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Abstract 10 

Our understanding of the host component of sepsis has made significant progress. However, detailed 11 

study of the microorganisms causing sepsis, either as single pathogens or microbial assemblages, has 12 

received far less attention. Metagenomic data offer opportunities to characterise the microbial 13 

communities found in septic and healthy individuals. In this study we apply gradient-boosted tree 14 

classifiers and a novel computational decontamination technique built upon SHapley Additive 15 

exPlanations (SHAP) to identify microbial hallmarks which discriminate blood metagenomic samples of 16 

septic patients from that of healthy individuals. Classifiers had high performance when using the read 17 

assignments to microbial genera (AUROC = 0.995), including after removal of species ‘confirmed’ as 18 

the cause of sepsis through clinical testing (AUROC = 0.915). Models trained on single genera were 19 

inferior to those employing a polymicrobial model and we identified multiple co-occurring bacterial 20 

genera absent from healthy controls.  21 

Importance 22 

While prevailing diagnostic paradigms seek to identify single pathogens, our results point to the 23 

involvement of a polymicrobial community in sepsis. We demonstrate the importance of the microbial 24 

component in characterising sepsis, which may offer new biological insights into the aetiology of sepsis 25 

and allow the development of clinical diagnostic or even prognostic tools. 26 

  27 
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Introduction 28 

Sepsis poses a significant challenge to public health and was listed as a global health priority by the 29 

World Health Organisation (WHO) in 2017. In the same year, 48.9 million cases of sepsis and 11 30 

million deaths were recorded worldwide [1] having a particular impact in low and lower-middle income 31 

countries [2]. 32 

Current research efforts have predominately focused on understanding the host’s response to sepsis. 33 

Indeed, all contemporary definitions of sepsis focus on the host’s response and resulting systemic 34 

complications. The 1991 Sepsis-1 definition described sepsis as a systemic inflammatory response 35 

syndrome (SIRS) caused by infection, with patients being diagnosed with sepsis if they fulfil at least two 36 

SIRS criteria and have a clinically confirmed infection [3]. The 2001 Sepsis-2 definition then expanded 37 

the scope of SIRS to include more symptoms [4]. More recently, the 2016 Sepsis-3 definition sought to 38 

differentiate between mild and severe cases of dysregulated host responses, describing sepsis as a life-39 

threatening organ dysfunction as a result of infection [5]. Significant progress has been made in 40 

understanding how dysregulation occurs [6] and the long-term impacts of sepsis [7,8]. Additionally, 41 

early-warning tools have been developed based on patient health-care records [9–11] and clinical 42 

checklists [12,13]. However, the focus on the host component of sepsis may overlook the important role 43 

of microbial composition in the pathogenesis of the disease. 44 

Due to the severity of sepsis, current practice considers identification of a single pathogen sufficient to 45 

warrant a diagnosis, without consideration of other, potentially relevant, species in the bloodstream. 46 

Upon diagnosis, infections are rapidly treated with broad spectrum antibiotics. However, blood cultures, 47 

the current recommended method of diagnosis before antimicrobial treatment [14], are known to yield 48 

false negatives due to certain microorganisms failing to grow in culture [15], particularly in samples 49 
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with low microbial loads [16]. Culture-based methods, while useful in a clinical context, may therefore 50 

under-estimate the true number of causative pathogens infecting septic patients.  51 

Sepsis is a highly heterogeneous disease which consists of both a host component and a microbial 52 

component. While the former has been widely studied, the latter appears to represent a largely untapped 53 

source of information that could further advance our understanding of sepsis. Several diseases manifest 54 

as a result of interactions in a polymicrobial community. For example, microbial interactions in lung, 55 

urinary tract and wound infections are all known to contribute to differing disease outcomes (reviewed 56 

by Tay et al. [17]). These findings suggest that the microbial component of sepsis may also be crucial to 57 

understanding its pathogenesis.  58 

Current technologies to investigate the presence of polymicrobial communities have some major 59 

limitations. As noted previously, culture-based methods have a high false negative rate. Further, without 60 

knowledge of the range of microorganisms that infect blood, co-culture experiments to study microbial 61 

interactions prove difficult. For polymerase chain reaction-based technologies, the use of species-62 

specific primers (e.g. SeptiFast [18]) necessitates a priori knowledge of microbial sequences 63 

endogenous to septic blood. Lastly, metagenomic sequencing is ubiquitously prone to environmental 64 

contamination. This can include DNA from viable cells introduced during sample collection, sample 65 

processing, or DNA present in laboratory reagents [19–21]; the so called ‘kitome’. As such, it can be 66 

difficult to determine which microorganisms are truly endogenous to the sample, and at what abundance. 67 

