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Abstract 

Primate vision is characterized by constant, sequential processing and selection of visual 

targets to fixate. Although expected reward and reward value are known to influence both 

processing and selection of visual targets, the relationship between these effects remains 

unclear. Using a novel paradigm, we simultaneously measured the effects of expected 

reward on target selection and sensitivity to visual motion in monkeys. Monkeys freely 

chose between two visual targets and received a juice reward with varying probability for 

eye movements made to either of them. Targets were stationary apertures of drifting 

gratings, causing the endpoints of eye movements to these targets to be systematically 

biased in the direction of motion. We used this motion-induced bias as a measure of 

sensitivity to visual motion on each trial and utilized multiple measures to examine global 

and local effects of reward outcomes on choice and sensitivity to motion. Specifically, we 

used different reinforcement learning models to fit choice behavior and estimate reward 

values based on the integration of reward outcomes over multiple trials. Moreover, to 

compare the effects of reward value on choice and sensitivity to motion directly, we 

considered correlations between each of these variables and integrated reward outcomes 

on a wide range of timescales. We found that in addition to choice, sensitivity to visual 

motion was also influenced by reward value. However, choice was determined by the 

difference in reward values of the two options whereas sensitivity to motion was influenced 

by the sum of values. Moreover, models that best predicted visual processing and choice 

used sets of reward values based on different types of reward integration and timescales. 

Together, our results demonstrate separable influences of reward value on visual 

processing and choice, and point to the presence of multiple brain circuits for integration 

of reward outcomes. 
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Introduction  

Primates make approximately 3-4 saccadic eye movements each second, and thus the 

choice of where to fixate next is our most frequently made decision. The next fixation 

location is determined in part by visual salience (Itti & Koch, 2000), but also by internal 

goals and reward expected from the foveated target (Markowitz, Shewcraft, Wong, & 

Pesaran, 2011; Navalpakkam, Koch, Rangel, & Perona, 2010; Schütz, Trommershäuser, & 

Gegenfurtner, 2012). Brain structures known to be involved in the control of saccadic eye 

movement have been extensively studied as a means of understanding the neural basis of 

decision-making (Glimcher, 2003; Sugrue, Corrado, & Newsome, 2005). Interestingly, the 

same structures also appear to contribute to the selective processing of targeted visual 

stimuli that tends to accompany saccades (Squire, Noudoost, Schafer, & Moore, 2013). 

Thus, it is conceivable that reward value controls saccadic choice and processing of 

targeted visual stimuli via similar mechanisms. 

However, our current knowledge of how expected reward or reward value affect the 

processing of visual information and saccadic choice comes from separate studies using 

different experimental paradigms. On the one hand, the effects of reward value on saccadic 

choice are studied using both unequal reward outcomes (Chen & Stuphorn, 2015; 

Farashahi, Azab, Hayden, & Soltani, 2018; Liston & Stone, 2008; Platt & Glimcher, 1999; 

Strait, Blanchard, & Hayden, 2014) and dynamic reward schedules (Barraclough, Conroy, 

& Lee, 2004; Costa, Dal Monte, Lucas, Murray, & Averbeck, 2016; Donahue & Lee, 2015; 

Lau & Glimcher, 2007; Schütz et al., 2012; Sugrue, Corrado, & Newsome, 2004). On the 

other hand, the effects of reward value on the processing of visual information have been 

mainly examined using tasks with unequal reward outcomes (B. A. Anderson, 2016; B. A. 

Anderson, Laurent, & Yantis, 2011a, 2011b; Barbaro, Peelen, & Hickey, 2017; Della 

Libera & Chelazzi, 2006, 2009; Hickey, Chelazzi, & Theeuwes, 2010, 2014; Hickey & 

Peelen, 2017; Peck, Jangraw, Suzuki, Efem, & Gottlieb, 2009; Rakhshan et al., 2020); but 

see Serences, 2008). For these reasons, the relationship between the effects of reward value 

on saccadic choice and processing of visual information is currently unknown.  

Understanding this relationship is important because the extent to which reward influences 

sensory processing could impact decision making independently of the direct effects of 
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reward on choice. For example, in controlled decision-making paradigms or natural 

foraging settings, recent harvest of reward following saccade or visit to certain parts of the 

visual field or space could enhance processing of features of the targets that appear in those 

parts of space, ultimately biasing choice behavior. In addition to better understanding 

choice behavior, elucidating the relationship between sensory processing and reward value 

can also be used to disambiguate neural mechanisms underlying attention and reward 

(Hikosaka, 2007; Maunsell, 2004, 2015), and how deficits in deployment of selective 

attention, which is characterized by changes in sensory processing, are affected by 

abnormalities in reward circuits (Volkow et al., 2009). Unfortunately, most often, the 

effects of reward on decision making and sensory processing are studied separately. This 

makes it especially difficult to discern how reward feedback is integrated to modulate 

choice and sensory processing, and this integration is crucial for understanding value-based 

choice in dynamic tasks (Bari et al., 2019; Donahue & Lee, 2015; Farashahi, Donahue, et 

al., 2017; Farashahi, Rowe, Aslami, Lee, & Soltani, 2017; Lau & Glimcher, 2007; Soltani 

& Wang, 2006, 2008; Sugrue et al., 2004).  

Here, we used a novel experimental paradigm with a dynamic reward schedule to 

simultaneously measure the influences of reward value on choice between available targets 

and processing of visual information of these targets. We exploited the influence of visual 

motion on the trajectory of saccadic eye movements (Schafer & Moore, 2007) to quantify 

sensitivity to visual motion as a behavioral readout of visual processing in a criterion-free 

manner. Using this measure in the context of a saccadic free-choice task in monkeys 

allowed us to simultaneously estimate how reward feedback is integrated to determine both 

visual processing and decision making on a trial-by-trial basis. We fit choice behavior 

using multiple reinforcement learning models to examine how animals integrated reward 

outcomes over time and to estimate reward values on a trial-by-trial basis. In addition, we 

used correlation between integrated reward feedback on different timescales and our 

measure of sensitivity to visual motion in order to determine how sensitivity to visual 

motion is influenced by the estimated reward values.  
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Methods 

Subjects. Two male monkeys (Macaca mulatta) weighing 6 kg (monkey 1), and 11 kg 

(monkey 2) were used as subjects in the experiment. The two monkeys completed 160 

experimental sessions (74 and 86 sessions for monkeys 1 and 2, respectively) on separate 

days in the free-choice task for a total of 42,180 trials (10,096 and 32,084 trials for monkeys 

1 and 2, respectively). Each session consisted of approximately 140 and 370 trials for 

monkeys 1 and 2, respectively. All surgical and behavioral procedures were approved by 

the Stanford University Administrative Panel on Laboratory Animal Care and the 

consultant veterinarian and were in accordance with National Institutes of Health and 

Society for Neuroscience guidelines.  

