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Abstract. Pooling of samples can increase lab capacity when using
Polymerase chain reaction (PCR) to detect infections such as COVID-
19. However, pool testing is typically performed via an adaptive testing
strategy which requires a feedback loop in the lab and at least two PCR
runs to confirm positive results. This can cost precious time. We discuss
a non-adaptive testing method where each sample is distributed in a
prescribed manner over several pools, and which yields reliable results
after one round of testing. More precisely, assuming knowledge about
the overall infection incidence rate, we calculate explicit error bounds
on the number of false positives which scale very favourably with pool
size and sample multiplicity. This allows for hugely streamlined PCR
testing and cuts in detection times for a large-scale testing scenario.
A viable consequence of this method could be real-time screening of
entire communities, frontline healthcare workers and international flight
passengers, for example, using the PCR machines currently in operation.

1. Introduction

One key to containing and mitigating the CoVid-19 pandemic is sug-
gested to be rapid testing on a massive scale [HZW+20, SBY]. It would be
beneficial to develop the ability to routinely, and in particular rapidly, test
groups such as frontline healthcare workers, police officers, and international
travellers. Testing for CoVid-19 is currently performed via the polymerase
chain reaction (PCR) on nasopharyngeal swabs [TTY+20]. Typically, the
population size significantly exceeds the capacity for testing, with the num-
ber of available PCR machines and reagents an important bottleneck in this
process.

There are two basic approaches to PCR testing in populations: 1. individ-
ual tests, where every single sample is examined, and 2. pooled tests where
larger sets of samples are mixed and tested en bloc. Pooled testing was
pioneered by Dorfman in 1943 [Dor43] and led to a host of research activity,
both on the lab side as well as the theoretical side [AJS19, DH99, DH06].
If the infection is rare in the population, then pooled testing may be ad-
visable. In this case it can assist in optimizing precious testing capacity
since most individual results would be negative. Pooling relies on the fact
that the PCR is reasonably reliable under the combination of samples: the
preprint [YAST+20] suggests that a detection of COVID-19 in pools of size
32 and possibly 64 is feasible.

Key words and phrases. Polymerase Chain Reaction, Pool testing, Non-adaptive test-
ing, COVID-19.
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While a classic pooling strategy has the advantage that less overall PCR
tests are required, there are disadvantages in terms of lab organisation and
– more crucially – time: pooling only indicates whether a pool contains at
least one infected individual. If samples are tested in pools of size n and the
incidence of the infection ρ is small (more precisely, if ρ · n is small) then in
average

1− (1− ρ)n = nρ−
(
n

2

)
ρ2 + · · · ≈ nρ (remember that ρ · n is small)

of pools will be positive and hence a portion n · ρ of individuals need to
undergo a second test. In other words, pooled testing with individual verifi-
cation of positive pools is an adaptive testing strategy, the lab organisation
for which is a labour, management, and resource intensive process. It has
several drawbacks, since it requires keeping multiple lab samples and re-
running of the time-intensive PCR process. The lab feedback loop makes
the entire workflow more susceptible to delays (see Figure 2). This may re-
sult in delays in individual results – a particular problem when the objective
is to rapidly identify infected individuals, who may infect others while wait-
ing for the test outcome. Furthermore, since the number of samples selected
for a second round of testing is a random quantity, some reserve capacity is
required to prevent further delays. This makes it more challenging for the
lab to operate near its maximal capacity.

In the theoretical research on testing strategies the distinction is made
between adaptive testing, for example when all samples in a positive pool
undergo a second round of testing, and non-adaptive strategies, where all
tests can be run simultaneously [DH99]. Testing every sample individually
can be considered as a trivial non-adaptive strategy, but there exist non-
adaptive strategies which combine the benefit of pooling with the advantages
of non-adaptive testing.

In this note, we propose a non-adaptive pooling strategy for rapid and
large-scale screening for COVID-19 or other infections where detection time
is critical. This allows for significant streamlining of the testing process and
reductions in detection time. Firstly because only one round of PCR is re-
quired, and secondly because it eliminates actions in the lab workflow that
require input from results determined in the lab, i.e. the testing infrastruc-
ture can be organized completely linearly, cf. Figure 2 for an illustration.
The strategy will systematically overestimate the number of positives, but
we can provide error bounds on the number of false positives which scale
very favourably with large numbers and will be small in realistic scenarios.

