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Abstract:  

Redox cofactor production is integral towards antioxidant generation, clearance 

of reactive oxygen species, and overall tumor response to ionizing radiation treatment. 

To identify systems-level alterations in redox metabolism which confer resistance to 

radiation therapy, we developed a bioinformatics pipeline for integrating multi-omics 

data into personalized genome-scale flux balance analysis models of 716 radiation-

sensitive and 199 radiation-resistant tumors. These models collectively predicted that 

radiation-resistant tumors reroute metabolic flux to increase mitochondrial NADPH 

stores and ROS scavenging. Simulated genome-wide knockout screens agreed with 

experimental siRNA gene knockdowns in matched radiation-sensitive and -resistant 
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cancer cell lines, revealing gene targets involved in mitochondrial NADPH production, 

central carbon metabolism, and folate metabolism that allow for selective inhibition of 

glutathione production and H2O2 clearance in radiation-resistant cancers. This systems 

approach represents a significant advancement in developing quantitative genome-

scale models of redox metabolism and identifying personalized metabolic targets for 

improving radiation sensitivity in individual cancer patients.  

 

Introduction: 

Radiation therapy remains a cornerstone of cancer treatment, with more than half 

of all cancer patients receiving radiation as part of their treatment regimen (Delaney et 

al., 2005; Miller et al., 2016). Nonetheless, tumor resistance to radiation therapy 

constitutes a significant obstacle to long-term cancer patient survival. More than one-

fifth of patients in The Cancer Genome Atlas (TCGA) database continued to show 

stable or progressive disease following radiation treatment, and almost all cancer types 

had some proportion of radiation-resistant patients (Weinstein et al., 2013). To 

investigate the underlying pathophysiological mechanisms of radiation resistance and 

discover targets for improving sensitivity to radiation therapy, correlative studies using 

single omics modalities such as genomics or transcriptomics have been previously 

performed (Chen et al., 2015; Lee et al., 2010; Manem and Dhawan, 2019; Skvortsov et 

al., 2014; Skvortsova et al., 2008; Smith et al., 2009). However, these previous findings 

fall short by failing to integrate multiple biological data types, analyze differential 

expression in the context of genome-scale biochemical and regulatory networks, or 

provide mechanistic insights into how prospective biomarkers impact tumor function and 
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can be exploited to improve radiation sensitivity.  

Redox metabolism relies on the oxidation and reduction of electron-carrying 

molecules such as NADPH, NADH, and glutathione (GSH), which are used as cellular 

antioxidants and electron donors for metabolic reactions (Lewis et al., 2019; Xiao et al., 

2018). These metabolites represent the reduced forms of redox couples with their 

associated oxidized forms NADP+, NAD+, and glutathione disulfide (GSSG), 

respectively; the ratio of reduced to oxidized forms of these redox couples provides an 

indication of the intracellular redox potential and oxidative state of the cell (Mallikarjun et 

al., 2012). Ionizing radiation therapy results in the generation of reactive oxygen species 

(ROS) such as superoxide (O2
-) and hydrogen peroxide (H2O2), which oxidize the 

cellular environment and damage cellular structures including DNA (Brady et al., 2013; 

Cadet and Wagner, 2013; Reisz et al., 2014; Tominaga et al., 2004). Redox cofactors 

such as NADPH and GSH can be utilized by H2O2-scavenging enzymes to lower 

cellular levels of ROS (Forshaw et al., 2019; Harris et al., 2015). Additionally, these 

cofactors can directly promote DNA damage repair following oxidative damage, either 

by reduction of nitrogenous bases or utilization of NAD(P)H for nucleotide synthesis 

(Alvarez-Idaboy and Galano, 2012; Chatterjee, 2013; Franklin et al., 2016; Turgeon et 

al., 2018). Since redox metabolism is critical to the response of tumors to ionizing 

radiation, identifying targets for inhibiting production of these redox cofactors may 

provide a valuable strategy for sensitizing tumors to radiation therapy (Lewis et al., 

2019). 

Because redox cofactors are utilized in thousands of reactions throughout the 

human metabolic network, computational methods are needed to investigate systems-
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level redox metabolism and its interconnections with other cellular metabolic pathways 

(Brunk et al., 2018). Flux balance analysis (FBA) is a computational approach for 

predicting steady-state metabolic fluxes at a genome scale for cells or tissues of interest 

(Orth et al., 2010). By combining the stoichiometric representation of the human 

metabolic network, constraints on the fluxes through metabolic reactions, and an 

objective function to maximize a particular metabolic phenotype, predictions of 

maximum reaction fluxes or metabolite production rates under physiological constraints 

are generated (Bordel, 2018; Oberhardt et al., 2010; Supandi and Van Beek, 2018). 

Recently, FBA models personalized to individual cancer cell lines or tumors have been 

developed through the integration of transcriptomic data; however, there remain 

significant methodological shortcomings in the construction of these models that have 

hindered their ability to yield accurate and quantitative metabolic predictions (Blazier 

and Papin, 2012). Commonly-used FBA algorithms such as GIMME, iMAT, MADE, and 

CORDA utilize arbitrary gene expression thresholds to constrain metabolic activity, 

necessitate the comparison of multiple transcriptomic datasets, or completely remove 

reactions from the metabolic network with low associated gene expression (Becker and 

Palsson, 2008; Jensen and Papin, 2011; Schultz and Qutub, 2016; Shlomi et al., 2008). 

Other methods such as E-Flux constrain maximum reaction fluxes in proportion to the 

associated enzyme’s gene expression, but arbitrary reference values and proportionality 

functions are still used to set flux constraints instead of directly estimating enzyme 

abundances (Colijn et al., 2009). Additionally, most FBA models fail to incorporate any 

kinetic or thermodynamic constraints, which greatly affect metabolic fluxes and the 

directionalities of individual reactions (Henry et al., 2007). These shortcomings in model 
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construction have ultimately limited the clinical utility of FBA models for accurately 

predicting metabolic phenotypes and directly improving cancer diagnosis and treatment 

(Zhang and Hua, 2015). 

We have resolved many of these limitations in FBA model development and 

utility by integrating transcriptomic, kinetic, and thermodynamic information into 

quantitative constraints on the maximum flux and directionality of metabolic reactions. In 

our previously-developed FBA models of radiation-sensitive and radiation-resistant 

head and neck squamous cell carcinoma (HNSCC) cell lines, we accurately identified 

oxidoreductase genes that differentially impacted response to treatment with the 

NADPH-dependent redox-cycling chemotherapeutic β-lapachone between radiation-

sensitive and -resistant cells (Lewis et al., 2018). Additionally, our models suggested 

that radiation-resistant cancer cells re-route NADH-generating metabolic fluxes through 

NAD salvage and purine salvage pathways involving NAMPT, an enzyme whose activity 

has previously been associated with radiation resistance and poor survival in cancer 

patients (Gujar et al., 2016; Lewis et al., 2019). Here, we extend this approach by 

developing an automated bioinformatics pipeline for integrating multi-omics information 

from The Cancer Genome Atlas (TCGA) and publically-available repositories into 

personalized genome-scale FBA models of 915 patient tumors across multiple cancer 

types. These personalized FBA models are used to investigate differences in redox 

cofactor production between radiation-sensitive and -resistant tumors, discover gene 

targets which differentially impact redox metabolism in radiation-resistant tumors, and 

identify personalized therapeutic strategies for individual radiation-resistant patients. 
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Results: 

An automated bioinformatics pipeline integrates multi-omics data into personalized FBA 

models of TCGA patient tumors 

The framework for building FBA models of tumor metabolism was initiated with 

the community-curated Recon3D human metabolic reconstruction (8,401 metabolites, 

13,547 reactions, and 3,268 genes; Figure 1A) (Brunk et al., 2018). The stoichiometric 

representation of this reconstruction is combined with minimum and maximum 

constraints on reaction fluxes to obtain a solution space for steady-state fluxes 

throughout the metabolic network. An objective function is typically utilized to narrow the 

possible FBA solution space to physiologically-optimal metabolic fluxes (Garcia 

Sanchez and Torres Saez, 2014). We hypothesized that tumors are under selective 

pressure to maximize production of reduced redox cofactors including NADPH, NADH, 

and GSH to decrease ROS-mediated damage induced by ionizing radiation; thus, we 

used an objective function of maximizing redox cofactor reduction. FBA is used to 

compare maximum cofactor reduction between radiation-sensitive and -resistant 

tumors, while flux variance analysis (FVA) is used to predict fluxes through individual 

metabolic reactions involved in cofactor reduction (Figure 1B). 

To generate personalized FBA models of radiation-sensitive and -resistant TCGA 

patient tumors, Michaelis-Menten Vmax constraints were set on all 4,367 Recon3D 

reactions that contain both a gene-protein-reaction (GPR) rule and enzyme commission 

(EC) number (Figure 1C). This constraint sets the maximum flux for each reaction 

(Vmax, units of mmol gDW-1 hr-1) equal to the kinetic rate constant of the enzyme 

catalyzing the reaction (kcat, units of hr-1), multiplied by the estimated protein abundance 
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of the enzyme ([E], units of mmol gDW-1). A custom protein prediction pipeline was 

developed to convert RNA-seq transcriptomic data from individual TCGA samples into 

estimated enzyme abundances ([E]) (Figure S1A). This pipeline takes advantage of 

models relating the mRNA and protein abundances for individual genes/proteins using 

experimentally-measured transcription, translation, and degradation rates 

(Schwanhausser et al., 2011). Predicted enzyme abundances from this pipeline had 

improved correlation with experimental protein expression values from both NCI-60 and 

TCGA datasets compared to original gene expression values (Figure S1B-I). 