Visual stimuli. Saccade targets were drifting sinusoidal gratings within stationary, 5°–8° 

Gaussian apertures. Gratings had a spatial frequency of 0.5 cycle/° and Michelson contrast 

between 2%–8%. Target parameters were held constant during an experimental session. 

Drift speed was 5°/s in a direction perpendicular to the saccade required to acquire the 

target. Targets were identical on each trial with the exception of drift direction, which was 

selected randomly and independently for each target. 

Experimental paradigm. After acquiring fixation on a central fixation spot, the monkey 

waited for a variable delay (200–600 ms) before the fixation spot disappeared and two 

targets appeared on the screen simultaneously (Fig. 1A). Targets appeared equidistant from 

the fixation spot, and diametrically opposite one another. The monkeys had to make a 

saccadic eye movement to one of the two targets in order to select that target and obtain a 

possible reward allocated to it (see Reward schedule). Both targets disappeared at the start 

of the eye movement. If the saccadic eye movement shifted the monkey’s gaze to within a 

5–8°-diameter error window around the target within 400 ms of target appearance, the 

monkeys received a juice reward according to the variable reward schedule described 

below. 
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Figure 1. The free-choice task and reward schedule example. (A) Task design. On each trial, 
a fixation point appeared on the screen, followed by the presentation of two drifting-grating 
targets. The monkeys indicated their selection with a saccade. Targets were extinguished at the 
onset of the saccade. A juice reward was delivered on a variable schedule following the 
saccade. Event plots indicate the sequence of presentation of the visual targets; dashed lines 
denote variable time intervals. Horizontal eye position traces are from a subset of trials of an 
example experiment, and show selection saccades to both left target (𝑇!	, downward deflecting 
traces) and right target (𝑇" 	, upward deflecting traces). (B) Examples of reward probability as 
a function of the percentage of left choices, separately for left and right targets (𝑝"(𝑇! , 𝑟, 𝑥) 
and 𝑝"(𝑇" , 𝑟, 𝑥)) for different values of reward parameter r and penalty parameter x (see Eq. 
1). (C) Plotted is the reward harvest rate on each target as a function of the percentage of 𝑇! 
selections, 𝑓(𝑇!), for r=80 and x=0. (D) Total reward harvest rate as a function of r and the 
percentage of 𝑇! selections. The gray dashed line shows 𝑓(𝑇!) = 𝑟 corresponding to matching 
behavior. The black solid line indicates the percentage of 𝑇! selections that results in the 
optimal reward rate. Slight undermatching corresponds to optimal choice behavior in this task. 

 

Quantifying the motion-induced bias. Eye position was monitored using the scleral 

search coil method (Fuchs & Robinson, 1966; Judge, Richmond, & Chu, 1980) and 
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digitized at 500 Hz. Saccades were detected using previously described methods (Schafer 

& Moore, 2007). Directions of drifting gratings were perpendicular to the saccade required 

to choose the targets. Saccades directed to drifting-grating target are displaced in the 

direction of visual motion, an effect previously referred to as the motion-induced bias 

(MIB) (Schafer & Moore, 2007). The MIB for each trial was measured as the angular 

deviation of the saccade vector in the direction of the chosen target’s drift, with respect to 

the mean saccade vector from all selections of that target within the session. In order to 

compare MIB values across sessions with different target contrasts and locations, MIB 

values were z-score normalized for each session to avoid confounds due to systematic 

biases. 

Reward schedule. For each correct saccade, the monkey could receive a juice reward with 

a probability determined by a dynamic reward schedule based on the location of the 

foveated target (Abe & Takeuchi, 1993). More specifically, the probability of reward given 

a selection of the left (𝑇!) or right (𝑇") target was equal to:  

𝑝"(𝑇! , 𝑟, 𝑥) = 	
1

1 + exp(−−𝑓! + 𝑟 + 10𝑠 )
− 𝑥 

       𝑝"(𝑇" , 𝑟, 𝑥) = 	
#

#$%&'()!"#$%!&'( *
− 𝑥       (Eq. 1) 

where 𝑓! is the local fraction (in percentage) of 𝑇! selections estimated using the previous 

20 trials; r (reward parameter) is a task parameter that was fixed on a given session of the 

experiment and determined which option was globally more valuable (𝑇! for r>50, and 𝑇"  

for r<50); s is another task parameter that determines the extent to which the deviation 

from matching (corresponding to 𝑓!=r) results in a decrease in reward probability and was 

set to 7 in all experimental sessions; and 𝑥 is a penalty parameter that reduced the global 

probability of a reward. Positive values of 𝑥 decreased reward probability on saccades to 

both left and right targets in order to further motivate monkeys to identify and choose the 

more rewarding location at the time. 𝑥 was kept constant throughout a session and was 

assigned to one of the following values on a fraction of sessions (reported in the parentheses 

in percentage): 0 (77%), 0.15 (6%), 0.30 (6%), or 0.40 (11%). Although the introduction 
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of penalty decreased the reward probability and rate on both targets, it did not change the 

local choice fraction (𝑓!) at which the optimal reward rate or matching could be achieved. 

Based on the above equations, the reward probabilities on saccades to left and right targets 

are equal at 𝑓!=r, corresponding to matching behavior, which is slightly suboptimal in this 

task. As shown in Fig. 1C, D, an optimal reward rate is obtained via slight undermatching. 

