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Abstract: 
The harsh microenvironment of ductal carcinoma in situ (DCIS) exerts strong evolutionary selection 

pressures on cancer cells. We hypothesize that the poor metabolic conditions near the ductal center 

foment the emergence of a Warburg Effect (WE) phenotype, wherein cells rapidly ferment glucose to 

lactic acid, even in normoxia. To test this hypothesis, we subjected pre-malignant breast cancer cells to 

different microenvironmental selection pressures using combinations of hypoxia, acidosis, low glucose, 

and starvation for many months, and isolated single clones for metabolic and transcriptomic profiling.  

The two harshest conditions selected for constitutively expressed WE phenotypes. RNA-seq analysis of 

WE clones identified the transcription factors NFB and KLF4 as potential inducers of the WE 

phenotype. NFB was highly phosphorylated in the glycolytic clones. In stained DCIS samples, KLF4 

expression was enriched in the area with the harshest microenvironmental conditions. We simulated in 

vivo DCIS phenotypic evolution using a mathematical model calibrated from the in vitro results. The WE 

phenotype emerged in the poor metabolic conditions near the necrotic core. We propose that harsh 

microenvironments within DCIS select for a Warburg phenotype through constitutive transcriptional 

reprogramming, thus conferring a survival advantage and facilitating further growth and invasion.   
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Introduction: 
Ductal carcinomas in situ (DCIS) of the breast are a heterogeneous group of neoplastic 

lesions confined to the lumens of breast ducts. In early intraductal cancers, hyperplasia forces 

cells to grow towards the ductal lumens, which moves cells further from their supplying blood 

vessels that are restricted to the surrounding stroma (Figure 1A) 1. As a consequence, these cells 

are significantly nutrient-deprived.  Hyperplastic tissue in DCIS can be > 0.16 mm thick, which 

is larger than the diffusion distance of oxygen in tissues, rendering the periluminal areas of DCIS 

hypoxic 2,3.  This lack of oxygen would induce glucose fermentation due to a Pasteur effect, and 

the resulting production of lactic acid would make the periluminal areas of DCIS profoundly 

acidic.  This has been verified following identification 4 and subsequent validation 5 of 

membrane-associated Lamp2b as a marker for acid-adaptation, which is abundant in the 

periluminal cells of DCIS. These microenvironmental properties of hypoxia, acidity, and nutrient 

deprivation exert strong selection pressure on cancer cell survival, and the metabolic adaptations 

subsequently feed back to the microenvironment, creating a dynamically changing landscape.  

Over many years in this environment, cells adapt and emerge with flexible, aggressive, and de-

differentiated phenotypes6.  

The most prominent metabolic hallmark to emerge from DCIS selection is the Warburg 

Effect (WE) phenotype, which is defined as aerobic glycolysis, where glucose is fermented to 

lactic acid even in the presence of adequate oxygen, contributing to the acidity of the ductal 

microenvironment 1. A WE is commonly observed in aggressive cancers 7,8 and has been 

exploited clinically with 18FDG-PET scans as a diagnostic marker of tumor stage and is 

prognostic of cancer outcome 9.  Despite its almost ubiquitous expression in cancers, the causes 

and consequences of a WE remain a mystery.   There have been dozens of mechanisms 

proposed, yet none have been proven.   We have previously proposed that these conditions 

(hypoxia, acidosis, or nutrient deprivation) would select for cells with WE phenotype.  In an 

initial study, cells were selected with periodic hypoxia (16 hr 0.2% O2, 8 hr 21% O2 for 50 

cycles).  Multiple clones were derived from surviving cells, and these were shown to be pan-

therapy resistant, had an E-cadherin to N-cadherin switch, and a loss of p53, with a moderate 

increase in aerobic glycolysis that was not sustained10.  In a subsequent study, we adapted cells 

to growth in acidic conditions, and this selected for a number of important phenotypes, including 

anchorage-independent growth, yet it did not select for cells with aerobic glycolysis, although 

cells adapted to acid pH did ferment glucose more rapidly at a low pH, compared to non-adapted 

cells4,11,12.   Vogelstein’s group has shown that nutrient deprivation, specifically limiting (0.2 

mM) glucose, promoted the outgrowth of pancreatic cancer cells that express mutant k-ras and a 

WE phenotype in mixed starting cultures, although de novo selection was not shown13. 

Hence, we hypothesize that, if conditions in DCIS select for constitutive aerobic glycolysis, it 

may involve a complex and dynamic interplay between the multiple factors of hypoxia, acidosis, 

and nutrient deprivation.  To test this, we subjected pre-malignant breast cancer cells to a series 

of these combined selection pressures, over a period of many months.  At endpoints, individual 

clones were isolated and characterized for their metabolic and transcriptomic profiles.  The 

resulting selected clones were enriched for populations that constitutively expressed an aerobic 

glycolytic (WE) phenotype.  Transcriptomic analyses identified a number of relevant factors that 

could account for constitutive glycolysis, including SP1/KLF4 and NFB.  KLF4 expression was 

validated on selected clones using Western blots and immunocytochemistry (ICC). Tissue micro 

array (TMA) and whole mount staining of DCIS patients showed increased expression of KLF4 

in DCIS samples, when compared to adjacent normal, as well as a relatively elevated expression 
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at the core of each DCIS where the most selective environment exists. NFB was also validated 

to be over-expressed at the protein level in vitro, with a significant increase in the 

transcriptionally active phosphorylated form, which was associated with increased HK2 

expression.  Knockdown of NFB -related p65 reversed the WE in highly glycolytic clones. 

We further investigated the emergence of Warburg phenotypes, in areas under harsh selective 

pressures, by adapting a previously published mathematical model of tumor metabolism and 

growth, informed by empirical data14,15. The model simulates a tumor growing in a homeostatic 

tissue, initialized within a ductal structure with diffusion-limited nutrients. Different tumor 

phenotypes were allowed to evolve due to selection, and multiple simulations showed that the 

selection of a Warburg phenotype occurred in the harshest conditions near the peri-luminal 

necrotic core. The model was calibrated to the in vitro results presented herein, and simulations 

under different conditions suggested that different modes of selection can be in action, depending 

on cellular turnover and the specific microenvironmental conditions. In particular, the harsh 

conditions had bottleneck-like selection events, whereas the less harsh conditions tended to show 

phenotypic drift. 