In this study, we sought to expand our understanding of the full microbial component of sepsis. Multiple 68 

statistical and state-of-the-art machine learning techniques were applied to metagenomic sequencing 69 

data published by Blauwkamp et al. [22] (henceforth Karius study) from 117 sepsis patients and 170 70 

healthy individuals. To circumvent the problem of potential contamination in metagenomic data, we 71 

developed and applied a novel computational contamination reduction technique. We also externally 72 
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validated our findings using external hold-out datasets comprising three other independent sepsis 73 

cohorts. Taken together, our results provide strong evidence for a polymicrobial signature of sepsis and 74 

the utility of metagenomic sequencing for the investigation of blood-borne infections.  75 
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Results 76 

Metagenomic sequencing can be used to discriminate septic from healthy samples 77 

We first assessed the suitability of taxonomic assignments for discriminating between septic and healthy 78 

blood metagenomic samples. Gradient-boosted tree classifiers were trained and evaluated using data 79 

matrices generated via Kraken 2 taxonomic assignment, with samples represented in rows and taxa in 80 

columns (i.e. features). Each element in the matrices represented the total number of reads assigned to 81 

each taxon, which we loosely refer to as ‘abundance’. The set of taxa used in each analysis will 82 

henceforth be referred to as the ‘feature space’. Models were first trained and evaluated using 117 septic 83 

patients and 170 healthy individuals in the Karius study (Table 1). To determine if our findings were 84 

applicable beyond the Karius dataset, we pooled the Karius dataset with metagenomic information from 85 

three other independent sepsis cohorts [23–25]. The final pooled dataset contains sequence data from 86 

multiple sources, sepsis definitions and sequencing techniques (Table 1). We will henceforth refer to 87 

individual datasets by their dataset alias as shown in Table 1. 88 

Table 1. Summary of metagenomic datasets. Sample sizes indicated here are those after all quality control steps 89 

have been applied. 90 

Study Dataset alias 
 

Accession 

Sepsis 

definition 

Sequencing 

technique 

Sample size 

Septic Healthy 

Grumaz et al. 

(2019) 

Grumaz-19 PRJEB21872 

PRJEB30958 

Sepsis-2 Shotgun 50 - 

Grumaz et al. 

(2016)  

Grumaz-16  PRJEB13247 Sepsis-2 Shotgun 7 15 

Gosiewski et al. 

(2017) 

Gosiewski-17 Requested from 

authors 

Sepsis-1 16S (paired-end) 56 23 

Blauwkamp et al. 

(2019)  

Karius  PRJNA507824 Sepsis-1 Shotgun 117 170 

 91 
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The performance of all classifiers is summarised in Table 2. Using the raw feature space, parsed from 92 

the Kraken 2 taxonomic assignments, classifiers had a very high classification performance (Karius-93 

Neat model; AUROC = 0.995) in discriminating sepsis from healthy samples based on microbial content 94 

alone. This was similarly observed when using the pooled dataset (Pooled-Neat model; AUROC = 95 

0.982).  96 

Table 2. Summary of models trained. The prefix and suffix of each model name corresponds to the dataset and 97 

contamination reduction technique applied, respectively. Neat, SD, and CR refer to the feature spaces with no, 98 

Simple Decontamination, and SHAP Decontamination applied, respectively (see Methods). Karius-Without 99 

corresponds to the SHAP decontaminated feature space after claimed ‘confirmed’ pathogens are excluded. 100 

Karius-Only refers to the feature space containing only genera with ‘confirmed’ pathogens as features. 101 

No. of 

Features 
Feature Space 

Model Performance 

Precision Recall AUROC 

1564 Karius-Neat 0.976 0.983 0.995 

111 Karius-SD 0.896 0.787 0.942 

25 Karius-CR 0.883 0.810 0.942 

22 Karius-Without 0.803 0.727 0.915 

22 Karius-Only 0.929 0.862 0.950 

685 Pooled-Neat 0.950 0.939 0.982 

21 Pooled-CR 0.870 0.796 0.904 

 102 
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SHAP can be used to remove putative sequencing contaminants 103 

