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Abstract 

In motor learning, the slow development of implicit learning, following explicit 

components of learning is well established. While much is known about behaviour 

during adaptation to a perturbation in reaches, saccades and locomotion, little is known 

about implicit processes during adaptation. Implicit learning is characterized by both 

changes in internal models and state estimates of limb position, which we measure as 

reach aftereffects and shifts in hand localization, after every training trial. This allows 

trial-by-trial mapping of implicit learning. Participants reached to targets with aligned, 

then 30° rotated, counter-rotated and finally error-clamped cursor feedback. This 

paradigm allows fitting a common state space model to the reach performance. The 

slow process of the model did not match the time course of either of our implicit 

measures. The observed implicit changes were near asymptote after only one perturbed 

training trial and thus occur much faster than conventionally believed.  

Introduction 

An established convention of motor learning asserts that automatic or implicit 

components of learning emerge later in training following an initial more explicit or 

declarative stage, even for skill maintenance tasks, like adaptation (1–5). Here, we 

show that implicit changes during reach training occur immediately and do not require 

prolonged training at all.   

Two main implicit changes involved in adaptation, that rely on sensory-prediction 

error-based learning, are updates in internal models as well as the resulting changes in 

our state estimates (6–8). While perturbations in reach, saccade and locomotion 

adaptation evoke relatively quick adjustments to behaviour (4,9–12), it has not been 

directly measured how quickly implicit changes emerge.  

One hallmark of implicit learning: reach aftereffects, is the persistence of motor 

changes even when the perturbation is removed, which is thought to reflect a change in 

internal models during adaptation (7,13). Another implicit change involves shifts in our 

perceived hand location or state estimate, to reduce the discrepancy between where the 

participant sees and feels their hand (6,14–18). It is thought that implicit learning arises 

slowly with exposure to a perturbation along with explicit components of learning 

(1,2,19). Our lab has shown that reach aftereffects and shifts in hand localization 

emerge after 6 trials (20,21). In the current study, we push this further by having 

participants alternate between training and testing trials, while adapting to a 30° 

rotation, its reversal and then error-clamped trials. Each group of participants performed 

one type of testing trial that could assess either changes in state estimates or internal 

models. By probing implicit changes after each training trial, we increase the resolution 

of measuring implicit changes greatly.  

We compared the time course of the various implicit changes we measure with 

the two processes of state space models that have been used to describe the time 

course of adaptation (22). The fast and slow process of these state space models have 
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been suggested to map onto explicit and implicit components of learning respectively 

(19). Hence, here we compare the model processes to our measures of implicit 

learning. We find changes in reach aftereffects and state estimates to be much faster 

than the models’ slow processes. State estimates asymptote after a single trial and are 

best described as a proportion of the perturbation. In short, our results challenge the 

convention that implicit learning is slow, and show that some implicit changes emerge 

before, and likely separate from, explicit changes in motor control. 

Results 

Hand localization experiment 

96 participants adapted to an imposed perturbation interleaved with test trials or 

a short pause in time. The test trials involved measuring estimates of the hand location 

after the trained hand was displaced by a robot manipulandum (passive localization, Fig 

1A&D) or by the participant themselves (active localization, Fig 1A&C). A third control 

group had no measurements of hand location and instead just paused during the 

allotted time (Fig 1A). Comparing these three test-trial groups (passive, active and 

pause) we can investigate learning-induced changes of hand estimates across training. 

We begin by analyzing the reach training performance and fitting the two-rate model, to 

reach performance (22). We then compare the model processes to the passive and 

active hand localization shifts which measure components of implicit learning.  
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Figure 1. Performance across measures for passive, active and pause groups. A: reach 

training performance averaged across all participants for each corresponding group. B: Hand 

localization performance for the two groups. C&D: Model predictions for the active and passive 

localization groups. All solid lines are an average of all participants in that group, shaded 

regions are 95% confidence intervals. Trials included in analysis are as follows: R1=trials 65-68; 

R1_Late=trials 221-224; R2=trials 237-240; EC=273–288. 

 

Training Trials 

To investigate whether the type of intervening test trial affects training 

performance (Fig 1A), we conducted a mixed ANOVA with group (passive, active or 

pause) and trial set (R1, R1_Late, R2 and EC, described in figure 1 & 5). As expected, 

reach deviations varied across trial set [F(3,279)=537.99, p<.001, η2=.80], and there 

was a significant interaction between trial set and group [F(6,279)=8.29, p<.001, η2 

=.11], but no effect of group on its own [F(2,93)=1.90, p=0.15]. Follow-up ANOVAs 

show that learning was slower in the active localization compared to the other 

conditions [all p<.001].  