 Thus, we conclude that the microenvironmental conditions existing in DCIS are sufficient, 

with time, to select for cells with a WE phenotype. In this particular case, the switch to a WE 

phenotype is related to KLF4 as a phenotypic switch and/or NFB expression as a survival 

strategy. This study unravels the role of harsh microenvironmental selection pressures in driving 

activation of pathways, controlled by key transcription factors, that lead to the WE phenotype 

and subsequent cancer progression.  

 

Results: 
Harsh microenvironments, similar to early DCIS conditions, select for clones 

with higher aerobic lactate production rate: 
In early carcinogenesis, intra-ductal hyperplasia leads to significant alterations in the 

physical microenvironment, especially in peri-luminal cells that are far (>0.16mm) from their 

blood supplies; leading to a highly selective microenvironment of hypoxia, acidosis, and severe 

nutrient deprivation1,6,16. This suggests that the periluminal cells should be oxygen-deprived, 

which is consistent with increased expression of hypoxia inducible factor (HIF) client proteins, 

such as CA9 and Glut1, in periluminal areas of late-stage DCIS 17,18. As proof of principle we 

performed multiplexed immunohistochemistry (mIHC) on our DCIS stage patient whole mount 

samples for markers of high glycolysis (Glut1), hypoxia-induced acid production (CA9), non-

hypoxia-induced acid production (MCT4), and acid resistance (LAMP2b) (Figure 1B). Our 

results illustrate that all these conditions exist inside the DCIS ducts individually or in 

combination. To better understand the impact of these conditions in DCIS breast cancer and their 

correlation to the WE phenotype, we subjected non-malignant MCF-7 cells to a range of 

selection forces, such as acidity (pH 6.7), hypoxia (1% O2), low glucose (0.1 mM), and 

combinations thereof, reflecting increasing levels of stress: i.e. low glucose (G), low oxygen and 

pH (OP); and low glucose, oxygen, and pH (GOP).  Additionally, as an extreme condition, we 

selected cells by placing them in a flask and not replenishing the media for four weeks (unfed) 

which caused >95% of the cells to die (Figure 1C). We excluded acidosis and hypoxia alone as 

selection pressures, because previous results showed that these conditions alone do not strongly 

select for a WE phenotype4,10. Each of these harsh microenvironments resulted in significant cell 

death, followed by re-growth under rich microenvironmental (neutral pH, 21% O2 and 5.8 mM 

glucose) conditions, this process was repeated multiple (2-6) times with flasks re-gaining 
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confluence, typically within 4 weeks, before re-exposure to harsh conditions.  After the final 

outgrowth, we isolated individual clones (>20 per condition) both from controls that were 

continuously grown in a rich microenvironment and those that were selected to survive in harsh 

microenvironments (G, OP, GOP, unfed) by seeding individual cells in 96 well plates, which 

were then re-grown under rich microenvironmental conditions.  These clones were then 

expanded in individual T25 flasks, which were then harvested for freezing and for metabolic 

profiling for rates of lactate production and glucose consumption under normal culture 

conditions, as the first sign of WE phenotype, using colorimetric kits. Figure 1C shows the 

lactate production rates (LPR, in nmol/min/mg protein) for individual clones from the 4 harsh 

and 1 rich (control) conditions.  These data demonstrate that harsh environmental conditions 

preferentially select for clones with increased rates of aerobic lactate production.  -
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production; specifically, the unfed and low GOP conditions had the greatest number of high 

lactate production rate (LPR) clones (Figure 1C). To relate our finding of high lactate 

production rate to the WE, we further measured lactate production and glucose consumption 

rates at the same time using a multi-analyte system (YSI 2900, Yellow springs OH) in 96 well 

plates.  For these studies, we used the three unfed clones (UF1, UF9, and UF18) with highest 

lactate production rates and three clones from the rich microenvironment MCF7 cells with low 

LPR.   Results shown in Figure S1 confirmed the higher LPR, observed by colorimetric assays, 

in the harsh compared to rich microenvironment clones.   

To confirm the WE phenotype of the harsh microenvironmentally selected clones, 

compared to parental MCF7 cells, we performed the Seahorse glucose stress test (GST) assay to 

measure both basal and maximal glycolytic capacity of cells, as well as their respiratory capacity 

(See method for more details) (Figure 1D). We found all the unfed (UF) clones had higher basal 

glycolysis rate compared to control clones (Figure 1E), although their compensatory glycolysis 

was not different in general (Figure 1F). However, compared to their parental MCF7 clones all 

UF clones showed an increase in the ratio of extracellular acidification to oxygen consumption 

(ECAR/OCR), which is a measure of the WE phenotype (Figure 1G). These results indicated 

that the harsh microenvironmental conditions similar to those found in early DCIS select for a 

WE (aerobic glycolytic) phenotype, more specifically the combination of low glucose, low 

oxygen, and low pH or starvation provide the greatest selective pressure for a WE phenotype. 

  

Clonal evolution under DCIS microenvironmental conditions. 
These data have demonstrated that harsh microenvironmental conditions selected for cells 

with increased rates of aerobic glycolysis.  Further, and slightly counter-intuitive, these selected 

cells maintained their WE phenotype even after being placed in abundant nutrients and oxygen 

conditions for multiple generations, i.e. exceeding 20 passages. To investigate the mechanisms 

leading to this stable (“hardwired”) phenotypic switch, we performed RNA sequencing (RNA-

seq) analyses of our harsh and rich microenvironment selected single cell-derived clones (see 

Methods). Briefly, the harsh (unfed, GOP, OP, G) and rich clones were plated in 96 well plates 

and grown to confluence, from which RNA was extracted and sequenced using PLATE-seq 

19(see methods).  After filtering, 12,568 genes were used for further analysis. Unsupervised 

clustering of the RNA-seq data identified five distinct groups, that corresponded to each of the 

Figure 1: Early DCIS conditions can select for glycolytic phenotype. A) Schematic of early and late 

ductal carcinoma in situ (DCIS) progression. B) Multiplex IHC staining of DCIS patient sample with 

markers of glycolysis (Glut1[green]), acid adaptation (LAMP2b [orange]), hypoxia (CA9 [purple]), 

Lactate production (MCT4 [-cyan]), vasculature marked (CD138-red), and Nuclei (DAPI [blue]). C) 

Lactate production rate of clones grown out from cells selected under conditions of being selected 

through multiple rounds of the following conditions: unfed for 1 month (UF), low Glucose (G), low 

Glucose Oxygen and pH (GOP), low Oxygen and pH (OP), and growth in rich media (Control). D) 

Seahorse glycolytic rate assay to measure extracellular acidification rate (ECAR) and oxygen 

consumption rate (OCR) following addition of glucose. E) Basal Glycolysis was higher in UF cells but 

F) compensatory glycolysis showed no difference between control clones and overall UF clones. G) 

UF clones have higher WE phenotype (expressed as ECAR/OCR ratio) than control. 
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microenvironmental conditions (Figure 2A, Figure S2A, and Figure S2B).   