Accurate characterisation of the microbial component of sepsis requires discrimination between a true 104 

biological signal and that arising from putative environmental contamination in metagenomes. We 105 

developed and applied a procedure to remove biologically irrelevant genera from the feature space, 106 

which we will refer to as SHAP Decontamination (CR; see Methods). Briefly, we leveraged SHapley 107 

Additive exPlanations (SHAP) – a state-of-the-art machine learning technique for interpreting ‘black-108 

box’ classifiers [26] – to determine how the read counts assigned to a genus (i.e. feature) influences 109 

model predictions. In doing so, we selectively removed putative contaminants from the feature spaces 110 

obtained from taxonomic classification. 111 

To evaluate the effectiveness of this approach, we compared SHAP Decontamination to a simpler 112 

statistical method for the removal of putative pathogens, which we call Simple Decontamination (SD; 113 

see Methods). For the Karius dataset, application of SHAP Decontamination resulted in a pruned feature 114 

space of 25 genera while Simple Decontamination resulted in 111 genera. The resultant Karius-CR and 115 

Karius-SD feature spaces, respectively, shared 21 genera in common. Classifiers trained on either of the 116 

Karius-CR or Karius-SD feature space had similarly high performance (Table 2, Karius-CR/SD; 117 

AUROC = 0.942), despite the large reduction in the number of features. This suggests that 118 

computational decontamination efficiently removes redundancy in the metagenomic feature space. 119 

Furthermore, SHAP Decontamination appears to be more efficient as demonstrated by the equivalent 120 

classification performance, but higher number of removed putative contaminant genera than Simple 121 

Decontamination. 122 

Separately, we observed that the Karius-CR model comprised almost all genera associated to sepsis at 123 

higher abundance. Additionally, genera such as Sphingobium, Mesorhizobium and Ralstonia, were 124 

highly important features in the Karius-Neat feature space (Fig. 1a), though not present in either the 125 
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Karius-SD or Karius-CR feature space (Fig. 1b and c). These genera are likely to be contaminants since 126 

they contribute negatively to the predicted probability of sepsis at high abundance, and have been 127 

previously ascribed as common sequencing contaminants [19]. Of the 25 genera in the Karius-CR 128 

feature space, eight corresponded to genera containing clinically ‘confirmed’ pathogens (see Methods). 129 

Notably, Escherichia and Enterobacter, which are both ‘confirmed’ pathogens but also common 130 

contaminants [19], were retained in both decontaminated feature spaces. These findings collectively 131 

suggest that computational decontamination procedures were removing putative contaminants while 132 

selectively retaining biologically important genera. 133 
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134 
Figure 1. Model interpretation and performance. (a) Plot summarising the SHAP values across all samples for 135 

the most important features ranked by the mean absolute SHAP value (highest at the top) for Karius-Neat, (b) 136 

Karius-SD, (c) Karius-CR and (d) Karius-Without models. Each point represents a single sample. Points with 137 

similar SHAP values were stacked vertically for visualisation of point density and were coloured according to the 138 

magnitude of the feature values (i.e. read counts). Genera that contained ‘confirmed’ pathogens are highlighted in 139 

yellow.  140 

 141 
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Evidence for a polymicrobial community 142 

Having assessed the biological relevance of microbial predictors of sepsis, we provide several pieces of 143 

evidence supporting a polymicrobial model of sepsis; that is, that there are sets of microbial genera that 144 

delineate septic from healthy blood metagenomes, rather than just individual pathogens. Most notably, a 145 

classifier trained on the Karius dataset using the SHAP decontaminated feature space but with all genera 146 

containing clinically identified pathogens (henceforth ‘confirmed’ pathogens; see Methods) removed 147 

performed well (Karius-Without model; AUROC = 0.915) suggesting the presence of these species 148 

alone does not capture the full microbial signal of sepsis. Visualisation of the SHAP values for this 149 

model (Fig. 1d) confirmed that most genera had positive associations with sepsis at higher abundances. 150 

To test if any single features in the Karius-Without model were driving the high classification 151 

performance, we trained and evaluated multiple single-feature classifiers with each genus in the Karius-152 

Without feature space. Additionally, we trained a classifier on genera containing ‘confirmed’ pathogens 153 

as features only (Karius-Only). Fig. 2 shows the performance of the multi-feature Karius-Neat, Karius-154 

