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Abstract6

The design of novel proteins with specified function and controllable biochemical properties7

is a longstanding goal in bio-engineering with potential applications across medicine and nan-8

otechnology. The vast expansion of protein sequence databases over the last decades provides9

an opportunity for new approaches which seek to learn the sequence-function relationship10

directly from natural sequence variation. Advances in deep generative models have led to11

the successful modelling of diverse kinds of high-dimensional data, from images to molecules,12

allowing the generation of novel, realistic samples. While deep models trained on protein13

sequence data have been shown to learn biologically meaningful representations helpful for14

a variety of downstream tasks, their potential for direct use in protein engineering remains15

largely unexplored. Here we show that variational autoencoders trained on a dataset of almost16

70000 luciferase-like oxidoreductases can be used to generate novel, functional variants of the17

luxA bacterial luciferase. We propose separate VAE models to work with aligned sequence18

input (MSA VAE) and raw sequence input (AR-VAE), and offer evidence that while both are19

able to reproduce patterns of amino acid usage characteristic of the family, the MSA VAE is20

better able to capture long-distance dependencies reflecting the influence of 3D structure. To21

validate the practical utility of the models, we used them to generate variants of luxA whose22

function was tested experimentally. As further evidence of the practicality of these methods for23

design, we showed that conditional variants of both models could be used to increase the sol-24

ubility of luxA without disrupting function. Altogether 18/24 of the variants generated using25

the AR-VAE and 21/23 variants generated using the MSA VAE retained some luminescence26

activity, despite containing as many as 35 differences relative to any training set sequence.27

These results demonstrate the feasibility of using deep generative models to explore the space28

of possible protein sequences and generate useful variants, providing a method complementary29

to rational design and directed evolution approaches.30

Recombinant proteins have found uses in many medical and industrial applications where it is31

frequently desirable to identify protein variants with modified properties such as improved stabil-32

ity, catalytic activity, and modified substrate preferences. The systematic exploration of protein33

variants is made extremely challenging by the enormous space of possible sequences and the dif-34

ficulty of accurately predicting protein fold and function. Directed evolution approaches enable a35

more or less random local search of sequence space but are typically limited to the exploration of36

sequences differing by only a few mutations from a given natural sequence [1, 2]. When knowledge37

of the protein structure is available, computer aided rational design can help identify interesting38

modifications [3]. Beyond the identification of sequence variants, computational approaches have39

enabled the generation of small synthetic protein domains that mimic natural folds while using40

sequences that are distant from what is seen in nature [4, 5, 6]. These techniques take advantage41

of structural information and physical modeling, as well as statistical analysis of amino-acid con-42

servation and co-evolution. Recent progress has also been made in the rational design of proteins43

with artificial folds from scratch [7, 8, 9]. All these computational design approaches nonetheless44

remain for now limited in their success and in the types of protein they can model.45

Machine learning methods provide an alternative and potentially complementary approach ca-46

pable of exploiting the information available in protein sequence and structure databases. Natural47

sequence variation provides a rich source of information about the structural and biophysical con-48

straints on amino acid sequence in functional proteins, but the unlabelled nature of much of the49

available data provides a challenge for straightforward supervised learning methods. The frame-50

work of generative modelling shows promise for exploiting this information in an unsupervised51
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manner. Generative models are machine learning methods which seek to model the distribution52

underlying the data, allowing for the generation of novel samples with similar properties to those53

on which the model was trained [10]. In recent years, deep neural network based generative models54

such as Variational Autoencoders [11], Generative Adversarial Networks [12], and deep autoregres-55

sive models [13, 14, 15] trained on large databases of images [12], audio [14], text [16, 17], and even56

chemicals [18], have been shown to be capable of generating novel, realistic samples. Generative57

models can also easily be adapted to include auxiliary information to guide the generative process,58

by modelling the distribution of the data conditioned on the auxiliary variables. Such conditional59

generation is of particular interest for protein design where it is frequently desirable to maintain a60

particular function while modifying a property such as stability or solubility.61

While there have recently been several successes in applying deep learning techniques to mod-62

elling protein sequences in tasks including contact prediction [19], secondary structure prediction63

[20, 21], and prediction of the fitness effects of mutations [22], the possibility of applying generative64

modelling methods in the design of new sequences has only very recently begun to be explored65

[23, 24, 25, 26, 27], and experimental evidence for the viability of these techniques is scarce. To66

realise the promise of generative models in protein engineering, work remains to be done in un-67

derstanding the consequences of various design choices, the strengths and limitations of different68

types of model and the possibilities for integration into existing engineering workflows.69

One particularly important consideration is the nature of the input representation to the model.70

Many traditional successes in protein sequence analysis have relied on features derived from multi-71

ple sequence alignments of related proteins, which simplify the inference of structural and functional72

constraints from sequence data [28]. But alignmnents become large and unreliable as more distant73

proteins are added [29], placing an effective limit on the diversity of sequences that can be related74

in this way. For this reason, several recent works have explored deep learning methods which are75

capable of fully exploiting the data in sequence databases by working with raw sequence inputs.76

Deep sequence models such as LSTMs and transformers trained on datasets spanning the entire77

range of known sequences have been shown to learn representations which distill structural and78

functional information from the sequence [30, 31]. Despite these promising results, it remains79

unclear whether the representations learned are more informative than simple features computed80

from local alignments [32] and the generative capacity of these models, though acknowledged, is81

almost entirely unexplored.82

Here, as a practical illustration of the application of deep generative design to protein engineer-83

ing, we developed variational autoencoder (VAE) models capable of generating novel variants of84

bacterial luciferase, an enzyme which emits light through the oxidation of flavin mononucleotide85