 

Principal component analysis (PCA) showed generally good segmentation for the different 

microenvironmental conditions (Figure 2B and Figure S3). It is notable that the unfed (UF) 

cluster was readily segmented from the rest of the cells, suggesting that this condition, which 

more accurately reflects the in vivo situation, adds selection pressures beyond that imposed by 

the metabolic selections of G, OP, and GOP.  Further, there was some overlap between the 

parental unselected and some of the selected (G, OP) clones, suggesting some clonal 

Figure 2: RNA sequencing analysis of selected clones reveals the molecular mechanism of switch to 
Warburg phenotype. A) Heatmap showing the top 500 most variable genes, grouped by selection 
condition. A preliminary analysis of RNA Sequencing data was performed by linearly regressing gene 
expression data with lactate production rate and filtered for significantly correlated or anti-correlated 
genes.  Unsupervised clustering (Figure S3) of these data showed that 1000 most highly correlated and 
anti-correlated genes clustered within selection condition.  B) Principal component analysis of gene 
expression data showed separation of the PE and GOP groups compared to control. C) Phenotype 

evolution trajectory alignment of single clone RNA-sequencing for evolving breast cancer cell 

populations. Cell fate analysis with Palantir was applied to the single clone RNA-sequencing dataset to 

determine differentiation potential from an initial, unselected, parental lineage to selected, phenotypic 

terminal states of G, OP, and unfed. UMAP projections were used to visualize the high-dimensional 

dataset and known identity of each clones was colored on the UMAP projections. Unselected clones were 

indicated in red, unfed clones were indicated in purple, G clones were indicated in green, OP clones were 

indicated in mint, and GOP clones were indicated in blue. 
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heterogeneity in the parental population or original phenotype recovery due to the highly plastic 

nature of MCF7 cells 15.  

 To determine which genes were associated with the WE phenotype, the gene expression 

data were linearly regressed against LPR using the limma and voom R packages 20,21. Six 

hundred seventy-six genes had a significant association with LPR (Padj < 0.1), with 388 having a 

positive association (correlation coefficient > 0) and 288 having a negative association 

(correlation coefficient < 0) (Figure 2A and Supplementary data1).   

To study phenotypic evolution under the different microenvironmental selection 

pressures on control MCF-7 cells, Palantir analysis (Supplementary data 1) was applied to the 

single clone RNA-seq dataset of unselected (parental), unfed, G, OP, and GOP clones to detect 

evolutionary trajectories of these clones and alignment along pseudo-time (Figures 2C, S4, and 

S5). All clones started in the rich microenvironment of the parental phenotype, indicated by 

Orange points in Figure 2C.   Aligning clones along pseudo-time revealed three distinct terminal 

phenotypes: unfed, G, and OP. Interestingly, the GOP phenotype lay along the trajectory of the 

unfed terminus. Analysis of the differentiation potential of the clones showed that those aligned 

to the earliest pseudotime (dark blue in Figure S4) also had the highest differentiation potential, 

indicating that they are most likely to evolve to one of the terminal phenotypes over pseudotime. 

Likewise, especially for the unfed and G phenotypes, pseudotime was near 1 (yellow in Figure 

S4) indicating that these clones had the lowest differentiation potential and that they were at their 

terminal phenotypic states.  
 

Mathematical modeling shows the WE phenotype is rapidly selected in harsh 

conditions. 
To investigate the emergence of the WE phenotype in more detail, we extended a 

mathematical model of tumor metabolism14,15 to simulate the experiments presented herein. The 

extensions to the model that simulate the in vitro portions of this work are provided in the 

methods, Equation (1) and Tables 1 and 2.  First, we applied our previously published model to 

simulate DCIS development in vivo. These results indicated that the WE phenotype primarily 

emerged from the most metabolically depleted area of a simulation, namely far from blood 

vessels and adjacent to the necrotic core.  Figure 3A-D shows representative examples of these 

simulations (see Figure S8 for more information about the simulated barcoding data in in Figure 

3B). The WE phenotype is pink, and after 100 time increments (“days”) this phenotype began to 

emerge in the center of the duct where glucose and oxygen were highly depleted and the pH was 

acidic. This suggests that the harsh heterogeneous conditions of a tumor growing within a duct 

(or other similarly poorly vascularized region) would select for WE phenotypes. 

We then calibrated the model to directly simulate our in vitro experiments and the results 

of this simulation are shown in Supplementary Video V1. In short, to recapitulate an in vitro 

environment, blood vessels were removed from the simulation and nutrient concentrations and 

pH levels were changed globally across the ‘flask’. Cells were plated at the same seeding density 

as in the experiments and were allowed to adapt to their particular conditions through phenotypic 

drift, as in the original in vivo model.  Figure 3E-I shows that the WE phenotype was selected 

primarily in the “unfed” case, when glucose and pH levels dropped significantly after 14 days 

without media change. The harsh conditions towards the end of the unfed period induced rapid 

turnover that enabled faster phenotypic drift. Furthermore, these cells exhibited increased ATP 

efficiency (Figure 3E-F), which is useful for survival in low glucose conditions.  
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The barcoding plots in Figure 3G-I show how phenotypic selection changes through the period 

of the simulation for each of the five conditions. The colors correspond to the phenotypes of 

Figure 3C, with pink cells having a WE phenotype. The unfed condition (bottom panel) showed 

rapid turnover of the population, driven by an early bottleneck, which quickly drove adaptation 

to the WE phenotype due to the severely depleted glucose and the highly acidic 

microenvironment. In contrast, the other conditions showed less turnover, even though some had 

low glucose and/or acidosis. The adaptation was slower and was primarily aimed at mitigating 

Figure 3. Computational modeling of the emergence of the Warburg phenotype. (A-D) A previously 

published 2-dimensional hybrid discrete-continuum homeostatic cancer metabolism model (see refs. 43, 