Without and Karius-Only models compared to single-feature models. All multi-feature models 155 

performed superior to those relying on single-feature models. 156 
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157 
Figure 2. Comparison of performance (AUROC) for the multi-feature models (Karius-Neat, Karius-Only, 158 

Karius-Without feature space) and single-feature models (x-axis).  159 

We then trained classifiers on the pooled dataset to determine if our results were unique to the Karius 160 

dataset or whether they were portable to other sepsis cohorts. Current metagenomics datasets are limited 161 

in their suitability for external validation due to the use of different sequencing technologies, differing 162 

sepsis definitions and small sample sizes. However, despite the pooled dataset comprising multiple data 163 

sources from different studies, the classifier still performed well (Pooled-Neat model, AUROC = 0.982; 164 

Pooled-CR model, AUROC = 0.904). This strongly suggests that there is a generalisable microbial 165 

signature which can be leveraged across metagenomic datasets.  166 
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To more formally test the generalisability of the observed polymicrobial signature, we trained classifiers 167 

on pooled data from two data sources while holding out data from the last source for testing (Fig. 3). 168 

Most notably, the classifier trained on shotgun metagenomic data and tested on 16S data as the holdout 169 

set (Gosiewski-17) did not perform well. However, after SHAP Decontamination, classification 170 

performance improved markedly. Interestingly, this performance increase was not observed when using 171 

the other datasets as holdout sets (Fig. 3). Indeed, the classifier trained on the feature space before SHAP 172 

Decontamination with the Sepsis-2, Grumaz-16 and Grumaz-19 datasets as holdout performed well, 173 

whereas that trained with the feature space after decontamination performed relatively worse. 174 

Additionally, holding out the Karius dataset resulted in poor classification performance both before and 175 

after SHAP Decontamination. A possible explanation for SHAP Decontamination lowering 176 

classification performance when Grumaz-16/19 is used as the test set is that septic cases recruited in 177 

these studies were based on different sepsis definitions which may involve a different set of pathogens 178 

and reflect different aetiologies. Separately, the poor performance observed when the Karius dataset is 179 

used as the test set can be attributed to the highly imbalanced training dataset (Fig. 3).  180 
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181 
Figure 3. Performance of optimised classifiers tested on different holdout datasets before and after SHAP 182 

Decontamination. Grumaz-16 and Grumaz-19 were pooled to form a single test set. 183 

Lastly, microbial co-occurrence networks were used to identify relationships between genera that were 184 

exclusive to samples from septic patients. Two genera are said to co-occur if an increase in the 185 

abundance of one is associated with an increase in the abundance of the other. The presence of such 186 

relationships would lend weight to the polymicrobial nature of sepsis infections. The Karius-SD feature 187 

space was used in this analysis to corroborate previous analyses using the Karius-CR feature space. 188 

Multiple co-occurrence relationships between genera were present in the corrected network including 189 

those containing 10 of the 22 ‘confirmed’ pathogens and 14 of the 25 genera in the Karius-CR feature 190 
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space (Fig. 4). Interestingly, we detected a group of co-occurring genera associated to the oral cavity 191 

(Fig. 4), as suggested by the Human Oral Microbiome Database [27] (accessed 15
th

 July 2020) and the 192 

current literature [28–31]. This was also present in the corrected network when the Pooled-SD feature 193 

space was used as input (Fig. S1).  194 

 195 

 196 

Figure 4. Corrected microbial co-occurrence network for genera assigned in sepsis metagenomes. Input data 197 

corresponds to the Karius-SD feature space. The edges in this network represent those in the septic network that 198 

were not present in the healthy network. The widths of edges are weighted by the strength of the SparCC 199 

correlations. Nodes are coloured as per the legend at top, with ‘confirmed’ pathogens those experimentally shown 200 

to be implicated in sepsis. The layout of the graph was generated using the Fruchterman-Reingold algorithm.   201 
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Discussion 202 

The polymicrobial signature of sepsis 203 

Our work demonstrates a clear polymicrobial signal in sepsis, where multiple, co-occuring, genera can 204 

be used to discriminate blood metagenomes of septic patients from that of healthy controls. The high 205 

performance of the Karius-Without model primarily highlights that genera containing ‘confirmed’ 206 

pathogens were very useful in delineating septic from healthy samples. More importantly, the Karius-207 

