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Visual stimuli are represented by a highly efficient code in the primary visual cortex, but11

the development of this code is still unclear. Two distinct factors control coding efficiency:12

Representational efficiency, which is determined by neuronal tuning diversity, and metabolic13

efficiency, which is influenced by neuronal gain. How these determinants of coding efficiency are14

shaped during development, supported by excitatory and inhibitory plasticity, is only partially15

understood. We investigate a fully plastic spiking network of the primary visual cortex, building16

on phenomenological plasticity rules. Our results show that inhibitory plasticity is key to the17

emergence of tuning diversity and accurate input encoding. Additionally, inhibitory feedback18

increases the metabolic efficiency by implementing a gain control mechanism. Interestingly, this19

led to the spontaneous emergence of contrast-invariant tuning curves. Our findings highlight20

the role of interneuron plasticity during the development of receptive fields and in shaping21

sensory representations.22
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1 Introduction23

The primary visual cortex (V1) represents visual input stimuli in a highly efficient manner (Froudarakis24

et al., 2014; Dadarlat & Stryker, 2017). Recent research has identified two distinct factors underlying25

the efficiency of visual representations: First, representational efficiency in terms of absolute information26

content, which is mainly determined by the receptive field tuning diversity (Goris et al., 2015). Second,27

metabolic efficiency in terms of the number of spikes required to represent a specific input stimulus. This28

aspect is strongly influenced by gain control mechanisms caused by inhibitory feedback processing (Carvalho29

& Buonomano, 2009; Isaacson & Scanziani, 2011). How these determinants of coding functionality are30

shaped during development is only partially understood. While it has long been known that excitatory31

plasticity is necessary for the development of an accurate and efficient input representation (Olshausen &32

Field, 1996; Bell & Sejnowski, 1997; Zylberberg et al., 2011), there has recently been growing interest in33

the role of inhibitory plasticity, fueled by recent studies demonstrating plasticity at inhibitory synapses34

(Khan et al., 2018). As the synaptic plasticity of inhibitory interneurons in V1 likely exerts strong effects35

on the outcome of excitatory plasticity (Wang & Maffei, 2014), complex circuit-level interactions occur36

between both types of plasticity. This notion has received further support based on recent theoretical37

studies (Mongillo & Loewenstein, 2018). Above all, these findings raise the question of how excitatory38

and inhibitory plasticity can cooperate to enable the development of an efficient stimulus code.39

Network models have proposed neural-level mechanisms of sparse code formation (Olshausen & Field,40

1996) based on Hebbian plasticity. However, these models typically rely on simplified learning dynamics41

(Savin et al., 2010; Zylberberg et al., 2011; King et al., 2013) or consider plasticity only at a subset of42

projections in the network (Sadeh et al., 2015; Miconi et al., 2016), not addressing the development of43

feedback-based gain control. As such, it remains unclear how functional input encoding can emerge in a44

more detailed model of V1 circuit development.45

We here propose that a single underlying mechanism - the influence of inhibitory plasticity on excitatory46

plasticity - is sufficient to explain both, the observed feed-forward tuning and neuronal gain-control47

by feedback processing, and we investigate this influence in a spiking network model of V1 layer 4.48

Our key finding is that inhibitory plasticity supports the joint development of feed-forward tuning and49

balances inhibitory feedback currents. Importantly, this balance leads to the spontaneous emergence of50

contrast-invariant tuning curves, as an inherent phenomenon of the network and its plasticity dynamics.51

Our results link both representational efficiency and metabolic efficiency to synaptic plasticity mechanisms.52
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2 Results53

To investigate the interaction between excitatory and inhibitory plasticity, we designed a spiking network54

model of V1-layer 4 consisting of an excitatory and inhibitory population, stimulated with natural image55

patches (Fig. 1a) (see Methods). The circuit of our neuronal network implements both feed-forward56

and feedback inhibition, in agreement with anatomical findings (Isaacson & Scanziani, 2011). Although57

different kinds of inhibitory neurons have been found in the neocortex (Markram et al., 2004; Priebe &58

Ferster, 2008), our network contains only one population of inhibitory neurons, as a simplification. The59

size of the inhibitory population was chosen to match the 4:1 ratio between excitatory and inhibitory60

neurons found in striate cortex (Beaulieu et al., 1992; Markram et al., 2004; Potjans & Diesmann, 2014).61

The plasticity of the excitatory synapses follows the voltage-based triplet spike timing-dependent plasticity62

(STDP) rule proposed by Clopath et al. (2010). The strength of the inhibitory synapses changes according63

to the symmetric inhibitory STDP rule described by Vogels et al. (2011), which achieves homeostasis64

by maintaining a constant postsynaptic firing rate (ρ). This allows us to vary the strength of inhibitory65

synapses in the network, to investigate how the balance between excitation and inhibition influences the66

emergence of neuronal gain-control and feed-forward tuning.67

For this purpose, we compare a network with a 2 : 1 ratio of excitation to inhibition to a model version68

with a 3 : 1 excitation to inhibition ratio, averaged on natural scene patches (Fig. 1b). Additionally,69

we blocked inhibitory synapses after learning to investigate the dynamic effects of inhibition on network70

coding (called blockInh) Each of the three model configurations was repeated 10 times, initialized with71

randomly chosen weight values, to test the stability and reproducibility of the observed outcomes. To72

analyze the influence of inhibition during learning after all, our fourth model configuration contains no73

inhibitory synapses (called noInh model).74

75

Emergence of diversely tuned receptive fields The receptive fields of V1 simple cells are often described76

by Gabor functions (Jones & Palmer, 1987a; Ringach, 2002; Spratling, 2012). We observe the emergence77

of Gabor-like receptive fields in our network for the excitatory and inhibitory population with the spike78

triggered average method (STA, see Methods). Without inhibition, most of the receptive fields have a79

similar orientation and position (Fig. 2a). In contrast, the presence of inhibition during learning resulted80

in a higher diversity of receptive fields with a more complex structure for the excitatory population (Fig.81

2b) and the inhibitory population (Fig. 2c). The measured receptive fields showed a strong tendency for82

weight values to cluster around the minimum or the maximum value. This is a known characteristic of83

the learning rule chosen for excitatory synapses, which enforces strong synaptic competition (Clopath et84

al., 2010; Miconi et al., 2016).85
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We fitted the learned receptive fields with Gabor functions (see Methods) and calculated the normalized86

mean-square error (NMSE, see Eq. 14) to quantify the fit (Spratling, 2012). Fits with an error greater87

than 0.5 were excluded from further evaluations about spatial properties, which occurred for around 25%88

of neurons for the EI2/1 model, and around 2% of all neurons for the noInh model, averaged across 1089

runs for every network configuration.90

A broader range of orientations emerged in the networks with inhibition (Fig. 2e). Without inhibition,91

most receptive fields converge to a preferred orientation around 0◦ or 180◦ (Fig. 2d). In the model with92

weaker inhibition (EI3/1), receptive fields converge to a very similar orientation distribution than in the93

EI2/1 model (see Supplementary S1). In addition, the inhibitory cells in the EI2/1 models also become94

selectively tuned, with a clear preference at 0◦ and 180◦ (Fig. 2f). This is in line with recent experi-95

ments on mouse V1, in which tuned inhibition is found (Bock et al., 2011; Hofer et al., 2011; Liu et al., 2011).96

97

Emergence of structured feed-forward and recurrent connectivity As both, the excitatory and in-98

hibitory cells in our network developed a tuning for orientation and position, we expected that their99

modifiable synaptic connections developed a specific pattern reflecting activity correlations (King et al.,100

2013; Sadeh et al., 2015). Our analysis confirmed that excitatory neurons developed strong connections to101

inhibitory neurons with similar orientation tuning (Fig. 3a, top). Inhibitory weights to the excitatory102

layer showed a similar pattern, although with somewhat reduced specificity (Fig. 3a, bottom). This103

implements an indirect inter-neuron connection between two excitatory neurons via mutually connected104

inhibitory neurons, to inhibit each other maximally. The development of strong recurrent inhibitory105

synapses between similarly tuned inhibitory cells can be observed as well (Fig. 3b).106

107

Inhibition controls response decorrelation We observed that the different levels of inhibition in the108

EI2/1 and EI3/1 models led to similar orientation distributions. To investigate if response correlations109

between neurons only depend on the orientation similarity or whether lateral inhibition has an additional110

decorrelation effect (as mentioned in previous modeling approaches of Wiltschut & Hamker (2009); Savin et111

al. (2010); Zylberberg et al. (2011); King et al. (2013)), we analyzed the development of correlations during112

receptive field learning (Fig. 4a). During the first 250, 000 of all 400, 000 input stimuli, a weak reduction113

of the correlation can be observed in the noInh model. The EI2/1 model showed a pronounced decrease114

of correlations across learning, with the highest reduction occurring in the early phase of learning showing115

the highest amount of changes of the feed-forward weights. Weaker feedback inhibition (EI3/1 model)116

led to weaker decorrelation of neuronal activity. This confirms that the level of inhibition determines the117

degree of decorrelation of pairwise responses.118
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119