Model Fitting for Training 

We fit the two-rate model (22) to the averaged reach deviations for each group 

(see figure 1C&D). The model (black line) does a rather good job at predicting the 

average performance (grey line). As shown in table 1, the learning rates for the active 

group are slightly lower than the passive or pause group, in line with results above. 

Importantly, the retention parameters are very similar across all three groups, indicating 

the same ability to retain what was learned. In summary, despite an interesting effect of 

test-type, reach-training performance was similar enough to compare performance on 

these hand localization test-trials.  

 

Table 1. Model parameters and goodness-of-fit estimates. All twoRate AIC’s are smaller than 

respective oneRate AICs indicating a better model fit from a two-rate model. Relative likelihoods 

below .05 are bolded. 
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Test Trials 

We also compare the time course of changes in estimating the location of the 

unseen, adapted hand across training: for the passive vs. active localization shown in 

Fig 1B. Estimates of hand position show a rapid shift on the first trial after the initial 

perturbation is introduced for both active 8.95° [t(31)=12.49, p<.001, d=2.21, η2 =.70] 

and passive localizations 6.46° [t(31)=6.32, p<.001, d=1.12, η2=.32]. These shifts do not 

increase with further training [all p>.05], indicating hand localization shifts asymptote 

after a single trial.  

Despite similarly quick shifts in hand localization (Fig 1B), a mixed ANOVA 

revealed a significant difference in hand estimates between the active and passive 

localization groups [F(1,62)=6.28, p=0.014, η2=.05], across trial sets [F(3,186)=96.97, 

p<.001, η2=.43] and an interaction between trial set and group [F(3,186)=2.93, p=0.04, 

η2=.02]. Follow-up t-tests indicate larger shifts in felt hand position in the active 

localization group both during the initial [t(51.43)=2.37, p=0.022, d=.59, η2=.08, 2.92°] 

and final [t(61.78)=2.98, p=.004, d=.74, η2=.11, 4.35°] trial set of the first rotation and at 

the end of the error clamp phase [t(61.99)=2.73, p=.008, d=.68, η2=.11, 3.5°]. Thus, 

even though the participants in the active localization paradigm seemed to learn slightly 

slower than the passive group, they showed a slightly larger shift in felt hand position, 

except during the counter rotation [t(58.93)=-0.15, p=.88]. This separation between 

active and passive localization shifts reflects the role of predicted sensory 

consequences in state estimates of hand position and more generally, motor learning.  

Alternative to Two-Rate Model 

Given that shifts in hand localization did not mimic the observable pattern of 

either the fast or slow process, we next tested whether changes could simply be 

described by the perturbation size alone. In previous studies, change in felt hand 

position was usually 20-30% of the perturbation (15,23,24). Indeed, when the changes 

in hand position were fit with a linear regression estimating the proportion of the 

perturbation accounted for (passive: ~20% active: ~35%), we see a reasonable fit 

between actual hand location estimates and these simple models (see figure 2A-C). 

Similar regression estimates (black line) are used as the proportion of the perturbation 

that hand estimates would have shifted and compared to the actual data (colored lines) 

shown in figure 2D&E. In combination with the sudden change in localization, these 

results suggest that localization shifts involve a perceptual recalibration that does not 

require slower adaptation or learning and may guide adaptation, rather than follow from 

it. 
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Figure 2. Regression and proportional fits between localization and error clamp trials. A-C: 

Regressions between localizations and either the size of the perturbation, the absolute change 

in size of perturbation and the participants average performance on the final 16 error clamp 

trials. The shaded regions represent the 95% confidence interval around the regression line. D-

E: The proportional models’ prediction and the averaged participant performance for each 

localization test trial separately.  

 

Reach aftereffects experiment 

Next, we measured the time course of changes in no-cursor reaches or reach 

aftereffects at the same scale. We began again by investigating whether these test trials 

affected reach-training performance like we did for hand localization and included the 

pause-group as our control again. Figure 3A shows the reach training performance for 

both groups, with their 95% confidence intervals. We also include the model fit and the 

no-cursor reach trials in figure 3B. 
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Figure 3. Performance across measures for pause and no-cursor groups. A: Reach training 

performance averaged across all participants for each group. B: Two-rate model fit (black and 

green dashed lines), reach performance (grey line) and no-cursor test trials in solid green. All 

solid lines are an average of all participants in that group, shaded regions are 95% confidence 

intervals. 