Without model, which had these genera removed (Karius-Without) also performed well, suggesting that 208 

the abundance of microbial genera that were not amongst the ‘confirmed’ pathogens are also highly 209 

relevant to delineating septic from healthy samples. Furthermore, the single-feature models performed 210 

poorly, highlighting that no genus is solely responsible for the high classification performance of the 211 

Karius-Without model, further supporting the polymicrobial nature of sepsis infections.  212 

We also show that the polymicrobial signal we detected is generalisable across datasets, first by nested 213 

cross-validation with all datasets pooled (Pooled-CR model) and then with holdout cross-validation 214 

using the Gosiewski-17 or Grumaz-16/19 datasets as test sets. The increased performance after SHAP 215 

Decontamination when holding out 16S data (Gosiewski-17) suggests that the retained set of genera 216 

allow a markedly more generalisable decision boundary to be learnt, even across sequencing techniques.  217 

Additionally, the multiple co-occurrence relationships between genera detected suggest that there may 218 

be a distinct microbial community that tends to be present during sepsis infection. Although our 219 

networks were inferred computationally, published evidence supports possible synergies between some 220 

of the co-occurring genera we detected. For example, using fluorescence in-situ hybridisation, 221 

interspecies spatial associations were found between Prevotella, Veillonella, Streptococcus, Gemella, 222 

Rothia and Actinomyces [32], which were also the genera with the strongest correlations in the corrected 223 

sepsis network (Fig. 3). Separately, Stenotrophomonas and Burkholderia are known to play a collective 224 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2020. ; https://doi.org/10.1101/2020.04.07.028837doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.07.028837
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

17 

role in the pathogenesis of cystic fibrosis [33]. Lastly, Klebsiella pneumoniae was found to be able to 225 

transmit extended spectrum beta-lactamase genes to Citrobacter freundii and E. coli [34], potentiating 226 

synergism during polymicrobial infections. These examples suggest that the co-occurrence relationships 227 

we computationally detected may reflect genuine biological relationships. Further investigation of the 228 

interactions between different clusters of genera in the corrected sepsis network, together with 229 

expanding to future datasets, may yield valuable insights into the underlying biology of sepsis infections 230 

and ultimately inform treatment. 231 

The presence of a densely connected cluster of oral colonisers may point to a potential reservoir of 232 

sepsis pathogens. This also suggests the possibility of opportunistic infections from the human 233 

microbiota and dysbioses that could affect disease severity. This hypothesis is in line with the reported 234 

changes in nasal microbiomes in septic individuals [35] and the associations of intestinal dysbiosis with 235 

increased susceptibility to sepsis [36]. If these hypotheses were true, microbiome profiles of patients 236 

might offer opportunities to assess a patient’s risk of developing sepsis prior to onset.  237 

The need to account for environmental contamination 238 

Contamination from environmental sources poses one of the greatest challenges for metagenomic 239 

investigations of microbial communities, particularly in low biomass and clinical samples [20,37]. It is 240 

therefore crucial to discriminate between contaminants and biologically relevant taxa and to remove 241 

putative contaminants to protect against spurious signals. 242 

The main premise behind SHAP Decontamination is that pathogens should occur at higher abundance in 243 

septic patients relative to healthy controls. This is because we expect most infections to be characterised 244 

by the proliferation of microorganisms [38,39] and, as such, true pathogenic genera should contribute to 245 

a higher predicted probability of sepsis at higher abundances. Consequently, the abundance of 246 

contaminant taxa would demonstrate a negative Spearman’s correlation with their corresponding SHAP 247 
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values. This allows putative contaminant genera to be computationally detected and removed. Our 248 

results demonstrate the efficacy of our post-hoc contamination reduction technique called SHAP 249 

Decontamination in removing redundancy in the feature space while selectively retaining taxa involved 250 

in sepsis. It is likely that the taxa removed in this procedure would in principle include commensals and 251 

environmental contaminants introduced during sample collection or preparation. As such, application of 252 

this technique provides greater confidence that the polymicrobial signals we observed were not largely 253 

driven by contaminants.  254 

We appreciate that a more rigorous evaluation of this technique, particularly with mock communities, 255 

will be required. As an alternative to our contamination reduction technique, statistical decontamination 256 

techniques identifying inverse relationships between the assigned abundance of taxa and sample DNA 257 

concentration [40,41] could be used. However, this method was not applicable for our study since the 258 

sample DNA concentrations in the datasets used were not reported. 259 

Potential for metagenomics-based diagnostics 260 

Although we do not claim to have developed a model sufficiently robust for immediate diagnostic 261 

purposes, our results highlight the clear promise of metagenomics-informed diagnostic models, which 262 

have also been suggested by previous studies [22,42,43]. To put the high performance of our models in 263 

context, Mao et al. [9] reported that InSight, a model trained on vital signs of patients, had a diagnostic 264 