44) shows the evolution of acid resistance (blue to green) and Warburg (blue to pink) phenotypes over 

time. The model simulates growth into ductal structure (A) where increased acidity in the center of the 

duct promotes acid resistance phenotypes (blue). After depletion of glucose, the Warburg phenotype 

emerges in harsh conditions near the center of the duct, on the edge of the necrotic core. (B) A Muller plot 

shows phenotypic selection and lineage over time. Vertical axis indicates size of clones, colored by its 

acid-resistance/Warburg phenotype shown in (C). Final distributions of oxygen, glucose, and acid are 

shown in (D).  (E-I) An in vitro version of the model simulated for identical conditions as Figure 2A 

confirms that Warburg phenotype (E) emerges in harsh conditions (“unfed”). Furthermore, these cells 

have enhanced efficiency in producing ATP from nutrients (F). Model simulated barcode proportions are 

shown for 3 timepoints: 0 days (G), 60 days (H), and 120 days (I). Barcodes colored by average final 

phenotype with dead clones colored in black. Control and glucose-depleted conditions have low turnover, 

leading to slowed evolution. OP and Unfed conditions have increased turnover, selecting for Warburg 

phenotypes. Parameters (eqn. 1): S = 0.08, ko= 0.005, kg= 0.3, kg0= 2.5, V0= 0.93. 
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acidosis rather than becoming glycolytic. Notably, unfed cells with a WE phenotype emerged 

from only a few of the initial cells. This is in contrast to our metabolic profiling of the unselected 

clones, which showed that one clone had a slightly elevated lactate production rate, alluding to 

the likely pre-existence of this phenotype (Figure 1C).   

 

The role of transcription factors in selection of WE phenotype. 
To investigate whether specific transcription factors were involved in the transcriptional 

switch for generating a WE phenotype, we used the list of 388 significantly and positively 

associated genes for enrichment analysis by oPOSSUM and Enrichr22,23. oPOSSUM “single site 

analysis” with “human” was selected with default parameters. The top oPOSSUM hit was KLF4 

(Z-score = 54.053) (Figure 4A). As a test of the oPOSSUM analysis, we investigated whether 

cells from UF clones had high nuclear KLF4 expression using ICC.   Figure 4B shows nuclear 

localization and higher expression of KLF4 in UF clones compared to their parental MCF7 cells. 

KLF4 plays a role in early development and promotes a stem-like phenotype 24-26.  Consistent 

with this, we also observed increased RNA expression of genes associated with stemness 

(Supplemental Table S1).    

We also queried the Enrichr “Genome Browser PWMs” pathway, which contains a list of 

genes and associated binding motifs from transcription factors, and identified an NFB-

associated list as significantly enriched (Padj = 0.04) (Figure 4C). To investigate this, we 

performed Western blotting on UF clones and parental MCF7.   Supplemental Figure S10A 

shows that the total amount of NFB was slightly, but significantly, higher in the UF clones, 

relative to control clones (C clones). In contrast, Western blot of  phospho-NFB (p-NFB) 

shows that the p-NFB, which promotes nuclear localization, was significantly elevated in UF 

clones, compared to that present in the C clones (Supplemental Figure S10A).  To further 

investigate this, we performed ICC on UF clones and parental control MCF7 and found higher 

expression of p-NFB in nuclei of UF cells (Figure 4D). To investigate the role of NFB in 

promoting glycolysis in these systems, 3 separate anti-p65 siRNAs were prepared and tested for 

efficacy against UF-18 cells and were all able to effect knockdown at different doses. Using the 

p65siRNA-C, we were able to optimally knockdown expression in UF-18 and UF-9 clones 

(Supplemental Figure S10B).  In UF-18 cells, knockdown of p65 significantly reduced aerobic 

glycolysis (Supplemental Figure S10C) to the levels observed in non-selected cells.  In addition 

to NFB, other metabolically relevant proteins that were observed to be different between UF 

and C clones were pAkt and the NFB client, HK2 (Supplemental Figure S10A), which were 

also consistent with increased aerobic glycolysis in the UF cells.  These results propose the pro-

survival activity of NFB in our unfed cells, which has also been shown for acid exposed cells in 

sarcoma 27.  

To determine which of the cells expressing a WE were more aggressive compared to non-

selected parental clones, we injected cells from two UF clones and 1 unselected clone into the 

tail vein of NSG mice and observed that 100% of both UF cell groups formed metastases, while 

only one mouse (8.3%) showed metastasis with MCF7 parental cells (Figure 4E).   
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KLF4 expression in clinical breast tumor samples: To further investigate KLF4 expression 

following selection of WE phenotype in DCIS lesions, we then interrogated expression of KLF4 

in breast tumor samples from the Moffitt Cancer Center Tissue Micro Array (TMA) collection. 

KLF4 was selected for further clinical validation over NFB based on its nature of switching 

phenotype in stem cells and early embryonic cells 25 as well as its previously shown role in 

regulating glycolysis in stem cells and pancreatic cancer 28,29. Breast TMAs from Moffitt breast 

cancer patients were used to study the expression level of KLF4 at different stages. TMA4 

Figure 4: Clinical validation of KLF4 expression in breast cancer patients’ samples. A) 

Enrichment analysis of 388 genes positively associated with LPR using oPOSSUM revealed KLF4 as 

top regulator of lactate production rate (LPR) genes. B) Immunocytochemistry (ICC) analysis of UF 

and parental MCF7 validates the higher expression and nuclear localization of KLF4 in UF cells. C) 

Enrichment analysis NFB as top hit in WE phenotype TF analysis. D) ICC validates the expression 

of p-NFB in UF cells. E) Harsh condition in DCIS selects for aggressive cells that can invade other 

organs. 1 million of MCF7 parental, UF9 and UF clones were injected to tail vein of NSG mice and 

looked for possible metastasis. There was only one metastasis in the control group of twelve mice 

compared to 100% metastasis in both UF cells. F) TMA analysis of 204 breast biopsies of Moffitt 

cancer center patients for KLF4 expression shows higher expression of this protein in DCIS compared 

to adjacent normal tissues. The expression of KLF4 stays high with higher grade of breast cancer. G) 

Representative images of the TMA analysis done in A. The box is zoomed in the center of the duct to 

show spatial correlation of KLF4 in DCIS samples. Cells with high KLF4 expression are located to 

center of the duct in DCIS samples that proves our hypotheses that harsh condition selecting the cells 

with glycolytic phenotype through a transcriptional factor switch.  
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contains 204 biopsy cores including adjacent normal samples, DCIS, IDC with no metastasis, 

IDC with local metastasis, and lymph node metastasis core biopsy samples. Staining of TMA4 

with KLF4 antibody showed significantly increased expression of KLF4 in DCIS samples 

compared to normal breast tissue. The KLF4 expression remained high in IDCs and metastasis 

samples (Figure 4F and G, Supplemental figure S11). To relate the role of KLF4 to selection 

of the WE phenotype in DCIS, we performed spatial analysis of KLF4 in our DCIS samples and 

observed that multiple sites had very high expression of KLF4 at the center of the duct, where 

access to nutrient resources is severely restricted, and thus exerting a strong selection pressure 

with regard to increased acidosis and decreased oxygen (Figure 4G).  