 

Training Trials: 

We conducted an ANOVA with the same trial set factors as the previous 

experiment and the group factors of pause and no-cursor. We found an effect of trial set 

[F(3,234)=444.85, p<.001, η2=.81] and an interaction between trial set and group 

[F(6,234)=27.50, p<.001, η2=.20]. These effects seem to be driven by the slower 

learning and much smaller rebound in the no-cursor paradigm. Follow-up t-tests show a 

significant difference between the pause and no-cursor group during R1, R1_late and 

R2 trials sets with p<.001. However, both groups performed similarly by the end of the 

error clamp phase [t(45.98)=1.49, p=.144]. These results once again suggest that active 

movements between training trials interferes with learning. 

Model Fitting: 

 Figure 3B shows the emergence of the implicit reach aftereffects along with the 

model’s proposed slow process. Visually it is clear the slow process predicted by the 

model does not match the pattern of the reach aftereffects. In all our model simulations, 

the slow process rises slowly and continues to increase throughout training. This is not 

the pattern we see with the reach aftereffects.  

Testing Trials: 

We also looked to see the speed at which reach aftereffects develop. We found 

reach aftereffects were present at the first trial set, after only 1-4 rotated training trials 

[t(47)=20.28, p<.001, d=2.92, η2=.79, 10.85°]. These aftereffects continued to increase 

another 5.67° by the end of the first rotation [t(47)=5.29, p<.001, d=.76, η2=.18]. A 

closer look at no-cursor performance during rotated-cursor training revealed a 

significant difference between the first (trials 65-68) and second (trials 69-72) trial sets 

[t(47)=3.22, p=.002, d=.46, η2=.07, 2.96°]. Reach aftereffects continued to increase 
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slightly during the rest of training [t(47)=2.46, p=.018, d=.35, η2=.03, 2.71°]. However, 

this further increase following the initial first trial set was so small that there was no 

significant change between each set of 4 trials to the next for the subsequent 20 rotated 

trials (trial range 68-88) p>.19. Thus, almost the entire change in no-cursor reaches, i.e., 

the implicit reach aftereffects, rapidly occurs within the first four trials.  

Implicit Measures of Learning: 

 As both reach aftereffects and hand localization shifts are thought to be implicit 

and potentially driven by similar processes we compared the first test trial after the first 

rotated training trial and found no significant difference between the reach aftereffects, 

and either of the active [t(73.54)=-1.08, p=.28] or passive [t(59)=-1.81, p=.08] 

localization test trials. We speculate that these initial reach aftereffects may mainly 

reflect the changes in hand estimates, or a similar training signal (6,15,25), before 

additional sources of information emerge to contribute even larger shifts in reach 

aftereffects and no further shift in hand localizations.  

Speed of Learning: 

While tangential to the main goal of this study, we found that intervening trials 

that involve active movements (no cursor, or active localization where participants 

moved their own trained hand) slowed down learning when compared to just passive 

hand displacements or a pause in time. We can in fact predict for individual participants 

whether they made self-generated movements in the interleaved testing trials or not for 

114 / 144 participants (79%; chance=80/144 or 55%; p<.001 binomial exact test) based 

on a multiple logistic regression model without interactions, using the parameters of the 

two-rate model as predictors. This shows that learning is slowed by having active 

intervening movements made in the absence of visual feedback. 

Discussion 

 While many studies measure and model the time course of reaches in response 

to a perturbation (19,26), very few investigate the emergence of other outcomes of 

training, such as reach aftereffects and changes in estimates of hand position, but see: 

(20,21,27). In the current study, we measure implicit changes as reach aftereffects and 

estimates of passively and actively displaced hand position, at high temporal resolution. 

This is accomplished by interleaving every reach training that has aligned, rotated or 

error-clamped cursor feedback with one test trial. We test whether the pattern of implicit 

changes can be explained by, or even contribute to, different processes that are widely 

used to describe the rate of adaptation. We find that reach aftereffects and changes in 

estimates of hand position emerge and saturate rapidly during adaptation training. This 

suggests that implicit learning does not follow explicit changes and plays an important 

role in initial learning. In addition, this pattern does not match either the slow or the fast 

processes that account for the pattern of adaptation when reaching with a perturbed 

cursor. Indeed, changes in hand-localization can best be explained as a proportion of 

the visual-proprioceptive discrepancy experienced on the previous trial only. These 
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inconsistent patterns of emergence may indicate that the slow process is not 

synonymous with either of these well-established implicit components of motor learning. 