AUROC of 0.92 using Sepsis-2 as the ground truth. They also reported that the Modified Early Warning 265 

Score (MEWS), Sequential Organ Failure Assessment (SOFA) and SIRS had an AUROC of 0.76, 0.63 266 

and 0.75 respectively. Additionally, a classifier trained on nasal metagenomes of septic and healthy 267 

samples had an AUROC of 0.89 with Sepsis-3 as the ground truth [35]. Notably, it is difficult to 268 

compare the performance of models trained with labels generated by different definitions of sepsis, 269 

which is also inherently a highly heterogeneous disease. Further, the discrepancies in model 270 
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performance could be due to differences in the size of training and testing datasets. At the very least, our 271 

results suggest that the microbial component of sepsis alone contains sufficient information for the 272 

diagnosis of sepsis. A crucial next step will be to generate larger datasets, from more diverse sources, to 273 

allow the training of more robust and generalisable models for diagnostic or prognostic use. 274 

Limitations 275 

We identified several limitations in our study. Firstly, metagenomic sequencing involves measurements 276 

of circulating free DNA and not of viable microorganisms in blood. As such, the detection of DNA from 277 

multiple taxa does not necessarily represent the true number or abundance of active taxa present. 278 

However, multiple studies have demonstrated high concordance of targeted [44] or shotgun 279 

metagenomic sequencing with culture [22,42,45]. This suggests some level of agreement between the 280 

presence of microbial cells and their DNA in blood. Additionally, given its higher sensitivity and 281 

throughput, metagenomic sequencing appears to be the best tool currently available for gaining insights 282 

into polymicrobial infections.  283 

Though our results suggest the importance of multiple genera in delineating metagenomes of septic 284 

patients from that of healthy controls, the etiological contributions of these genera and their ecological 285 

relationships cannot be inferred. Such hypotheses must be confirmed experimentally. It is also important 286 

to keep in mind that the models presented in this study are not prognostic in nature, in that they were not 287 

trained to predict the onset or progression of sepsis. However, furthering our understanding of the 288 

microbial component of sepsis may prove useful in the development of better prognostic tools.  289 

Some genera such as Escherichia and Enterobacter contain both biologically relevant genera and 290 

common sequencing contaminants. As such it is expected that a proportion of DNA molecules, and 291 

hence sequencing reads, may have come from contamination rather than microorganisms endogenous to 292 
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blood. The abundance of these microorganisms, as detected by metagenomic approaches, may differ 293 

from the true abundance.  294 

Additionally, k-mer based approaches may be less accurate for taxonomic classification compared to, for 295 

example, Bayesian sequence read-assignment methods [46]. As such, we used taxonomic assignments at 296 

the genus level which were shown to be, in general, more reliable than that at the species level [47]. We 297 

also appreciate that k-mer based classification approaches are significantly faster [48], which may 298 

provide clinically relevant turnaround times that are important in sepsis diagnostics. 299 

Finally, we acknowledge the relatively small size of the datasets used in our analyses. As a result, the 300 

models presented in this study are not yet robust enough to be used in a clinical context. A larger and 301 

more diverse dataset is required to develop such models. This is to ensure that models can learn a more 302 

generalisable decision boundary for accurate sepsis diagnosis. 303 

Irrespective of these limitations, our results nonetheless demonstrate the importance of considering the 304 

full polymicrobial component of sepsis and suggest that a metagenomics-based approach may provide 305 

biological and clinical insights supporting the future development of rapid diagnostic tools. 306 

The advent of large-scale metagenomic sequencing of clinical samples offers new opportunities to better 307 

characterise the pathogens contributing to systemic infections, and unlike culture-based methods are not 308 

limited to organisms that are fast-growing or culturable. In this study, we demonstrate the promise of a 309 

metagenomics-based approach to sepsis. Our results provide evidence that septic infections should be 310 

considered as polymicrobial in nature, comprising multiple co-occurring pathogens indicative of disease. 311 