  

Discussion: 
The Warburg effect phenotype is associated with progression and aggressiveness of 

cancers and is defined by a high glycolytic rate in the absence or presence of oxygen (aerobic 

glycolysis). Most cancer cells reprogram their metabolism in favor of aerobic glycolysis despite 

the presence of plentiful oxygen in their microenvironment. This observation was first reported 

by Otto Warburg and is thus referred to as the “Warburg effect”30-33. We and others have 

observed this high glycolysis rate in tumors using positron emission tomography (PET)34. We 

also know that most cancer cells in hypoxic environments (Pasteur effect) compensate for the 

low ATP yield of glycolysis by overexpression of glucose transporters, such as Glut135. The 

driving theory for why the Warburg effect takes place in cancer is that the high rate of glycolysis 

benefits cancer cells by increasing ATP production. It also provides many intermediates, that are 

used in subsidiary metabolic pathways for de novo synthesis of nucleotides, amino acids, lipids 

and NADPH, that are required for cancer cell survival and proliferation. However, none of these 

cellular regulations individually are enough to hardwire the Warburg phenotype in cells, because 

they can be altered based on microenvironmental conditions. At the center of individual DCIS 

the harsh microenvironment consists of low glucose, low oxygen, and a high acidity. Therefore, 

we hypothesized that there are some biological controls or switches at the genome, 

transcriptome, or epigenome level that initiate and control the Warburg phenotype.  

 Previous research has shown evidence of mutational drivers, such as p53 and KRAS, 

upregulating the Warburg phenotype in different cancer types, however, none of these mutation-

driven Warburg phenotypes are consistently present in all cancer cells. Furthermore, there are 

cancer cells with a WE and no known driver gene mutations. This suggests that there may be 

mutation independent drivers of this phenomenon i.e. the microenvironment. To test our 

hypothesis, we probed the transcriptome of single selected clones under different 

microenvironmental conditions recapitulating the environments found in DCIS. Using single 

clones over single cells had the benefit of allowing us to measure the derived diversity and 

heterogeneity of a single cell’s progeny over time. Surprisingly, we found a highly variable 

transcriptome amongst the clones across all of the selection conditions, which may have been 

lost at the single-cell resolution. Using sophisticated transcriptome analysis of oPOSSUM and 

Enrichr, we discovered the transcription factor KLF4 controls all of the LPR genes. KLF4 was 

previously identified as one of the essential factors for iPS cell development25. KLF4 was 

previously reported to regulate WE phenotype28,29,36, although none of these studies connected 

the KLF4 expression or activation to microenvironmental conditions as evolutionary selection 

pressures. Here, we have shown that KLF4 induced WE is connected to the microenvironment of 

cancer cells in DCIS lesions. Open questions still remain regarding the heterogeneity of KLF4 

expression in selected clones as well as clinical samples. This might imply redundant 
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mechanisms, such as NFB, that we also uncovered as a mechanism to maintain the WE 

phenotype or co-opt adjacent cancer cells37. 

Finally, these results are paradoxical to our notion that cells under very low nutrient 

conditions should reduce their demand and energy expenditures based on the energy availability. 

Our findings suggest that the Warburg phenotype may be more efficient than previously assumed 

since we show that the WE phenotype is a highly regulated and controlled energy consumption 

source. Our results also illuminate the evolutionary trajectory of the Warburg phenotype driven 

by microenvironment selection pressures. We observed that transcription factors can activate the 

WE phenotype under appropriate environmental conditions that can both select for the WE 

phenotype and facilitate its hardwired statues. The activation of transcription factors, such as 

KLF4 and NFB, may serve as an adaptive mechanism for cancer cells to switch to fitter 

phenotypes (Warburg phenotype) that can withstand the harsh environmental selective forces 

found in early DCIS lesions.  

 

Methods: 
Cell culture and in-vitro clonal selections  

MCF-7 cells were acquired from American Type Culture Collection (ATCC, Manassas, VA, 

2007–2010) and were maintained in RPMI 1640 (Life Technologies, Cat# 11875—093) 

supplemented with 10% fetal bovine serum (HyClone Laboratories). Growth medium was 

further supplemented with 25 mmol l−1 each of PIPES and HEPES and the pH adjusted to 7.4 or 

6.7. Cells were tested for mycoplasma contamination and authenticated using short tandem 

repeat DNA typing according to ATCC’s guidelines.  

Western blotting 

Selected and non-selected MCF-7 cells were grown with the same number of passages and used 

for whole-protein extraction. Lysates were collected RIPA buffer containing 1 × protease 

inhibitor cocktail (P8340; Sigma-Aldrich). Twenty micrograms of protein per sample was loaded 

on polyacrylamide–SDS gels, which later were electrophoretically transferred to nitrocellulose 

membranes. Membranes were incubated with primary antibodies against rabbit monoclonal 

KLF4 (1:1,000, ab215036 Abcam), NF-B (1:1000, # 8242 Cell SignalingHK(1:1000,#2867s 

Cell Signaling), p-AKT (1:1000, #4060s Cell Signaling), Tubulin (1:1000, #3873 Cell Signaling)  

and GAPDH (1:4,000, antirabbit; Santa Cruz Biotechnology). 

siRNA Transfection 

Three unique 27mer RELA human siRNA oligo dupliexes (SR304030A, B and C) were obtained 

from Origene (SR304030).  Universal scrambled negative control siRNA duplex (SR30004, 

Origene) were used as a non-targeting control for this study. Cells were seeded in a six-well plate 

and reached 70% to 80% confluence before transfection. Cells were transfected with the negative 

control siRNA or p65-targeting siRNA according to standard protocols using lipofectamine 

RNAiMAX transfection reagent (13778030, Themo Fisher). 