As the value of s approaches zero, matching and optimal behavior become closer to each 

other.  

Reinforcement learning models. In our experiment, reward was assigned based on target 

location (left vs. right) and thus the targets’ motion directions were irrelevant for obtaining 

reward. Nevertheless, we considered the possibility that monkeys could incorrectly assign 

value to motion direction. We used various reinforcement learning (RL) models to fit 

choice behavior in order to determine whether monkeys attributed reward outcomes to 

target locations or target motions, and how they integrated these outcomes over trials to 

estimate reward values and guide choice behavior. Therefore, we considered RL models 

that learn reward value associated with target locations as well as RL models that learn 

reward values associated with the motion of the two targets. 

In the models based on the location of the targets (location-based RLs), the left and right 

targets (𝑇! and 𝑇") were assigned reward values 𝑉!(𝑡) and 𝑉"(𝑡), respectively. In the 

models based on motion direction of the targets (motion-based RLs), reward values 𝑉+(𝑡) 

and 𝑉,(𝑡) were assigned to the upward and downward motion (𝑇+ and 𝑇,), respectively. 

For both types of models, values were updated at the end of each trial according to different 

learning rules described below. In addition, we assumed that the probability of selecting 𝑇! 

(or 𝑇+ in motion-based RLs) is a sigmoid function of the difference in reward values as 

follows: 

𝑝5𝑇!/+6 = 	
#

#$%&'()(/# )⁄ (0))/+ ,⁄ (0))2))
  (Eq. 2)  

where b quantifies the bias in choice behavior toward the left target (or upward motion), 

𝑉! +⁄  denotes the value of the left target in the location-based RL or upward motion in the 
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motion-based RL, respectively. Similarly, 	𝑉" ,⁄  denotes the value of the right target in the 

location-based RL or downward motion in the motion-based RL, respectively.   

At the end of each trial, reward values of one or both targets were updated depending on 

the choice and reward outcome on that trial. We considered different types of learning rules 

for how reward outcomes are integrated over trials and grouped these learning rules 

depending on whether they estimate a quantity similar to return (average reward per 

selection) or income (average reward per trial). On the one hand, the monkeys could update 

reward value of the chosen target only, making the estimated reward values resemble local 

(in time) return. On the other hand, reward values of both the chosen and unchosen targets 

could be updated, making these values resemble local income. This grouping was done 

because previous work has shown that both local return and income can be used to achieve 

matching behavior (Soltani & Wang, 2006). In addition, reward values for the chosen and 

unchosen targets could decay similarly or differently, and monkeys could learn differently 

from positive (reward) and negative (no reward) outcomes. We tested these possibilities 

using four different types of RL models.  

In return-based RL models (RLret ), only the value of the chosen target (in terms of location 

or motion direction) was updated. More specifically, if 𝑇! (𝑇+) was selected and rewarded 

on trial t, reward values were updated as the following:   

𝑉!/+(𝑡 + 1) = 𝛼𝑉!/+(𝑡) + Δ4
𝑉" ,⁄ (𝑡 + 1) = 𝑉" ,⁄ (𝑡)													       (Eq. 3) 

where 𝛥4   quantifies the change in reward value after a rewarded trial and 𝛼 is the decay 

rate. If 𝑇! (𝑇+) was selected but not rewarded, reward values of the two target locations or 

motion directions were updated as the following:    

𝑉!/+(𝑡 + 1) = 𝛼𝑉!/+(𝑡) + Δ5
𝑉" ,⁄ (𝑡 + 1) = 𝑉" ,⁄ (𝑡)													       (Eq. 4) 

where 𝛥5  quantifies the change in reward value after a non-rewarded trial. Similar 

equations governed the update of reward values when 𝑇" (𝑇,) was selected. Importantly, 
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in these models, reward value of the unchosen target (in terms of location or motion) is not 

updated, making these models return-based.  

In contrast, in all other models, reward values of both chosen and unchosen targets were 

updated in every trial, making them income-based models. Specifically, in the RLInc(1) 

models, the value of the unchosen target decayed at a rate similar to the value of the chosen 

target. For example, when 𝑇! (𝑇+) was selected, the values were updated as follows: 

𝑉!/+(𝑡 + 1) = 𝛼𝑉!/+(𝑡) + Δ4 	(or	Δ5	for	no-reward)
𝑉" ,⁄ (𝑡 + 1) = 𝛼𝑉" ,⁄ (𝑡).																																																						       (Eq. 5) 

In the RLInc(2) models, the value of chosen and unchosen targets decayed differently: 

𝑉!/+(𝑡 + 1) = 𝛼6𝑉!/+(𝑡) + Δ4 	(or	Δ5	for	no-reward)
𝑉" ,⁄ (𝑡 + 1) = 𝛼7𝑉" ,⁄ (𝑡)																																																						       (Eq. 6) 

where 𝛼6, and 𝛼7 are the decay rates for the chosen and unchosen targets or motion 

directions. 

In the RLInc(3) models, we updated the value of unchosen target location (or unchosen 

motion direction) in addition to decaying the values of chosen and unchosen locations: 

𝑉!/+(𝑡 + 1) = 𝛼6𝑉!/+(𝑡) + Δ4 	(or	Δ5	for	no-reward)
𝑉" ,⁄ (𝑡 + 1) = 𝛼7𝑉" ,⁄ (𝑡) +	Δ7.																																										

       (Eq. 7) 

Note that the motion directions of the two targets were the same in half of the trials. This 

makes updating of motion values non-trivial in trials in which the chosen and unchosen 

motion directions are the same (referred to as match trials). Therefore, we tested different 

update rules for match trials to identify the model that best describes the monkeys’ choice 

behavior. Specifically, we tested two possibilities: 1) update the motion direction that was 

presented on a given match trial only; 2) update both present and non-present motion 

directions but in the opposite direction. We found that the second model, in which the value 

of both motion directions were updated, provided a better fit for our data (data not shown).  
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Finally, we also tested hybrid RL models in which the values of both target locations and 

motion directions were updated at the end of each trial, and subsequently used to make 

decisions. Fitting based on these hybrid models were not significantly better than those 

using the RL models that consider only the values of target locations. Therefore, the results 

from these hybrid models are not presented here.  