Our findings thus pave the way for more microbial-focused models of sepsis, with long run potential to 312 

inform early detection, clinical interventions and improve patient outcomes.   313 
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Materials and Methods 314 

Datasets 315 

Our primary analysis involved published shotgun metagenomic sequence data from the Karius study 316 

[22]. As detailed in this study, patients were diagnosed with sepsis if they presented with a temperature 317 

> 38°C or < 36°C, at least one other Systemic Inflammatory Response Syndrome (SIRS) criterion, and 318 

evidence of bacteraemia. Bacteraemia was confirmed via clinical microbiological testing performed 319 

within seven days after collection of the blood samples. The list of pathogens identified by such tests 320 

(which we refer to as ‘confirmed’ pathogens) can be found in Supplementary Table 5 of the Karius 321 

study, under the ‘definite’ adjudication. This included tissue, fluid and blood cultures, serology and 322 

nucleic acid testing. The clinical outcome of each patient was not reported in the original study. Seven of 323 

the 117 septic patients were found to have more than one ‘confirmed’ pathogen identified by 324 

microbiological testing (Supplementary Table 5; Karius study). According to the Karius study, healthy 325 

individuals were “screened for common health conditions including infectious diseases through a 326 

questionnaire and standard blood donor screening assays”. We believe this to be reasonable grounds for 327 

ruling out bloodstream infections in healthy patients (i.e. of non-septic origin). 328 

Data pre-processing 329 

As described in the Karius study, input circulating free DNA was sequenced using NextSeq500 (75-330 

cycle PCR, 1 x 75 nucleotides). Raw Illumina sequencing reads were demultiplexed by bcl2fastq 331 

(v2.17.1.14; default parameters) and quality trimmed using Trimmomatic (v0.32) [49] retaining reads 332 

with a quality (Q-score) above 20. Mapping and alignment were performed using Bowtie (v2.2.4) [50]. 333 

Human reads were identified by mapping to the human reference genome and removed prior to 334 

deposition in NCBI’s Sequence Read Archive (PRJNA507824).  335 
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For Grumaz-16 and Grumaz-19, BBMap (v38.79) [51] was used to trim adapter sequences, remove reads 336 

with a Q-score below 20 and remove reads mapping to the masked human hg19 reference 337 

(https://tinyurl.com/yya4xmrg). For the Gosiewski-17 dataset, we performed the same pre-processing 338 

steps as reported in the associated study [24]. Briefly, primers and adapters were removed using 339 

Cutadapt (v1.18) [52], paired reads merged using ea-utils (v1.1.2.537) [53], merged reads and forward 340 

unmerged fastq files concatenated, and reads with a Q-score below 20 removed using BBMap. 341 

Taxonomic classification of all shotgun sequencing data was performed using Kraken 2 (v2.0.9-beta; 342 

default parameters) [54]⁠ with the maxikraken2_1903_140GB database (https://tinyurl.com/y7zfg9kr). 343 

For the Gosiewski-17 dataset, Kraken 2 with a Kraken 2-built Silva database was used instead of 344 

conventional 16S amplicon metagenomic classification methods [55]. Read assignments for all 345 

‘confirmed’ bacterial pathogens using the maxikraken2_1903_140GB and Kraken 2-built Silva 346 

databases are shown in Fig. S2. While the relative number of reads assigned to each bacterial genus 347 

showed some inconsistencies, this hardly affected the classifier performance of septic and healthy 348 

patients (Fig. S3). This suggests that our model is fairly robust to heterogeneity which may be 349 

introduced by the classification step. For downstream analyses, we use the genera assignments based on 350 

the Kraken 2-built Silva database for the 16S Gosiewski-17 samples. Additionally, all unclassified reads 351 

were excluded from the analyses. The feature space obtained directly from Kraken 2 taxonomic 352 

assignment is denoted by Neat. 353 

Unexpectedly, for the Karius dataset, some reads were assigned to the genus Homo which was possibly 354 

due to misclassification. Mapping of all reads in the Karius sequencing data found just 873 bases with 355 

96% identity to the masked human reference. Since human reads were already removed in the 356 

bioinformatic workflow of the Karius study, we did not perform an additional human read removal step 357 

to avoid introducing biases into the data. 358 
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Model training, optimisation and evaluation 359 

Classifiers were trained with a binary-logistic loss function and implemented using XGBoost API 360 

(v0.90) [56]. Model optimisation was performed using a randomised hyperparameter optimisation 361 

protocol [57] (1000 samples) implemented using RandomizedSearchCV in the Scikit-learn API (v0.23.1) 362 