Smith & Kohn (2008) recorded the neuronal activity in V1 of macaque monkeys during the presentation120

of drifting sinusoidal gratings and reported a dependence of pairwise response correlations on orientation121

tuning similarity. We performed a similar analysis of our model data, to analyze the effect of feedback122

inhibition on the response correlation with respect to the orientation selectivity. We sorted all cell pairs by123

similarity, grouped them into 30 equally-spaced bins, and averaged their response correlation values within124

each bin, based on natural scene stimuli (details see Methods) (Fig. 4b). Without inhibition, we observed125

a mean response correlation of ≈ 0.95 for cell pairs with highly similar receptive fields. With inhibition, this126

value dropped to ≈ 0.8. By contrast, cell pairs with dissimilar receptive fields showed average correlation127

values of around 0.4 for the noInh and the blockInh model. Here, inhibitory processing substantially128

reduced the mean correlation to near zero-values for the EI2/1 model. A comparison between the EI2/1129

model and its counterpart with blocked inhibition shows that dissimilarly tuned neuron pairs are more130

strongly decorrelated than pairs with highly similar tuning. At a first glance, this pattern contrasts with131

the emergent connectivity structure: The connectivity pattern favors strong mutual inhibitory connections132

between inhibitory neurons which receive projections from (and project back to) excitatory neurons with133

similar tuning, creating strong reciprocal inhibition (Fig. 3a and Fig. 3b). However, our observation of134

target-specific decorrelation is best understood by considering that correlated mean responses can arise135

both through a similarity of tuning and through unspecific baseline activity. Natural image patches are136

likely to evoke broad excitation among many cells, similar to sinusoidal grating stimuli. The correlation137

between dissimilarly tuned neurons is most likely caused by the activity baseline, which is strongly reduced138

by inhibition. Besides, similarly tuned cells will retain strongly overlapping tuning curves even after reduc-139

tion of unspecific activity, associated with strong correlation of their mean response (Averbeck et al., 2006).140

141

Inhibitory feedback shapes tuning curves To quantify the effect of inhibition on the magnitude of142

individual neuronal responses, we measured orientation tuning curves of each neuron by sinusoidal gratings.143

For all approaches and model variants, the maximum firing rate in the input was set to ≈ 85Hz to obtain144

sufficiently high activity levels. We observed high baseline and peak activity in both model variants145

without inhibition (Fig. 5a). However, activity levels in the blockInh model were lower than in the146

noInh model, likely owing to its smaller and more dispersed receptive fields. As expected, the model147

with active inhibitory feedback showed a strong reduction of firing rates. To obtain a measure of tuning148

sharpness, we next estimated the orientation bandwidth (OBW) of the excitatory population, based on the149

measured tuning curves. As expected, and consistent with previous observations (Isaacson & Scanziani,150

2011; Stringer et al., 2016), we observed a sharpening effect through inhibition (Fig. 5b).151

152
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Spontaneous emergence of contrast-invariant tuning curves Besides the sharpening of tuning curves,153

previous models suggest a role of inhibition in the invariance to input contrast changes (Troyer et al.,154

1998; Ferster & Miller, 2000; Priebe & Ferster, 2008). However, those models assume hard-wired con-155

nectivity, and propose push-pull or anti-phase inhibition (Troyer et al., 1998; Ferster & Miller, 2000).156

Contrast-invariant V1 simple cells have been found in different mammals such as, cats (Skottun et al.,157

1987; Finn et al., 2007) or ferrets (Alitto & Usrey, 2004), based on sinusoidal gratings with different158

contrast strength. We use the same approach (see Methods) to measure the tuning curves and calculated159

the averaged OBW over all excitatory cells for the different contrast levels (Fig. 6a). Interestingly, the160

OBW is constant only for the EI2/1 model. For both models without inhibition and for the model with161

weaker inhibition, the OBW increases for higher input contrast values. To understand this effect, we162

compared the EI2/1 with the EI3/1 model with regard to their spike count, average membrane potential,163

and the average of the summed synaptic input current, for different contrast levels. At any contrast level,164

the activity of neurons in the EI2/1 model remains strongly suppressed at non-preferred orientations165

and increases around the preferred orientation (Fig. 7a). By contrast, the EI3/1 model shows increased166

activity for high input contrast at all orientations (Fig. 7b). This results in increased OBW values for167

higher input contrast. Interestingly, for the non-preferred orientation, the average membrane potential168

the EI2/1 model is less hyperpolarized for lower contrast than for higher contrast. For higher contrast,169

the average membrane potential increases at the preferred orientation and is substantially stronger than170

for lower contrast. Both curves intersect around −50mV , close to the resting state spiking threshold171

(−50.4mV ) (Fig. 7c). This can be explained with the average input current: At higher contrast levels172

and non-preferred orientations, the feedback inhibitory current increases more strongly than the excitatory173

current and nearly compensates it (Fig. 7e and S3 a), providing hyperpolarization of the membrane174

potential. This compensation of excitation decreases around the preferred stimulus, where the membrane175

potential exceeds the spiking threshold. In comparison, the membrane potential for the EI3/1 model176

increases proportionally with the total input current caused by higher input contrast (Fig. 7d, Fig. 7f177

and S3 b). This suggests that the contrast-invariant tuning of the EI2/1 model depends on an appropriate178

balance between excitation and inhibition.179

180

Based on the observation of contrast invariant tuning curves, we conclude that feedback inhibition181

modulates the neuronal gain controlled by input orientation and contrast. Fig. 6b shows the average182

response gain for the excitatory population, averaged across the whole population (see Methods for more183

details). We show the response gain curves for low and high contrast stimuli. For the model with blocked184

inhibition (blockInh), the gain curve is unaffected by contrast and follows the activation function defined185

by the neuron model. The firing rates of the EI2/1 model are strongly reduced relative to the blockInh186
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model. Further, this gain modulation is contrast-dependent, as the highest reduction of firing rates is187

observed for high contrast. This shows that the effect of inhibition on the neuronal gain function not only188

depends on the amount of excitatory input, but also on the stimulus orientation and contrast strength.189

Sparseness is increased by both inhibition and tuning diversity As we observed that inhibitory pro-190

cessing led to an increase in the selectivity to artificial stimuli, we asked whether inhibition contributed191

to a sparser population code for natural images. We first compared the overall spiking behavior based192

on raster plots of network responses to five example image patches, for the EI2/1 (Fig. 8a) and the193

blockInh model (Fig. 8c). The model with active inhibition showed sparser firing and a less synchronous194

spiking behavior than the model with blocked inhibition. Second, to quantify this effect, we measured the195

population sparseness for all model configurations, based on the responses to 10.000 natural image patches196

(Fig. 8b). The highest sparseness value (0.62) was observed in the EI2/1 model, 0.54 for the blockInh197

model and the lowest sparseness value (0.43) in the noInh model. Interestingly, the development of a198

higher diversity of receptive fields had a stronger influence on the population sparseness than inhibitory199

processing: Sparseness values differed more strongly between the model configurations without inhibition,200

the noInh and blockInh model, than between the EI2/1 and its blocked counterpart, which share the201

same feed-forward receptive fields.202

203

Metabolic efficiency benefits from feedback inhibition The efficiency of information transmission, or204

metabolic efficiency, is associated with the observed increase of the population sparseness (Spanne &205

Jörntell, 2015). To quantify the efficiency, we calculated the mutual information between input and206

response (Sec.Methods). This analysis revealed a strong impact of inhibition on transmission efficiency207