(FMNH2). We proposed separate architectures to work with raw and aligned sequence input86

which, when trained on a family of almost 70000 luciferase-like protein sequences, learned repre-87

sentations of sequence identity which captured functional information and were able to generate88

new sequences displaying patterns of amino acid usage characteristic of the family. Moreover,89

conditional versions of the models trained with auxiliary solubility information enabled control of90

the predicted solubility level of generated sequence variants. In order to confirm the generative91

capacity of the models, they were used to generate variants of the luxA subunit of the luciferase92

from Photorhabdus luminescens. A number of the variants generated by each model were selected93

for synthesis and assessed for function when expressed as recombinant proteins in E. coli.94

1 Results95

Generative VAE models for protein families Variational autoencoders (VAEs) are deep96

latent variable models consisting of two subnetworks in an autoencoder structure [11]. The encoder97

network learns to map data points to low-dimensional ‘latent vectors’, while the decoder network98

learns to reconstruct data points from their low-dimensional latent encodings. Either raw or99

aligned protein sequences can be passed as input to a VAE model by representing them as fixed-size100

matrices whose columns contain ‘one-hot encoded’ representations of the identity of the amino acid101

at each position in the sequence (Methods). When trained on a training set of sequence inputs of102

the same kind, a VAE thus learns a ‘latent representation’ of the content of each sequence. A prior103

enforcing smoothness on the representations output by the encoder ensures that novel sequences104

can be generated either by varying the latent representation around that of existing sequences, or by105

sampling from the prior distribution over the latent vectors, and then feeding the resulting vectors106

through the decoder. This latent variable-governed generative process is particularly attractive for107
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design applications because it can straightforwardly be used to bias generation towards particular108

regions of sequence space, either by sampling from the vicinity of the latent representations of109

target sequences, or by facilitating optimization based strategies which search the latent space for110

novel sequences with desirable properties [33, 18].111

As a practical testbed for deep generative protein design, we chose to work with a dataset of112

69,130 homologues of bacterial luciferase obtained from InterPro [34] (IPR011251). We worked113

with two versions of the dataset: one containing raw unaligned sequences, and one constructed114

from a multiple sequence alignment (MSA) of the dataset built using Clustal Omega (Methods).115

Alignments of large protein families can be very wide, presenting a challenge for methods seeking to116

model variation at all positions. We chose instead to build models capable of generating variants of117

a single target protein, the luciferase luxA subunit from P. luminescens. We therefore dropped all118

columns of the MSA which were unoccupied in the luxA target. We split the dataset into a training119

set and a holdout validation set, using the same split for both aligned and raw sequences. In order120

to avoid highly similar sequences occurring in the training and validation sets, we first clustered121

all the sequences using mmseqs2 [35], and then added clusters chosen at random to the validation122

set until the total number of sequences in the validation clusters reached 20% of the total. In order123

to assess generalisation to a range of distances from the training set, three train-validation splits124

were created using sequence identity thresholds of 30%, 50% and 70% in the clustering. Since our125

ultimate goal was the generation of variants with reasonably close similarity to the target protein,126

we mainly used the split at a clustering threshold of 70% sequence identity for the development127

of models, but report amino acid reconstruction accuracies on all three splits in Supplementary128

Table 1.129

Following models previously developed to model the fitness consequences of mutations [22], we130

used a standard design of fully connected feed-forward encoder and decoder networks for the models131

taking aligned input (MSA VAE, Methods). Preliminary experiments with a similar architecture132

on unaligned sequence data yielded poor results, with the generated sequences often failing to133

register as hits when scored with the family profile HMM from PFAM [36]. In a VAE with a feed-134

forward decoder, the output variables are conditionally independent given the latent variables,135

meaning that all information about local conditional dependencies must be stored implicitly in the136

latent variables. The importance of capturing such local dependencies in unaligned sequence data137

makes autoregressive models such as recurrent neural networks (RNNs), which can be trained to138

explicitly model the relevant conditional distributions, a natural choice. VAEs can be enhanced139

with autoregressive decoders to reduce the burden on the latent space to capture local information,140

and architectures based on this principle have been used to model images, text and molecules141

[15, 37, 16, 18].142

To handle raw sequences we therefore designed a model incorporating a convolutional encoder143

as well as a hybrid decoder [38] containing feed-forward and autoregressive components (AR-VAE,144

Methods). We found that this hybrid structure was crucial in allowing the model to fit sequences145

containing hundreds of amino acids, and helped ensure that the latent space was used, partially146

circumventing the well-documented optimization difficulties that arise when training VAE models147

with autoregressive decoders [16, 38]. As an initial confirmation of the advantages of the chosen148

architecture, we scored a set of 3000 sequences generated by sampling from the prior of the AR-149

VAE model with the family’s profile HMM. As baselines we also computed HMM scores for sets150

of sequences generated by the MSA VAE model, and by a model having the same architecture151

as MSA VAE trained on raw sequence data. The vast majority of sequences generated by both152

MSA-VAE and AR-VAE were scored as hits by the HMM (96.8% and 99.7% respectively, at an153

E-value threshold of 0.001), whereas the sequences generated by the baseline model trained on raw154

inputs only scored as hits just over half the time (57.3%).155

Models learn representations encoding features relevant to biological function To156

model the distribution of sequences within a protein family, VAEs develop internal representations157

of the content of sequences at multiple resolutions. To explore the biological significance of these158

representations we first examined the weights in the output layer of the decoder. At each point159

in the sequence this layer is parameterised by a weight matrix whose columns represent learned160

‘embeddings’ of amino acid identity, which combine with the network’s hidden representation via161

a softmax transformation to output the probabilities of observing each amino acid at that point.162