Model fitting and comparison. We used the maximum likelihood ratio method to fit 

choice behavior with different RL models described above and estimated the parameters 

of those models. To compare the goodness-of-fit based on different models while 

considering the number of model parameters, we used the negative log-likelihood (-LL), 

Akaike information criterion (AIC) and Bayesian information criterion (BIC). AIC is 

defined as: 

𝐴𝐼𝐶 = 	−2 × 𝐿𝐿 + 2 × 𝑘					 (Eq. 8) 

where 𝐿𝐿 is log-likelihood of the fit and 𝑘 is the number of parameters in a given model. 

BIC is defined as: 

𝐵𝐼𝐶 = 	−2 × 𝐿𝐿 + ln	(𝑛) × 𝑘					 (Eq. 9) 

where 𝐿𝐿 is log-likelihood of the fit, 𝑘 is the number of parameters in a given model, and 

𝑛 is the number of trials in a given session. 

Effect of reward value on the MIB. In order to estimate reward values associated with 

the two target locations, we used two methods corresponding to income and return values. 

To calculate the income value of a given target location, we filtered the sequences of reward 

outcomes on preceding trials using an exponential filter with a given time constant τ, 

assigning +1 to rewarded trials and ∆5 to non-rewarded trials if that target location was 

chosen and 0 if that target location was not chosen on the trial. To calculate the return value 

of a given target location, we filtered reward sequence on trials in which that target location 

was chosen using an exponential filter with a given time constant τ, assigning +1 to 

rewarded trials and ∆5 to non-rewarded trials. Finally, we calculated the correlation 

between the MIB and the obtained filtered values for different values of τ and ∆5. 
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Data analysis. To assess the overall performance of the monkeys, we used static and 

dynamic models to harvest maximum rewards. In the static model, we assumed that 

selection between the two target locations in a given session was a stochastic process 

with a fixed probability. We therefore replaced 𝑓! in Eq.1 with the probability of 𝑇! 

selection, 𝑝(𝑇!). Therefore, the reward rate on 𝑇! and 𝑇" were equal to 𝑝(𝑇!) ×

𝑝"(𝑇! , 𝑟, 𝑥) and (1 − 𝑝(𝑇!)) 	× 𝑝"(𝑇" , 𝑟, 𝑥)), respectively. The optimal choice 

probability was then computed by finding 𝑝(𝑇!) for which the sum reward rate from the 

two targets was maximal. In the dynamic model, the target location with the larger 

probability of reward or return (𝑝"(𝑇! , 𝑟, 𝑥) or 𝑝"(𝑇" , 𝑟, 𝑥)) is selected on each trial.  

We also compared the monkeys’ choice behavior with the prediction of the matching law. 

The matching law states that the animals allocate their choices in a proportion that 

matches the relative reinforcement obtained by the choice options. In our experiment, this 

is equivalent to the relative fraction of left (respectively, right) choices to match the 

relative fraction of incomes on the left (respectively, right) choices. Therefore, to 

quantify deviations from matching, we calculated the difference between the relative 

fraction of choosing the more rewarding target (left when r >50 and right when r <50) 

and the relative fraction of the income for the more rewarding target. Negative and 

positive values correspond to undermatching (choosing the better option less frequently 

than the relative reinforcement) and overmatching, respectively. 

Results 

We trained two monkeys to freely select between two visual targets via saccadic eye 

movement (Fig. 1A). Saccades to each target resulted in delivery of a fixed amount of juice 

reward with a varying probability. Targets were stationary apertures of drifting gratings 

and the reward probability was determined based on the location of the grating targets 

independently of the direction of visual motion contained within the gratings. More 

specifically, on a given trial, probabilities of reward on the left and right targets were 

determined by the reward parameter (r) and the choice history on the preceding 20 trials 

(Eq. 1; Fig. 1B). Critical for our experimental design, the motion contained within the 

targets caused the endpoints of eye movements made to those targets to be systematically 
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biased in the direction of grating motion. We first show that this motion-induced bias can 

be used as a measure of sensitivity to visual motion on a trial-by-trial basis. 

MIB measures sensitivity to visual motion. The motion-induced bias (MIB) of a saccadic 

eye movement quantifies the extent to which the endpoints of saccades directed toward the 

drifting gratings were biased in the direction of grating motion (Fig. 1A, Fig. 2A). Despite 

the stationary position of the grating aperture, motion in the drifting sinusoid nonetheless 

induces a shift in the perceived position of the aperture in human subjects (De Valois & De 

Valois, 1991) and biases saccadic endpoints in the direction of grating drift (MIB) in 

monkeys (Schafer & Moore, 2007). By examining the MIB in different conditions, we 

established that it can provide a measure of sensitivity to visual motion even when the 

grating motion is not behaviorally relevant.  

First, we found that the magnitude of the MIB depended on the grating contrast. More 

specifically, the MIB increased by 27% when the (Michaelson) contrast of grating 

increased from 2% to 3% (two-sided independent measures t-test, p=7.85 ∗ 10)8; Fig. 

2B). Second, we observed that the MIB depended almost exclusively on the motion 

direction of the selected target as it was only slightly affected by non-matching motion in 

the unchosen target (Fig. 2C). Specifically, the average z-score normalized MIB measured 

in two monkeys across all trials (mean = 0.38) was altered by only 9% when the unchosen 

target differed in direction of the grating motion. Together, these results demonstrate that 

the MIB in our task is sensitive to the properties of sensory signal (grating motion direction 

and contrast) and thus, can be used to measure the influence of internal factors such as 

subjective value on visual processing. 
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Figure 2. MIB measures sensitivity to visual motion. (A) Plotted are the example distributions 
of the angle of saccade vector (relative to the fixation dot) for upward (open) and downward 
(filled) drifting targets. (B) MIB significantly increased as the contrast of grating is increased 
from 2% (purple) to 3% (yellow). (C) Comparison of the normalized MIB when the directions 
of motion in the chosen and nonchosen targets matched or did not match. The MIB is 
normalized for each monkey separately within each sessions.  