Additionally, a custom kinetic rate pipeline was developed to extract physiologically-

accurate turnover numbers for metabolic enzymes (kcat) by matching experimentally-

measured values from the BRENDA database with the correct enzyme, substrate, 

organism, and environmental conditions as those in the Recon3D network (Figure S2) 

(Schomburg et al., 2004). Envision database scores were applied to predict the effect of 

mutations in individual TCGA samples on the catalytic rate of corresponding metabolic 

enzymes (Gray et al., 2018). Finally, standard transformed changes in Gibbs free 

energy (ΔG’°) from the Virtual Metabolic Human (VMH) database were used to set 

thermodynamic constraints, such that only reactions with a negative ΔG’° can carry non-

zero net fluxes (Noor et al., 2013).  These proteomic, kinetic, and thermodynamic 

constraints yield quantitative, patient-specific, and physiologically-accurate predictions 

of metabolic fluxes on a genome scale. 

RECIST classification of TCGA samples provided an evaluation metric of 

radiation sensitivity based on changes in tumor size in response to radiation therapy 

(Figure 1D). Patients with a complete or partial response to radiation (greater than 30% 
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decrease in tumor size) were classified as radiation-sensitive, and patients with stable 

or progressive disease (either less than 30% decrease in tumor size, or increase in 

tumor size) were classified as radiation-resistant. Using this classification, 716 

personalized FBA models of radiation-sensitive tumors and 199 personalized models of 

radiation-resistant tumors were generated. 

 

Radiation-resistant tumors display compartmental differences in redox metabolic fluxes 

compared to radiation-sensitive tumors 

Personalized FBA models were first used to compare differences in redox 

cofactor production between radiation-sensitive and -resistant tumors. Radiation-

resistant tumor models showed significantly elevated production of reduced cofactors 

NADPH, NADH, and GSH (Figure 2A). To validate model predictions, we performed 

experimental measurements in matched pairs of radiation-sensitive and -resistant cell 

lines across three different cancer types (Figure 2B, Table S1).   Two of the three 

radiation-resistant cell lines had significantly more reduced glutathione half-cell 

potentials (Ehc GSH/GSSG) than their matched radiation-sensitive cell line, indicating 

greater conversion of oxidized GSSG to reduced GSH as predicted in TCGA models 

(Figure 2C). Although BRCA cell lines showed the opposite trend, the observed Ehc 

difference was much smaller than in the other two cancer types and could be attributed 

to compensation for NQO1 depletion by increased expression of other antioxidant 

enzymes involved in glutathione reduction or which bypass the need for GSH (e.g. 

peroxiredoxin or thioredoxin systems) (Cao et al., 2014). While predicted cytosolic 

production of NADPH did not differ between tumor classes, increased mitochondrial 
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NADPH production in radiation-resistant tumors accounted for observed differences in 

total cellular NADPH production (Figure 2D). In agreement with this finding, increased 

deoxynucleotide production (which relies on mitochondrial NAD(P)H) was seen in 

radiation-resistant tumor models, while no significant differences in production of fatty 

acid precursors including palmitate (which relies on cytosolic NAD(P)H) were observed 

(Figure S3A-B) (Jones, 1980; Lewis et al., 2014; Schnell et al., 2004; Turgeon et al., 

2018). 

Flux variance analysis (FVA) was used to compare fluxes through major NADPH-

generating metabolic reactions between radiation-sensitive and -resistant tumors 

(Figure 2E-F). Predicted fluxes through major cytosolic reactions including G6PD and 

PGD were greater in radiation-sensitive tumors, in agreement with our previously 

identified flux distributions in radiation-sensitive HNSCC cell lines as well as 

experimental findings (Lewis et al., 2018; Mims et al., 2015). On the other hand, 

predicted fluxes through major mitochondrial and folate-dependent reactions including 

GLUD1/2, ME2/3, NNT, IDH2, MTHFD2, and MTHFD1 were greater in radiation-

resistant tumors, accounting for net increased NADPH production in these tumors. 

Hierarchical clustering of NADPH-producing fluxes yielded pronounced separation of 

cytosolic and mitochondrial reactions except for the folate-dependent reactions 

MTHFD1 and MTHFD2, both of which displayed increased fluxes in radiation-resistant 

tumor models (Figure 2G). Clustering of samples based on radiation response was 

found to be optimal compared to other clinical factors including cancer type as 

measured by the silhouette coefficient (Figure S3C). Collectively, these results suggest 

that differences in mitochondrial- and folate-dependent NADPH metabolism can 
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discriminate between radiation-sensitive and -resistant tumors. 

 

Simulated genome-wide knockout screen identifies targets of redox metabolism in 

radiation-resistant cancers 

FBA models enable the assessment of changes in metabolic fluxes in response 

to knockout of a particular metabolic enzyme-encoding gene, providing insight into the 

gene’s role within genome-scale metabolism (Figure 3A). A simulated genome-wide 

knockout screen was performed to predict the effect of knocking out each individual 

gene in Recon3D on total cellular NADPH production across all TCGA models (Figure 

3B). Most gene knockouts did not significantly decrease total NADPH production, 

corroborating our previous findings that metabolic networks redirect flux through 

alternate, compensatory pathways following perturbation to optimize NADPH production 

(Lewis et al., 2018). Among the knockouts with largest predicted effects were genes 

directly involved in NADPH generation (G6PD, GLUD1, ME1), as well as those involved 

in glycolysis (ALDOA, ENO1, GAPDH, GPI, HK1, PGAM1, PKM), folate metabolism 

(DHFR), and amino acid metabolism (PYCR2). 

A statistical comparison of gene knockout effect on NADPH production between 

radiation-sensitive and -resistant tumors was performed to identify redox metabolic 

targets selective for radiation-resistant tumors (Figure 3C). 26 gene knockouts caused 

a significantly greater decrease in NADPH production among radiation-resistant tumors, 

including those involved in mitochondrial and folate-dependent NADPH metabolism 

(GLUD1/2, IDH2, ME2, MTHFD1, MTHFR) as well as many aldehyde dehydrogenase 

genes (ALDH1L1, ALDH1L2, ALDH5A1); many of these targets are consistent with 
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those previously implicated in the response of radiation-resistant HNSCC to NADPH-

depleting chemotherapies (Lewis et al., 2018). 24 gene knockouts caused a significantly 

greater decrease in NADPH production among radiation-sensitive tumors, including 

those of the pentose phosphate pathway (G6PD, PGD, PGLS, RPE, RPIA, TALDO1, 

TKT). While many targets with differential effects on NADPH production were also found 

to differentially impact GSH production between radiation-sensitive and -resistant tumor 

models, some notable differences were observed (Figure 3D, Figure S4A). Whereas 

pentose phosphate pathway genes were not predicted to significantly affect GSH 

production, those involved in the TCA cycle (DLST, FH, OGDH, SDHA, SUCLG2), 

oxidation-reduction reactions (AKR1A1, GSR, PRDX6), and glycine metabolism (AMT, 

GCSH, GLDC) were identified; glycine metabolism has been previously shown to 

impact GSH/GSSG ratios and ROS levels in cancer (Zhuang et al., 2018). Additionally, 

folate metabolism genes MTHFD1 and MTHFR had larger impacts on NADPH 

production in radiation-resistant tumor models but impacted GSH production to a 

greater extent in radiation-sensitive models, possibly attributing to folate and NADPH’s 

role in other metabolic pathways including nucleotide synthesis (Fan et al., 2014). 

To validate model-predicted targets of glutathione metabolism, the change in 

glutathione half-cell potential (ΔEhc GSH/GSSG) between siRNA knockdown cells and 

negative control siRNA-transfected cells was measured in both radiation-sensitive and -

resistant cell lines for 18 different gene targets (Figure 3E). 4 out of 6 model-predicted 

radiation-resistant targets (ALDH4A1, GLUD1, GLUD2, LDHB) had an overall more 

oxidizing effect in radiation-resistant cell lines, with GLUD1 having the largest 

differential oxidizing effect across all siRNA’s tested (Figure 3F). Additionally, the 4 
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radiation-sensitive targets with the largest predicted differential effect size (GSR, 

PRDX6, MTHFR, and SUCLG2) all had an overall more oxidizing effect in radiation-

sensitive cell lines. These results suggest that FBA models of TCGA tumors can be 

used to predict gene targets which differentially impact redox cofactor production 

associated with radiation sensitivity. 

 

Disparities in redox metabolism and H2O2-scavenging systems between radiation-

sensitive and -resistant tumors determine differential ROS response 

By utilizing an FBA objective function maximizing H2O2 clearance, radiation-

resistant tumor models predicted increased H2O2-scavenging potential compared to 

radiation-sensitive tumors (Figure 4A). To validate model predictions of H2O2 response, 

matched radiation-sensitive and -resistant cell line pairs were treated for 2 hours with 10 

mU/mL of the H2O2-generating enzyme glucose oxidase (Adimora et al., 2010; Bankar 

et al., 2009; Daniela et al., 2015). All cell lines showed decreased viability with glucose 

oxidase treatment, but 2 out of the 3 radiation-resistant cell lines showed a significantly 

lesser decrease in relative cell viability compared to their matched radiation-sensitive 

cell lines (Figure 4B). These findings were consistent with experimentally-measured 

differences in glutathione half-cell potential (Figure 2C). FVA was used to compare 

fluxes through major H2O2-clearing reactions between radiation-sensitive and -resistant 

tumors, accounting for enzyme isoform differences between cellular compartments 

(Figure 4C). Mitochondrial H2O2-clearing fluxes through catalase (CAT), glutathione 

peroxidase (GPx) and glutaredoxin (Grx) were significantly greater in radiation-resistant 

tumor models, in agreement with previous model predictions of increased mitochondrial 
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NADPH production. 