2. Definition of the non-adaptive testing strategy: creation
of multipools

Our testing strategy is as follows: every individual’s sample is broken up
into k samples and distributed over k different pools of size n such that no
two individuals share more than one pool. An individual is considered as
tested positive if all the pools in which its sample has been given are tested
positive. Let us make this definition more formal:
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Figure 1. Pooling along rows and columns.

Definition 1 (Multipools). Let a population (X1, . . . , XN ) of size N , a
pool size n, and a multiplicity k be given, and assume that Nk is a multiple
of n. We call a collection of subsets/pools of {X1, . . . , XN} an (N,n, k)-
multipool, or briefly multipool, if all of the following three conditions hold:

(M1) Every pool consists of exactly n elements.
(M2) Every sample Xi is contained in exactly k pools.
(M3) For any two different samples Xi, Xj there exists at most one pool

which contains both Xi and Xj.

If N = n2 and k = 2 then the construction of an (N,n, k)-multipool
is quite straightforward, see also Figure 1: arrange the N samples in a
rectangular grid and then pool along every row and column, cf. [SSW+16,
FFLH,ZDF+14]. However, as we shall see below, k = 2 is in many realistic
scenarios insufficient for the desired precision.

The recent preprint [FFLH] proposes to arrange samples in a (3 or higher
dimensional) hypercube and to pool along all hyperplanes. This makes every
individual sample appear in three or more pools, but it is not a multipool
in the sense of Definition 1 above, since in dimension three and higher, any
two hyperplanes will intersect in more than one point, in violation of Prop-
erty (M3). This creates unnecessary correlations between different pools
and impairs performance. One proper and flexible way to construct multi-
pools is given by the Shifted Transversal Design [TM06] which we explain
in Section 4.

3. Controlling the number of false positives

We always assume that the incidence ρ of the infection is small compared
to the inverse pool size 1/n. This is a reasonable requirement, also in classi-
cal pooling strategies (a ρn portion of samples will have to undergo second
testing, thus a large ρn would attenuate the benefit of pooling).

Assuming perfect performance of the PCR, also under pooling (see Sec-
tion 6 on how to deal with uncertainty here), multipooling will identify all
infected individuals, since all their pools will be positive. However, someone
might falsely be declared positive if all pools in which they are contained
happen to contain an infected sample.

The expected portion of false positives in a multipool strategy is

(3.1)

ρfp = P(Xi negative but all its pools positive)

= (1− ρ) ·P(all pools containing Xi positive | Xi negative)

= (1− ρ)
(
1− (1− ρ)n−1

)k
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Figure 2. Illustration of the work flow for pooling with sec-
ond test (left) and multipooling (right)

Here, the third identity crucially uses the property (M3) which guarantees
independence between the poolmates in the different pools of a sample. By
Bayes’ rule, the probability to actually be negative when tested positive by
the multipool (i.e. the portion of subjects falsely declared positive among
all subjects declared positive) is

P(Xi negative | all pools containing Xi positive)

=
P(all pools containing Xi positive | Xi negative)P(sample Xi negative)

P(all pools containing Xi positive)

=
(1− ρ)

(
1− (1− ρ)n−1

)k
ρ+ (1− ρ) (1− (1− ρ)n−1)k

Let us calculate for which k the probability of a positive test result being a
false positive does not exceed εfp > 0:
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(3.2)

(1− ρ)
(
1− (1− ρ)n−1

)k
ρ+ (1− ρ) (1− (1− ρ)n−1)k

≤ εfp

⇔ (1− ρ)
(
1− (1− ρ)n−1

)k ≤ εfp(1− ρ)
(
1− (1− ρ)n−1

)k
+ εfpρ

⇔
(
1− (1− ρ)n−1

)k ≤ εfpρ

(1− εfp)(1− ρ)

⇔ k ≥
ln
(

εfp
1−εfp

)
+ ln

(
ρ

1−ρ

)
ln (1− (1− ρ)n−1)

.