 

Global effects of reward on choice behavior. To examine the overall effects of reward 

schedule on the monkeys’ choice behavior, we first measured how the monkeys’ choice 

behavior tracked the target location that was globally more valuable. We found that target 

selection was sensitive to the reward parameter in both monkeys and the harvested reward 

rate was high, averaging 0.66 and 0.65 across all sessions (including those with penalty) in 

monkeys 1 and 2, respectively (Fig. 3A, B, D, E). To better quantify the monkeys’ 

performance, we also computed the overall harvested reward by a model that selects 

between the two targets with the optimal but fixed choice probability in a given session 

(optimal static model; see example in Fig. 1C) or a model in which the target with higher 

probability of reward was chosen on each trial (optimal dynamic model). We found that 

performance of both monkeys was sub-optimal; however, the pattern of performance as a 

function of reward parameter for monkeys 1 and 2 resembled the behavior of the optimal 

static and dynamic models, respectively (Fig. 3B, E). Since each session of the experiment 

for monkey 2 was longer, we confirmed that there was no significant difference in task 

performance between the first and second halves of sessions for monkey 2 (difference 

mean±sem: 0.003 ± 0.008; two-sided paired t-test, 𝑝 = 0.7, 𝑑 = 0.03). Together, these 

results suggest that both monkeys followed the reward schedule on each session closely 

whereas their choice behavior was suboptimal. 
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Figure 3. Global effects of reward on choice behavior. (A) Choice behavior is sensitive to 
reward parameter. Percentage of 𝑇! selections is plotted as a function of r, which varied across 
experimental sessions for monkey 1. The colored lines are linear fits, and the black dashed line 
shows the optimal 𝑓(𝑇!) for a given value of r assuming selection between the two targets with 
a fixed probability (optimal static model). The gray dashed line shows unit slope. (B) The 
overall performance was suboptimal. Plotted is harvested rewards per trial as a function of 
reward parameter r for zero penalty sessions for monkey 1. The solid colored lines show fit 
using a quadratic function. The colored and black dashed lines indicate harvested reward rates 
of the optimal dynamic and static models, respectively. (C) Proportion of 𝑇! selections is 
plotted as a function of the fraction of harvested reward on the left target. The colored lines are 
linear fits and the gray dashed line shows the diagonal line corresponding to matching behavior. 
Monkey 1 showed significant under-matching by selecting the more rewarding target with a 
choice fraction smaller than reward fraction. The inset shows the difference between choice 
and reward fractions with negative and positive values corresponding to under- and over-
matching. The gray dashed lines indicate the medians of the distributions and asterisks show 
the significant difference from 0 (i.e. matching) using Wilcoxon signed rank test (p<.05). (D–
F) Similar to panels A-C but for monkey 2. 

 

We also examined the global effects of reward on choice by measuring matching behavior. 

To that end, we compared choice and reward fractions on each session and found that both 

monkeys exhibited undermatching behavior (Fig. 3C, F). More specifically, they selected 

the more rewarding location with a probability that was smaller than the relative 

reinforcement obtained on that location (monkey 1 median(choice fraction – reward 

fraction) =	−0.103; Wilcoxon signed rank test, 𝑝 = 2.43 × 10)9, 𝑑 = 0.65; Fig. 3C 
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inset; monkey 2 median(choice fraction – reward fraction) =	−0.09, 𝑝 = 1.41 ×

10):, 𝑑 = 0.67; Fig. 3F inset). Furthermore, the degree of undermatching was similar for 

the two monkeys (diff = 0.013; Wilcoxon rank sum test,  𝑝 = 0.58, 𝑑 = 0.05).   

Global effects of reward on sensitivity to visual motion. To examine the global effects 

of reward on sensitivity to visual motion, we tested whether the average MIB on the two 

target locations was influenced by the reward schedule. More specifically, we computed 

the correlation between the difference in the session-based average MIB for saccades to 

the more and less rewarding target locations and reward parameter in each session but did 

not find any evidence for such correlation for either of the two monkeys (Spearman 

correlation; monkey 1: 𝑟 = 0.04, 𝑝 = 0.8; monkey 2: 𝑟 = 0.11, 𝑝 = 0.39). We also 

examined whether the average MIB for all saccades in a given session was affected by the 

overall performance in that session. However, we did not find any evidence for correlation 

between the session-based average MIB and performance for either of the two monkeys 

(Spearman correlation; monkey 1: 𝑟 = −0.07, 𝑝 = 0.54; monkey 2: 𝑟 = 0.13, 𝑝 = 0.21). 

These results suggest that unlike choice behavior, sensitivity to visual motion is not 

affected by the global reward value of the target location or the overall reward rate in a 

given session (i.e., overall motivation). 

Effects of local reward value on choice behavior. The analyses presented above show 

how the overall choice behavior was influenced by the global reward value of the two 

target locations in a given session (determined by the reward parameter r). However, 

reward probability on a given trial was not only determined by r but also by the monkeys’ 

choices on the preceding trials. More importantly, immediate reward outcomes could 

strongly influence choice independently of the location that was more rewarding globally. 

To investigate how reward outcomes were integrated to guide the monkeys’ choice 

behavior on each trial, we used multiple reinforcement learning (RL) models to fit the 

choice behavior of individual monkeys on each session of the experiment. These models 

assume that selection between the two targets is influenced by reward values associated 

with each target, which are updated on each trial based on reward outcome (see Methods). 

Although reward was assigned based on the location of the two targets (left vs. right) in 
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our experiment, the monkeys could still assume that motion direction is informative about 

reward. Therefore, we considered RL models that learn reward value associated with target 

locations as well as RL models that learn reward values associated with the motion of the 

two targets using four different learning rules. Considering the observed undermatching 

behavior, we grouped learning rules depending on whether they result in the estimation of 

reward value in terms of local (in time) return or income. 