If the weights of this layer are tied across all positions, as was the case for AR-VAE models, a163

single set of embeddings is obtained. Visual inspection of a two dimensional projection of these164
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Figure 1: Schematic representation of the input representation and VAE models used in the study.
Models take as input either raw or aligned sequences. In the latter case, the inputs correspond to
the rows of an MSA of the luciferase family. Only columns of the MSA corresponding to positions
(highlighted in red) present in the target protein (marked with *) are retained. In both cases, the
sequences are one-hot encoded before being fed into the model. Different architectures were used
depending on the type of sequence input. The model developed to work with aligned sequences
(MSA VAE) used fully-connected feed-forward networks in both the encoder and the decoder. The
model developed to work with raw sequences (AR-VAE) comprised a CNN encoder and a decoder
which combined upsampling with autoregression. The decoder sequentially outputs predictions
for the identity of the amino acid at each point in the sequence, conditioned on the upsampled
latent representation together with the previous amino acids in either the input sequence (during
training, blue arrow) or the generated sequence (when being used generatively, red arrow).

embeddings obtained using PCA indicates that they reflect the biochemical properties of the various165

amino acids: for example the negatively charged amino acids (D and E) and the positively charged166

amino acids (K, R and H) cluster tightly together (Figure 2), while the second principal component167

seems to separate the hydrophobic amino acids (both the hydrophobic and aromatic groups in the168

legend) from the polar amino acids, recapitulating the major groupings in traditional classification169

schemes [39]. As further validation of the biological relevance of these embeddings we found that170

the cosine similarities between embeddings for pairs of amino acids correlated well with the entries171

in the BLOSUM 62 substitution matrix. Finally, to understand the models’ representations at a172

more global level, we examined the distribution of latent vectors associated with sequences coming173

from distinct sub-families within the set of luciferase-like proteins. The InterPro sub-families form174

visually distinct clusters in the space of the first two principal components, especially for the175

model trained on the MSA (Figure 2), indicating that global information about functional and176

evolutionary relationships between sequences is captured in the latent variables.177

Models capture patterns of amino acid usage characteristic of members of the family178

Protein families are characterised by statistical features that reflect the shared evolutionary history179

and related structure and function of members of the family. Patterns of amino acid conservation180

at individual positions reflect the presence of functionally important sites and are used by profile181

HMMs to identify family members [40], while correlations in amino acid usage at pairs of positions182

are signatures of structurally constrained evolutionary covariation which can be used to infer183

contacts between residues [41, 42, 43]. Models such as VAEs which seek to learn the distribution184

of sequences in the family can be evaluated for their capacity to reproduce these characteristic185

statistical features. To further probe the ability of the AR-VAE and MSA VAE models to generate186

realistic sequences, we therefore calculated first- and second-order amino acid statistics from the187

sets of 3000 sequences previously generated by sampling from the prior of each model and compared188
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Figure 2: Visualisation of biologically relevant features of protein sequences learnt by VAE models.
Left: pairwise cosine similarities between amino-acid output embeddings from an AR-VAE model
trained on unaligned sequences correlate with amino acid substitution scores in BLOSUM62 sub-
stitution matrix (Spearman ρ = 0.423, n = 190); centre: projection of AR-VAE output embedding
weights onto first two principal components groups embeddings corresponding to biochemically
related amino acids; right: sub-families cluster within the latent vector representation of sequences
from MSA VAE (projected onto first two principal components for ease of visualisation).

them to corresponding statistics calculated from the sequences in the training set. Making a189

comparison of these statistics requires an alignment of the generated sequences to the training190

sequences. Such an alignment is automatically available for MSA VAE; for AR-VAE we used191

Clustal Omega to jointly align all training and generated sequences, and again filtered columns192

based on the alignment of the target luxA sequence. Given these alignments, we computed single-193

site amino acid frequencies at all positions and pairwise amino acid frequencies and covariances194

[44, 28] at all pairs of positions for both the subset of the alignment corresponding to generated195

sequences and the subset corresponding to training sequences (Figure 3). Both VAE models were196

able to reproduce the statistics observed in the natural sequences reasonably well, with the MSA197

VAE sequences showing especially good agreement. As a simple baseline, we also sampled a set of198

3000 sequences from the PFAM profile HMM for the family, and compared statistics at match states199

to statistics at positions assigned to match states when aligning the training set to the model. By200

construction, HMM models ignore interactions between residues, and therefore generate sequences201

which show similarity to natural sequences in first order statistics (patterns of conservation) but202

whose covariances only differ from zero due to the effects of finite sampling. We note that detailed203

direct comparison of the results between models is challenging due to the statistics being computed204

from different model-specific alignments, and in the case of the HMM model, due to the fact that205

it was not trained on the same data. Nonetheless, the analysis serves to illustrates the fact that206

the VAE models, in contrast to simpler profile models, are able to reproduce second order statistics207

without being fit to them directly, and, in the case of AR-VAE, without requiring aligned input208

data.209

To obtain a more qualitative understanding of the kinds of dependencies that the models210

were able to capture, we used the direct coupling analysis software CCMPred [43] to identify the211

most strongly ‘coupled’ pairs of positions in the generated sequences. Direct coupling analysis212

seeks to explain the observed (first and second order) amino acid statistics in terms of couplings213

between positions in a statistical model [28]. The most strongly coupled positions in natural214

family alignments are good predictors of contacts in protein 3D structure. We therefore compared215

the couplings inferred from generated sequences to the contacts in the 3D structure of luxA by216

visualising the resulting predicted contact maps (Figure 4). Whereas the MSA VAE generated217

sequences which exhibited strong dependencies between positions at a range of distances, yielding218

an inferred contact map bearing a reasonable resemblance to the ground truth, the sequences219

generated by the AR-VAE showed a bias towards local couplings.220

1.1 Experimental validation of generated sequences221

Novel luminescent variants generated from latent vicinity of a target luminescent222

protein Bacterial luciferase is a heterodimeric enzyme which catalyzes the light-emitting reaction223

responsible for the bioluminescence of a number of bacterial species. The two homologous subunits,224
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Figure 3: Statistics computed from alignments of generated sequences to natural sequences from the
training set. Similarity of statistics between generated and natural sequences reflect the ability of
models to capture important types of sequence variation. Single-site amino acid frequencies (left)
capture patterns of residue conservation at each position in the alignment, while co-occurrence
frequencies (centre) and covariances (right) between amino acid identities at different pairs of
positions reflect patterns of evolutionary covariation which may indicate structural or functional
constraints. Sequences were generated by sampling from the prior of the VAE models. For MSA
VAE the resulting sequences were already aligned; for the raw sequences generated by AR-VAE, a
new MSA was first constructed by running Clustal Omega on the set of sequences sampled from the
model together with the natural sequences in the training set, using the bacterial luciferase family
PFAM profile HMM as an External Profile Alignment, following which statistics for generated and
natural sequences were computed from the corresponding subsets of the alignment. As a baseline
we also report results for statistics generated by the profile HMM from PFAM. In this case the
training set statistics were computed from the alignment of the training sequences to the profile
HMM.