Thus, while a two-rate model may be able to describe patterns of performance during 

visuomotor training in the current form, the slow process does not equal implicit 

processes. 

 As expected, reach performance with a rotated cursor for all four groups adhered 

well to a model that consists of a fast and a slow process (19). Yet, the pattern by which 

both changes in estimates of hand position and no-cursor reaches arose did not mimic 

the slow process. Similarities might have been expected since these processes have 

been proposed to reflect mainly the implicit component of learning (2,5,7,19,28). 

Likewise, while the measured changes in hand estimate and no-cursor reaches arose 

quickly, not surprisingly they didn’t decay as would be expected by a process that would 

forget quickly. This suggests these model processes may not reflect observable 

behaviours and the slow process is not implicit learning as we have been measuring it.  

Estimates of hand location are incredibly quick to shift, with participants only 

having to experience one rotated training trial to elicit the full shift. Hand localization 

responses are thought to measure the brain’s state estimate of hand position and likely 

rely on at least two signals: an efferent-based predictive component and an afferent-

based proprioceptive component, that both change during visuomotor rotation training 

(29,30). Since the two-rate model does not include a state estimation process per se, 

perhaps it makes sense that it cannot explain proprioceptive recalibration. We see here 

that a proportional fit seems to explain changes in hand estimates throughout the 

adaptation task, especially during the error-clamp phase where the size of the visual-

proprioceptive discrepancy is determined by the size of the reach deviation. The pattern 

of change in estimates of hand location points to this process being independent of the 

other processes of motor learning.  

The two signals thought to contribute to changes in hand location, prediction and 

proprioception, may be differentially involved in active and passive localizations (29,30). 

Active hand localization exhibits slightly larger shifts than passive hand localization. This 

difference in size of localization shift is known and can be attributed to the additional 

information provided by self-generated movement that allows the efferent-based, 

predictive component (29,30). Regardless, the size of the errors in hand localization are 

consistent with previous studies that – after many more trials – observe changes in felt 

hand position between 20-30% of the rotation (14,20,21,23,31), which scales with the 

size of the rotation in some circumstances (24). Importantly, the proportional account 

explains these differences and still describes the localization data well.  

Reach aftereffects also emerge incredibly quickly, while not reaching asymptote 

as fast as shifts in hand localization. The similar size of aftereffects and hand 

localization shifts after just one rotated training trial potentially indicates a shared 

source. In addition, participants who perform no-cursor reaches with minimal instruction 

or more detailed instruction (to ensure strategy wasn’t used) show similar rates and 
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extents of learning of reach aftereffects. If no-cursor reach deviations reflect implicit 

changes in state estimation, these arise much quicker than previously thought 

bolstering recent claims that the earliest wave of muscle activity during adaptation is 

influenced by implicit motor learning (32).  

Conclusion 

 The two-rate model fits visuomotor adaptation data excellently. We suggest here 

that the conventionally implicit components of motor learning; changes in estimates of 

hand location, and no-cursor reach deviations, do not follow the pattern of the two-rate 

model’s slow process, nor indeed the fast process. The fast emergence of reach 

aftereffects and changes in hand estimates indicate implicit components of motor 

learning appear before or alongside explicit components of learning. Perhaps implicit 

processes lead or drive motor learning, unlike previously believed, but certainly they do 

not lag behind explicit processes. In addition, our results provide further evidence that 

implicit learning consists of at least two sub-processes that separately contribute to 

adaptation.  