[58]. The test error of each model was estimated using a nested, stratified, 10 x 10-fold cross-validation 363 

procedure. The best performing sets of hyperparameters that maximise the receiver operating 364 

characteristic curve (AUROC) of each model were determined and used for downstream analyses. The 365 

test error of each model was also estimated using a holdout test set after hyperparameter optimisation. 366 

For this procedure, precision, recall and AUPRC were used as performance metrics since they are more 367 

informative when used on imbalanced test sets [59].  368 

Model interpretation 369 

To interpret models, each feature in a single sample was assigned a SHAP value, which corresponds to 370 

the change in a sample’s predicted probability score (i.e. probability of sepsis) when the feature is either 371 

present or absent. Using SHAP values therefore allows the decomposition of predicted probability 372 

scores for each sample into the sum of contributions from individual genera. The relative importance of 373 

each feature was inferred via its mean absolute SHAP value across all samples. A higher mean absolute 374 

SHAP value implies that the feature has a larger impact on the model predictions. SHAP values were 375 

computed using TreeExplainer, part of the shap library (v0.34.0) [26]. For every model, SHAP values 376 

were computed for the whole dataset by setting the feature_pertubation parameter to ‘interventional’.  377 

SHAP Decontamination 378 

SHAP Decontamination was performed in two main steps. Firstly, genera that are not currently 379 

identified as known human pathogens were first removed. This selection was based on a study by Shaw 380 

et al. [60], who considered as a ‘human pathogen’⁠ any microbial species for which there is evidence in 381 
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the literature that it can cause infection in humans, sometimes in a single patient. Secondly, a classifier 382 

was optimised and trained on genera abundance (Neat feature spaces). SHAP values for model 383 

predictions on the dataset were then calculated. Genera with a negative Spearman’s correlation between 384 

their corresponding SHAP values and abundances were removed. Spearman’s correlations were 385 

calculated using spearmanr as part of the SciPy library (v1.4.1) [61]. A new classifier was then retrained 386 

using the previously optimised set of parameters but with this new reduced feature space. This process 387 

was repeated iteratively until the number of genera retained remained constant. The resultant feature 388 

space is denoted by CR. 389 

To test the hypothesis that genera containing true pathogens are positively associated with sepsis, we 390 

inspected the SHAP values and read counts assigned to the genera corresponding to cases of each type 391 

of ‘confirmed’ infection (e.g. SHAP value/read count assigned to Escherichia for only Escherichia-392 

positive samples) using the Karius-Neat feature space. The SHAP values were all at greater or equal to 393 

zero apart from a single sample which had a negative SHAP value for Mycobacterium (Fig. S4). The 394 

assigned read counts were non-zero except for one sample with a ‘confirmed’ fungal Candida glabrata 395 

infection reported (SRR8288759). These findings suggest that SHAP values can be used to identify 396 

experimentally identified pathogens.  397 

Simple Decontamination 398 

We also employed a more direct, model-free contaminant removal technique (Simple Decontamination) 399 

that follows the same underlying premise of SHAP Decontamination. In this procedure, genera in the 400 

Neat feature space that were significantly (p < 0.05) more abundant in healthy controls than septic 401 

samples were considered contaminants and removed. The resultant feature space is denoted by SD. 402 
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Microbial networks 403 

Microbial co-occurrence networks were constructed using the SparCC algorithm [62], implemented in 404 

the SpiecEasi package (v1.1.0) [63] and visualised using Igraph (v1.2.5) [64]. SparCC was used to 405 

account for compositionality that could lead to spurious correlations. Separate networks were 406 

constructed for the genera assignments of septic and healthy metagenomes. To determine the microbial 407 

associations present exclusive to septic samples, a corrected sepsis network was produced. This network 408 

was constructed by subtracting all edges of the healthy network from the sepsis network. Only co-409 

occurrence relationships where the SparCC correlations exceed 0.2 were retained. The Karius-SD 410 

feature space was used as input. 411 

Data Availability 412 

All relevant source code and parsed datasets can be found on GitHub 413 

(https://github.com/cednotsed/Polymicrobial-Signature-of-Sepsis). The raw sequence data for each study 414 

can be found from NCBI SRA and the European Nucleotide Archive (ENA) repository with the 415 

accessions listed in Table 1.  416 
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