A simulated genome-wide knockout screen was performed to identify gene 

targets with greater effects on H2O2 clearance in radiation-resistant tumors (Figure 4D, 

Figure S4B). While CAT was the only significant gene with direct H2O2-scavenging 

function, many gene targets of NADPH production were predicted to have significant 

differential effects on H2O2 clearance. Radiation-sensitive targets included members of 

the pentose phosphate pathway (G6PD, PGD, PGLS, RPE, RPIA, TALDO1, TKT) 

whereas radiation-resistant targets included genes involved in mitochondrial and folate-

dependent NADPH production (GLUD1/2, MTHFD1, MTHFD2, MTHFR) and central 

carbon metabolism (ACO2, ALDOC, GAPDH, PGAM2, PKM). To validate these targets, 

Bliss independence scores indicating the effect of siRNA gene knockdown on glucose 

oxidase response were measured in radiation-sensitive and -resistant cell lines for 9 

different gene targets (Figure 4E).  3 of the model-predicted radiation-resistant targets 

(GLUD1, MTHFD1, and PGAM2) had the largest differential response in radiation-

resistant cell lines across all siRNA’s tested (Figure 4F). Furthermore, a larger 

differential response to ALDH1L1 knockdown was observed in 2 of the 3 radiation-

resistant cell lines, as predicted by FBA models. TCGA models accurately predicted that 

MTHFD1 knockdown would have a greater effect on GSH production in radiation-

sensitive cancers but greater effect on H2O2 response in radiation-resistant cancers, 

suggesting that FBA models accurately capture other metabolic systems which impact 

ROS clearance besides glutathione-dependent pathways (Forshaw et al., 2019). 

Overall, the observed agreement between FBA model predictions and experimental 

validation demonstrates the ability to correctly identify targets of redox metabolism 
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which differentially impact radiation-resistant cancers. 

 

Personalized metabolic flux profiles highlight heterogeneity in redox metabolism 

between radiation-resistant tumors 

Although radiation-resistant tumor models displayed overall differences in redox 

metabolism compared to radiation-sensitive models, patient tumors may exemplify 

divergent metabolic flux profiles and thus differences in optimal therapeutic strategies 

for improving radiation sensitivity (Kim and DeBerardinis, 2019). To determine if patient 

clinical information could be used to distinguish radiation-resistant tumor models with 

differing metabolic phenotypes, we evaluated the correlation between clinical factors 

and predicted fluxes through major NADPH-generating reactions (Figure 5A). While 

cancer type, patient age, and tumor grade were highly correlated with predicted fluxes 

through most reactions, other clinical factors were associated with a few select 

reactions. Smoking history was highly associated with G6PD and PGD fluxes, in 

agreement with previous experimental studies showing that exposure to cigarette 

smoke causes upregulation of G6PD and shifts glucose metabolism towards the 

pentose phosphate pathway for increased NADPH production (Agarwal et al., 2014; 

Noronha-Dutra et al., 1993). Additionally, response to cisplatin treatment was highly 

associated with fluxes through mitochondrial reactions IDH2 and NNT; treatment with 

cisplatin has been previously reported to induce a mitochondrial-ROS response, which 

could lead to upregulation of mitochondrial NADPH-generating enzymes (Choi et al., 

2015; Marullo et al., 2013). 

To investigate whether patients with similar clinical features also displayed 
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similarities in tumor redox metabolism, we evaluated personalized metabolic flux 

profiles of radiation-resistant patients with head and neck squamous cell carcinoma, a 

cancer type characterized by high genetic and metabolic heterogeneity (Figure 5B) 

(Chen et al., 2018). Predicted fluxes through NADPH-generating reactions differed 

substantially between patients with very similar clinical features; while some tumor 

models showed increased NADPH generation through single reactions (TCGA-T2-

A6WZ: G6PD; TCGA-CN-6998: ME1), others showed increased fluxes through multiple 

disparate reactions (TCGA-HD-8224: ME1, ME2/3, NNT). These stark differences in 

redox metabolism among patients with similar clinical and demographic attributes 

demonstrate the utility of personalized genome-scale metabolic models for identifying 

therapeutic targets in individual patients. 

 

Discussion: 

Identifying redox metabolic targets which impact radiation sensitivity through 

modulation of antioxidant levels and oxidative DNA damage is an ongoing challenge 

(Spitz et al., 2004). Flux balance analysis (FBA) is a genome-scale metabolic modeling 

approach that has gained attraction for building mechanistic models of cancer 

metabolism and identifying chemotherapeutic targets (Folger et al., 2011; Nilsson and 

Nielsen, 2017; Yizhak et al., 2014). Because redox cofactors are involved in thousands 

of reactions throughout the human metabolic network, genome-scale FBA models are 

well-suited to study redox metabolism and their interconnections with other metabolic 

processes (Brunk et al., 2018). Nonetheless, few studies have used FBA models for 

studying cancer redox metabolism. A notable example is that of Benfeitas et al., who 
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developed FBA models of hepatocellular carcinomas (HCC) to characterize 

heterogeneity in redox metabolism between HCC tumors at differing stages of 

progression and within different HCC tumor clusters (Benfeitas et al., 2019). Using 

these models, the authors discovered distinct differences in NADPH production and 

H2O2 clearance between HCC tumors with high G6PD expression and those with high 

ALDH2 expression. However, their use of the MADE algorithm for converting 

transcriptomic data into upper flux bounds results in discrete reaction constraints which 

lack quantitative accuracy compared to using continuous enzyme abundance values. 

Furthermore, kinetic and thermodynamic effects on reaction constraints, which have 

significant impacts on metabolic fluxes, were not present in these models (Henry et al., 

2007).  

Our bioinformatics and metabolic modeling pipeline represents, to our 

knowledge, the first study to integrate multiple omics datasets into human genome-

scale mechanistic models to compare redox metabolism between radiation-sensitive 

and -resistant tumors, as well as to identify therapeutic biomarkers for improving 

radiation therapy response. Methodological shortcomings of previous FBA studies are 

overcome by incorporating transcriptomic and mutational data from individual patient 

tumors, as well as genome-scale kinetic and thermodynamic parameter values, into 

quantitative constraints on metabolic fluxes, allowing for more accurate metabolic 

predictions (Figure 1). FBA models of radiation-resistant TCGA tumors showed 

increased fluxes through mitochondrial NADPH-producing reactions, allowing for 

elevated mitochondrial stores of reduced redox cofactors as well as increased fluxes 

through mitochondrial H2O2-clearing reactions (Figures 2, 4). Mitochondrial NADPH-
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producing enzymes identified from this study, including GLUD1, IDH2, ME2, and NNT, 

have been previously implicated in regulation of oxidative stress and tumor proliferation; 

additionally, mitochondrial-specific compartmentalization of signaling and energy 

metabolism has been previously identified to impact chemotherapy and radiation 

response (Ciccarese and Ciminale, 2017; Hsieh et al., 2015; Jin et al., 2015; Porporato 

et al., 2018; Stein et al., 2014; Yin et al., 2012). Simulated genome-wide knockout 

screens and validation with experimental siRNA knockdown experiments suggest that 

enzymes involved in mitochondrial (GLUD1/2) and folate-dependent (MTHFD1) NADPH 

production and central carbon metabolism (LDHB, PGAM2) may be viable targets for 

inhibiting GSH production and/or H2O2 clearance in radiation-resistant tumors (Figures 

3, 4). On the other hand, G6PD, the most well-characterized NADPH-producing 

reaction, exemplified larger fluxes in radiation-sensitive tumor models and showed lower 

experimental effects on targeted H2O2 clearance in radiation-resistant cell lines 

compared to the aforementioned gene targets. Interestingly, the G6PD cluster identified 

by Benfeitas et al. in HCC is highly enriched in genes identified from this current study 

as radiation-sensitive targets (ALDOA, G6PD, PGD, RPE, RPIA), whereas the ALDH2 

cluster is highly enriched in genes identified as radiation-resistant targets (ALDH2, 

ALDH5A1, ALDH6A1, CAT, MTHFD1, SHMT1) (Benfeitas et al., 2019). Despite the fact 

that the authors were not analyzing redox metabolism in the context of radiation 

sensitivity, this correspondence between gene sets from separate analyses may 

suggest that there exist two fundamental tumor subtypes with distinct redox metabolic 

phenotypes and corresponding radiation sensitivities. 

By developing FBA models of individual patient tumors, personalized metabolic 
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flux profiles were generated to identify patient-specific redox biomarkers (Figure 5). 

These personalized metabolic predictions also demonstrate the significant amount of 

heterogeneity in redox metabolism between patient tumors. While the majority of 

initiatives for precision medicine for cancer treatment has focused on mutations and 

expression differences in signaling pathway proteins, there is currently a greater focus 

on exploiting metabolic differences between patient tumors (DeBerardinis and Chandel, 

2016; Kanarek et al., 2018; Kanarek et al., 2020). For example, heterogeneity in 

glycolytic metabolism is being used to identify diagnostic biomarkers and treatment 

strategies for both pancreatic cancer and acute myeloid leukemia patients (Follia et al., 

2019; Stuani et al., 2019). Personalized nutrition may also be a viable strategy for 

manipulating tumor redox metabolism in individual patients; most NADPH-generation 

pathways are supplied by glucose and glutamine intake, and folic acid levels may 

impact folate-dependent reactions (Choi and Park, 2018; Wallace et al., 2019). 