encoded by the genes luxA and luxB, have different roles: the luxA subunit contains the active site,225

while the luxB subunit is thought to provide conformational stability [45]. Since the luciferase226

activity is primarily encoded by the luxA gene, we sought to generate novel variants of the luxA227

subunit, taking as our seed sequence the luxA protein from the species P. luminescens (UniProt228

id: P19839). For both AR-VAE and MSA VAE models we generated a set of candidate variants by229

sampling latent vectors from the neighbourhood of the latent space encoding of P19839 (Methods)230

and passing them through the decoder. To validate these candidates, 12 sequences from each model231

were selected for synthesis (supplementary dataset 1), spanning a range of distances (17-48 total232

differences including substitutions and deletions) to P19839.233

To assess the activity of the generated variants, the sequences were synthesised and expressed234
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Figure 4: Comparison of inter-residue couplings inferred from generated sequences to contacts in
the 3D structure of a luxA protein. Left: contact map of luxA, showing 1000 closest contacts
separated by at least 4 sequence positions. Centre and right: top 1000 couplings inferred from
sequences generated by MSA VAE and AR-VAE respectively, coloured by distance between residues
in luxA 3D structure. Couplings were predicted using CCMPred on samples of 3000 sequences,
and only couplings between residues separated by at least 4 sequence positions were shown. The
patterns of inferred couplings reflect the dependencies captured by the models: while MSA VAE
captures realistic dependencies between positions at a range of distances, the sequences generated
by AR-VAE exhibit a bias towards local dependencies.

from a plasmid in an E. coli strain carrying the luxCDBE genes on a second plasmid. 9 of the235

11 successfully synthesised sequences generated by the MSA VAE showed measurable luminescent236

activity, compared to 6 of 12 generated by the model trained on unaligned sequences (Figure 5).237

Furthermore, the MSA VAE sequences showed a level of luminescence comparable to that of the238

wild-type protein, while the AR-VAE sequences tended to have reduced luminescence. Remarkably,239

there was no evidence in a drop-off in luminescence as the distance from the wild type increased240

for the sequences generated by the model trained on the MSA. This was not true for sequences241

generated by the model trained on the unaligned family members. Comparison of the generated242

sequences to other luxA sequences from the training set revealed that several of the more distant243

variants from both models were closer to other training set sequences than they were to the seed P.244

Luminescens luxA. This was especially true for the MSA VAE, indicating that this model’s latent245

space is organised in such a way as to encourage the exploration of functional regions of sequence246

space lying between existing sequences. Even taking this into account, the luminescent MSA VAE247

variants were all between 18-35 substitutions (including deletions) from any training set sequence.248

Conditional VAEs enable enhancement of solubility of a luxA protein In order to assess249

the ability of our models to generate novel functional sequences with specified biophysical properties250

we further sought to use conditional variants of the VAE models to increase the solubility of the251

P19839 luxA sequence. Proteins frequently aggregate and precipitate when expressed at high252

concentrations [46]. This phenomenon is a challenge in a wide range of applications, from the253

production of protein therapeutics to the study of protein biochemistry and structure, leading to254

interest in engineering of increased-solubility variants [47]. We considered P19839 to be a suitable255

target to test the use of conditional VAE models for solubility engineering as it was predicted to be256

insoluble by a recent sequence-based computational solubility prediction method, protein-sol [48],257

with subsequent experimentation confirming that it was indeed recovered in the insoluble fraction258

when expressed in E. coli (see Supplementary Figure 1).259

Training sequences were grouped into three equally-sized bins by predicted solubility value260

calculated using protein-sol and the bin label was used as the conditioning variable when training261

conditional versions of both AR-VAE and MSA VAE models, corresponding to a specification of262

either low, medium or high solubility for the sequence. P19839 was assigned to the low solubility263

bin. In order to generate variants with increased solubility, we sampled latent vectors from the264

neighbourhood of the encoding of P19839 and passed them through the decoder together with the265

conditioning variable, which was fixed to a value corresponding to either medium or high solubility.266

To check that conditioning was successful, we generated 100 sequences at each solubility level from267

the conditional AR-VAE and MSA VAE models, and calculated predicted solubility values for the268
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Figure 5: Luminescence measurements for synthesised protein sequences generated from latent
vectors sampled from the neighbourhood of the encoding of the P. luminescens luxA sequence.
Left: luminescence of sequences generated by VAE models trained on raw (AR-VAE) or aligned
(MSA VAE) sequences from the family of luciferase-like proteins (mean across three biological
replicates, error bars represent standard deviation). Wild-type sequence luminescence is displayed
as a dashed green line. Distance is computed as number of substitutions and indels relative to
wild type. The MSA VAE model was able to generate functional sequences with large numbers of
differences to wild type, whereas the AR-VAE model seemed to introduce deleterious mutations
more rapidly. Center and right: measurements of both solubility and luminescence for sequences
generated by VAE models conditioned on predicted solubility level show that conditional models
can be used to engineer increased-solubility variants of a luxA sequence while preserving function.
Solubility is reported as the ratio of the amount of protein present in the supernatant to the
total amount in both supernatant and pellet of lysed E. coli cells over-expressing the protein, as
measured by a dot blot assay (mean of four technical replicates, error bars represent standard
deviation).