This provides a lower bound on the necessary multiplicity k in terms of the
sample size n, the knowledge on the incidence ρ of the infection, and the
acceptable portion εfp of falsely positive tests among all positives. Assuming

εfp < 1 and ρ ≤ 1
2 (which are both reasonable assumptions, recall that ρn

is small), the lower bound in (3.2) is monotone increasing in ρ. Hence, if
the exact incidence is unknown but we have an upper bound on it, we can
work with the largest/worst case ρ. Let us summarize our findings in the
following

Theorem 1. Let the incidence of the infection be at most ρ ≤ 1
2 , let n be

such that nρ ≤ 1 and let 0 < εfp < 1. Then if

(3.3) k ≥
ln

(
εfp

1−εfp

)
+ ln

(
ρ

1−ρ

)
ln (1− (1− ρ)n−1)

then in any multipooling strategy with pool size n and multiplicity k, the
probability of a positive test being a false positive does not exceed εfp.

The number of tests required in a multipool strategy is Nk/n, an improve-
ment compared to individual testing by a factor n/k. A key observation is
that the lower bound on k in Ineq. (3.3) scales very favourably with large
multiplicities n. Indeed, recall that in an adaptive pooling strategy one
wants on the one hand large pool sizes n, but on the other hand nρ should
be small. It is therefore reasonable to have n proportional to the inverse of
ρ, i.e. nρ ≈ C. Using that 1 − ρ ≈ 1 and 1 − (1 − ρ)n−1 ≈ (n − 1)ρ ≈ nρ,
the lower bound in (3.3) behaves approximately as

k &
ln
(

εfp
1−εfp

)
+ ln ρ

ln(nρ)
≈

ln
(

εfp
1−εfp

)
+ ln(n/C)

lnC
.

that is k grows only logarithmically with the pool size n. An analogous
analysis shows that k also grows logarithmically with the inverse of εfp when
the error probability εfp is sent to zero.

We have sketched the interplay between pool size n, multiplicity k, false
positive probability εfp and the minimal k required for some choices of n, ρ,
and εfp in Table 1.

4. Generating multipools

The question for which combiniations (N,n, k) a multipool exists seems
to be in general a non-trivial combinatorial problem. We focus here on the
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n ρ εfp k

16 1.0% 0.50 2.34
16 1.0% 0.25 2.90
16 1.0% 0.10 3.45
16 1.0% 0.05 3.83
16 1.0% 0.01 4.67
16 0.5% 0.50 2.02
16 0.5% 0.25 2.43
16 0.5% 0.10 2.85
16 0.5% 0.05 3.14
16 0.5% 0.01 3.77
16 0.2% 0.50 1.76
16 0.2% 0.25 2.08
16 0.2% 0.10 2.39
16 0.2% 0.05 2.60
16 0.2% 0.01 3.07
16 0.1% 0.50 1.64
16 0.1% 0.25 1.90
16 0.1% 0.10 2.16
16 0.1% 0.05 2.34
16 0.1% 0.01 2.73

n ρ εfp k

32 1.0% 0.50 3.49
32 1.0% 0.25 4.32
32 1.0% 0.10 5.15
32 1.0% 0.05 5.72
32 1.0% 0.01 6.97
32 0.5% 0.50 2.73
32 0.5% 0.25 3.30
32 0.5% 0.10 3.86
32 0.5% 0.05 4.25
32 0.5% 0.01 5.10
32 0.2% 0.50 2.21
32 0.2% 0.25 2.60
32 0.2% 0.10 2.99
32 0.2% 0.05 3.26
32 0.2% 0.01 3.85
32 0.1% 0.50 1.98
32 0.1% 0.25 2.29
32 0.1% 0.10 2.61
32 0.1% 0.05 2.82
32 0.1% 0.01 3.30

n ρ εfp k

64 0.5% 0.50 4.05
64 0.5% 0.25 4.89
64 0.5% 0.10 5.73
64 0.5% 0.05 6.31
64 0.5% 0.01 7.57
64 0.2% 0.50 2.91
64 0.2% 0.25 3.43
64 0.2% 0.10 3.94
64 0.2% 0.05 4.29
64 0.2% 0.01 5.07
64 0.1% 0.50 2.47
64 0.1% 0.25 2.86
64 0.1% 0.10 3.26
64 0.1% 0.05 3.52
64 0.1% 0.01 4.11