Continued development of genome-scale metabolic models of individual patient tumors 

will undoubtedly aid in the identification of metabolic targets or optimal dietary strategies 

for individual cancer patients. 

Although our bioinformatics and modeling approach towards using multi-omics 

data for predicting metabolic phenotypes in individual patient tumors represents a 

significant methodological advancement over previous FBA models, additional 

improvements and integrations with other modeling strategies would further improve its 

accuracy and applicability. Currently, rates of metabolite transport through specific 

plasma membrane transporters are much less characterized than turnover rates of 

intracellular metabolic enzymes, limiting the implementation of quantitative transport 
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constraints (Schomburg et al., 2004). Unless experimentally-measured metabolite 

uptake rates from samples of interest are obtained, constraints on uptake reactions are 

commonly set as binary (i.e. if a metabolite is present in the extracellular medium, 

intracellular uptake is unconstrained; otherwise, uptake is set to zero). A potential 

approach towards setting quantitative uptake constraints would be to relate membrane 

transporter expression with experimentally-measured extracellular metabolite 

concentrations (for example, from cell culture media or patient blood samples) to predict 

individualized metabolite uptake rates. In addition, regarding the application of FBA 

models towards studying redox metabolism, integration of important redox signaling and 

regulatory networks such as the Nrf2/Keap1/ARE pathway through methods such as 

integrated FBA (iFBA) could improve the accuracy of predicted reaction fluxes which 

utilize ARE-regulating genes including G6PD, IDH1, ME1, and PGD (Covert et al., 

2008; Jaramillo and Zhang, 2013; Kansanen et al., 2013; Lee et al., 2008; Lin et al., 

2016). 

Despite the recent increase in experimental metabolomics studies towards 

identifying altered metabolic phenotypes in cancer, an integrated assessment of the 

13,000+ human metabolic reactions and their collective impact on individualized 

treatment response is currently infeasible using solely experimental approaches 

(Kaushik and DeBerardinis, 2018). Instead, computational approaches which integrate 

multi-omics measurements and global reconstructions of human metabolism into 

predictive models provide tremendous utility in improving our understanding of 

pathophysiological processes and discovering personalized metabolic targets (Nilsson 

and Nielsen, 2017). Our analysis indicates that genome-scale metabolic models of 
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individual patient tumors can identify important differences in redox metabolism 

between radiation-sensitive and -resistant tumors. Specifically, by comparing properties 

of 716 radiation-sensitive and 199 radiation-resistant personalized tumor models, we 

have elucidated multiple mechanisms of how tumors can upregulate metabolic flux 

through mitochondrial NADPH-generating and H2O2-clearing reactions to increase 

cellular antioxidant stores, decrease ROS levels, and resist the damaging effects of 

ionizing radiation treatment. These model-identified targets significantly impact 

antioxidant production and ROS response, thus serving as putative biomarkers for the a 

priori prediction of radiation sensitivity, as well as therapeutic strategies for sensitizing 

tumors to radiation therapy. Ultimately, the development of personalized metabolic 

models has the potential to facilitate the clinical management of cancer patients and 

improve long-term outcomes. 
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Figure Legends: 

Figure 1. An automated bioinformatics pipeline integrates multi-omics data into 

personalized FBA models of TCGA patient tumors. (A) Implementation of flux balance 

analysis (FBA), including utilization of a stoichiometric representation of the Recon3D 

human metabolic network reconstruction, application of reaction constraints to obtain a 

solution space of flux values, and maximization of an objective function within this valid 

solution space. (B) Flux balance analysis (FBA) calculates the objective value, i.e., the 

maximum value of the objective function. Flux variance analysis (FVA) calculates the 

minimum and maximum possible fluxes through each metabolic reaction while 

maintaining the objective function at its maximum value. (C) Pipeline for integrating 

multi-omics data from The Cancer Genome Atlas (TCGA) and publically-available 

repositories into personalized FBA models of TCGA patient tumors. (D) Classification of 

TCGA patient tumors into radiation-sensitive and -resistant classes based on observed 

decrease/increase in tumor size following radiation therapy. See also Figures S1-S2. 

Figure 2. Radiation-resistant tumors display compartmental differences in redox 

metabolic fluxes compared to radiation-sensitive tumors. (A) Comparison of FBA-

predicted production of reduced NADPH, NADH, and GSH between radiation-sensitive 
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and -resistant TCGA tumors. (B) Matched pairs of radiation-sensitive and -resistant cell 

lines across multiple cancer types for experimental validation. (C) Experimentally-

measured glutathione half-cell potential in cancer cell lines. (D) Comparison of FBA-

predicted cytosolic and mitochondrial production of reduced NADPH. (E) Major NADPH-

producing reactions with their associated cellular compartments and metabolic 

pathways. (F) FVA-predicted fluxes through major NADPH-producing reactions. IDH1 

fluxes were separated between tumors with IDH1 R132 mutations (left) and wild-type 

IDH1 tumors (right). Reaction names are colored based on cellular compartment. (G) 

Hierarchical clustering of FVA-predicted fluxes based on TCGA patient tumor (rows) 

and NADPH-producing reaction (columns). Values are the Z-score of reaction fluxes 

across all tumors for each individual reaction. ns: not significant, *: p ≤ 0.05, **: p ≤ 0.01, 

***: p ≤ 0.001, ****: p ≤ 0.0001. See also Figure S3, Table S1. 

Figure 3. Simulated genome-wide knockout screen identifies targets of redox 

metabolism in radiation-resistant cancers. (A) Schematic comparing maximum total 

NADPH production between WT (left) and G6PD-knockout (right) models for individual 

patient tumors. Note that for reactions with more than one associated gene (e.g. 

GLUD1/2 reaction), only one gene is knocked out at a time. (B) Effect of simulated 

knockout of each individual gene in Recon3D on total NADPH production in TCGA 

tumors. Values are the ratio of total NADPH production after versus before knockout. 

Genes are rank ordered based on increasing mean KO/WT ratio (decreasing gene 

knockout effect) across all tumor models. Outset: KO/WT ratios are averaged across all 

tumor models. Inset: For the top 15 genes, KO/WT ratios from individual patient tumor 

models are shown, along with the comparison between radiation-sensitive and -
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resistant cohorts. (C) Volcano plot comparing the effect of each simulated gene 

knockout (individual dot) on total NADPH production between radiation-sensitive and -

resistant tumors. X-axis: log2(Resistant/Sensitive), where “Resistant” equals the mean 

(WT-KO)/WT ratio in radiation-resistant tumors, and “Sensitive” equals the mean (WT-

KO)/WT ratio in radiation-sensitive tumors; values < 0 (green dot on the left of the 

dotted line) signify knockouts with greater effects on total NADPH production in 

radiation-sensitive tumors, whereas values > 0 (red dot on the right of the dotted line) 

signify knockouts with greater effects on total NADPH production in radiation-resistant 

tumors. Y-axis: statistical significance (false discovery rate-adjusted p-values based on 

the Benjamini-Hochberg procedure) comparing knockout effects between radiation-

sensitive and -resistant tumors; values above the dotted line (FDR-adjusted p-value ≤ 

0.05) are statistically-significant. The size of each dot is proportional to the overall effect 

size (mean (WT-KO)/WT ratio across all tumor models regardless of radiation 

sensitivity). (D) Volcano plot comparing the effect of each simulated gene knockout on 

total reduced GSH production between radiation-sensitive and -resistant tumors. Genes 

tested by experimental siRNA knockdown studies are bolded.  (E) Schematic 

demonstrating the measurement of ΔEhc GSH/GSSG (difference in glutathione half-cell 

potential between siRNA knockdown and negative control) in radiation-sensitive and -

resistant cancer cell lines. (F) Comparison of model-predicted and experimentally-

measured effects of gene knockdown on reduced GSH production. Top 3 rows: 

ΔEhcRes - ΔEhcSens in siRNA knockdowns across all three cell line pairs. ΔEhcRes - 

ΔEhcSens > 0 for gene knockdowns causing greater oxidation in the radiation-resistant 

cell line, corresponding to a model-predicted log2(Resistant/Sensitive) > 0. Middle row: 
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t-statistic from 1-sample t-test comparing the three experimentally-measured values of 

ΔEhcRes - ΔEhcSens to the null hypothesis population mean of zero (equal effect in 

radiation-sensitive and -resistant cell lines). Bottom row: model-predicted log fold 

change in gene knockout effect on reduced GSH production between radiation-resistant 

and -sensitive TCGA tumor models. ns: not significant, *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 

0.001, ****: p ≤ 0.0001. See also Figure S4A. 

Figure 4. Disparities in redox metabolism and H2O2-scavenging systems 

between radiation-sensitive and -resistant tumors determine differential ROS response. 

(A) Comparison of FBA-predicted total clearance of H2O2 between radiation-sensitive 

and -resistant TCGA tumors. (B) Experimentally-measured response of radiation-

sensitive and -resistant cancer cell lines to 2 hr treatment of 10 mU/mL glucose oxidase, 

calculated as the relative cell viability compared to 0 mU/mL glucose oxidase. Data are 

represented as mean ± 1 standard error. (C) FVA-predicted fluxes through major H2O2-

clearing reactions. Inset: Major H2O2-clearing reactions with their associated cellular 

compartments and compartment-specific isoforms. (D) Volcano plot comparing the 

effect of each gene knockout on total H2O2 clearance between radiation-sensitive and -

resistant tumors. Genes tested by experimental siRNA knockdown studies are bolded. 