Methods 

Participants 

144 (mean age=20.31, range=17- 46, females=102) right-handed, healthy adults 
gave informed, prior consent to participate in this study. All procedures were approved 
by the York Human Participants Review Subcommittee. Apparatus 

The experimental set-up is illustrated in Figure 4. While seated, participants held 
a vertical handle on a two-joint robot manipulandum (Interactive Motion Technologies 
Inc., Cambridge, MA, USA) with their right hand such that their thumb rested on top of 
the handle. A reflective screen was mounted horizontally, 14 cm above the robotic arm. 
A monitor (Samsung 510 N, 60 Hz) 28 cm above the robotic arm presented visual 
stimuli via the reflective screen to appear in the same horizontal plane as the robotic 
arm. A Keytec touchscreen was placed above the robotic arm and was used to record 
reach endpoints of the left hand, to unseen, right hand targets (see (14) for more 
details). Subject’s view of their training (right) arm was blocked by the reflective surface 
and a black cloth, draped over their right shoulder. The untrained, left hand was 
illuminated, so that any errors in reaching to the unseen, right target hand could not be 
attributed to errors in localizing the left, reaching hand. 
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Figure 4. Experimental setup and design. A: Side view of the experimental set-up. The top 
layer is the monitor, middle layer is the reflective screen, and the bottom opaque layer is the 
touchscreen. The robot is depicted beneath with the participants’ right hand grasping it. B-D: 
Top views of task specific set-ups. B: Training (and Clamp) trial. The home position is 
represented by a green circle with a 1 cm diameter; located approximately 20 cm in front of the 
subject and not visible during the trial. Targets are represented by white circles with a 1 cm 
diameter located 12 cm radially from the home position at 60°, 80°, 100° and 120°. Participants 
hand cursor was also a 1 cm diameter blue circle. C: Localization test trial. Participants were 
either passively moved to one of the eight target locations, or actively moved their hand in the 
direction suggested by the white wedge at the home position, these real and suggested 
locations include 55°, 65°, 75°, 85°, 95°, 105°, 115° and 125. The participants then used the 
index finger of their left untrained hand to indicate the felt location of the right hand (specifically 
the thumb). D: No-cursor test trial. Participants made ballistic reaches to one of 8 target 
locations without any visual feedback of their movement. 

Trial Types 

Reach-training trials 

Participants, regardless of group, reached as accurately as possible with their 
right hand to one of the four possible target locations (see figure 4B). In all reaching 
trials, i.e., with cursor, with clamped cursor and with no cursor, participants had to reach 
out 12 cm from the home position to a force cushion within 800 ms. Participants 
received auditory feedback throughout training indicating if they met the distance-time 
criteria or not. The target would then disappear, and the robot manipulandum returned 
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the right hand to the home position where they wait 250 msec for the next trial. The 
hand cursor was aligned with the hand for the first 64 training trials, then rotated 30° 
CW for 160 training trials and then rotated 30° CCW for 16 training trials. This was 
followed by 48 error-clamped trials, dashed lines in Fig 5, which were identical to the 
reach training task except that the cursor always moved on a straight line to the target. 
The distance of the error-clamped cursor from the home position was identical to the 
distance of the hand from the home position. 

Figure 5. Experimental Schedule. Participants reached to visual targets with a perturbation 

denoted by the black line. The dotted line at the end of the paradigm signifies clamp trials where 

there was no visual error as the cursor always moved to the target regardless of the participants 

movement direction. Trials included in analysis are as follows: R1=trials 65-68; R1_Late=trials 

221-224; R2=trials 237-240; EC=273–288.  

 

Test trials 

Participants switched between two tasks, the first of the two tasks was either 
reach-training or clamp-trials whereas the second trial was one of four possible test 
trials, each one performed exclusively by participants in one group. These test trials 
were: (1) localization of the unseen hand position when the hand was passively moved 
by the robot, “Passive localization”, N=32, (2) localization of the unseen hand after it 
was actively moved by the participant, “Active localization”, N=32, (3) a no-cursor reach 
to a target, “No-cursor”, N=48, or (4) a short pause phase with no hand movement, 
“Pause”, N=32, serving as a control group. After each test trial, the robot returned the 
participants’ hand back to the home position. 

Hand localization 

Two of the four experiments involved measuring estimates of unseen hand 
location in order to assess different components of state-estimation. For both 
localization trials (Fig 4C), a white arc would appear on the screen, spanning from 0° to 
180°, the arc was 12 cm away from the home position. Then the hand was either 
passively displaced by the robot to one of the eight target locations (passive 
localization) or the hand movement was self-generated by the participant (active 
localization). Passive movement of the hand took 650 ms to cover the 12 cm distance. 
In active localization trials, participants chose their own hand-target location. They were 
guided with a small wedge that appeared at the home position spanning 30°, the center 
of the arc was on the passive localization target locations. This active, self-generated 
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movement was stopped by a force cushion at the 12 cm mark. Regardless of 
localization trial type once their right, unseen target hand was locked in place, 
participants used their visible, left index finger, to indicate on the touchscreen, along this 
arc, where they believed their right, stationary, unseen hand was. The arc was 
continuously visible until the touchscreen registered the participants estimate.  