new sequences (Figure 6). Both models were able to control the predicted solubility level fairly269

successfully while introducing only relatively few additional mutations compared to the original270

decoding. To understand the changes being made by the conditional VAE models to increase271

protein-sol’s predicted solubility values, we computed several of the features used as inputs by272

protein-sol for both the generated sequences and training sequences. The features for generated273

sequences tended to have values which were shifted from P19839’s values towards those exhibited on274

average by soluble sequences from the training set (Figure 6). For example, when asked to produce275

sequences at the highest solubility level, the models produced sequences with more negative charge276

than P19839, by favouring substitutions of neutral or positively charged residues with negatively277

charged aspartic and glutamic acids (D and E, Figure 6).278

Finally, we randomly selected 6 sequences from each of the two increased solubility levels for279

each model for synthesis, and measured luminescence as well as solubility. To measure solubility,280

the protein variants were cloned on a pET28/16 plasmid with a His tag and expressed in Rosetta281

E. coli cells for 3H, followed by mechanical lysis and centrifugation. The amount of luxA protein282

present in the supernatant and in the pellet were measured by performing a dot blot assay using an283

anti-HisTag antibody, and the average fraction in the supernatant across four replicates was taken284

as a measure of solubility. 5 out of 12 sequences generated by the MSA VAE model showed clearly285

improved solubility and 3 out of these maintained a high luminescence level (Figure 5). Almost all286

sequences generated by AR-VAE showed signs of improved solubility, and out of the 4 sequences287

with a considerable fraction (>10%) in the supernatant, 3 maintained a high luminescence level.288

In both cases these improvements were achieved while introducing only a relatively small number289

of mutations to the wild type (12-26), highlighting that conditioning separated information about290

solubility from information about general protein content successfully enough to be useful for fairly291

sensitive engineering.292

2 Discussion293

We have developed variational autoencoder models capable of generating novel functional variants294

of a luminescent protein when trained on a set of homologues of the target. Computational analysis295
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Figure 6: Computational analysis of variants generated by conditional VAE models conditioned on
predicted solubility level. Left: distribution of predicted solubilities of sequences generated when
conditioning on each of three solubility levels (median and upper and lower quartiles indicated
with horizontal lines); centre: difference in amino acid composition percentages between generated
variants at highest solubility level and original P19839 luxA sequence, including values for combined
amino acid features used in protein-sol prediction algorithm; right: distribution of charge of luxA
variants generated by conditioning on high (top) and medium (bottom) solubility levels. For
comparison, the charge of the original P19839 luxA sequence is shown as a dashed line, the average
charge for high solubility sequences in the training set is shown as a solid green line, and the
average charge for medium solubility sequences in the training set is shown as a solid red line).

of separate VAE models developed for raw sequences and aligned sequences suggested that the296

version trained on MSA data more plausibly reproduced the statistical features characteristic of297

the structural and functional constraints on members of the family arrived at and maintained over298

the course of evolution. Experimental validation confirmed that a significant fraction of variants of299

a target luxA protein generated by both models were functional, while confirming the strengths of300

the MSA model, which generated a set of variants which almost without exception retained high301

levels of luminescence despite diverging by as many as 35 amino acid differences from any protein302

in the dataset.303

The application of generative models to multiple alignments of protein families is not new.304

Markov random field models with pairwise couplings between residues are the basis of the most305

successful unsupervised contact prediction methods [42, 43]. Recent advances in efficient inference306

methods for these models have been shown to permit the generation of sequences which accurately307

reproduce the low-order statistics from natural MSAs [44, 49]. While their potential as the basis308

of protein design approaches has been noted [28], to our knowledge there has been no attempt to309

validate this experimentally or to explore the ways in which design might be achieved. Besides310

this, a number of considerations motivate the exploration of deep generative models like VAEs.311

VAEs are able to capture higher-order dependencies, can be adapted to straightforwardly and312

flexibly incorporate conditioning information, and learn continuous latent spaces which offer various313

possibilities for controlled generation, including the local sampling strategy employed here, or,314

given appropriate auxiliary data, the conversion of sequence optimisation problems to continuous315

optimisation problems in latent space [18]. Finally, VAEs provide a flexible modelling framework316

which can be extended to handle raw sequence data, permitting the generation of full-length317

sequences and offering the possibility of training on sequence data from multiple families.318

Previously, it was shown that VAE models trained on multiple sequence alignments of single319

protein families could be used to predict the fitness consequences of mutations, by comparing the320

approximate likelihoods of mutant and wild-type sequences under the model [22]. Unlike [22] we321

focus on the generative capabilities of VAE models, and, when working with aligned sequence322

input, filter the alignment in such a way as to allow the generation of full variant sequences of323

a single target protein. While we found VAEs trained on aligned sequence data to be effective324

at reliably generating functional variants at a range of distances to a target protein, there are325

nonetheless shortcomings to this approach. Building a training dataset for this model requires the326

construction of a large multiple sequence alignment. Even where sufficient related sequences are327

available this poses challenges. Such alignments will often have a very large number of columns, and328

while a relevant subset of columns can be retained, as done here, this restricts the sequence variety329

that can be generated, since only one or a handful of sequences will be fully represented in the330
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retained columns. Moreover, the construction of large alignments remains a difficult problem with331

a trade-off in this context between the decline in alignment accuracy associated with the arbitrary332

addition of extra homologous sequences [29] and the desire to use large numbers of sequences to333

exploit the capacity of the model and fit it reliably.334

The avoidance of these issues is a key advantage of models trained on raw sequence data. In335

principle such models would make it possible to leverage the full variety of protein sequence informa-336

tion by, for example, pretraining models on entire protein sequence databases [30, 31]. Conditional337