(E) Schematic showing the measurement of Bliss independence scores in radiation-

sensitive and -resistant cancer cell lines. (F) Comparison of model-predicted and 

experimentally-measured effects of gene knockdown on H2O2 clearance. Top 3 rows: 

BlissSens - BlissRes in siRNA knockdowns across all three cell line pairs. BlissSens - 

BlissRes > 0 for gene knockdowns causing a greater decrease in cell viability with 

glucose oxidase treatment in the radiation-resistant cell line, corresponding to a model-
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predicted log2(Resistant/Sensitive) > 0. Middle row: t-statistic from 1-sample t-test 

comparing the three experimentally-measured values of BlissSens - BlissRes to the null 

hypothesis population mean of zero (equal effect in radiation-sensitive and -resistant 

cell lines). Bottom row: model-predicted log fold change in gene knockout effect on 

H2O2 clearance between radiation-resistant and -sensitive TCGA tumor models. ns: not 

significant, *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001. See also Figure 

S4B. 

Figure 5. Personalized metabolic flux profiles highlight heterogeneity in redox 

metabolism between radiation-resistant tumors. (A) Correlation between patient clinical 

factors and predicted fluxes through major NADPH-producing reactions among 

radiation-resistant patients. Values are represented as the p-value of either the 

univariate regression (for numerical factors) or 1-way ANOVA (for categorical factors) 

between reaction fluxes and clinical factor values. Statistically significant (p ≤ 0.05) 

associations are represented with black borders. (B) Personalized NADPH-generating 

flux profiles of 3 radiation-resistant HNSCC patients with their associated clinical 

factors. Radar chart values are the percentiles of reaction fluxes across all radiation-

resistant tumors for each individual reaction. Patient profiles (red, filled) are shown 

overlaid on top of the profiles of all other radiation-resistant HNSCC tumors (black, not 

filled).  
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Methods: 

RESOURCE AVAILABILITY 

Lead Contact 

Further information and requests for resources and reagents should be directed 

to and will be fulfilled by the Lead Contact, Melissa L. Kemp 

(melissa.kemp@bme.gatech.edu). 

Materials Availability 

 This study did not generate new unique reagents. 

Data and Code Availability 

 Code for the generation and simulation of personalized FBA models is available 

at https://github.com/kemplab/FBA-pipeline.  Personalized models can be developed for 

any human sample (such as cell lines or patient tumors) with RNA-seq gene expression 

data, and mutation data if available. Jupyter notebooks are available for 1) processing 

of sample RNA-seq data to estimate enzyme abundance values, 2) processing of 

sample mutation data to estimate kinetic rate parameters, and 3) running FBA analysis 

with user-specified analysis type, model constraints, media constraints, objective 

function, and samples of interest. TCGA tumor models developed for this study are 

available as well. 

 The following datasets are available at https://github.com/kemplab/FBA-pipeline: 

• Dataset 1. NADPH-generating fluxes for TCGA tumor models [mmol/gDW/hr] 

(Related to Figure 2) 

• Dataset 2. Simulated effect of gene knockout on NADP+ � NADPH [KO/WT] 

(Related to Figure 3) 
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• Dataset 3. Simulated effect of gene knockout on GSSG � GSH [KO/WT] 

(Related to Figure 3) 

• Dataset 4. Comparison of model-predicted and experimentally-validated GSSG 

� GSH gene targets (Related to Figure 3) 

• Dataset 5. Simulated effect of gene knockout on H2O2 �  [KO/WT] (Related to 

Figure 4) 

• Dataset 6. Comparison of model-predicted and experimentally-validated H2O2 �  

gene targets (Related to Figure 4) 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Cell Lines 

 Table S1 provides the matched radiation-sensitive and radiation-resistant human 

cancer cell lines used for experimental validation of model predictions. All cell lines were 

maintained in RPMI-1640 cell culture media (Thermo Fisher Scientific, Cat#11875) with 

10% fetal bovine serum (Sigma-Aldrich, Cat#F4135) at 37°C and 5% CO2, and were 

free of Mycoplasma. 

  

METHOD DETAILS 

Flux Balance Analysis (FBA) 

A metabolic network can be represented by a stoichiometric matrix S of size m x 

r, where m and r are the number of metabolites and reactions in the network, 

respectively. Entry Sij is equal to the stoichiometric coefficient of metabolite i in reaction j 

(Sij < 0 for reactants, > 0 for products, and = 0 if metabolite i is not involved in reaction 
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j). The relationship between reaction fluxes and metabolite concentrations in the 

network can be written as: 

 �� �
��

��
 (1) 

where v is a r x 1 vector of reaction fluxes, and m is a m x 1 vector of metabolite 

concentrations. In flux balance analysis, the steady state is assumed (metabolite 

concentrations do not change with time), changing Equation 1 to: 

 �� � 0 (2) 

Each reaction flux vj is also constrained by lower and upper bounds: 

 ����,� 	 �� 	 ����,� (3) 

The solutions to Equations 2 and 3 that maximize a particular objective function f(v) are 

chosen. Thus, the flux balance analysis problem can be represented as a Linear 

Programming (LP) optimization problem: 

 
max ��� 

subject to �� � 0 

��� ����,� 	 �� 	 ����,�

 (4) 

Solving Equation 4 provides the maximized value fmax of the objective function. Gurobi 

8.0 optimization software was used to solve these LP problems. 

 

Flux Variance Analysis (FVA) 

Flux variance analysis allows for calculation of the minimum and maximum 

allowable fluxes through each metabolic reaction while still maintaining the maximum 

possible objective function value fmax: 

 min/ max ��  s.t.  ��� � max (5) 
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The average flux through each metabolic reaction was estimated by taking the mean of 

the minimum and maximum fluxes calculated from Equation 5. 

 

Objective Functions 

To maximize the production of a particular metabolite in the metabolic network, 

an artificial demand reaction can be added to the network, and the flux through this new 

objective function reaction can be maximized. This in turn maximizes the fluxes through 

other reactions throughout the metabolic network that produce the metabolite. FBA 

provides the objective value, i.e. the maximum amount of metabolite that can be 

produced, and FVA provides the fluxes through metabolic reactions which produce the 

metabolite. To maximize the reduction of a metabolite from its oxidized to reduced form, 

the objective function consists of an artificial demand reaction consisting of the oxidation 

of the metabolite - this in turn maximizes the fluxes through other metabolic reactions 

that reduce the metabolite. 

For example, to maximize the reduction of NADP+ to NADPH in the cytosol, the 

objective function would be: 

 NADPH$c% & NADP�$c%' H�$c% (6) 

To maximize the production of a metabolite in all cellular compartments, separate 

objective functions for each compartment with the same weight were simultaneously 

maximized. Table S2 lists the objective functions used in FBA and FVA. To ensure that 

biologically viable solutions were obtained, all models were checked to ensure that they 

were capable of producing physiological ATP levels typical of mammalian cells (1.0625 
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mmol gDW-1 hr-1) while maximizing the imposed objective functions (Kilburn et al., 

1969). 

 

Metabolic Network 

Recon 3D version 3.01 was used as the core metabolic network (Brunk et al., 

2018). While the “full” version (Recon3D_301.mat) produced erroneous energy-

generating cycles (e.g. producing ATP without uptake of any metabolic precursors), the 

“model” version (Recon3DModel_301.mat) was found not to be the largest subset of 

reactions without erroneous energy-generating cycles (additional reactions from the 

“full” version could be added). To this end, following the procedure outlined in 

Fritzemeier et al., reactions from the “full” version were sequentially added back into the 

“model” version as long as they did not result in erroneous energy-generating cycles 

(Fritzemeier et al., 2017). 

To address missing and inaccurate redox-based reaction information within 

Recon3D, the following changes were made: 

1. The reaction “FTHFDH” was split into two separate cytosolic and mitochondrial 

reactions. The cytosolic reaction is catalyzed by ALDH1L1, and the mitochondrial 

reaction is catalyzed by ALDH1L2. 

Originally: 

� 1 10fthf[c] +1  h2o[c] + 1 nadp[c] � 1 co2[c] + 1 h[c] + 1 nadph[c] + 1 thf[c] 

GPR: 10840.1 or 160428.1 

EC: 1.5.1.6 

 Updated: 
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� 1 10fthf[c] + 1 h2o[c] + 1 nadp[c] � 1 co2[c] + 1 h[c] + 1 nadph[c] + 1 thf[c] 

GPR: 10840.1 

EC: 1.5.1.6 

� 1 10fthf[m] + 1 h2o[m] + 1 nadp[m] � 1 co2[m] + 1 h[m] + 1 nadph[m] + 1 

thf[m] 

GPR: 160428.1 

EC: 1.5.1.6 

2. MTHFR was removed from the GPR associated with reaction “MTHFD”. MTHFR 

catalyzes the reaction converting 5,10-methylenetetrahydrofolate to 5-

methyltetrahydrofolate, which is already included in Recon3D. 