 Immunofluorescence 

Selected and non-selected MCF-7 cells cultured with the same number of passages were rinsed 

with PBS, fixed in cold Methanol:Acetone (1:1) for 10 minutes and further permeabilized by 

0.5% triton 100 and then blocked with 5% bovine serum albumin in PBS. Samples were 

incubated with KLF4 rabbit monoclonal primary antibody (1:100; ab 215036 Abcam) and 

secondary Alexa-Fluor 488 antirabbit (1:1000) antibody. Coverslips were mounted using 

ProLong Gold Antifade Reagent (Life Technologies) and images were captured with a Leica 

TCS SP5 (Leica) confocal microscope. 
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Glycolytic and oxygen consumption rate measurements (Seahorse) 

Glycolytic rate of MCF7 and selected MCF7 cancer cells was measured using Seahorse XF96 

extracellular flux analyzer and a glycolysis rate kit (Seahorse Biosciences). Oxygen consumption 

rate (OCR) and extracellular acidification rate (ECAR) of cancer cells were determined by 

seeding them on XF96 microplates in their growth medium until they reached over 90% 

confluence. In these studies, seeding started with 20,000 cells (80% of well area). Measurements 

were determined 24 hour later when the cells reached the 90% confluence. One hour before the 

seahorse measurements culture media were removed and cells were washed 3 times with PBS 

followed by addition of base medium (non-buffered DMEM supplemented with 25 mM glucose) 

or our non-buffered only glucose containing solution. For glycolytic rate measurements, 

mitochondria inhibitors including rotenone (1μM) and antimycin A (1μM), were injected after 

basal measurements of ECAR and OCR of the cells under treatment to stop the mitochondrial 

acidification. 2-deoxy-glucose (100 mM) was added next to bring down glycolysis to basal 

levels. Finally, data were normalized for total protein content of each well using the Bradford 

protein assay (Thermofisher). Seahorse measurements were performed with 4-6 technical 

replicates and these experiments were repeated four times. 

Solutions for seahorse experiments: 2mM HEPES, 2mM MES, 5.3 mM KCl, 5.6 mM 

NaPhosphate, 11 mM glucose, 133 mM NaCl, 0.4 mM MgCl2, 0.42 mM CaCl2, titrated to given 

pH with NaOH. For reduced Cl- experiments, 133 mM NaCl was replaced with 133 NaGluconate 

and MgCl2 and CaCl2 were raised to 0.74 and 1.46 mM, respectively, to account for gluconate-

divalent binding.  Amount of dilute HCl or NaOH added to medium to reduce pH to target level 

was determined empirically. 

Respiratory capacity is a measure of the maximum rate of O2 consumption and mitochondrial 

electron transport in a cell38. Glycolytic capacity is the maximum rate of glucose conversion to 

pyruvate and/or lactate by a cell. Glucose breakdown to two lactates produces two protons, 

allowing for the capability of indirect measurement of glycolytic rate using the extracellular 

acidification 38. Compensatory glycolysis is the maximum possible rate of glycolysis in cells 

following inhibition of oxidative phosphorylation with rotenone/antimycin. The WE phenotype 

(“Warburgness”) can be expressed as the ratio of glycolysis (ECAR) to oxidative 

phosphorylation (expressed as the oxygen consumption rate, OCR) from the GST. 

 

RNA-seq 

High-multiplexed library preparation for RNA-seq (PLATE-seq) was performed as described 

previously 19. Briefly, we captured poly-adenylated mRNA from cell lysates using a 96-well 

plate with oligo(dT) grafted to the inner walls of each well (Qiagen). Next, we eluted the poly-

adenylated mRNA and reverse transcribed using 96 different barcoded oligo(dT) primers 

(Integrated DNA Technologies). Following exonuclease digestion of excess primers, the 

barcoded cDNA libraries were pooled for second-strand synthesis and Illumina library 

construction. We sequenced the resulting pooled, barcoded, 3’-end libraries on an Illumina 

NextSeq 500. 

 

Metabolic Profiling  

Cells were seeded in a 24-well plate in the growth medium containing 10% FBS under standard 

culture condition. Once cells reach 90% confluence, the growth media were removed and cells 

were washed twice in PBS and incubated in 2% serum and phenol-red free medium for 24 h. 

Then, the media were collected for lactate production assay. L (+)-Lactate was measured with a 
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colorimetric kit (BioVision, K627-100) according to the manufacturer’s instructions. Absorbance 

(OD 450 nm) for each sample was background corrected with the culture medium (2% FBS) 

collected from the well without growing cells. Final data of the lactate production rates were 

normalized to the protein amount per well.  

Lactate and Glucose concentration measurement was also done by YSI machine followed their 

protocol (YSI 2900 multi-analyte system (YSI, Yellow springs OH)). 

 

RNA Sequencing data analyses  

Bioinformatics Processing and Statistical Analysis of RNA-Seq Data:  

Paired-end PLATE-seq data have the sample-identifying barcode sequences in read 1 and 

transcript sequences in read 2. We first aligned read 2 to the hg19 human genome with UCSC 

known genes transcriptome annotation using STAR39. Next, we demultiplexed the aligned reads 

based on the barcode sequence in read 1.Finally, we quantified the number ofuniquely 

alignedreads associated with each gene in each sample using the featureCounts 39. 

 

 We next filtered genes and only kept those with > 2 counts per million in at least 5 samples 

resulting in 12,568 genes for further analysis. To account for differences in library size between 

the samples, trimmed mean of M values (TMM) normalization was applied, followed by data 

transformation using the mean-variance relationship estimated on the observed log count data as 

implemented in the R package voom20,40 . This results in approximately normally distributed 

count data for each gene, thus allowing for standard normal theory methods to be applied. We 

determined there that no batch effects were present using principal component analyses. 

Association of gene expression with continuous measure of lactate production rates (LPR) was 

completed with linear regression models using the limma package 21. Genes with false discovery 

rate (FDR) q-values < 0.10 were considered significant41,42. Gene list enrichment was performed 

using oPOSSUM (http://opossum.cisreg.ca/oPOSSUM3/)  and Enrichr 

(https://amp.pharm.mssm.edu/Enrichr/)  22,23.  

 

Evolutionary Trajectory Analysis. 