VAEs with feed-forward decoders have previously been used to generate sequences with specified338

metal binding sites or structural topologies when trained on raw sequences spanning multiple fami-339

lies [25]. Other recent work has used deep autoregressive models without latent variables to handle340

raw sequence data, inspired by similar approaches in natural language processing [30, 27]. Here,341

seeking to combine the advantages of latent variable models and autoregressive models, we showed342

that a VAE with an autoregressive decoder could be used to generate realistic sequences when343

trained on the members of a single family, and provided experimental validation of the function of344

a number of generated luxA variants. However, we also found that this model seemed to be less345

effective at capturing the long-range dependencies between amino acids at different positions than346

the MSA-based model. Closing this performance gap is an important challenge for future work if347

the potential advantages of training models on raw sequence data are to be fully realised. Other348

sequence models such as transformers might be better suited to capturing long-range interactions349

and have already shown promise in modelling proteins [31, 32]. More fundamentally, evaluating350

the capability of alternative kinds of model in silico requires quantitative measures of the quality351

of generated sequences, and this, too, remains a difficult problem.352

The successful generation of full, functional variants at a range of distances to a given engi-353

neering target opens the door to a multitude of applications in the field of protein design. Here we354

showed that using conditional variants of the models it was possible to generate new variants with355

modified biophysical properties in a controlled way, by generating variants of a luxA protein with356

increased solubility relative to wild type. More generally, a model capable of guiding exploration357

of distant regions of functional sequence space could be used to significantly improve the efficiency358

of existing design approaches [50], or to constrain the search of sequence space for proteins with359

desirable properties [33, 18]. The ability to generate novel sequences with a desired function is360

an important desideratum in protein engineering approaches, and while here we have shown that361

straightforward conditioned generation is sufficient to generate novel, functional sequences satis-362

fying basic biochemical criteria, we expect that combining these kinds of methods with existing363

engineering techniques will result in even more powerful and widely applicable methods for protein364

sequence design.365
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3 Methods366

3.1 Dataset Construction367

Selection of sequences All sequences containing a luciferase-like domain (IPR011251) were368

downloaded from InterPro [34]. Sequences longer than 504 amino acids were discarded. The369

remaining 69130 sequences were clustered using mmseqs2 [35] with a sequence identity threshold370

of 70%. To create a validation set, clusters were randomly removed from the training set until the371

number of sequences in all of the removed clusters was 20% of the total. The same train/validation372

split was used for models irrespective of whether they took as input aligned or unaligned versions373

of the sequences.374

Multiple sequence alignment To create a multiple sequence alignment from the dataset, the375

full set of training and validation sequences were aligned using Clustal Omega [29] using the profile376

HMM of the bacterial luciferase family from PFAM [36] as an external profile alignment to guide the377

creation of the MSA. The resulting MSA was very wide, presenting potential modelling challenges.378

To circumvent these, only a subset of columns were retained on the basis of the target protein379

(details below).380

Input representation All sequences are represented as fixed size matrices by one-hot encoding381

the amino acids, such that a sequence of length L is represented by a L×21 matrix (a gap/padding382

character is used together with the 20 standard amino acids). When raw sequences are used as383

input, a fixed input size is ensured by right padding sequences up to a length 504 (and dropping384

sequences exceeding this length). When aligned sequences are used as input, all columns in the385

MSA which are assigned gaps in the alignment of the target luxA protein P19839 are dropped,386

leaving 360 columns.387

3.2 Variational Autoencoders388

VAEs [11] posit a set of latent variables z associated with each input x and model the joint389

distribution p(x, z) = pθ(x|z)p(z) of the latents and the observations. The distribution pθ(x|z)390

over the values of the observed variables given the latents is parametrised by a neural network (the391

‘decoder’) with weights θ, and p(z) is a prior over the latents, typically chosen to be a factorised392

Gaussian distribution. An inference model qφ(z|x) parametrised by a second neural network (the393

‘encoder’) is introduced to approximate the intractable posterior pθ(z|x) = pθ(x|z)p(z)∫
pθ(x|z)p(z)dz

, allowing394

the construction of a training objective representing a lower bound on the log-likelihood (the395

Evidence Lower Bound or ELBO):396

L(φ, θ;x) = Eqφ(z|x)[log pθ(x|z)−DKL(qφ(z|x)||p(z))] ≤ log pθ(x) (1)

Jointly maximising this objective over a set of training examples with respect to the weights of the397

two networks enables the generative model and the inference model to be learned simultaneously.398

The VAE framework offers flexibility in the architectures of the encoder and decoder networks.399

In a standard setup in which feed-forward networks are used for both encoder and decoder, the400

observed variables are conditionally independent given the latents. A more flexible output dis-401

tribution can be obtained by instead decoding autoregressively [16, 37]. That is, given a latent402

vector z, the output sequence x = (x1, ...,xL) is generated one position at a time, with the decoder403

modelling the conditional distributions pθ(xi|x1, ...,xi−1, z) of each output xi given the values of404

its predecessors and the latents. This corresponds to modelling the distribution of x given z in the405

factorised form pθ(x|z) =
∏
i pθ(xi|x1, ...,xi−1, z).406

A VAE can straightforwardly be adapted to model the distribution of the data conditioned on407

auxiliary variables c by conditioning the encoder and decoder networks on these variables [51].408

The objective then becomes409

L(φ, θ;x) = Eqφ(z|x,c)[logpθ(x|z, c)−DKL(qφ(z|x, c)||p(z|c))] (2)
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3.3 Model architecture410

MSA VAE Both the encoder and the decoder are fully connected neural networks with two411

hidden layers. We experimented with a range of layer sizes and latent dimensions, settling on412

256 units per hidden layer and a latent dimensionality of 10 unless otherwise specified. ReLU413

activations were used for hidden units, and softmax activations for the output units.414