Reaching without a cursor 

Another test trial required participants to reach out, again 12 cm, to one of eight 
targets (Fig 4D) without a cursor representing their hand. The same distance-time 
criteria as in reach-training applied but without reinforcing sounds. This group originally 
had 32 participants who were simply told that there would be no cursor for these trials. 
We later add 16 more participants who were specifically told not to include any learned 
strategy. Since the results did not differ between these two sub-groups, (see R 
notebook for details: https://osf.io/9db8v/), the results were collapsed for analyses.   

 

Data Analysis 

 We analyzed the two groups with localization test trials together and no-cursor 
test trial groups, we always included the pause group with each of the analysis as a 
control version. The reach training trials, localization trials and no-cursor trials were 
analyzed separately from each other. 

Reaching with a cursor and clamp trials: To quantify reach performance during training, 
the angular difference between a straight line from the home position to the target and a 
straight line from the home position and the point of maximum velocity is computed. 

Hand Localization: Estimates of hand location in both the passive and active localization 
groups were based on the angular endpoint error between the movement endpoint of 
the right unseen hand and the left hands responses on the touchscreen.  

Reaching without a cursor: To determine if participants exhibit reach aftereffects as a 
result of training, we measured reach endpoint errors during no-cursor trials. The reach 
error is calculated based on the angular deviation between the reach endpoint and the 
target location, relative to the home position.  

Analyses 

All data was visually screened for incorrect trials and outliers of more than three 
standard deviations across participants within each trial were deleted, resulting in 2.2% 
of the data being removed. All measures were normalized, by subtracting out each 
subjects’ performance during the second half of the aligned session (e.g. trials 32-64). 
To quantify changes in training and test trials we conducted ANOVAs consisting of a 
within-subjects factor of trial set and a between-subjects factor of group. The trial-set 
factor consisted of four levels which were an average of: the first 4 rotated trials (R1), 
the final 4 trials from the first rotation (R1_Late), the final 4 trials from the second 
rotation (R2) and the last 16 trials from the clamp phase (EC). Significant main effects 
and interaction were followed-up by pairwise comparisons. All results are reported with 
a Welch t-tests and an alpha of .05.  
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Modeling 

We fitted the two-rate model (22) to our data. This two-rate model is composed of 
a slow process that slowly increases over time until it is the driving force of 
performance, and a fast process that rises quickly but eventually decays back to zero. 
The sum of these two processes determines the overt behaviour and can explain the 
rebound seen in the error-clamp phase. During error-clamps, neither process learns, but 
the fast process will forget how it adapted to the counter rotation, while the slow process 
still exhibits part of its adaptation from the long initial training, resulting in a rebound.  

This model postulates the reaching behavior exhibited on trial t (Xt), is the sum of the 
output of the slow (Xs,t1) and fast process (Xf,t1) on the same trial: 

𝑋𝑡1 = 𝑋𝑠,𝑡 + 𝑋𝑓,𝑡 

Both of these processes learn from errors on the previous trial (et0) by means of 
a learning rate (Ls and Lf), and they each retain some of their previous state (Xs,t0 and 
Xf,t0) by means of their retention rates (Rs and Rf):  

𝑋𝑠,𝑡1 = 𝐿𝑠 ∗ 𝑒𝑡0 + 𝑅𝑠 ∗ 𝑋𝑠,𝑡0 

𝑋𝑓,𝑡1 = 𝐿𝑓 ∗ 𝑒𝑡0 + 𝑅𝑓 ∗ 𝑋𝑓,𝑡0 

 The model is further constrained by making sure the learning rate of the slow 
process is lower than that of the fast process: Ls < Lf, and by having the retention rate of 
the slow process be larger than that of the fast process: Rs > Rf. 

 All model fitting was done on the mean angular reach deviation at peak velocity 
during all training reaches (disregarding target location). The error term was set to zero 
during the final error clamp phase of the experiment, as the participant did not 
experience any performance error. The model was fit in R (33) using a least mean-
squared error criterion on the six best fits resulting from a grid-search. The parameter 
values corresponding to the lowest MSE between data and model was picked as the 
best fit, and this was repeated for all groups. The datasets for the current study are 
available on Open Science Framework, https://osf.io/9db8v/.  
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