Originally: 

� 1 mlthf[c] + 1 nadp[c] �� 1 methf[c] + 1 nadph[c] 

GPR: 4522.1 or 4524.1 

EC: 1.5.1.5 

 Updated: 

� 1 mlthf[c] + 1 nadp[c] �� 1 methf[c] + 1 nadph[c] 

GPR: 4522.1 

EC: 1.5.1.5 

3. Reactions catalyzed by isoforms of NADPH oxidase were added. 

Originally: None 

Updated: 

� 1 nadph[c] + 2 o2[c] � 2 o2s[e] + 1 nadp[c] + 1 h[c] 

GPR: 27035.1 or 1536.1 or 50508.1 or 79400.1 
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EC: 1.6.3.1 

� 1 nadph[n] + 2 o2[n] � 2 o2s[c] + 1 nadp[n] + 1 h[n] 

GPR: 50507.1 

EC: 1.6.3.1 

� 1 nadph[r] + 2 o2[r] � 2 o2s[c] + 1 nadp[r] + 1 h[r] 

GPR: 50507.1 

EC: 1.6.3.1 

4. PRDX1 and PRDX2 were removed from the GPR associated with reaction 

“GTHP”. Glutathione peroxidase involves the reduction of hydrogen peroxide by 

glutathione, which does not involve peroxiredoxins. Peroxiredoxin reactions are 

added to Recon3D (see #7) 

Originally: 

� 1 h2o2[c] + 2 gthrd[c] � 2 h2o[c] + 1 gthox[c] 

GPR: 7001.3 or 5052.3 or 2877.1 or 2876.2 or 5052.2 or 2876.1 or 5052.1 

or 7001.1 or 2879.1 or 7001.2 

EC: 1.11.1.9 

 Updated: 

� 1 h2o2[c] + 2 gthrd[c] � 2 h2o[c] + 1 gthox[c] 

GPR: 2877.1 or 2876.2 or 2876.1 or 2879.1 

EC: 1.11.1.9 

5. Similarly to #4, PRDX3 was removed from the GPR associated with reaction 

“GTHPm”. 

Originally: 
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� 1 h2o2[m] + 2 gthrd[m] � 2 h2o[m] + 1 gthox[m] 

GPR: 10935.1 or 10935.2 or 2879.1 or 2876.1 

EC: 1.11.1.9 

 Updated: 

� 1 h2o2[m] + 2 gthrd[m] � 2 h2o[m] + 1 gthox[m] 

GPR: 2879.1 or 2876.1 

EC: 1.11.1.9 

6. PRDX6 was removed from the GPR’s associated with the following reactions: 

HMR_0960, HMR_0963, HMR_0988, HMR_2441, HMR_1048, HMR_1049. 

These are all glutathione peroxidase reactions, which PRDX6 is not involved in. 

7. Reactions catalyzed by isoforms of peroxiredoxin were added: 

Originally: None 

Updated: 

� 1 h2o2[c] + 1 trdrd[c] � 2 h2o[c] + 1 trdox[c] 

GPR: 5052.1 or 5052.2 or 5052.3 or 7001.1 or 7001.2 or 7001.3 

EC: 1.11.1.15 

� 1 h2o2[m] + 1 trdrd[m] � 2 h2o[m] + 1 trdox[m] 

GPR: 10935.1 or 10935.2 

EC: 1.11.1.15 

8. The oxidation and glutathionylation of protein thiol groups, as well as their 

reduction by glutaredoxin and thioredoxin, were added: 

Originally: None 

Updated: 
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� 1 h2o2[c] + 1 Pr-SH[c] + 1 gthrd[c] � 2 h2o[c] + 1 Pr-SSG[c] 

GPR: - 

EC: - 

� 1 h2o2[m] + 1 Pr-SH[m] + 1 gthrd[m] � 2 h2o[m] + 1 Pr-SSG[m] 

GPR: - 

EC: - 

� 1 Pr-SSG[c] + 1 gthrd[c] � 1 Pr-SH[c] + 1 gthox[c] 

GPR: 2745.1 

EC: 1.20.4.1 

� 1 Pr-SSG[m] + 1 gthrd[m] � 1 Pr-SH[m] + 1 gthox[m] 

GPR: 2745.1 

EC: 1.20.4.1 

� 1 h2o2[c] + 1 Pr-SH[c] � 2 h2o[c] + 1 Pr-SS[c] 

GPR: - 

EC: - 

� 1 h2o2[m] + 1 Pr-SH[m] � 2 h2o[m] + 1 Pr-SS[m] 

GPR: - 

EC: - 

� 1 Pr-SS[c] + 1 trdrd[c] � 1 Pr-SH[c] + 1 trdox[c] 

GPR: - 

EC: - 

� 1 Pr-SS[m] + 1 trdrd[m] � 1 Pr-SH[m] + 1 trdox[m] 

GPR: - 
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EC: - 

9. The reliance of catalase enzyme on NADPH to prevent oxidation of its active site 

by H2O2 was incorporated (Kirkman et al., 1999). Kirkman et al. measured rates 

of H2O2 formation and corresponding rates of NADPH oxidation in mixtures of 

catalase and varying concentrations of glucose oxidase (Kirkman et al., 1987). If 

the rate of H2O2 formation by glucose oxidase is assumed to equal the rate of 

H2O2 clearance by catalase, then the slope of NADPH oxidation vs. H2O2 

formation gives the amount of NADPH oxidized by catalase per molecule of H2O2 

cleared. Linear regression of data from Kirkman et al. shows that for every 1 

molecule of H2O2 cleared by catalase, 0.0641 molecules of NADPH are oxidized; 

thus, the chemical equation for catalase activity is: 

 2 H2O2 � 0.1282 NADPH � 2 H2O � 1 O2 � 0.1282 NADP� � 0.1282 H� (7) 

This change was made for catalase reactions in the cytosol, mitochondria, 

peroxisome, and endoplasmic reticulum. 

10. The neomorphic 2-hydroxyglutarate-producing reaction catalyzed by mutant 

IDH1 was added. Reactions for 2-hydroxyglutarate export were also added. 

Originally: None 

Updated: 

� 1 akg[c] + 1 nadph[c] � 1 M00653[c] + 1 nadp[c] 

GPR: 3417.1 

EC: 1.1.1.42 

● 1 M00653[c] � 1 M00653[e] 

GPR: None 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2020. ; https://doi.org/10.1101/2020.04.07.029694doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.07.029694
http://creativecommons.org/licenses/by/4.0/


 36

EC: None 

● 1 M00653[e] �  

GPR: None 

EC: None 

Because transcriptomic and proteomic data from TCGA were available at the 

individual gene level but not at the individual isoform level, all isoforms for each 

individual gene within Recon3D were combined. 

Other changes made to Recon3D include: 

� Removing the following duplicate reactions (when another reaction exists where 

the stoichiometric vector is an exact multiple of these duplicate reactions): 

“HMR_7257”, “PEHSFABPe”, “G6PDH2c”, “GNDc”, “PGLc”, “RPEc” 

� Removing EC numbers from all transport reactions, since many of these were 

incorrect. 

� Removing the following genes and any associations with them within Recon3D 

reactions, since information about these genes could not be found: 

NCBI Gene ID’s: 0, 100507855, 8041 

� Removing reactions within the following subsystems, as this was necessary to 

prevent de novo production of essential amino acids: 

“Protein assembly”, “Protein degradation”, “Protein modification”, “Protein 

formation” 

● Removing reactions in the “Bile acid synthesis” subsystem, as these are not 

expected to be active in most tumors 
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● Removing NQO1 futile cycle reactions, as these un-constrained reactions 

resulted in erroneous predictions of NADPH production: “NADPQNOXR”, 

“NADQNOXR”, “HMR_9538”, “HMR_9722” 

● Removing oxalosuccinic acid-producing IDH1 reactions, as these overlapped 

with α-ketoglutarate-producing IDH1 reactions: “r0423”, “r0424”, “r0425”, “r0422” 

 

Model Flux Constraints 

Upper flux bounds for reactions within Recon3D with both associated GPR rules 

and EC numbers were constrained using the Michaelis-Menten Vmax parameter: 

 ����,� � ���	�E� (8) 

where kcat and [E] are the turnover number (units of hr-1) and abundance (units of mmol 

gDW-1) of the associated enzyme catalyzing that reaction, respectively. Equation 8 was 

used to set upper flux bounds vmax,j, as well as lower flux bounds vmin,j for reversible 

reactions (where vmin,j < 0). See sections “Enzyme Abundance Calculation” and 

“Turnover Number Calculation” for more information. 

 

Enzyme Abundance Calculation 

RNA-Seq gene expression data from TCGA patient tumors was obtained from 

Rahman et al.’s alternative preprocessing method (GEO: GSE62944) (Rahman et al., 

2015). Data from this preprocessing method showed fewer missing values, more 

consistent expression between replicates, and improved prediction of biological 

pathway activity compared to the original TCGA pipeline. 
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Enzyme abundances within individual samples were predicted from sample gene 

expression data using the protein prediction pipeline shown in Figure S1A. The 

approach described below relies only on gene expression data from the individual 

sample of interest and not data from other samples included within the dataset, 

improving the reproducibility of this method as well as allowing for new samples to be 

analyzed post-hoc. The individual steps in the pipeline are explained herein: 

1. Schwanhäusser et al. - By measuring the transcription, translation, and 

degradation rates of individual mRNA’s and proteins in NIH3T3 cells, 

Schwanhäusser et al. developed ODE models relating mRNA and protein 

abundances per cell that encompass 955/3268 (29.2%) genes in Recon3D 

(Schwanhausser et al., 2011). Their model also took into account proteins with 

half-lives longer than the length of the cell cycle, and how this would impact 

measurements of protein abundance. The authors demonstrated that these rate 

constants and models could be applied to accurately predict protein abundances 

in other samples including cancer cell lines. Using this model, gene expression 

values (transcripts per kilobase-million (TPM)-normalized) were converted to 

protein abundance values (parts per million (PPM)-normalized) for the 955 

Recon3D genes included. 