In RLret models, only the value of the chosen target (in terms of location or motion) was 

updated, making them return-based models. In RLInc(1) models, in addition to updating the 

value of the chosen target, the value of the unchosen target decayed at a rate similar to the 

value of the chosen target, making these models income-based. In RLInc(2) models, the 

value of chosen and unchosen targets were allowed to decay at different rates. Finally, in 

RLInc(3) models, we also assumed a change in the value of the unchosen target or motion 

direction in addition to the decay. Because the value of both chosen and unchosen target 

locations were updated on each trial in RLInc(2) and RLInc(3) models, we refer to these 

models as income-based similarly to RLInc(1). However, we note that only RLInc(1) models 

are able to estimate local income accurately. 

We first compared the goodness-of-fit between the location-based and motion-based RLs 

using negative log likelihood (-LL), Akaike information criterion (AIC), and Bayesian 

information criterion (BIC) in order to test which of the two types of models can predict 

choice behavior better. Such comparisons based on the three measures yield the same 

results because the two types of models have the same number of parameters for a given 

learning rule. We found that for both monkeys, all the location-based models outperformed 

the motion-based RLs (Table 1). This demonstrates that both monkeys attributed reward 

outcomes to target locations more strongly than to target motions, and used value attributed 

to target locations to perform the task.  

After establishing that monkeys used target location to integrate reward outcomes, we next 

examined how this integration was performed by comparing the quality of fit in location-

based models with different learning rules. We found that for monkey 1, RLret and RLInc(1) 

models provided the best fit of choice data; although goodness-of-fit measures were not 
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significantly different between these models, these models provided better fits than the 

RLInc(2) and RLInc(3) models (Fig. 4). Interestingly, fitting choice behavior with the 

RLInc(1) model resulted in learning rates (α) that were close to 1 for many sessions (mean 

and median of α were equal to 0.77 and 1.0, respectively). This result indicates that monkey 

1 integrated reward over many trials to guide its choice behavior. This is compatible with 

the pattern of performance as a function of reward parameter for this monkey (Fig. 3B), 

which resembles the pattern of the optimal static model.   

 RLret RLInc(1) RLInc(2) RLInc(3) 

Monkey 

1 
D(-LL, AIC, or 

BIC)=−5.48 

p=2.55 ∗ 10-. 

D( -LL, AIC, or 

BIC)=−7.19 

p=2.58 ∗ 10-/ 

D( -LL, AIC, or 

BIC)=−6.53 

p=1.39 ∗ 10-0 

D(-LL, AIC, or 

BIC)=−8.06 

p=5.32 ∗ 10-12 

Monkey 

2 
D(-LL, AIC or 

BIC)=−60.96 

p=2.74 ∗ 10-31 

D(-LL, AIC or 

BIC)=−105.71 

p=2.58 ∗ 10-34 

D(-LL, AIC, or 

BIC)=−103.46 

p=2.58 ∗ 10-34 

D(-LL, AIC, or 

BIC)=−107.25 

p=2.58 ∗ 10-34 

Table 1. Comparison of goodness-of-fit between location-based and motion-based RL models 
using -LL, AIC or BIC. D(-LL, AIC, or BIC) shows the median of the difference between 
location-based and motion-based RL models fitted for each session separately. Note that all 
differences in goodness-of-fit measures (based on -LL, AIC, and BIC) are similar because the 
number of parameters is the same across location-based and motion-based models. P-values 
indicate the significance of the statistical test (two-sided sign-test) for comparing the goodness-
of-fit between the location-based and motion-based RLs.  

 

The same analysis for monkey 2 revealed a similar integration of reward outcomes but on 

a different timescale. More specifically, we found that the RLInc(1) model provided the best 

fit for choice behavior as the goodness-of-fit in this model was better than the return-based 

model (RLret) and more detailed income-based (RLInc(2), and the RLInc(3)) models (Fig. 

4). In contrast to monkey 1, the estimated learning rate based on the RLInc(1)  model were 

much smaller than 1 for many sessions for monkey 2 (mean and median α were equal to 

0.32 and 0.33, respectively). These results indicate that monkey 2 integrated reward over a 
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shorter timescale (a few trials) to guide its choice behavior. This is compatible with the 

pattern of performance as a function of reward parameter for this monkey (Fig. 3E), which 

resembles the pattern of the optimal dynamic model. 

 

Figure 4. Comparison of goodness-of-fit between different location-based RL models reveals 
that RLInc(1) model provided the best overall fit. (A) Each point shows the difference between 
BIC for fits based on the RLInc(1) model and the three competing models (indicated on the x-
axis) in a session of the experiment. Bars show the median of the difference in BIC and errors 
are s.e.m. Reported p-value are based on a two-sided sign test. For monkey 1, fits based on the 
RLInc(1) and RLret models were not significantly different. (B) The same as in A but based on 
the difference in AIC . (C–D) Similar to panels A and B but for monkey 2.  

 

Together, fitting of choice behavior shows that both monkeys associated reward outcomes 

with the location of the chosen target. Moreover, both monkeys estimated reward values in 

terms of income by integrating reward outcomes over multiple trials and used these 

estimated reward values to make decisions.  
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Effects of local reward value on sensitivity to visual motion. In addition to choice, our 

experimental design also allows us to measure the MIB and thus the sensitivity to visual 

motion on each trial of the experiment. Importantly, as neither the direction of target 

motion nor the magnitude of the MIB had any impact on reward probability or obtaining 

reward (i.e., processing of motion direction was not required to obtain a reward), the MIB 

provided an implicit trial-by-trial measure of sensitivity to visual motion that was 

independent of target choice. Because we expected that reward values of the targets would 

affect both visual processing and choice between the targets, we examined whether the 

MIB was influenced by reward obtained on preceding trials, and if so, how reward 

feedback was integrated to influence the MIB. 

First, we studied whether reward feedback had an immediate effect on the MIB in the 

following trial. We found that the MIB was larger in the trials that were preceded by a 

rewarded rather than unrewarded trials (mean±s.e.m.: 0.03±0.009; two-sided t-test, 𝑝 =

6.95 × 10);, 𝑑 = 0.18). When considered data from each monkey individually, this effect 

only retained significance for monkey 1 (monkey 1: mean±s.e.m.: 0.05±0.01; two-sided t-

test, 𝑝 = 6.5 × 10);, 𝑑 = 0.09; monkey 2: mean±s.e.m.: 0.01±0.01; two-sided t-test, 𝑝 =

0.21, 𝑑 = 0.09). These results suggest that the MIB is affected by the immediate reward 

outcome in the preceding trial. 