(Fig. 8d), normalized by spike count. The EI2/1 model shows the highest amount of information per208

spike (0.96 bits/spike). Both models without inhibition were associated with the least efficient population209

coding, with a lower value for the of the blockInh model, caused by a more diverse receptive field210

structure. To analyze further how the increase in information transmission was achieved, we calculated211

the discriminability index d′ on 500 randomly chosen natural scene patches to quantify the trial-to-trial212

fluctuation. We observed that higher d′ values were associated to both high tuning diversity and the213

presence of inhibition(see Supplementary S2). The improvement in discriminability is likely caused by a214

reduction of unspecific activity by inhibition, associated with more reliable stimulus representations, as215

observed in cat V1 (Haider et al., 2010) and mouse V1 (W. Zhu et al., 2009). In summary, our results216

show that the inhibitory processes in our models suppress redundant spikes which convey little information217

about the current stimulus (Kremkow et al., 2016).218
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Input encoding quality benefits from plastic inhibition A fundamental purpose of sensory systems is219

to provide reliable information about relevant environmental stimuli. To compare our model with existing220

sparse coding models, in terms of stimulus encoding, we calculated the image reconstruction error (IRE),221

which measures the mean-square error between the input image and its reconstruction obtained by linear222

decoding (see Methods). The EI2/1 model with active inhibition during learning showed the lowest223

reconstruction error value (0.74) (Fig. 9a). By contrast, a substantially higher reconstruction error was224

observed for the noInh model (1.06). Blocking inhibitory currents after circuit development caused a225

slight increase in the IRE to a value of 0.79 for the blockInh model. Together, these results indicate that226

the diversity of receptive field shapes and orientations contribute to the average reconstruction accuracy.227

228

Despite our observation about the role of feedback inhibition for the emergence of tuning diversity, the229

necessity of plastic inhibition compared to fixed inhibition during learning remains unclear. To analyze230

if plastic inhibition has a measurable effect during learning, we used shuffled weight matrices from a231

successfully learned EI2/1 model for all connections as a new initial condition, and deactivated plasticity232

selectively at specific connections for four model variations: Only in the inhibitory feedback connections233

(9b 2), in the two possible excitatory feed-forward connections to the inhibitory population (9b 3), and in234

the lateral inhibitory and excitatory to inhibitory connections (9b 4). To verify that learning is successful235

with the shuffled pre-learned weights, we trained one model variation where all connections are plastic236

(9b 1).237

Our results show that if only the feedback inhibitory to excitatory connections are fixed, the reconstruction238

error increases from 0.70 (see (9b 1), where every connection is plastic) to 0.95 (Fig. 9b 4). We observe239

a similar error (0.92) when the excitatory connection from the LGN input to the inhibitory population is240

fixed (see Fig. 9b 3). This shows that the plasticity of both the inhibitory feedback connections and the241

excitatory feed-forward connection to the inhibitory population leads to a better input representation.242

Interestingly, the reconstruction error remains small (0.71) if both, the connection from the excitatory243

to the inhibitory population and the lateral inhibition are fixed (see Fig. 9b 2). This shows that, even244

with fixed lateral inhibition, plasticity at the feed-forward path from LGN to inhibitory and from the245

inhibitory to the exitatory neurons is sufficient for the emergence of selective interneuron activity, which246

is essential for a reliable input representation. As an additional control to evaluate the effect of lateral247

inhibition, we completely deactivated the lateral inhibitory synapses during learning in a model where all248

other connections are plastic and measured an IRE of 0.83 (averaged across five simulations).249

As explained above the input encoding benefits mainly from the distribution of the receptive fields.250

Therefore, we conclude that plastic feed-forward and feedback inhibition is essential for the process of251

developing receptive fields with diverse shapes and orientations, to improve input encoding.252
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(a) (b)

Figure 1: Network with excitatory and inhibitory plasticity rules. (a) Whitened image patches
of size 12x12 were converted to Poisson spike trains by setting the firing rates of LGN ON-
and OFF-populations to the positive and the negative part of the pixel values, respectively.
Feed-forward inputs from LGN project both onto excitatory and inhibitory V1 populations,
which are mutually connected. The circuit therefore implements both feed-forward and feedback
inhibition. Inhibitory interneurons receive additional recurrent inhibitory connections. All
excitatory synapses (orange) changes via the voltage-based STDP rule (vSTDP) (Clopath et al.,
2010). All inhibitory synapses (blue) changes via the inhibitory STDP rule (iSTDP) (Vogels
et al., 2011). Connectivity patterns are all-to-all. Population sizes are: LGN, 288 neurons; V1
excitatory, 144 neurons; V1 inhibitory, 36 neurons. Neurons in the LGN population showing
Poisson activity and are split into ON- and OFF- subpopulations. (b): Post-synaptic target
firing rate of the iSTDP rule (ρ) controls the excitation to inhibition ratio at excitatory cells.
For the EI2/1 model (green dots) a value of ρ = 0.4 leads to a higher inhibitory current than
ρ = 0.7 for the EI3/1 model.

(a) (b) (c)

(d) (e) (f)

Figure 2: Tuning diversity requires inhibition during learning. Learned response profile of 36
excitatory neurons from the noInh model (a), of 36 excitatory neurons from the EI2/1 model
(b), and of all 36 inhibitory neurons from the EI2/1 model (c), measured with the spike
triggered average method. Lighter pixels represent positive values and darker values represent
negative values. Histogram of the spatial orientation across 10 model runs, of the noInh model’s
excitatory population (d), the EI2/1 model’s excitatory population (e), and the the EI2/1
model’s inhibitory population (f). The spatial orientation are measured by fitting the neuronal
response profile with a Gabor function (see Methods).
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(a)
(b)

Figure 3: Synaptic connections reflect tuning similarity. Weight matrices from excitatory to in-
hibitory population (and vice versa) (a), sorted over the receptive field orientation, and for
the lateral inhibition (b). a,Top: Weights from excitatory to inhibitory population. a, Bot-
tom: Weights from inhibitory to excitatory population. For display, all weight matrices were
normalized by the maximum value. All weights from the EI2/1 model.

(a) (b)

Figure 4: Inhibitory strength influence the response decorrelation. (a) The development of mean
response correlation and weight change at the LGN excitatory synapses across learning. Stronger
inhibition, in the EI2/1 model, leads to a stronger decorrelation of the neuron responses during
learning (compare green with red (EI3/1) line). Mean response correlation changed only very
slightly without inhibition (blue line). (b) Response correlation is higher for neurons with more
similar receptive fields. Blocking inhibition (yellow line) after learning reveals that. Inhibition
leads to a overall decrease of the response correlation (green line).

10

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 12, 2020. ; https://doi.org/10.1101/2020.04.07.029157doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.07.029157
http://creativecommons.org/licenses/by/4.0/


(a) (b)

Figure 5: Inhibition determines tuning curve sharpening. (a) Average tuning curve of all excitatory
cells in the EI2/1 model, the corresponding counterpart with blocked inhibition, and the no
inhibition model. (b) The orientation bandwidth (OBW) of cells in all three models. Every
point represents the average OBW resulting from model simulation. A smaller OBW means a
more sharp tuning curve.

(a)
(b)

Figure 6: Response gain control by inhibition. (a) Mean OBW as a function of the contrast level in
the input. Whiskers represent the standard deviation. Data from the EI2/1 model (green line),
EI3/1 model (red line), noInh model (blue line) and blockInh model (orange line). (b) Spike
count as a function of the excitatory input current for the EI2/1 model (green line), the EI3/1
model (red line) and the blockInh model (orange line). Data are taken from the sinusoidal
tuning curve measurement, sorted ascending over the input current. Squares are data from low
input contrast level and triangles are data from high input contrast level.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Emergence of contrast-invariant responses (a) Average neural tuning curve for low and
high contrast stimuli in the EI2/1 model, (b) and the EI3/1 model. (c) Average membrane
potential (averaged across all neurons in the excitatory population) as a function of orientation
and contrast level for the EI2/1 model, (d) and the EI3/1 model. (e) Sum of the excitatory
and inhibitory input current as a function of orientation and contrast level for the EI2/1 model,
(f) and the EI3/1 model.
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(a) (b)

(c) (d)

Figure 8: Sparse and efficient input representation through the inhibitory circuit. (a) Raster
plot of the excitatory population for the EI2/1 model and for the blockInh model ((c)). Spikes
are recorded on the same five natural image patches. The red lines show the stimulus onset. (b)
Population sparseness for the EI2/1, the blockInh, and the noInh model, averaged over 10.000
natural scene patches. A higher value represents a higher sparseness of population activity. (d)
Mutual information in bits/spike for the same three models as in (b). (b),(d) shows data from
eleven independent simulations per model configuration.