2. Linear regression - For each sample, a linear regression of predicted protein 

abundance values using the Schwanhäusser et al. method versus measured 

gene expression values of corresponding genes is performed (example is shown 

in Figure S1B). This regression model is used to predict the abundance of 
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proteins where an associated gene expression value is available but not 

corresponding model/parameter values in the Schwanhäusser et al. method. 

3. PaxDB - If an individual gene expression value is missing for a particular sample, 

the harmonic mean of abundance values for that associated protein across all 

Homo sapiens samples within the PaxDB database is taken (Wang et al., 2015). 

If the associated protein is not available in the PaxDB database, the harmonic 

mean of abundance values for all proteins across all Homo sapiens samples is 

taken. Imposing the same values for all samples with missing gene expression 

values acts to prevent artificial differences in FBA model predictions between 

samples due to missing data. The harmonic mean of PaxDB values is taken 

since (1) the arithmetic mean tends to overestimate representative values of 

positively-skewed distributions (as seen with protein abundance values); and (2) 

the smaller protein abundance estimate of the harmonic mean well characterizes 

the fact that missing RNA-Seq values are usually at least in part due to low 

actual mRNA expression. 

For genes with associated enzymes in multiple cellular compartments (e.g. catalase, 

which localizes to the cytosol, mitochondria, peroxisome, and endoplasmic reticulum), 

the predicted protein expression value was divided into each cellular compartment with 

weights proportional to the COMPARTMENTS value for the cellular compartment in 

which the metabolic reaction takes place (Binder et al., 2014). These 

COMPARTMENTS values provide a score representing the confidence that a particular 

protein is found within a particular cellular compartment, using both experimental and 

computational evidence. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2020. ; https://doi.org/10.1101/2020.04.07.029694doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.07.029694
http://creativecommons.org/licenses/by/4.0/


 40

Validation of this pipeline was performed to ensure (1) that the predicted enzyme 

abundance values correlated better with experimental protein expression data 

compared to gene expression data; and (2) that the predicted enzyme abundance 

values were at physiological orders of magnitude. Normalized RPPA experimental 

protein expression values from TCGA samples were available for 30 genes/proteins in 

Recon3D (Weinstein et al., 2013). The correlation between experimental enzyme 

abundance and predicted enzyme abundance values (R2
PredictedAbundance) was greater 

than the correlation between experimental enzyme abundance and gene expression 

values (R2
Gene) for 18/30 genes (60%; Figure S1C-E). Additionally, the largest change 

in correlation for genes where R2
PredictedAbundance < R2

Gene was less than 0.004, indicating 

that the R2
PredictedAbundance was not substantially lower than the R2

Gene for any of the 30 

genes. 

Because experimental non-normalized protein abundance values were not available 

for TCGA samples for validation, experimentally-measured protein abundances in the 

NCI-60 panel of cancer cell lines were used to analyze the improvement in correlation to 

experimental data and physiological accuracy of predicted abundances on a genome 

scale. Experimental NCI-60 abundance values showed greater correlation to mean 

values of predicted enzyme abundances across TCGA samples (R2 = 0.450) compared 

to TCGA gene expression values (R2 = 0.314) (Figure S1F-G). Additionally, the order of 

magnitude of predicted abundance values matched well with experimental values for 

individual genes/proteins over the majority of orders of magnitude. The match to 

experimental values was greatest for enzyme abundances that were calculated at the 

first step of the pipeline (Schwanhäusser et al. method; R2 = 0.586) compared to 
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abundances calculated at later steps (R2 = 0.286), indicating the necessity for future 

transcription, translation, and degradation rate measurements to be conducted for 

genes/proteins not currently covered in the Schwanhäusser et al. method (Figure S1H-

I). 

 

Turnover Number Calculation 

Enzyme turnover numbers for associated reactions within Recon3D were 

determined using available experimental data from the BRENDA database API 

(Schomburg et al., 2004). Because the BRENDA database does not contain data for all 

Recon3D enzymes with the exact same enzyme commission (EC) number and 

substrate measured using human enzymes at 37°C and the correct cellular 

compartment-specific pH, a pipeline was developed where the most physiologically-

accurate turnover numbers for Recon3D metabolic reactions are identified (Figure S2). 

For an individual enzyme-catalyzed reaction within Recon3D, the associated turnover 

number was determined as close to the start of the pipeline as data was available within 

BRENDA. Values determined towards the start of the pipeline are more accurate, but 

less turnover number data with this greater accuracy is available within BRENDA. In 

determining turnover number accuracy, priority was given in the order of (1) using the 

correct EC number (versus using data from EC numbers that match only the first 3, 2, or 

1 digits with that of the Recon3D reaction); (2) using the correct substrate as given in 

the Recon3D reaction (versus using data from any available substrate); (3) using 

turnover number data taken from human enzymes (versus using data from any 

available organism); and (4) using turnover number data taken at physiological 
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temperature and pH (versus using data near but not at physiological temperature and 

pH). At a particular step in the pipeline, if multiple turnover number values that met the 

pipeline criteria were available, a weighted average of these values was taken, with 

weights equal to the Tanimoto coefficient (a measure of molecular similarity; greater 

coefficient signifies greater similarity between two molecules) between the desired 

substrate in the Recon3D reaction and the substrate in BRENDA for which the 

associated turnover number was determined. 

 

Mutation Data 

The effect of single nucleotide polymorphisms (SNP’s) located in Recon3D 

genes on the catalytic activity of the associated metabolic enzyme was estimated using 

the Envision computational platform developed by Gray et al (Gray et al., 2018). 

Envision leverages large-scale experimental mutagenesis datasets to predict a score 

representing the effect of single amino acid changes on protein function; a score less 

than 1 signifies a loss-of-function, while a score greater than 1 signifies a gain-of-

function. These quantitative scores were shown to correlate better with experimentally-

measured percent changes in protein activity after mutation than previously-developed 

methods including SNAP2 and EVmutation. For each TCGA patient with mutation data 

available, the turnover number for a particular Recon3D reaction was multiplied by the 

Envision score for any SNP’s located in the associated gene. 

 

IDH1 mutations 
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Particular mutations in isocitrate dehydrogenase 1 (IDH1), predominantly at 

amino acid R132, result in both loss of function of its normal NADPH-generating activity, 

as well as gain of function of a neomorphic NADPH-consuming activity that produces 

the oncometabolite 2-hydroxyglutarate (Dang et al., 2009). This change in function was 

implemented by adding the IDH1-catalyzed neomorphic reaction to Recon3D and 

imposing turnover numbers of the normal and neomorphic reactions measured by 

Avellaneda Matteo et al. based on the IDH1 mutation status of each tumor (Table S3) 

(Avellaneda Matteo et al., 2017). 

 

Thermodynamic Constraints 

Only metabolic reactions with a negative change in Gibbs free energy (ΔG) can 

carry a non-zero net flux. Implementing thermodynamic constraints prevents fluxes 

through these thermodynamically infeasible reactions; additionally, this limits the 

formation of thermodynamically infeasible loops that carry net fluxes around closed 

cycles in the metabolic network (Schellenberger et al., 2011). To implement 

thermodynamic constraints on FBA models, the minimum and maximum transformed 

Gibbs free energy of Recon3D reactions were obtained from the Virtual Metabolic 

Human database (Noor et al., 2013). For all reactions where both the minimum and 

maximum ΔG’� values were greater than zero (and for all reversible reactions where 

both the minimum and maximum ΔG’� values were less than zero in the reverse 

direction), the maximum flux vmax,j (or vmin,j for reversible reactions) through that reaction 

was set to zero. 
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Media Constraints 

To simulate experimental cell culture conditions, the modeled external 

compartment contained all metabolites found in RPMI-1640 cell culture media as well 

as fetal bovine serum (Price and Gregory, 1982). The external compartment also 

contained water, hydrogen ions, hydroxide ions, oxygen, and carbon dioxide. Modeled 

samples were allowed to uptake these available metabolites but not any other 

metabolites found in Recon3D. 

 

siRNA Transfections 

Cells were seeded in 24-well plates at 5 × 104 cells per well for glutathione half-

cell potential measurements, or 96-well plates at 8 × 103 cells per well for glucose 

oxidase response measurements. 24 hours after seeding, cells were transfected using 

the N-TER Nanoparticle siRNA Transfection System (Sigma-Aldrich; Cat#N2913) at a 

final siRNA concentration of 50 nM with serum-free medium for 4 hours; afterwards, an 

equal volume of 2x (20%) FBS-containing medium was added to each well. Negative 

controls consisted of transfection with the MISSION siRNA Universal Negative Control 

(Sigma-Aldrich; Cat#SIC001; Lot#WDAA1199). Predesigned MISSION siRNA’s 

targeting individual genes were ordered from Sigma-Aldrich; the top 3 rated siRNA’s 

based on expected efficacy for each gene target were pooled together and transfected 

concurrently, except for GLUD1, GLUD2, and SUCLG2, where only 2, 1, and 1 siRNA’s 

were available, respectively (Table S4). Figure S5 shows the knockdown efficiency of 

siRNA transfections in each cell line with GAPDH siRNA compared to no siRNA (just N-

TER transfection reagent) and negative control siRNA by Western blot (GAPDH 
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antibody: Cell Signaling Technology, Cat#2118; Tubulin antibody: Thermo Fisher 

Scientific, Cat#62204). Experiments were performed 24hr after transfection. 