In the previous section, we showed that the best model for fitting choice behavior was one 

that estimates reward value based on the income on each target location and uses the 

difference in incomes to drive choice behavior (RLInc(1) model) (Fig. 4). However, it is not 

clear if the MIB is influenced by reward values of the two targets in a similar fashion. To 

test this relationship, we computed correlations between the trial-by-trial MIB and reward 

values of the chosen target location, the unchosen target location, and their sum and 

difference. We considered reward values based on both income and return (see Methods).  

We made several key observations. First, we found that the MIB was positively correlated 

with reward value of both the chosen and the unchosen target (Fig. 5A-B, Fig. 5E-F) and 

as a result, was most strongly correlated with the sum of reward values of the two targets 

(Fig. 5C, Fig. 5G). In contrast to choice, the MIB was poorly correlated with the difference 
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in reward values of the chosen and unchosen target (Fig. 5D, Fig.5H, Supplementary Fig. 

1). Therefore, choice was most strongly correlated with the difference in reward values, 

whereas the MIB was most strongly correlated with the sum of reward values from the two 

targets. Second, although the aforementioned relationships were true for reward value 

based on return and income, we found that correlations between the MIB and return values 

were stronger than correlations between the MIB and income values (compare Fig. 5 and 

Supplementary Fig. 2). Third, the maximum correlation occurred for the values of τ at 

around 15–20 trials and for negative values of ∆5, similarly for both monkeys. This result 

indicates that for both monkeys, the MIB was influenced by reward integrated over many 

trials, and the absence of reward on a given trial had a negative influence on the MIB on 

the following trial (∆5< 0).  

 

Figure 5. MIB was correlated with the sum of estimated return values of the two targets. (A–
D) Plotted are the correlations between the MIB and estimated return values of the chosen (A) 
and unchosen (B) targets, and their sum (C) and their difference (D) for different values of τ 
and ∆#. The inset in each panel shows the correlation between the MIB and the corresponding 
estimated return values for different values of τ and a specific value of ∆# (indicated with an 
arrow in the main panel C) for monkey 1. (E–H) The same as in A-D but for monkey 2. 

	

Finally, to better illustrate distinct effects of reward on decision making and visual 

processing, we used two sets of parameters (τ = 15 and ∆5= 0, τ = 15 and ∆5= −0.5) that 
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resulted in significant correlations between choice and reward values and between the MIB 

and reward values in all cases, in order to generate separate series of reward values for each 

monkey. We then grouped trials into bins according to reward values of 𝑇! and 𝑇" for 

choice, or of the chosen and unchosen targets for the MIB, and computed the average 

probability of choosing the left target and the average MIB for each bin. We found that the 

probability of choosing the left target for both monkeys was largely determined by the 

difference in reward values of the left and right targets, as can be seen from contours being 

parallel to the diagonals (Fig. 6A, B, E, F). In contrast, the MIB was largely determined 

by the sum of reward values, as can be seen from contours being parallel to the second 

diagonals (Fig. 6C, D, G, H). These results clearly demonstrate that reward value has 

distinct effects on choice behavior and sensitivity to motion.  

 

Figure 6. The choice probability for both monkeys was largely determined by the difference 
in reward values whereas the MIB was largely determined by the sum of reward values of 
targets. (A–B) Plots show the probability of choosing the left target as a function of reward 
values of the left and right targets for monkey 1, using τ = 15 and two values of ∆# as indicated 
on the top. (C–D) Plots show the MIB as a function of reward values of the chosen and 
unchosen targets for monkey 1, using τ = 15 and two values of ∆# as indicated on the top. (E–
H) The same as in A-D but for monkey 2. 
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Discussion 

Experimental paradigms with dynamic reward schedules have been extensively used in 

different animal models to study how reward shapes choice behavior on a trial-by-trial 

basis (Barraclough et al., 2004; Donahue & Lee, 2015; Herrnstein, Loewenstein, Prelec, & 

Vaughan, 1993; Lau & Glimcher, 2005; Li, McClure, King-Casas, & Montague, 2006; 

Sugrue et al., 2004). A general finding is that animals integrate reward outcomes on one or 

more timescales in order to estimate reward value and determine choice. In contrast, the 

influence of reward on selective processing of visual information, which is often described 

as attentional deployment, has been mainly studied using fixed reward schedules with 

unequal reward outcomes (B. A. Anderson et al., 2011a, 2011b; Barbaro et al., 2017; Della 

Libera & Chelazzi, 2006, 2009; Hickey et al., 2010, 2014; Hickey & Peelen, 2017; Peck et 

al., 2009). The main findings from these studies are that targets or features associated with 

larger reward can more strongly capture attention and alter visual processing immediately 

or even after extended periods of time (reviwed in B. A. Anderson, 2013, 2016).  

However, it has proven difficult to link the effects of reward value on saccadic choice and 

selective processing of visual information mainly because of separate measurements of 

these effects in different tasks. Indeed, the poorly described relationship between reward 

expectation and the processing of visual information has been implicated as a confounding 

factor in the interpretation of many past behavioral and neurophysiological results 

(Maunsell, 2004, 2015). An exception to this is a study by Serences (2008) in which the 

author utilized a task with dynamic reward schedule to demonstrate that the activity in 

visual cortex is modulated by reward history (i.e., integrated reward outcomes over many 

trials). Compatible with these results, we find that processing of visual information is 

affected by reward value estimated by integration of reward outcomes over many trials.  