(a)

(b)

Figure 9: Plastic inhibition during learning improves input encoding quality. (a) Image recon-
struction error (IRE) for the EI2/1 model (green dots), the blockInh model (orange dots), and
the noInh model (blue dots). IRE is calculated as the mean-square error between input image
and the reconstruction. Better reconstruction is represented by a smaller value. Data shown
from eleven independent simulations per model configuration. (b) Image reconstruction error
for model variations with different combinations of plastic and fixed excitatory and inhibitory
synapses. Only in the first two variations (black triangles), the feed-forward inhibition and
the inhibitory feedback are plastic. Plastic synapses indicated by green connections and fixed
synapses by black connections.
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3 Discussion253

Our model suggests that a single underlying mechanism - the interaction of excitatory and inhibitory254

plasticity - can explain the stable emergence of reliable and efficient input encoding. We have shown that255

in particular, the combination of plastic inhibitory feedback and plastic feed-forward inhibition has an256

influence on shaping the receptive fields. This is in line with recent physiological findings that inhibitory257

plasticity influences the mode of operation of excitatory neurons (for example the excitability) (Griffen258

& Maffei, 2014; Wang & Maffei, 2014; Khan et al., 2018; Znamenskiy et al., 2018), or influences the259

occurrence of LTP and LTD (Paille et al., 2013; Griffen & Maffei, 2014; Mongillo & Loewenstein, 2018).260

Previous models based on STDP rules, which have demonstrated the emergence of V1 simple cells, made261

several simplifications in terms of the learning dynamics (Savin et al., 2010; Zylberberg et al., 2011;262

King et al., 2013), or consider plasticity only for a subset of projections (Sadeh et al., 2015; Miconi et263

al., 2016). These assumptions make it difficult to investigate the influence of plastic feed-forward and264

feedback inhibition on network dynamics and input encoding. For example, the observation of response265

decorrelation is a direct consequence of the chosen learning mechanism (Zylberberg et al., 2011; King et266

al., 2013). Other learning rules have been designed to optimize the mutual information between input267

and output (Savin et al., 2010). This suggests that a more detailed model of V1 circuit development268

is necessary to understand the dynamics between excitation and inhibition during the developmental269

process. To advance our understanding of this process, we investigated a spiking network model of V1 sim-270

ple cell development, based on two phenomenological learning rules implemented at all synaptic projections.271

272

Feed-forward and feedback inhibitory plasticity improves representational efficiency Our results show273

that plastic inhibitory feedback as well as plastic feed-forward inhibition influence the development of V1274

simple cells and improve representational efficiency. Inhibitory plasticity has been reported in numerous275

physiological studies (Froemke et al., 2007; Carvalho & Buonomano, 2009; Kullmann et al., 2012; Wang276

& Maffei, 2014; D’Amour & Froemke, 2015; Khan et al., 2018). Previous model studies suggest a role277

for inhibitory plasticity in controlling the balance between excitation and inhibition (Vogels et al., 2011;278

Litwin-Kumar & Doiron, 2014), or in enabling stability in recurrent networks (Litwin-Kumar & Doiron,279

2014; Sprekeler, 2017). However, there is ongoing discussion about the necessity and role of inhibitory280

plasticity during learning a functional sensory code book (Griffen & Maffei, 2014; Srinivasa & Jiang, 2013;281

Sprekeler, 2017), and this issue has received limited attention in model studies so far.282

In a model based on a combination of STDP and inhibitory STDP learning rules, Litwin-Kumar &283

Doiron (2014) showed that inhibitory plasticity is necessary for stable learning in a network with recurrent284

excitatory connections. Their study used a generic cortical network receiving non-plastic input from a set285
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of 20 artificially stimuli, which in turn resulted in the formation of 20 assemblies representing the input286

stimuli. They emphasized that inhibitory plasticity acted to equilibrate firing rates in the network, such287

that different assemblies (each coding for one stimulus) received different amounts of inhibition, preventing288

dominant activity of single assemblies. Our results of a feature-specific strength of inhibition generalize289

their finding of firing rate heterogeneity induced by iSTDP from an “assembly code”, in which different290

stimuli rarely overlap, to the quasi-continuous space of natural visual stimuli. This supports the necessity291

of the interaction of inhibitory and excitatory plasticity during the development of the visual cortex.292

Emergence of a self-organized balance of excitation and inhibition We observed in our model that293

the inhibitory input current to a neuron is proportional to the excitatory input, when the currents are294

averaged across the duration of a stimulus. However, as we did not observe an equal strength between295

these currents, excitation is dominant in our network. This indicates a detailed and loose balance (for296

definition see, Hennequin et al. (2017)) between excitation and inhibition in our network. While a detailed297

balance has been reported in rat auditory cortex (Dorrn et al., 2010), it is still under discussion if a more298

loose or tight balance exists in the primary visual cortex of higher mammals (Froemke, 2015). Recent299

model studies suggest a tight balance between inhibition and excitation (Denève & Machens, 2016) or300

rather an inhibitory dominated network for stable learning in a network with recurrent excitatory synapses301

(Litwin-Kumar & Doiron, 2014; Sadeh et al., 2015; Miconi et al., 2016). However, most of these models302

investigate excitation-inhibition balance in a singe-neuron setup (Denève & Machens, 2016), or set a303

subset of synaptic connections fixed (Litwin-Kumar & Doiron, 2014; Sadeh et al., 2015; Miconi et al.,304

2016). Interestingly, we observed that the ratio between excitation and inhibition changes in our network305

for different contrast levels of sinusoidal grating stimuli, up to a 1 : 1 balance for the highest contrast level306

for the EI2/1 model. This shows that the balance between excitation and inhibition is input-specific.307

308

Inhibition implements a gain control mechanism and shapes tuning curves Previous physiological309

studies found that parvalbumin-expressing (PV) interneurons have a divisive impact on the gain function310

of pyramidal neurons in the visual cortex, to implement a contrast gain control mechanism (Atallah et al.,311

2012; Wilson et al., 2012; Y. Zhu et al., 2015). In our model we observed that the ratio between excitatory312

and inhibitory currents influences the response of the neuron towards its input. Consequently, feedback313

inhibition implements a gain control mechanism for the excitatory neurons.314

Savin et al. (2010) proposed a rapid intrinsic plasticity mechanism to adapt the neuronal gain function315

to optimize the information transmission between input stimuli and neuronal output. They suggested316

that the emergence of V1 simple cell receptive fields depends on the interplay between the adaption of317

the neuronal gain function and the synaptic plasticity (Savin et al., 2010). By contrast, in our network,318
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changes in neuronal gain curves are caused by feedback inhibition, which adapts at the fast time scale of319

synaptic plasticity to maintain a given target rate.320

In our model, when blocking inhibition after learning, we observed an increase not only in the baseline321

activity, but also in the orientation bandwidth (OBW). This demonstrates a sharpening of tuning curves322

by inhibition, similar to the observation of Katzner et al. (2011), where inhibitory synapses in cat primary323

visual cortex were blocked with gabazine. Interestingly, PV cells seem not to affect the sharpening324

of tuning curves (Atallah et al., 2012; Wilson et al., 2012), whereas somatostatin-expressing neurons325

(SOM) sharpen neuronal responses (Wilson et al., 2012). This demonstrates the influences of the different326

inhibitory neuron types (Markram et al., 2004), which must be taken into account in future models.327

Shift in the E/I balance leads to the spontaneous emergence of contrast invariant tuning curves As328

a consequence of the contrast gain mechanism by inhibition, our model shows the spontaneous emergence329

of contrast invariant orientation tuning (Skottun et al., 1987; Troyer et al., 1998; Finn et al., 2007). Early330

modeling studies have proposed feed-forward inhibition to implement a push-pull inhibitory mechanism331

for the emergence of contrast-invariant tuning curves (Troyer et al., 1998; Ferster & Miller, 2000). Despite332

the fact that our network contains feed-forward inhibition, we did not observe a push-pull inhibitory effect,333

in other words, anti-correlation of excitation and inhibition (Anderson et al., 2000). A direct comparison334

of the excitatory and inhibitory input current for the contrast invariance task shows a simultaneous335

increase and decrease of excitation and inhibition, caused by the detailed balance in our network. We336

have observed that for the EI2/1 model, inhibitory input currents increase more rapidly than excitatory337

currents at higher contrast levels and non-preferred orientations. This results in a shift from a two-to-one338

ratio of excitation to inhibition to a one-to-one ratio between excitation and inhibition, and implements a339

contrast-dependent modulation of the neuron’s gain curve. This shows that the emergence of contrast-340

invariant tuning curves is an inherent effect of the ratio between excitation and inhibition in our network.341

A contrast-dependent shift in the balance between excitation and inhibition has been reported in the342

visual cortex of awake mice (Adesnik, 2017). Although the influence of inhibition on the neuronal gain343

function for the emergence of contrast invariance is in line with previous assumptions (Mitchell & Silver,344

2003; Finn et al., 2007), recent studies have proposed that changes in the neuronal gain are caused by345

response variability in the afferent thalamic path (Sadagopan & Ferster, 2012; Priebe, 2016).346