 

Ehc GSH/GSSG Measurements 

The protocol and reagents used for measurement of glutathione half-cell 

potential were adapted from Rahman et al. (Rahman et al., 2006). KPE buffer was 

made by combining 16mL of solution A (6.8g KH2PO4 (Sigma-Aldrich; Cat#P5655; CAS: 

7778-77-0) in 500mL dH2O), 84mL of solution B (8.5g K2HPO4 (Sigma-Aldrich; 

Cat#P8281; CAS: 7758-11-4) in 500mL dH2O), and 0.327g EDTA sodium salt (Sigma-

Aldrich; Cat#E5134; CAS: 6381-92-6). After removal of cell culture media, 150μL of 

extraction buffer (0.1% Trition-X100 (Sigma-Aldrich; Cat#X100; CAS: 9002-93-1) and 

0.6% sulfosalicylic acid (Sigma-Aldrich; Cat#S2130; CAS: 5965-83-3) in KPE) was 

added to each well of a 24-well plate containing samples of interest. Plates were shaken 

at 800rpm for 10min to promote cell lysis. For each well, 100μL of lysate was taken for 

GSSG measurement, and 20μL was taken for GSSG+GSH measurement. 

For GSSG+GSH measurement, 20μL samples were placed in a clear 96-well 

plate. 20μL of GSSG (Sigma-Aldrich; Cat#G6654; CAS: 27025-41-8) and GSH (Sigma-

Aldrich; Cat#S4251; CAS: 70-18-8) standards at concentrations of 2e-2, 1e-2, 5e-3, 

2.5e-3, 1e-3, 5e-4, 2.5e-4, 1e-4, 5e-5, 2.5e-5, 1e-5, and 0 mg/mL were placed in 

separate rows of the 96-well plate. 120μL of 1:1 DTNB:GR solution (DTNB: 2mg 5,5’-

dithiobis(2-nitrobenzoic acid) (Sigma-Aldrich; Cat#D8130; CAS: 69-78-3) in 3mL KPE; 

GR: 40μL of glutathione reductase enzyme (Sigma-Aldrich; Cat#G3664; CAS: 9001-48-

3) (250 units/mL) in 3mL KPE) was added to each well. 30sec later, 60μL of NADPH 
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solution (2mg of β-NADPH (Sigma-Aldrich; Cat#N7505; CAS: 2646-71-1 (anhydrous)) in 

3mL KPE) was added to each well. Immediately after, absorbance at 412nm in each 

well was measured every 31sec for a period of 5min10sec (11 measurements) using a 

BioTek Synergy 4 plate reader. All sample and standard values were background 

subtracted. To determine the concentration of GSSG+GSH in each sample (mg/mL), 

the slope of absorbance vs. time from each sample was compared to the average slope 

of the GSSG and GSH standard concentrations. 

For GSSG measurement, 100μL samples as well as 100μL of GSSG and GSH 

standards were placed in a 96-well plate. 10μL of 2VP solution (2-vinylpyridine (Sigma-

Aldrich; Cat#132292; CAS: 100-69-6) diluted 1:50 in KPE) was added to each well. 

60min later, 10μL of triethanolamine solution (triethanolamine (Sigma-Aldrich; 

Cat#T58300; CAS: 102-71-6) diluted 1:10 in KPE) was added to each well. 10min later, 

20μL from each well was transferred to a new clear 96-well plate. GSSG was then 

measured analogously to GSSG+GSH. GSSG measurements were multiplied by 1.2 to 

account for the dilution of the original 100μL sample with 10μL of 2VP solution and 10μL 

of triethanolamine solution. 

To determine the concentration of GSH (mg/mL) for each sample, the measured 

concentration of GSSG was subtracted from the measured concentration of 

GSSG+GSH. To convert lysate concentrations (mg/mL) to intracellular concentrations 

(M), the following conversion was used: 

 �M� � �mg/mL� � �
������ � ���� � ����


 (9) 
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where MM is the molar mass of either GSH or GSSG (g/mol), Vsample is the volume of 

sample (20μL), Vcell is the estimated volume of each cell (1 pL), and ncells is the number 

of cells per sample (5 × 104). 

The glutathione half-cell potential Ehc is calculated using the Nernst equation: 

 ��� � ���
� �  !

"# ln &�GSH��
�GSSG�) (10) 

where Ehc
o is the standard half-cell potential at pH 7.4 (-264 mV), R is the universal gas 

constant (8.314 J/K/mol), T is the temperature (310.15 K), z is the number of electrons 

(2), and F is the Faraday constant (96485 C/mol = 96.485 J/mV/mol).   

 

Glucose Oxidase Response Measurements 

Prior to seeding, cells were stained with CellTracker Red CMTPX Dye (Thermo 

Fisher Scientific; Cat#C34552) for 30min. 8 × 103 cells per well were seeded in white-

sided clear-bottom 96-well plates. 24hr after transfection and prior to treatment with 

glucose oxidase, CellTracker fluorescence measurements in each well were taken at Ex 

577nm, Em 602nm using a BioTek Synergy 4 plate reader as a proxy for number of 

cells per well. An average of 10 fluorescence measurements was taken, and 

measurements were background subtracted. Samples were then treated with 10 mU/mL 

glucose oxidase enzyme (Sigma-Aldrich; Cat#G7141) diluted in 100μL cell culture 

medium (RPMI-1640 + 10% FBS) for 2hr. Afterwards, 100μL of CellTiter-Glo 2.0 Cell 

Viability Assay (Promega; Cat#G9241) was added to each well. Plates were shaken at 

800rpm for 2min to promote cell lysis, and then incubated at room temperature for 

10min. Luminescence measurements were then taken using a BioTek Synergy 4 plate 

reader and background subtracted. Cell viability normalized by cell count was measured 
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by dividing the luminescence measurement by the average CellTracker fluorescence 

measurement. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

• Comparison on objective values, reactions fluxes, and gene knockout effects 

between radiation-sensitive and -resistant FBA tumor models (Fig. 2A, 2D, 2F, 

3B, 4A, 4C, S3, S4) 

o n: number of individual FBA tumor models in each class. n = 716 

radiation-sensitive tumor models, n = 199 radiation-resistant tumor 

models. 

o Boxplots: box = 25th, 50th, and 75th percentiles, whiskers = 1.5 times the 

interquartile range. 

o Statistical test: 2-sided 2-sample Welch’s t-test without assumption of 

equal population variance. 

• Comparison of experimental glutathione half-cell potentials between radiation-

sensitive and -resistant cell lines (Fig. 2C) 

o n: number of biological replicates performed for each cell line. n = 12 for 

all cell lines except rSCC-61, where n = 10 (erroneously-negative GSSG 

values were obtained for 2/12 samples due to being below the limit of 

detection, and these were removed from the analysis). 

o Boxplots: box = 25th, 50th, and 75th percentiles, whiskers = 1.5 times the 

interquartile range. 

o Statistical test: 2-sided 2-sample Welch’s t-test without assumption of 
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equal population variance. 

• Comparison of gene knockout effects between radiation-sensitive and -resistant 

FBA tumor models (Fig. 3C, 3D, 4D) 

o n: number of individual FBA tumor models in each class. n = 716 

radiation-sensitive tumor models, n = 199 radiation-resistant tumor 

models. 

o Statistical test: 2-sided 2-sample Welch’s t-test without assumption of 

equal population variance. p-values for each of the 3,268 simulated gene 

knockouts performed were subsequently adjusted for multiple hypothesis 

testing using the Benjamini-Hochberg procedure for independent tests. 

• Comparison of model-predicted and experimentally-validated effect of gene 

knockdown on GSH production (Fig. 3F) 

o n1: number of biological replicates performed for each cell line, for each 

gene knockdown and negative control. n1 = 3 for all cases 

o n2: number of cell line pairs for comparing to model predictions. n2 = 3 

o Statistical test: 2-sided 1-sample t-test with null hypothesis population 

mean = 0 

• Comparison of experimental glucose oxidase response between radiation-

sensitive and -resistant cell lines (Fig. 4B) 

o n: number of biological replicates performed for each cell line, for both 0 

mU/mL and 10 mU/mL glucose oxidase treatment. Outliers were 

automatically detected and removed as determined by Grubbs’ 2-tailed 

test with α=0.05. n = 5 for GBM and HNSC cell lines, except for rSCC-61 
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10 mU/mL (n = 4) due to outlier removal. n = 10 for BRCA cell lines, 

except for NQO1(-) 0 mU/mL (n = 9) due to outlier removal. 

o Bar chart: mean ± 1 standard error. 

o Statistical test: 2-sided 2-sample t-test from mean, standard deviation, and 

number of observations from both samples 

• Comparison of model-predicted and experimentally-validated effect of gene 

knockdown on H2O2 response (Fig. 4F) 

o n1: number of biological replicates performed for each cell line, for both 

glucose oxidase treatments, for each gene knockdown and negative 

control. Outliers were automatically detected and removed as determined 

by Grubbs’ 2-tailed test with α=0.05. n1 = 5 for GBM and HNSC cell lines, 

except for 1) M059K 10 mU/mL TKT KD (n=4) and 2) rSCC-61 10 mU/mL 

PGAM2 KD (n=4) due to outlier removal. n1 = 10 for BRCA cell lines, 

except for 1) NQO1(-) 0 mU/mL PGD KD (n=9) and 2) NQO1(-) 0 mU/mL 

TKT PD (n=9) due to outlier removal. 

o n2: number of cell line pairs for comparing to model predictions. n2 = 3 

o Statistical test: 2-sided 1-sample t-test with null hypothesis population 

mean = 0 

• Correlation between patient clinical factors and NADPH-generating fluxes in 

radiation-resistant tumor models (Fig. 5A) 

o n: number of radiation-resistant tumor models. n = 199 

o Statistical test: 

� Numerical factors: univariate regression 
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� Categorical factors: 1-way ANOVA 
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