 Alignment of cells along their evolutionary trajectories from the parental, unselected lineage to 

several selected stated was performed using Palantir 43, a recently published trajectory-detection 

algorithm for single cell RNA-seq data. Here, with single clone RNA-seq, we had complete 

RNA-seq expression per clone and did not need to impute any missing data, as is done with 

single cell RNA-sequencing datasets. Palantir models cell fate choices as a continuous 

probabilistic process over pseudotime, estimating the probability of a cell in an intermediate state 

to reach a terminal state (here: G, OP, and GOP). Palantir calculates differentiation potential of a 

given cell leveraging the entropy over branch probabilities. Differentiation potentials near 1 

correlate with earlier in the pseudotime lineage, which in this case corresponds to the parental 

lineage (unselected), and indicate cells with the highest potential of become a different 

phenotype over time. The high-resolution data allows for mapping of gene expression trends and 

dynamics over this pseudotime, which can be interpreted as how gene expression changes as the 

populations were driven from the parental lineage (unselected) to alternate terminal trajectories 

of G and OP phenotypes. Visualization of this dataset was performed using UMAP projections 

44,45 of the high-dimensional dataset and further analyses were overlaid onto this representation. 

Python code implementing Palantir on this single clone dataset is available in the Supplement. 
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Mathematical Modeling.  

We used the mathematical model described in 14 and extended in 15 as a starting point. An 

interaction network and decision tree for the model are shown in Figure S7. For the in vivo 

simulations in Figure 3, panels A-D, we set up an initial condition of a duct, as in 15. Vascular 

was initialized with normal vascular density outside the duct and no vessels within. For the in 

vitro simulations in Figure 3, panels E-I, we altered the model as follows: vasculature was 

removed, and concentrations of oxygen, glucose, and protons (pH) were considered to be well-

mixed, and therefore had a global value across the simulation domain. No diffusion was 

necessary, and metabolic reaction rates for glucose were calculated per cell and then summed 

across the entire population for each time step. This lowered the concentration of glucose over 

time; the pH was calculated via the metabolic equations of the model.  

 

𝐴𝑇𝑃 = (𝑃 − 𝑉𝑜
𝑜

𝑜+𝑘𝑜
) (

𝑔

𝑔+𝑘𝐺
) + (𝑉𝑜

𝑜

𝑜+𝑘𝑜
) (

𝑔

𝑔+𝑘𝐺0
) + 𝑃𝑆      (1) 

 

where P is the cell’s glycolytic phenotype while g and o are glucose and oxygen concentrations, 

respectively. Cells in the model were shown to survive in the unfed conditions well after glucose 

was depleted, suggesting that a secondary survival effect was in operation. This could be due to 

glutamine in the media, autophagic response, etc. To account for this behavior in the model, we 

added a term to the equation for ATP production under the hypothesis that this behavior emerges 

in concert with the Warburg phenotype. The term is a simple linear scaling with the glycolytic 

phenotype (pG) of a given cell, kS pG, added to the ATP production derived from normal 

metabolism (Figure S9). We fit the parameter kS based on the dynamics of the population and 

metabolites seen in the experimental system. 

Replating was mimicked in the simulation by restoring the nutrient and pH values to their 

initial conditions every 3 or 14 days, as per the experimental protocol for the 5 different 

conditions. Simulations were implemented using the “Hybrid Automata Library” framework46 

and barcoding visualized using the EvoFreq package in R47. Parameters for in vivo and in vitro 

models are below 14,15. 

 

Table 1: In vivo Parameters 

Param. Value Units Description 

δx 20 µm Diameter of CA grid point 

pD 0.005 1/day Normal tissue death rate 

pΔ 0.7 1/day Death prob. in poor conditions 

pn 5e-4 1/day Necrotic turnover rate 

Do 1820 µm2/s Diffusion rate of oxygen 

Dg 500 µm2/s Diffusion rate of glucose 

DH 1080 µm2/s Diffusion of protons 

Oo 0.0556 mmol/L Oxygen concentration in blood 

Go 5 mmol/L Glucose concentration in blood 

pHo 7.4 pH pH of blood 

Vo 0.012 mmol/L/s Max. oxygen consumption 

ko 0.005 mmol/L Half-max oxygen concentration 

kG 0.04 mmol/L Half-max glucose concentration 

kH 2.5e-4 - Proton buffering coefficient 
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ΔH 0.003 - Pheno. variation rate (acid res.) 

ΔG 0.15 - Pheno. variation rate (glycolysis) 

Ad 0.35 - ATP threshold for death 

Aq 0.8 - ATP threshold for quiescence 

βT,min 6.1  Maximal acid resistance 

βG,max 50  Maximal glycolytic phenotype 

βN 6.65  Normal acid resistance 

𝜏min 0.95 Days Min. cell cycle time 

σmin 80 µm Min. vessel spacing 

σmean 150 µm Mean vessel spacing 

vmean 5 - Vessel stability 

pang 0 - Angiogenesis rate 

 

 

Table 2: In vitro Parameters 

Param. Value Units Description 

S 0.08 - Oxidative phosphorylation survival 

ΔH 0.005 - Pheno. variation rate (acid res.) 

ΔG 0.25 - Pheno. variation rate (glycolysis) 

Ad 0.15 - ATP threshold for death 

Aq 0.8 - ATP threshold for quiescence 

βT,min 5.8  Maximal acid resistance 

βG,max 10  Maximal glycolytic phenotype 

βN 6.2  Normal acid resistance 

𝜏min 0.95 Days Min. cell cycle time 

kG 0.3 mmol/L Half-max glucose concentration 

kG0 2.5 mmol/L Baseline Half-max concentration 

ko 0.005 mmol/L/s Half-max oxygen concentration 

kH 1.2e-4 - Proton buffering coefficient 

 

Statistical Analysis -1.   

Bioinformatics Processing and Statistical Analysis of RNA-Seq Data: Primary analysis and de-

multiplexing are performed using Illumina’s CASAVA software, resulting in de-multiplexed 

FASTQ files for subsequent analysis by the mapping software and aligner. These data will then 

be checked with fastqc program for quality assessment. Then cutadapt will be used to trim off 

adaptor contaminant sequences and low-quality bases at the ends. Reads pairs with either end too 

short (<25bps) will be discarded from further analysis. Fastqc will be used again to examine 

characteristics of the sequencing libraries after trimming and to verify its efficiency. Next, 

trimmed and filtered reads will be aligned to the hg19 human transcriptome using STAR48, 

followed by gene abundance estimation completed using RSEM49, as this approach accounts for 

reads mapping to multiple locations.  