Sparseness and metabolic efficiency benefit from E/I balance We observed that in the EI2/1 model,347

the standard deviation of the membrane potential increases for non-preferred orientations. Together with348

the observed asynchronous spiking behavior, we conclude that the balance of inhibition and excitation349

leads to a more irregular spiking behavior. Previous work suggests that a more irregular activity and350

irregular membrane potential behavior is related to improved metabolic efficiency in terms of efficient351
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input encoding (Denève & Machens, 2016). Our observations agree with these findings, because the352

efficiency of information transmission in our network mainly benefits from the ratio between excitatory353

and inhibitory currents in the stable network.354

An established approach in terms of input encoding efficiency is the concept of sparse coding (Rolls &355

Tovee, 1995; Vinje & Gallant, 2000; Tolhurst et al., 2009). However, in recent years, it has been discussed356

how the level of sparseness reported in physiological experiments is influenced by animal age and the level357

of anesthesia (Berkes et al., 2009), and the benefit of highly sparse codes for information processing has358

been questioned (Wiltschut & Hamker, 2009; Barak et al., 2013; Spanne & Jörntell, 2015). Overall, the359

intermediate sparseness values observed in our model are in agreement with experimental findings (Berkes360

et al., 2009; Froudarakis et al., 2014).361

Structured connectivity caused by inhibitory and excitatory plasticity Previous physiological studies362

have shown that inhibitory interneurons are connected in a nonspecific manner to other cells in their363

surrounding (Harris & Mrsic-Flogel, 2013). However, recent studies observed that inhibitory PV cells364

develop strong connections to excitatory cells with similar orientations (Znamenskiy et al., 2018), and365

that neurons with similar preferred orientations have a higher probability for recurrent connections (Ko et366

al., 2011; Cossell et al., 2015).367

We observed a similar connectivity pattern in our network, namely, the appearance of strong connectivity368

between co-tuned neurons. King et al. (2013) also obtained a structured connectivity between co-tuned369

excitatory and inhibitory cells in a spiking network. While King et al. (2013) achieved this goal by370

designing a suitable learning rule for the synaptic projections involving inhibitory neurons, we observed371

the appearance of strong connectivity as an emergent property of our model architecture based on detailed372

phenomenological rules.373

Stable learning despite limitations of simultaneous excitatory and inhibitory plasticity Previous stud-374

ies have mentioned the difficulty to achieve a certain level of inhibition in a network with inhibition375

and plastic excitatory synapses (Zenke & Gerstner, 2017; Hennequin et al., 2017). We next discuss the376

behavior of the selected learning rules more in detail to show some of the difficulties during the interaction377

of excitatory and inhibitory plasticity, and discuss the limitations of our modeling approach.378

For the excitatory learning rule, Clopath et al. (2010) have shown that a lower input firing rate leads379

to bigger receptive fields, as a compensatory effect of the homeostatic mechanism. This mechanism is380

controlled by the long-term postsynaptic membrane potential in relation to a reference value. If the381

membrane potential is too low, less long-term depression (LTD) in relation to long-term potentation (LTP)382

occurs, and the weights will increase. Otherwise, if the membrane potential is too high, a higher amount383

of LTD will occur to decrease the weights. Consequently, for a lower input firing rate, more weights will384
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increase, saturating at their maximum, to achieve a specific postsynaptic activity.385

The homeostatic mechanism of the inhibitory rule (Vogels et al., 2011) strengthens the inhibition if the386

postsynaptic activity is too high, with respect to a target firing rate (ρ), or decreases the weight otherwise.387

In our network, the postsynaptic membrane potential is a result of the difference between the incoming388

excitatory and inhibitory current, such that a reduction in the membrane potential through inhibition is389

comparable to a reduction through less presynaptic spikes. The operation of both homeostatic mechanisms390

on the postsynaptic activity leads to a competition between weight changes at excitatory and at inhibitory391

synapses and should lead to bigger receptive fields, or, in the worst case, to a saturation of all synapses to392

their maximum value.393

However, we observed the emergence of stable receptive fields and stable connections between the popu-394

lations. Additionally, our results show a reduction in the mean activity, caused by inhibition, without395

causing bigger receptive fields. We assume that in contrast to a reduction in the input, what leads to a396

proportional reduction on the postsynaptic neuron, the inhibitory current leads to a more irregular, or397

fluctuating, behavior of the membrane potential (Vogels et al., 2005). To allow LTP at excitatory synapses,398

the membrane potential must be higher than θ+ (= −45.3mV ), which is slightly above the steady-state399

spiking threshold (VTrest
= −50.4mV ). But if the membrane potential is hyperpolarized by inhibition,400

it falls below the LTP threshold: No LTP occurs, and the weights will not increase to the maximum.401

Additionally, we observed that the interplay of the excitatory and inhibitory rules are mainly influenced402

by the magnitude of learning rates. In particular, a higher excitatory or higher inhibitory learning rate led403

to the saturation of all synapses, as an effect of the competition between both homeostatic mechanisms.404

How fast the synaptic weight changes depends not only on the magnitude of learning rates, but also on405

the number of spikes, that is, the number of learning events. Therefore, the learning rates for the noInh406

model is smaller, to compensate the higher activity in the neuron populations. Finally, the competitive407

pressure between learning rules is controlled by the postsynaptic target activity in the inhibitory learning408

rule. Smaller values of ρ enhances the inhibitory pressure on the post-synaptic neuron to achieve a lower409

firing rate and can also lead to an unlimited growth of synaptic weights. This limited the amount of410

inhibition that can emerge in the network.411

412

Conclusion To the best of our knowledge, our simulations are the first demonstration of the parallel413

emergence of fundamental properties of the primary visual cortex such as sparse coding, contrast invariant414

tuning curves and high accuracy input representation, in a spiking network with spike timing-dependent415

plasticity rules. A central finding of our study is that the emergence of representational efficiency (such416

as tuning diversity) and metabolic efficiency (such as the numbers of spikes to represent a specific input417

stimuli) require plasticity at feed-forward and feedback inhibitory synapses. This emphasizes the role of418
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inhibition in the shaping of neuronal responses (Isaacson & Scanziani, 2011; Stringer et al., 2016; Sprekeler,419

2017) and in the development of reliable and efficient input encoding.420
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4 Methods429

The first part of this section (4.1–4.5) describes the network architecture including the neuron model and430

learning rules. In the second part (4.6), we explain the analysis methods used to characterize neuronal431

responses. The model has been implemented in Python 3.6, using the ANNarchy simulator (Vitay et al.,432

2015), with a simulation time step of dt = 1ms (Euler integration). The neuronal simulator is available433

from https://bitbucket.org/annarchy/annarchy . The implementation of the adaptive exponential434

integrate-and-fire neuron model and the voltage-based triplet STDP learning rule from Clopath et al.435

(2010) based mainly on the re-implementation by Larisch (2019).436

4.1 Network architecture437

Our network model, which is inspired by the primary visual cortex and its inputs from LGN, consists438

of three populations of spiking neurons (Fig.1a): An input layer representing LGN, and excitatory439

and inhibitory populations of V1, each receiving feed-forward inputs from LGN. The V1 populations440

are mutually interconnected via excitatory or inhibitory synapses, respectively. The circuit therefore441

implements both feed-forward and feedback inhibition, in agreement with anatomical findings (Isaacson442

& Scanziani, 2011). Inhibitory interneurons receive additional recurrent inhibitory connections. All443

projections follow an all-to-all connectivity pattern, excluding self inhibitory feedback connections.444

The LGN layer consists of 288 neurons showing Poisson activity and is split into ON- and OFF-445

subpopulations. For the V1 excitatory population (144 neurons) and the inhibitory population (36446

neurons), we used adaptive exponential integrate-and-fire neurons (Sec. 4.3). The size of the inhibitory447

population was chosen to match the 4:1 ratio between excitatory and inhibitory neurons found in visual448

and striate cortex (Beaulieu et al., 1992; Markram et al., 2004; Potjans & Diesmann, 2014).449

All synaptic connections within our model are plastic and were randomly initialized. They change450

their weight based on either the voltage-based STDP-rule propsed by Clopath et al. (2010) (excitatory451

connections) or the symmetric iSTDP-rule proposed by Vogels et al. (2011) (inhibitory connections; Sec.452