128 0.1% 0.50 3.25
128 0.1% 0.25 3.77
128 0.1% 0.10 4.28
128 0.1% 0.05 4.63
128 0.1% 0.01 5.41

Table 1. Lower bounds on the number k required to make
the probability of a positive result being a false positive
smaller than εfp for different choices of pool size n and bound
on the incidence ρ.

case when N = n2 and on constructions based on the Shifted Transversal
Design [TM06]. As mentioned in [FFLH], assumingN to be a square number
is not really a restriction since numbers N which are not a square can be
either divided into smaller squares or extended to a larger square number
by adding negative ”dummy samples”.

It is useful to imagine all N samples arranged in an n × n-square and
denote the sample in the i-th row and the j-th column by Xij . For k = 2, a
(N,n, k)-multipool can be constructed by pooling along rows and columns,
as for instance in Figure 3.

We have seen in Table 1 that for many relevant parameters a multiplicity
k = 2 is not sufficient for the required precision. To deal with the case
k = 3, one can sample along diagonals, where the diagonals are continued
periodically, see Figure 3.

Theorem 2. Let N = n2 and n ≥ 2. Then there exists an (N,n, 3)-
multipool, obtained by sampling along rows, columns, and all periodically
continued north-west-to-south-east diagonals.

In order to pass to k = 4, one might be tempted to now pool along the
other (north-east-to-south-west) diagonals, but this is not going to yield a
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Figure 3. Pooling along rows, columns, and periodically
continued diagonals.

Figure 4. The two diagonals (red and blue) intersect in two
points (black). They cannot both be used as pools in a mul-
tipool.

P (1) P (0, 0) P (0, 1)

P (0, 2) P (0, 3) P (0, 4)

Figure 5. Multipools of different slopes as in Theorem 3 for
n = 5.

multipool in general, see for instance Figure 4 for the case of n = 8 where
two diagonals intersect in more than one point.

Another option is to sample along lines of different slopes, that is to
construct a multipool using pools of the form

P (l,m) :=
{
Xj,l+jm(modn) : j = 0, . . . , n− 1

}
, l,m ∈ {0, . . . , n− 1},

where modn means that we calculate modulo n, that is as soon as we exceed
n− 1, we start counting from 0 again. We sketch such sets in Figure 5.

It follows from standard algebraic properties of the integers modulo n
(more precisely from the fact that Z(modn) is a field having multiplicative
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inverses if and only if n is prime) that any two such pools do not intersect
in more than one point if and only if n is a prime number. This leads to:

Theorem 3. Let n be a prime number and let N = n2. Then, there exists a
(N,n, k)-multipool for k = (n+ 1), and consequently also for every smaller
k. This multipool is given by pooling along all rows, that is:

P (l) := {Xl,j : j = 0, . . . , n− 1} , l ∈ {0, . . . , n− 1}.
and pooling along all slopes, that is:

P (l,m) :=
{
Xi,l+mj(modn) : j = 0, . . . , n− 1

}
, l,m ∈ {0, . . . , n− 1}.

We show in Figure 5 an illustration in the case k = 5. This construction
is also referred to as the Shifted Transversal Design in [TM06].

If N is a square, but not a square of a prime, an adapted strategy (with

smaller pool size n) can be devised by exploiting the fact that
√
N can be

written as a product of a prime and another number.
From a practical perspective it seems to be reasonable to generate mul-

tipools by a sequence of unions of two equally diluted pools. This leads to
pool sizes which are a power of 2, certainly not a prime number (except for
2 itself). One approach to accomodate for that would be population sizes
N = n2 where n is a prime just less than a power of 2, e.g. n = 31, which
is just less than 32 or n = 61 which is just less than 64. Then pools of size
n can be mixed by adding a small number of negative dummy samples and
proceeding as if n was a power of 2.