We next filtered genes and only kept those with > 2 counts per million in at least 5 samples 

resulting in 12,568 genes for further analysis. To account for differences in library size between 

the samples, trimmed mean of M values (TMM) normalization was applied, followed by data 

transformation using the mean-variance relationship estimated on the observed log count data as 
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implemented in the R package voom20,40 . This results in approximately normally distributed 

count data for each gene, thus allowing for standard normal theory methods to be applied. We 

determined there that no batch effects were present using principal component analyses. 

Association of gene expression with continuous measure of Lactate production rates (LPR) was 

completed with linear regression models using the limma package 21. Genes with false discovery 

rate (FDR) q-values < 0.10 were considered differentially expressed 41,42. Gene list enrichment 

was performed using oPOSSUM (http://opossum.cisreg.ca/oPOSSUM3/)  and Enrichr 

(https://amp.pharm.mssm.edu/Enrichr/)22,23.  
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Figure S1.  Experimental Design

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.07.029975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.07.029975
http://creativecommons.org/licenses/by-nd/4.0/


Figure S2: 
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Figure S2: Unfed clones have Warburg phenotype. A) YSI measurements of three unfed 
clones and MCF7 cells. Unfed selected cells have higher lactate production rate.  
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Figure S3: 

 

 
Different clustering RNA expression compared to Figure 2A. Within this one, the RED group 

consisted entirely of unfed cells; the GREEN group was comprised of GOP and OP cells, the 

BLUE group consisted of G and GOP cells, and the YELLOW group was almost entirely 

consisted of control cells.  The clustering of cells from different selection patterns is not 

unexpected, as there is also great heterogeneity in the basal LPR between clones arising from the 

same selection conditions (cf. Figure 2).  A preliminary analysis of RNASeq data was performed 

by linearly regressing gene expression data with lactate production rate and filtering for strongly 

correlated or anti-correlated genes.  Unsupervised clustering (Figure S3) of these data showed 

that 1000 most highly correlated and anti-correlated genes clustered within selection condition.  

The red and green groups were the most glycolytic and selected by non-feeding and low 

Glucose, low Oxygen, and acidic pH, as the blue and yellow group were generally less glycolytic 

and selected with low glucose and low pH and oxygen.    
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Figure S4: 

 

Differentiation Potential from Parental Lineage to Terminal Phenotypes

unselected

unfed
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G

unselected

unfed
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Clonal Identity

Pseudotime Differentiation Potential

Figure S4. Phenotype evolution trajectory alignment of single clone RNA-sequencing for evolving

breast cancer cell populations. (A) Cell fate analysis with Palantir was applied to the single clone

RNA-sequencing dataset to determine differentiation potential from an initial, unselected, parental

lineage to selected, phenotypic terminal states of G, OP, and unfed. UMAP projections were used to

visualize the high-dimensional dataset and known identity of each clones was colored on the

UMAP projections. Unselected clones were indicated in red, unfed clones were indicated in purple,

G clones were indicated in green, OP clones were indicated in mint, and GOP clones were indicated

in blue. (B) Pseudotime alignment and differentiation potential for each clone was calculated and

colored onto the UMAP projection. Pseudotime ranged from 0, indicating earlier timepoints in the

lineage trajectory in dark blue, to 1, indicating later timepoints in the lineage trajectory in yellow.

Differentiation potential indicated the probability that a given clone would proceed along the

trajectory. Differentiation potentials near 1, indicated in yellow in the plot, represented clones with

the highest potential to proceed to a terminal phenotypic state. Differentiation potentials near 0,

indicated in dark blue, represented clones already in a terminal phenotypic state and thus they

had low potential of changing from that state.
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Figure S5: 
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Figure S5. Terminal state probability distribution of individual unselected, parental 

lineage clones to terminal phenotypes: unfed, G, OP. For each unselected clone, the 

probability of that clone of evolving to a G, OP, or unfed phenotypic state. Four of the clones 

have increased probability of becoming G, while remaining sixteen have highest probability of 

becoming OP overtime. Interestingly, clones most likely to become G also have almost no 

chance of becoming unfed phenotype. Inlet shows the location of the given clone on the UMAP 

projection in Figure 2C and Figure S4 A and B.  
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Figure S6: 

 

 

A) Transcription factor analysis with Enrichr (positive coefficient genes). We Used “Enrichr” 

(http://amp.pharm.mssm.edu/Enrichr/) for transcription factor enrichment of significant MCF7 

genes. B)Transcription factor analysis with Enrichr (positive coefficient  genes). 
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Figure S7:  

 
Figure S7. Schematic of the hybrid mathematical model. (a) The interactions between cells, 

vasculature, and metabolites in the in vivo simulations. Green lines indicate promotion or 

production; red lines indicate inhibition. Four generalized tumor cell phenotypes are shown, but 

the model has a continuous phenotypic variation. The pink cells are representative of the WE 

phenotype. (b) decision path for the model. Green lines are ‘yes’, red lines are ‘no’. Cells die if 

they have low ATP efficiency in the given conditions, or if they are maladapted for the level of 

acidosis. Cells change their phenotype by a small, random amount upon proliferation. 
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Figure S8: 

 
Figure S8. Illustration of barcoding scheme for the mathematical modeling. At time 0, all cells 

are given a unique ID (top). This can be repeated at later times (e.g., t1) by adding a second 

unique ID to each extant cell (middle). The clones and subclones can then be colored by average 

phenotype (bottom) so that the lineage of the final phenotypes can be determined.  
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Figure S9: 

 
Figure S9. Quantification of the ATP efficiency benefit gained by the WE phenotype under 

different conditions of glucose, from the mathematical model results. The dashed lines show the 

original model ATP efficiency (vertical axis) for different concentrations of glucose. The solid 

lines show the efficiency with the addition of the survival benefit term. In all cases, this enhances 

the cellular ATP production, but WE phenotype cells gain the most benefit, particularly in poor 

conditions. 
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Figure S10: 

 
 

 
 

Figure S10: A) Western blot validation of NFB and its clients. Unfed clones have higher 

NFB, p- NFB, HK2, p-AKT expression compared to the parental MCF7 clones. B and C) 

Knock down of NFB reduces the glycolytic phenotype of unfed clones. B shows the validation 

of NFB siRNA in reducing the protein expression. Using validated NFB siRNA from B, we 

showed that lactate production rate of unfed cells decreases in C. Data are presented as mean 

with standard deviation as error bars. 
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Figure S11: 
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