4.5).453

4.2 Network input454

As network input, we used whitened patches from natural scenes (Olshausen & Field, 1996, 1997). Each455

patch was chosen randomly, with a size of 12 by 12 by 2 pixels (Wiltschut & Hamker, 2009). The third456

dimension corresponds to the responses of ON- and OFF-cells. To avoid negative firing rates, we mapped457

positive pixel values to the ON-plane, and the absolute value of negative pixels to the OFF-plane. Every458

patch was normalized with the maximum absolute value of the corresponding natural scene. The firing459

rate of each Poisson neuron represents the brightness value of the input pixels. The firing rate associated460
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to the (rarely occurring) maximum pixel value was set to 125Hz. We stimulated the network with 400.000461

patches during training, with a presentation time of 125ms per patch, corresponding to around 14h of462

simulated time. To avoid any orientation bias in the input, the patch was flipped around the vertical or463

horizontal axis independently with 50% probability (Clopath et al., 2010).464

4.3 Poisson neuron model in LGN465

For modeling convenience, we generated Poisson activity in LGN neurons by injecting brief voltage pulses,466

generated by a Poisson process, into a binary spiking neuron model, such that each voltage pulse input467

triggered a spike. This simplified the numerical calculation of a spike trace required for the learning rule,468

while preserving the precise timing of spikes drawn from a Poisson process. The spike trace xi is updated469

whenever the presynaptic neuron i spikes, and decays exponentially: Xi(t) = 1 if a spike is present at470

time t, and Xi(t) = 0 otherwise.471

du

dt
= IPoisson (1)

472

τx
dxi
dt

= −xi +Xi (2)

4.4 Adaptive exponential integrate-and-fire neurons in V1473

For the neurons in the V1 excitatory and inhibitory layer, we used a variant of the adaptive exponential474

integrate-and-fire model as described by Clopath et al. (2010). In this model, the membrane potential475

u is influenced by the following additional dynamical variables: An adaptive spike threshold, VT , a476

hyperpolarizing adaptation current, wad, and a depolarizing afterpotential, z. Excitatory and inhibitory477

synaptic currents are denoted by Iexc and Iinh. For an explanation of constant parameter values as used478

by Clopath et al. (2010), see Table 1. The full equation for the membrane potential is479

C
du

dt
= −gL(u− EL) + gL∆T e

u−VT
∆T − wad + z + Iexc − Iinh (3)

As the triplet voltage STDP rule is sensitive to the precise time course of the membrane voltage, including480

the upswing during a spike, the magnitude of weight changes depends on the implementation details of481

the after-spike reset. To avoid long simulation times associated with smaller time steps, we opted for the482

following simplified treatment of the spike waveform which reproduced the results reported by Clopath et483

al. (2010): Whenever the membrane potential u exceeded the spike threshold, u was held at a constant484

value of 29mV for 2ms, and then reset to the resting potential EL. We obtained highly similar results485

from an alternative implementation, in which the after-spike reset was immediately applied when the486

spike threshold was crossed, with an additional update of the voltage traces by the amount expected from487
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a 2ms-long spike (data not shown).488

The reset value for the spike threshold is VTmax
, with exponential decay towards the resting value VTrest

,489

with a time constant τVT
(Eq. 4):490

τVT

dVT
dt

= −(VT − VTrest
) (4)

The afterpotential z has a reset value of Isp and decays to zero (Eq.5). Further, the variable wad is491

incremented by the value b and decays exponentially (Eq. 6).492

τz
dz

dt
= −z (5)

493

τwad

dwad

dt
= a(u− EL)− wad (6)

The model proposed by Clopath et al. (2010) assumed excitatory synaptic input in the form of voltage494

pulses. For modeling convenience, we approximated this setting by current-based excitatory synapses495

with a short time constant of 1ms. Inhibitory synaptic currents decayed with a slower time constant496

of 10ms. Both synaptic currents are incremented by the sum of synaptic weights of those presynaptic497

neurons which spiked in the previous time step:498

τIexc

dIexc
dt

= −Iexc + wexc
i

∑
i∈Exc

δ(t− t
′

i)

τIinh

dIinh
dt

= −Iinh + winh
j

∑
j∈Inh

δ(t− t
′

j)

(7)

where t
′

i denotes the spike time of presynaptic neuron i, and δ is the indicator function with δ(0) = 1.499

4.5 Synaptic plasticity500

4.5.1 Voltage-based triplet STDP at excitatory synapses501

Plasticity at excitatory connections (LGN to Exc. and Exc. to Inh.) follows the voltage-based triplet502

STDP rule proposed by Clopath et al. (2010). We here repeat the essential features of this plasticity503

model. The neuronal and synaptic variables describing the development of the weight from a presynaptic504

neuron with index i onto a given postsynaptic neuron are: Xi, the presence of a presynaptic spike; xi,505

the presynaptic spike trace (Eq. 2); u, the postsynaptic neuron’s membrane potential; and two running506

averages of the membrane potential, u+ and u−, defined as follows:507

τ+
dū+

dt
= −ū+ + u, (8)

where ū− is defined analogously, with the time constant τ−. In addition, the learning rule includes a508

homoeostatic term, ¯̄u, which regulates the relative strength of LTD versus LTP, and which measures the509
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mean postsynaptic depolarization on a slower time scale:510

τ¯̄u
d¯̄u

dt
= [(u− EL)+]2 − ¯̄u (9)

Here, x+ = max(x, 0) denotes top-half rectification.511

The full learning rule is given as the sum of the LTP term and the LTD term:512

dwi

dt
= ALTP xi(u− θ+)+(u+ − θ−)+ −ALTD

¯̄u

uref
Xi(u− − θ−)+ (10)

where ALTP and ALTD are the learning rates for LTP and LTD, θ+ and θ− are threshold parameters,513

and uref is a homeostatic parameter which controls the postsynaptic target firing rate. Clopath et al.514

(2010) have shown that this learning rule results in BCM-like learning dynamics (Bienenstock et al., 1982),515

in which a sliding metaplasticity threshold leads to the development of selectivity.516

Following Clopath et al. (2010), for the LGN efferent connections, we equalized the norm of the OFF517

weights to the norm of the ON weights every 20s. The weight development is limited by the hard bounds518

we
min and we

max.519

4.5.2 Homeostatic inhibitory plasticity520

Previous biological studies have observed spike timing-dependent plasticity of inhibitory synapses which521

differs from the well-known asymmetric STDP window (Caporale & Dan, 2008; D’Amour & Froemke,522

2015). We therefore chose to implement the phenomenologically motivated, symmetric inhibitory STDP523

(iSTDP) rule proposed by Vogels et al. (2011) at all inhibitory synapses (Eq.11):524

w(t+ dt) =


w(t) + η(xpost − ρ) if t = tpre (presynaptic spike)

w(t) + ηxpre if t = tpost (postsynaptic spike)

(11)

Here, η is the learning rate, and ρ is a constant which controls the amount of LTD relative to LTP. Further,525

Vogels et al. (2011) have shown that this learning rule has a homeostatic effect, and the parameter ρ526

controls the postsynaptic target firing rate. The variables xpre and xpost are spike traces for the pre- and527

postsynaptic neurons, defined in analogy to Eq. (2), with time constants τpre and τpost. In this plasticity528

rule, near-coincident pre- and post-synaptic spiking causes potentiation of weights, irrespective of their529

temporal order. By contrast, isolated pre- or postsynaptic spikes cause depression of weights. As for the530

excitatory learning rule, weights are bounded by wi
min and wi

max. For parameter values, see Table 1.531
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Global parameter values

Parameter Value Parameter Value

(values from Clopath et al. (2010))

C, membrane capacitance 281pF τz, spike current time constant 40ms

gL, leak conductance 30nS τVT
, spike threshold time const. 50ms

EL, resting potential −70.6mV τx, spike trace time constant 15ms

∆T , slope factor 2mV τwad, adaption time constant 144ms

VTrest , spike threshold at rest −50.4mV Isp, spike current after spike 400pA

VTmax , spike threshold after spike 30.4mV a, subthreshold adaptation 4nS

we
min, min. excitatory weight 0.0 b, spike-triggered adaption 0.805pA

τ−, time constant for u− 10.0ms τ+, time constant for u+ 7.0ms

θ−, plasticity threshold −70.6mV θ+, plasticity threshold (LTP) −45.3mV

Parameter (added) Value Parameter Value

τIexc , excitatory input time const. 1.0ms τIinh
, inhibitory input time const. 10.0ms

Projection-specific parameters

Parameter (custom values) LGNtoE LGNtoI EtoI

τu 750ms 750ms 750ms

we
max 5.0 3.0 1.0

winit (bounds of random [0.015, 2.0] [0.0175, 2.15] [0.0175, 0.25]

uniform distribution)

ALTP (EI2 : 1, EI3 : 1) 1.35× 10−4 5.4× 10−5 1.2× 10−5

ALTD (EI2 : 1, EI3 : 1) 1.05× 10−4 4.2× 10−5 1.4× 10−5

ALTP (noInh) 7.2× 10−5 n/a n/a

ALTD (noInh) 5.6× 10−5 n/a n/a

uref 60.0mV 2 55.0mV 2 55.0mV 2

Table 1: Parameters for the neuron model and excitatory synapses. Note that for the noInh
model, learning rates were reduced to compensate for the increased firing rates in the absence of
inhibition.