AR-VAE We used a convolutional neural network for the encoder, consisting of 5 layers of 1D415

convolutions of width 2. Apart from the first layer, the convolutions were applied with a stride416

of 2. The first layer used 21 filters; this number was doubled in each successive layer. PReLU417

activations were used, and batch normalization was applied in each layer. The size of the latent418

dimension was 50.419

The decoder consisted of two components, similar to the decoder in a ‘hybrid’ autoregressive420

VAE model developed for text [38]: an ‘upsampling’ component, which contained 3 layers of421

transposed convolutions to ‘upsample’ the latent vector to a sequence of the same length as the422

output sequence; and an autoregressive component, which was a GRU with 512 units which took as423

input at each timestep the full sequence of previous amino-acids and upsampled latent information,424

and output the predicted identity of the amino acid at the next timestep.425

Optimization difficulties have been reported when training VAEs with powerful autoregressive426

decoders [16, 38]. To address these we followed [16] in applying dropout to the amino acid context427

supplied as input to the GRU during training, such that 45% of the amino acid context was428

masked out, forcing the network to rely on the information transmitted via the upsampled latent429

code together with the conditional information in the masked amino acid sequence to make its430

prediction.431

Conditioning on predicted solubility Solubility predictions were made for all proteins by432

running the protein-sol [48] software on the full sequences. The resulting solubility predictions433

were continuous values ranging between 0 and 1. We discretized this information by binning the434

sequences into 3 equally-sized bins corresponding to low, mid and high solubility. Bin membership435

was fed as a one-hot encoded categorical variable as additional input to both encoder and decoder436

in conditional versions of the models.437

3.4 Details of Model Training and Selection Procedures438

Models were trained using SGD with a batch size of 32 and the validation set was used to monitor439

performance at the end of each epoch as measured by ELBO loss and amino-acid reconstruction440

accuracy. Unless otherwise specified, the Adam optimizer was used with a learning rate of 0.001.441

We also monitored the reconstruction accuracy of P19839, the luxA protein which had been se-442

lected for synthesis. This single-datapoint reconstruction accuracy was considered when choosing443

model hyperparameters together with the other two metrics and the evaluations described above.444

In particular, weights from the epoch which showed the best reconstruction accuracy of P19839445

without evidence of overfitting (i.e. increase in validation loss) were saved and used to generate446

the variants of P19839 that were tested experimentally.447

3.5 Computational analysis of generated sequences448

For each model, a set of 3000 sequences was generated by sampling latent vectors from the prior and449

decoding greedily. Before further analysis, we constructed an alignment of the sequences generated450

by AR-VAE to the training sequences, following the procedure used to create the training alignment451

for MSA VAE. In detail, we ran Clustal Omega on the sequences from the training set together452

with the generated sequences, using the profile HMM to guide the alignment, and subsequently453

dropped all columns unoccupied in the row corresponding to the P19839 luxA sequence. We used454

the EVCouplings python package [52] to compute both single site amino acid frequencies and455

pairwise co-occurrence frequencies separately for the aligned generated sequences and the aligned456

training sequences. Gap frequencies were not included in the comparison between generated and457

training statistics. To infer couplings we ran CCMPred on the aligned generated sequences. We458

used EVCouplings to compare the resulting couplings to contacts in the 3D structure of the luxA459

protein.460
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3.6 Selection of variants for synthesis461

In total 48 sequences were synthesised and tested for function as luciferase luxA subunits. These462

corresponded to 12 sequences for each of four models: unconditional and conditional versions of463

the MSA VAE trained on aligned sequences, and unconditional and conditional versions of the464

AR-VAE model trained on raw sequences.465

Unconditional generation Unconditional models trained on aligned and unaligned sequence466

data were used to generate sets of candidate luminescent luxA proteins. 12 sets of sequences were467

selected for synthesis from each model. To generate the sequences, first the encoded P19839 luxA468

sequence was passed through the encoder of the VAE model to obtain the mean and covariance for469

the diagonal Gaussian posterior distribution over the latent variables. To enhance diversity, each470

dimension of the posterior variance was scaled up by a fixed factor (of 4 for MSA VAE, 1 for the AR-471

VAE model). 500 latent vectors were sampled from the resulting scaled posterior distribution for472

each model. In the case of AR-VAE a further source of randomness was added to the autoregressive473

decoding process through temperature sampling (T=0.5). The resulting sequences were separated474

into 6 approximately equally sized bins based on the number of differences from the input protein.475

2 variants were chosen at random from each of these bins for synthesis, allowing variants having a476

range of distances to the original P19839 sequence to be tested.477

Conditional generation Mean and variance parameters for the posterior distribution over the478

latent variables were obtained by passing the encoded P19839 luxA sequence together with its479

one-hot encoded original solubility level (low) through the encoder. Sequence diversity was gener-480

ated differently for the two types of model. For the MSA VAE, 100 latent vectors were sampled481

from the posterior for each of the two increased solubility levels (mid and high), and sequences482

were generated by passing the vectors together with the desired conditioning values through the483

decoder. For the AR-VAE models, the mean latent vector was used to generate all variants, with484

diversity amongst the 100 candidates generated for each conditioning level coming from temper-485

ature sampling (T=0.3). 6 sequences were selected at random from each desired solubility level486

for each model. To prevent over-similarity amongst the synthesised sequences, members of pairs487

of selected sequences with less than 3 differences between them were replaced at random until all488

pairs satisfied this diversity criterion.489

3.7 Synthesis and cloning of sequence variants490

The genes corresponding to the different variants of luxA were synthesized by Twist Bioscience491

(protein sequences are provided as supplementary dataset 1 and DNA sequences as supplementary492

dataset 2). The variants were amplified from synthesized DNA fragments using primers F342/F343493

and cloned under the control of the T7 promoter and upstream of C-terminal His- Tag sequence494

in plasmid pET28/16 [53] amplified with primers F340/F341 through Gibson assembly [54]. All495

plasmids were verified by Sanger sequencing. To study the function of the variants, the resulting496

plasmids were introduced in E. coli DH5 alpha carrying all the other genes of the P. luminescens lux497

operon on plasmid pDB283. This plasmid was obtained by deletion of luxA from plasmid pCM17498