Using tasks designed specifically to dissociate value from a target’s behavioral 

significance, or salience, a few studies have identified brain areas that respond primarily to 

the expected reward or the salience of a target (or both) in various species including rats 

(Lin & Nicolelis, 2008), monkeys (Roesch & Olson, 2004), and humans (Anderson et al., 

2003; Cooper & Knutson, 2008; Jensen et al., 2007; Litt, Plassmann, Shiv, & Rangel, 
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2011). However, in these studies, the saliency signal observed in neural responses might 

reflect a number of different processes, such as motivation, attention, motor preparation, 

or some combination of these. In the present work, we exploited the influence of visual 

motion on saccades as an independent and implicit measure of visual processing during 

value-based decision making. This enabled us for the first time to measure choice and 

visual processing simultaneously and to test whether reward value has differential effects 

on these two processes.  

Although motion was not predictive of reward and thus processing of motion direction was 

not required to obtain a reward, we found that similar to decision making, visual processing 

was influenced by reward values of the two targets. However, reward values of the two 

targets affected visual processing differently than how they affected choice in three ways. 

First, although choice was correlated most strongly with the difference between reward 

values of chosen and unchosen targets, visual processing was most strongly correlated with 

the sum of reward values of the two targets. The latter indicates that the overall reward 

value of targets in a given environment could influence the quality of sensory processing 

in that environment. Second, choice was more strongly affected by the income value of the 

target whereas MIB was more strongly affected by return values of the targets. Third, the 

time constant of reward integration, and the impact of no-reward were different between 

decision making and processing of target motion. These results point to multiple systems 

for reward integration in the brain. 

We found certain differences between the results for the two monkeys that could indicate 

that they used different, idiosyncratic strategies for performing the task. For example, 

fitting results of reinforcement learning models indicated that monkey 1 used the reward 

history over many trials to direct its choice behavior. In contrast, monkey 2 used the reward 

history over few trials to direct its choice behavior. This difference was also apparent in 

the correlation between choice and the difference in reward values. Despite this difference 

in integration time constant, choice in both monkeys was most strongly correlated with the 

difference between reward values of the two targets. Furthermore, the MIB for both 

monkeys was most strongly correlated with the sum of reward values of the two targets, 

even though they integrated reward outcomes on different timescales. 
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The observed differences in reward effects on visual processing and decision making have 

important implications for the involved brain structures and underlying neural 

mechanisms. First, they suggest that brain structures involved in decision making and 

processing of visual information receive distinct sets of value-based input; e.g., ones that 

integrate reward over a different number of trials. The set of input affecting decision 

making carries information about reward value of individual targets whereas the set that 

affects visual processing carries information about the sum of reward values. Indeed, there 

are more neurons in the anterior cingulate cortex and other prefrontal areas that encode the 

sum value of available options than reward value of a given option (Kim, Hwang, Seo, & 

Lee, 2009), and these neurons might contribute to enhanced sensory processing. The frontal 

eye field (FEF) also receives inputs from the supplementary eye field (SEF), which 

contains neurons whose activity reflects reward value of the upcoming saccade (Chen & 

Stuphorn, 2015). Such input from the SEF could drive target selection in the FEF. 

Importantly, our findings can be used in future experiments to tease apart neural substrates 

by which reward value influences visual processing and decision making.  

Second, a plausible mechanism that could contribute to the observed differences in the 

effects of reward is the differential influence of dopaminergic signaling on the functions of 

FEF neurons. Recent work demonstrates that the modulatory influence of the FEF on 

sensory activity within visual cortex is mediated principally by D1 receptors, and that D2-

mediated activity is not involved (Noudoost & Moore, 2011). However, activity mediated 

through both receptor subtypes contributes to target selection, albeit in different ways 

(Noudoost & Moore, 2011; Soltani, Noudoost, & Moore, 2013). This evidence indicates 

that the neural mechanisms underlying target selection and visual processing are separable 

if only in terms of the involvement of different dopaminergic signals. Considering the 

known role of dopamine in reward processing (Schultz, 2007) and synaptic plasticity 

(Calabresi, Picconi, Tozzi, & Di Filippo, 2007), these two dopaminergic signaling 

pathways may provide a mechanism for the separate effects of reward on sensory 

processing and selection.  

Third, in most choice tasks with dynamic reward schedules, local return and income are 

typically correlated, and the question of which quantity is the critical determinant of 
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behavior has been debated for many years (Corrado, Sugrue, Seung, & Newsome, 2005; 

Gallistel & Gibbon, 2000; Gallistel, Mark, King, & Latham, 2001; Herrnstein & Prelec, 

1991; Mark & Gallistel, 1994; Soltani & Wang, 2006; Sugrue et al., 2004). The observation 

that differences in local income are a better predictor of choice behavior may reflect the 

fact that local income provides information about which target is globally more valuable 

in each session of the task. In contrast, the dependence of visual processing on the sum of 

local return is more unexpected. The fact that visual processing is more strongly correlated 

with the return, which only changes with subsequent selections of the same target, indicates 

that this visual processing may more strongly depend on target-specific reward integration.  

Finally, the separable influences of reward could be crucial for flexible behavior. For 

example, processing of visual information of the saccade target based on the sum of reward 

values could allow processing of information from the less rewarding target and thus, 

improve exploration. Future studies are needed to test whether disruption of this processing 

can reduce flexibility in target selection and choice behavior. 
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Supplementary Figures 
 

 

Supplementary Figure 1. Choice was mainly correlated with the difference in reward values 
of the two targets in terms of income. (A–D) Plotted are the correlations between selection of 
the left target and estimated income values of the left (A) and right (B) targets, and their sum 
(C) and their difference (D) for different values of τ and a specific value of ∆# (indicated with 
an arrow in the inset) for monkey 1. The inset in each panel shows the correlation between 
choice and the corresponding income values of targets for different values of τ and ∆#. (E–H) 
The same as in A-D but for monkey 2. 
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Supplementary Figure 2. Correlation between the MIB and estimated income of the chosen 
and unchosen targets. (A–D) Plotted are the correlations between the MIB and estimated 
income values of the chosen (A) and unchosen (B) targets, and their sum (C) and their 
difference (D) for different values of τ and a specific value of ∆# (indicated with an arrow in 
the inset) for monkey 1. The inset in each panel shows the correlation between the MIB and 
the corresponding reward values (in terms of income) for different values of τ and ∆#. (E–H) 
The same as in A-D but for monkey 2. 
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