ItoE and ItoI ItoE ItoI

τpost 10.0ms

τpre 10.0ms

wi initial 0.0

wi
min 0.0

wi
max 0.7 0.5

η 10−5 10−5

ρ (EI3 : 1) 0.7 0.6
ρ (EI2 : 1) 0.4 0.6

Table 2: Parameters for inhibitory synapses.
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4.5.3 Choice of parameter configurations532

As our main goal is to determine the influence of inhibitory strength both on the formation of selectivity533

and on the dynamics of stimulus coding, we simulated our network using different parameter and network534

configurations. First, we used the above presented network, where the strength of the inhibitory feedback535

is controlled by the homeostatic parameter ρ. With ρ = 0.4 for the feedback inhibitory synapses, we536

achieved a ratio of excitation to inhibition (E/I-ratio) of approximately 2 : 1 on patches of natural scenes537

(abbreviated as EI2/1). On one hand, a lower ρ would strengthen the inhibitory feedback, but caused538

unstable behaviour during learning. On the other hand, a higher ρ would weaken the inhibitory feedback of539

the model. With ρ = 0.7 we achieve a E/I-ratio of approximately 3 : 1 on natural scene input (abbreviated540

as EI3/1), this led to similar but weaker characteristics for most of the experiments (Fig.1b). Because541

of this, the data are only presented for experiments, where the weaker inhibitory feedback lead to a542

significance difference.543

Second, we simulated a purely excitatory feed-forward network without any inhibitory activity (abbre-544

viated as noInh), as the learning rule proposed by Clopath et al. (2010) is capable of learning distinct545

shapes of receptive fields given different initial weights.546

Further, to control for the dynamical effects of inhibition in the steady state following receptive field547

development, we simulated the effects of deactivating the inhibitory synaptic transmission in the EI2/1548

model after learning (abbreviated as blockInh). All three model variations are based on the same network549

architecture, except that inhibitory weights differ in their strength or are deactivated. The different550

parameters for learning the models are shown in Table 1. To test the stability and the reproducibility of551

our results, we performed eleven runs of each model with randomly initialized synaptic weights.552

To evaluate how inhibitory plasticity interacts with plastic excitation, we deactivated the plasticity for553

specific synapses for three model variations. First, we deactivated the plasticity only in the inhibitory554

feedback connections. Second, the plasticity was deactivated in both excitatory connections the inhibitory555

population. And we deactivated the plasticity in the connections from the excitatory to the inhibitory556

population and for the lateral inhibition. Additionally, we trained one model variation where all connections557

are plastic to validate, that the learning is successful with pre-trained, shuffled weight matrices. To ensure,558

that the same average amount of excitatory or inhibitory current is conveyed by the fixed synapses, we559

used shuffled weight matrices from previous simulations of the EI2/1 model for the respective synapses.560

No parameter changes were needed. To test the stability and reproducibility, we performed five runs of561

each variation.562
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4.6 Analysis methods563

4.6.1 Receptive field mapping564

Over the course of learning, the excitatory input weights from LGN to V1 develop based on the pre- and565

postsynaptic activity. It is therefore possible to obtain a good approximation of the neurons’ receptive566

fields (RFs) by taking the weight matrix and reverting the ON-OFF mapping. To do this, we subtract the567

OFF-synapses from the ON-synapses and receive the receptive field. This is possible as either the ON- or568

the OFF-synapses can be activated by the input, so that the weights will also follow this distribution.569

In addition to the visualization based on weight matrices, the receptive fields can also be revealed by570

probing the neurons with random stimuli. This approach has been successfully used in physiological571

research, in form of the spike triggered average (STA) (Ringach & Shapley, 2004; Schwartz et al., 2006;572

Pillow & Simoncelli, 2006). In this method, a neuron’s receptive field is defined as the average of white573

noise stimuli, weighted by the stimulus-triggered neuronal activity. We applied this method on the learned574

neural network. We presented noise patches drawn from a normal distribution with µ = 15, σ = 20 as575

input image to the network, and converted these to Poisson spike trains (cf. Sec. 4.2). Negative pixel576

values were set to zero, and the presentation time per patch was 125ms. For each neuron, we recorded577

the number of spikes per stimulus and calculated the average across all stimuli, weighted by the number578

of postsynaptic spikes (Eq. 12).579

STA =
1

N

N∑
n=1

s(tn) (12)

Here, s(tn) is the input stimulus at time point tn, when the nth spike has occurred, and N is the total580

number of postsynaptic spikes. Accordingly, stimuli evoking more spikes are higher weighted than stimuli581

evoking few or no spikes.582

As we observed a high similarity between each neuron’s STA and its ON-OFF receptive field, we concluded583

that the overall receptive field shape was not significantly influenced by inhibition. Thus, for simplicity,584

the feed-forward weight vectors can be used for further evaluations.585

4.6.2 Gabor fits of receptive fields586

As a first approximation, the receptive fields (RFs) of neurons in the primary visual cortex can be well587

described by Gabor functions (Jones & Palmer, 1987b). This is commonly used to describe their properties588

(Ringach, 2002; Zylberberg et al., 2011). We calculated the RFs of V1 neurons based on their LGN input589

weights, as described in Sec. 4.6.1. For each excitatory and inhibitory neuron, we then fit the parameters590

of a 2D-Gabor function (g(x, y)) to this feed-forward weight matrix, using least-squares minimization.591

The Gabor function is defined as followed (Eq. 13) and is similar to the one used in Ringach (2002),592
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extended by an offset parameter o.593

g(x, y) = o+A exp(−
x2
p

2σ2
x

−
y2
p

2σ2
y

) cos(2πxpf − φ)

xp = (x− x0) cos(θ) + (y − y0) sin(θ)

yp = −(x− x0) sin(θ) + (y − y0) cos(θ),

(13)

where A denotes the amplitude, θ is the angle of the spatial orientation, σx and σy are the spatial extents,594

f is the spatial frequency, φ the phase, and x0 and y0 denote the position of the center.595

We used the normalized mean squared error (NMSE) (Eq.14) to calculate the fitting error between the596

Gabor-function g and the weight vector w of a neuron (Spratling, 2012). The function normalizes the597

quadratic fitting error by the length of the weight vector and allows to compare error rates between598

different models. It allows to define a threshold until a RF is accepted as Gabor-like, we define this599

threshold as 0.5. Neurons with higher values have been excluded from evaluations based on the Gabor fit600

(see Results for details).601

NMSE =

∑
i(gi − wi)

2∑
i w

2
i

(14)

4.6.3 Receptive field similarity602

As mentioned above, the feed-forward weight vector approximates the receptive field of a neuron. To603

measure the similarity between two receptive fields, we calculate the cosine between their feed-forward604

weight vectors (Eq. 15).605

cos(φi,j) =
Wi ·Wj

|Wi||Wj |
(15)

A value near +1 indicates high similarity, values around zero describe orthogonal weight vectors, and606

values near −1 indicates inverted weight vectors (i.e., maximally overlapping RFs with opposite directional607

preference).608

4.6.4 Tuning curves and orientation selectivity609

The orientation selectivity is a well-studied characteristic of simple cells in V1 of mammals (Gilbert &610

Wiesel, 1990; Priebe & Ferster, 2008; Niell & Stryker, 2008) and thus, also a topic of interest for models611

of the visual cortex (e.g., Sadeh et al., 2014; W. Zhu et al., 2010; Tao et al., 2004). One possibility to612

quantify the orientation selectivity of a neuron is to measure its tuning curve (Ringach et al., 2002).613

For simple cells in the primary visual cortex, the orientation tuning curve describes the magnitude of614

responses evoked by a stimulus presented at different angles. In many biological studies, the tuning curves615

have been measured based on two-dimensional sinusoidal gratings (Anderson et al., 2000; Smith & Kohn,616

2008; Ringach et al., 2002; Katzner et al., 2011). Therefore, we measured the responses to sinusoidal617
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grating stimuli, rotated in steps of 8◦, with different spatial phases from 0rad to πrad, a different spatial618

frequencies from 0.05 up to 0.15cycles/pixel , centred to the input space and with a presentation time of619

125ms.620

Because of Poisson activity in the input layer, neuronal activity shows trial-to-trial fluctuations. Hence,621

we repeated every presentation 50 times, and calculated the mean across all 50 repetitions (or 6.25s622

presentation time). In contrast to the natural scene input used for training, the maximum input firing623

rate was set to 85.7Hz. This was suitable to obtain sufficiently high activity levels.624