[55] by amplification using primers B731/LC545 and B732/LC327, followed by Gibson assembly499

of the two PCR fragments. Transformants were selected on LB agar containing kanamycin (50500

µg/ml) and ampicillin (100 µg/ml).The plasmids described here are readily available from the501

authors upon request.502

3.8 Bioluminescence measurements503

Strains were grown in triplicate overnight at 37°C and diluted 1:100 in 1 ml of LB broth containing504

kanamycin (50 µg/ml) and ampicillin (100 µg/ml) in a 96-well microplate that was incubated at505

37°C with shaking in a ThermoMixer (Eppendorf). After 7h of growth, 100 µl of culture was506

transferred to a white 96-well microplate (Greiner, Kremsmünster) and luminescence measured507

during 10 s on a Centro XS LB 960 microplate luminometer (Berthold Technologies, Thoiry).508
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Table 1: Oligonucleotide sequences.

Name Sequence 5’-3’
B731 TAATATAATAGCGAACGTTGAGTACTAAAGTTTCCAAATTTCATAGAGAGTCC
B732 CTATGAAATTTGGAAACTTTAGTACTCAACGTTCGCTATTATATTAGCTAAGG
LC545 TCATTTCGAACCCCAGAGTC
LC327 CGCCTTCTTGACGAGTTCTT
F340 CTTCTTAAAGTTAAACAAAATTATTTCTAGAGG
F341 GAGATCCGGCTGCTAACAAAG
F342 GCTTCCTTTCGGGCTTTGTTAG
F343 GATAACAATTCCCCTCTAGAAATAATTTTG

3.9 Protein solubility measurements509

The recombinant plasmids were transformed into E. coli Rosetta cells. The transformants were510

grown in liquid Luria-Bertani medium containing chloramphenicol (20 µg/ml) plus ampicillin (100511

µg/ml) at 30°C until mid exponential phase (OD = 0.8-0.9). Isopropyl-β-D-thiogalactopyranoside512

(IPTG, 1 mM) was added to induce recombinant protein production and incubation was pursued513

for 3 h. Cells were resuspended in 1 ml of lysis buffer (Hepes 50 mM pH7.5, NaCl 0.4 mM,514

EDTA 1mM, DTT 1 mM, Triton X-100 0.5%, glycerol 10%), and then lysed on ice with a precellys515

homogenizer (Bertin Technologies) using the micro-organism lysing kit VK01 with the following516

conditions : 5 times for 30 s at 7800 rpm with 30 s of pause between homogeneization steps.517

Soluble proteins were separated from aggregated proteins and cellular debris by centrifugation at518

5000 g and 4 °C for 20 min. Pellets containing protein aggregates were resuspended in 1 ml of lysis519

buffer. For Western blot analysis, the samples were prepared in Laemmli buffer with addition of520

10% beta-mercaptoethanol and denatured at 95°C for 5 min. Soluble and insoluble fractions were521

run on a 4-12% Bis-Tris sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).522

Proteins were transferred to a nitrocellulose membrane (Invitrogen), which was blocked in 3%523

skim milk in PBS for 30 min and was successively incubated with primary (Anti-HisTag diluted524

1:500 or Anti-GroEL diluted 1:1000 in blocking buffer) antibody and secondary antibody (diluted525

1:10000) conjugated to DyLight 800 (Tebu), and detected under chemiluminescent imaging system526

(LI-COR Odyssey Instrument). The His tag was detected using the mouse monoclonal Anti-His-527

Tag antibody (Abcam). The GroEL control was detected with the mouse anti-GroEL monoclonal528

antibody (Abcam). Three washes for 5 min in PBS were performed after each incubation step. For529

dot blot analysis, 2% SDS and 10% β-mercaptoethanol were added to the samples before denaturing530

for 10 min at 95°C. 5µl of the denatured samples were directly spotted on the nitrocellulose531

membrane and the antibody hybridization performed as for the Western blot. Protein levels were532

calculated using the Image Studio software package.533

3.10 Code availability534

Python implementations of models and training procedure are available at https://github.535

com/alex-hh/deep-protein-generation536
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4 Supplementary Information713

Figure 1: Quantitaive analysis of solubility for each variant of LuxA in comparison with wild type
LuxA. A. LuxA tagged with a His-tag was quantify by western blot in the supernatant (S, soluble
fraction) and in the pellet (P, insoluble fraction) compared to the empty vector pET28. GroEL
was used as loading control. The His tag was detected using the mouse monoclonal Anti-His-
Tag antibody, whereas the GroEL control was detected with the mouse anti-GroEL monoclonal
antibody. The molecular mass are given in kilodaltons and indicated to the right of the membrane.
Arrowheads indicate the position of recombinant proteins. The levels of solubility for each variant
of LuxA generated from aligned (B) or raw (C) sequences were analysed by dot blotting. Aliquots
of 5 µl of soluble (S) and insoluble (P) fractions from IPTG-induced Rosetta cells overexpressing
variants of LuxA were spotted on nitrocellulose membrane and their intensities were quantified
using Image Studio software package. The dot blots of 4 technical replicates used to compute
solubility are shown.
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Table 1: Amino acid reconstruction accuracies on heldout clusters by cluster sequence identity
threshold used to construct train/test split. Baseline VAE is a baseline model with the same
architecture as MSA VAE, but the same latent dimension as AR-VAE, trained on raw sequence
data

Clustering threshold
30% 50% 70%

AR-VAE 33.4% 47.5% 54.6%
Baseline VAE 16.1% 28.4% 39.5%
MSA VAE 37.2% 54.7% 64.0%
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