5. Examples and scenarios

Let us sketch some concrete examples where the pool sizes are a prime
number and where the multipooling strategy might be useful:

N = 961, ρ ≤ 1%, n = 31. Let the population size be N = 312 = 961. This
could for instance be the number of employees in a company or passengers
which depart from an international airport within a certain time window.
Let the incidence rate ρ be no more than 1.0% and let us work with a pool
size n = 31. Theorem 1 then allows to bound the probability of a positive
test being erroneous for different multiplicities k, see Table 2. Accepting for

k εfp k/n
4 0.32 0.129
5 0.11 0.161
6 0.03 0.194
7 0.008 0.226

Table 2. Probability of a positive result being a false pos-
itive and the portion k/n of tests required with respect to
individal testing for n = 31, ρ ≤ 0.01 and different k.

instance a false positive probability of 3% requires 6N/n = 186 PCR tests,
19.4% of what would be required in individual testing. Let us emphasize
again here that this means that 3% among the results flagged as positive
will be false positives, not 3% of the overall population.
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N = 3721, ρ ≤ 0.1%, n = 61. The multipool method scales well with larger
numbers. Let the population size be N = 612 = 3721 and the pool size 61,
which is of the order of pools being used for the PCR today [YAST+20].
Let furthermore be the incidence rate be no larger than 0.1%. The error
bounds in Theorem 1 then lead to Table 3. If we choose k = 4 and accept

k εfp k/n
3 0.17 0.049
4 0.012 0.066
5 0.0007 0.082

Table 3. Probability of a positive result being a false pos-
itive and the portion k/n of tests required with respect to
individal testing for n = 61, ρ ≤ 0.001 and different k.

εfp = 1.2% as the probability for positive results being false positives, we
need Nk/n = 244 tests in order to fast and efficiently test 3721 individuals,
that is 6.6% of what would be needed for individual testing.

N = 16129, ρ ≤ 0.1%, n = 127. Let us consider a hypothetical scenario
where a dilution of samples by a factor 127 is acceptable, that is N = 1272 =
16129. The error bounds given by Theorem 1 are shown in Table 4. If one

k εfp k/n
4 0.165 0.031
5 0.023 0.039
6 0.0028 0.047

Table 4. Probability of a positive result being a false pos-
itive and the portion k/n of tests required with respect to
individal testing for n = 127, ρ ≤ 0.001 and different k.

works with k = 5 and accepts a false positive rate of εfp = 2.3%, then only
Nk/n = 635 PCR tests would be required, that is 3.9% of what would be
needed in the case of individual testing.

6. Discussion and possible extensions

The non-adaptive multi-pooling strategy provides a streamlined and ef-
ficient organisation of the testing process and cuts in detection time. This
significant benefit comes with potential reductions in accuracy compared
with adaptive testing, but this false positive rate can be tightly controlled
and tailored to suit the circumstance. The false positive probability εfp
deemed an acceptable cost for the increased testing efficiencies may depend
on, for example, the infection characteristics, the government policy and
resource levels.

A small modification of our strategy might furthermore allow for an im-
provement of the false negative rate – even compared to usual adaptive pool
testing strategies: even though commonly used, pooling samples can poten-
tially dilute samples close to the identification threshold of the PCR and
increase the probaility of false negatives. The recent preprint [YAST+20]
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estimates a false negative rate of 10% when detecting COVID-19 in pools of
size 32. One can reduce this type of false negative in our strategy by declar-
ing all samples which are in at least k − 1 positive pools as tested positive.
This will on the one hand lower the probability of false negatives, but more
importantly it will only mildly affect the false positive rate. This could be
seen by adding a next-order term in the error analysis performed leading
up to Theorem 1. Furtherore, knowledge on the false positive rate gained
through experiments would be required, but the general message that the
necessary multiplicity k will grow slowly with large n and small εfp remains.

Let us finally note that the basic idea is close to compressed sensing
and sparse recovery [CT06,FH13]. While in our situation the output space
consists of {0, 1}-vectors, which make the mathematics we use rather ele-
mentary, there also seem to be applications of the PCR where quantitative
measurements are taken and where compressive sensing techniques might
be applied.

Acknowledgements. The author thanks Christoph Schumacher for help-
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Sasha Sodin are gratefully acknowledged.
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