To estimate tuning curve sharpness, we calculated the orientation bandwidth (OBW) for every neuron.625

The OBW is defined as the half-width of the tuning curve, at an activity level of 1√
2

(approx. 70.7%) of626

the maximum (Ringach et al., 2002). Higher OBW values correspond to a broader tuning curve, and vice627

versa. Other definitions use the height at half-maximum, which does not change the overall result of this628

evaluation.629

4.6.5 Neuronal gain curves630

A neuron’s gain function describes how neuronal activity is scaled by variations in the magnitude of631

excitatory inputs (Katzner et al., 2011; Isaacson & Scanziani, 2011). While an integrate-and-fire neuron632

receiving only excitatory inputs has a relatively static gain function (also called transfer function),633

controlled by the parameters of the neuron model, additional inhibitory inputs can modulate the effective634

input-to-output relationship. To characterize these inhibitory influences on gain curves, we recorded635

the excitatory synaptic currents and spiking activity evoked by sinus gratings (see Sec. 4.6.4), which636

we rotated from the orthogonal towards the preferred orientation of each neuron. Further, we changed637

the contrast of the input, by changing the pixels relative to the maximum input firing from 14.25Hz638

up to 100Hz. As before, we presented each stimulus orientation for 125ms, repeated 50 times (6.25s),639

and determined gain curves based on the average spike count across these 50 repetitions. We measured640

the spike count for each input degree and contrast strength and sorted the neuronal activity to the641

corresponding excitatory input, in ascending order.642

4.6.6 Measurement of E to I ratio643

To determine the ratio between excitatory and inhibitory input current, we measure both incoming currents644

for the excitatory population for 1.000 randomly chosen natural scenes. Every scene was presented for645

125ms and was repeatedly shown for 100 times. We averaged the incoming currents over the input stimuli646

repetitions and sorted for each neuron and stimuli the excitatory input currents ascending with the related647

inhibitory currents. For better visualization, the currents are summarized into bins.648
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4.6.7 Sparseness649

The sparseness value expresses the specificity of population codes and single neurons, both in experimental650

studies (Rolls & Tovee, 1995; Vinje & Gallant, 2000, 2002; Weliky et al., 2003; Tolhurst et al., 2009) and651

in model simulations (Wiltschut & Hamker, 2009; Zylberberg et al., 2011; King et al., 2013). It quantifies652

either the fraction of neurons which respond to a single stimulus, called population sparseness, or the653

number of stimuli to which a single neuron responds, called lifetime sparseness (Tolhurst et al., 2009). In654

the past, many different sparseness measurements are established (Rolls & Tovee, 1995; Hoyer, 2004). To655

measure the specificity of our network activity, we calculated the population sparseness after Vinje &656

Gallant (2000) (see Eq. 16).657

S =
1− (

∑
ri/n)2∑

(r2
i /n)

1− (1/n)
(16)

where ri is the activity of the ith neuron to a specific input and n the number of neurons in the neuron658

population.659

By construction, sparseness values are bound between zero and one. If the neuron population has dense660

activity, i.e., most neurons are active to an input stimulus, the sparseness level approaches zero. By661

contrast, few active neurons of the population lead to a sparseness value close to one. As input, we used662

30.000 natural scene patches, and determined sparseness values based on the firing rates of each neuron663

on each input patch.664

4.6.8 Image reconstruction error665

The network’s coding performance following training can be measured by the difference between input666

images and their reconstruction from network activity. This method gives direct insight on how well667

visual input is represented by the network as a whole. This aspect was often not considered in previous668

biologically motivated circuit models of the primary visual cortex. We used the root mean-square error669

between one image of the natural scenes dataset from Olshausen & Field (1996) and the reconstructed one670

(cf. Zylberberg & DeWeese, 2013; King et al., 2013) (Eq. 17), termed image reconstruction error (IRE):671

IRE =

√∑
k(Io − Ir)2

N
(17)

where N denotes the number of image pixels. To obtain the reconstructed image Ir, we subdivided the full672

image into patches of size 12 × 12, in an overlapping fashion (in increments of 3 pixels). We showed each673

patch 50 times for 125ms each, and recorded neuronal activities. We weighted the activity of each neuron674

by its feed-forward weights to obtain a linear reconstruction of each image patch, which we combined675

to reconstruct the full image. This approach is equivalent to calculating the IRE for individual patches,676

and calculating the root mean-square of these individual IRE values. To ensure that pixel values of the677
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reconstructed image were in the same range as the original image, we normalized the reconstructed as well678

as the original image to zero mean and unit variance (Zylberberg & DeWeese, 2013; King et al., 2013).679

4.6.9 Mutual information680

An information-theoretic approach to estimate the coding efficiency of the network is based on the mutual681

information between stimulus identity and neuronal activity (Dayan & Abbott, 2001; Dadarlat & Stryker,682

2017). This measure allows to calculate the average information transmission per spike (Vinje & Gallant,683

2002; Sengupta et al., 2013). To quantify information transmission, we calculated the mutual information,684

I(s, r), between the stimulus identity and neuronal responses for each neuron, following Vinje & Gallant685

(2002):686

I(s, r) = H(r)−H(r|s) (18)

In Eq. 18, I(s, r) is the mutual information carried between stimulus and response for a time bin of 125ms687

length, the duration of a single stimulus. For that purpose, we calculate the total response entropy, H(r),688

and the conditional response entropy, also called stimulus-specific noise entropy, H(r|s).689

H(r) = −
∞∑
j=0

pj log2(pj) (19)

690

H(r|s = k) = −
∞∑
j=0

pkj log2(pkj ) (20)

The total response entropy is given by Eq. 19. The variable pj is the number of time bins containing691

exactly j spikes, divided by the total number of time bins, or stimuli. It follows from Eq. 19 that the692

total response entropy is maximal if all spike counts occur with equal probability (and, if they do, the693

number of possible spike counts increases the entropy). The noise entropy for a specific stimulus (see Eq.694

20) describes the variability of the neuronal responses across repetitions of a single stimulus k. Every695

stimulus was repeated 100 times. Similar to the total response entropy, j is the number of spikes which696

occurred in response to a stimulus k. Here, pkj is the number of repetitions of stimulus k to which exactly697

j spikes are emitted, divided by the overall number of repetitions of that stimulus. To calculate the overall698

noise entropy of a neuron H(r|s), we averaged the noise entropy across all stimuli. Information per spike699

was computed by dividing I(s, r) by the mean number of spikes per stimuli, or time bins.700

4.6.10 Discriminability701

To evaluate how well the network responses allow to distinguish between any two input patches, in the702

presence of trial-to-trial (how much is the variance in the firing rate of a neuron to specific input (Shadlen703

& Newsome, 1998)) fluctuations induced by Poisson input, we calculated the discriminability index, d′704
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(e.g., Dayan & Abbott, 2001; Dadarlat & Stryker, 2017). The d′ index measures the separation of two705

random distributions, and is closely related to the performance of a linear classifier assuming independent706

neuronal responses. Based on a random set of 500 natural scene patches, we calculated the d′ by pairing707

the response on every patch to all other patches. For each pair of stimuli, s1 and s2, we presented each708

stimulus with N = 100 repetitions, and recorded the network responses of all n = 144 excitatory neurons709

for each repetition, obtaining the n-dimensional response vectors s
(i)
1 and s

(i)
2 , i = 1, . . . , N . We first710

calculated the mean activity of each cell in response to each stimulus, across the N repetitions (denoted by711

s1 and s2). We next projected each individual population response s
(i)
1 and s

(i)
2 onto the vector between712

these means, by taking the dot product between each response and the difference s1 − s2:713

α(i)
s1

= s
(i)
1 · (s1 − s2)

α(i)
s2

= s
(i)
2 · (s1 − s2) for i = 1, . . . , N

(21)

where αs1
and αs2

denote the projected responses. Next, we calculated the means and variances of714

the projected responses αs1
and αs2

, denoted by (µs1
, σ2

s1
) and (µs2

, σ2
s2

). Finally, we calculate the715

discriminability d′s1,s2
, as the ratio between the separation of the means and the variances of the projected716

data:717

d′s1,s2
=

µs1 − µs2√
1
2 (σ2

s1
+ σ2

s2
)

(22)

Note that we used the same sequence of patches for all model configurations to calculate the discriminability,718

and every patch was presented for 125ms. Previous research found that the variance of the response of a719

neuron to input stimuli is proportional to the mean (Gershon et al., 1998). Further studies demonstrated720

that inhibition leads to less variance in the responses to one repeatedly shown stimulus (Haider et al.,721

2010). The discriminability (d′) increases if the response variance decreases by the same response mean.722

Therefore, we can measure differences in the response variance.723
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