con has a critical sequence proximity to other viruses. For
the de novo computation for SARS-CoV-2 submitted on-
line BLAST queries to assure that we access all sequences
currently available to GenBank. For a better workflow this
feature can be implemented into PriSeT via the NCBI’s
Entrez Programming Utilities.

7. Additional Files
7.1. Supplementary Table —

S1_Primers_PriSeT_Plankton.png

Top 1 list of de novo sequences per clade computed by
PriSeT. All chemical sequence properties are within the
constraints listed in Table 2. A more comprehensive list
(most 50 frequent primer pairs) can be found on GitHub.

7.2. Supplementary File —
S2_Primers_PriSeT_SARS-CoV-2.csv

De novo primers for SARS-CoV-2 satisfying RT-PCR con-
straints and producing theoretical amplicons with no occur-
rences outside the Sarbecovirus subspecies. The computa-
tion is based on 19 SARS-CoV-2 genomes and the amplicon
checks were done online against GenBank’s nr/nt data set.
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