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Abstract
Horizontal gene transfer mediated by integrative and conjugative elements (ICE)
is considered an important evolutionary mechanism of bacteria. It allows
organisms to quickly evolve new phenotypic properties including antimicrobial
resistance (AMR) and virulence. The rate of ICE-mediated cargo gene exchange
has not yet been comprehensively studied within and between bacterial taxa. In
this paper we report a big data analysis of ICE and associated cargo genes across
over 200,000 bacterial genomes representing 1,345 genera. Our results reveal that
half of bacterial genomes contain one or more known ICE features ("ICE
genomes"), and that the associated genetic cargo may play an important role in
the spread of AMR genes within and between bacterial genera. We identify 43
AMR genes that appear only in ICE genomes and never in non-ICE genomes. A
further set of 95 AMR genes are found >5x more often in ICE versus non-ICE
genomes. In contrast, only 29 AMR genes are observed more frequently (at least
5:1) in non-ICE genomes compared to ICE genomes. Analysis of NCBI antibiotic
susceptibility assay data reveals that ICE genomes are also over-represented
amongst phenotypically resistant isolates, suggesting that ICE processes are
critical for both genotypic and phenotypic AMR. These results, as well as the
underlying big data resource, are important foundational tools for understanding
bacterial evolution, particularly in relation to important bacterial phenotypes such
as AMR.
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Background
Several mechanisms of horizontal gene transfer (HGT) allow bacteria to exchange
genetic code. One of these mechanisms, termed conjugation, occurs when bacterial
cells form direct physical contacts that allow for passage of genetic material from one
bacterium to another. The machinery required to form these contacts and initiate
genetic exchange is often contained within integrative and conjugative elements
(ICE) [1, 2, 3, 4, 5, 6, 7]. ICE are modular mobile genetic elements that integrate
into host genomes; are propagated via cellular replication; and can be induced to
excise from the host genome in order to initiate the process of conjugation. The
conditions that induce excision and conjugation are not fully elucidated, but DNA
damage and subsequent SOS response seem to be an important trigger [8, 9].
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Genes exchanged between bacteria during ICE-mediated transfer include func-
tional domains associated with ICE machinery (e.g. excisionases, integrases, con-
jugative transport proteins, etc...) as well as intervening ’accessory’ sequences that
encode a variety of cargo genes [6]. By pairing ICE machinery with an array of
diverse cargo genes, bacterial communities can significantly expand their genetic
repertoire, including between bacteria of diverse taxonomy [6, 10, 11, 12]. Func-
tions commonly associated with ICE cargo include antimicrobial resistance (AMR)
and virulence [3, 5, 6, 10], both of which represent risks to human and animal health
if transferred into pathogens. Therefore, understanding the microbial ecology of ICE
and cargo genes (i.e., their distribution and behavior across bacterial taxa) is im-
portant in assessing the human health risk posed by various bacterial communities.
For example, how often do different bacterial taxa carry ICE and AMR genes; what
resistance phenotypes are commonly associated with ICE machinery; how often do
different commensal bacterial taxa use ICE to exchange various cargo genes with
pathogens; and what conditions foster ICE-mediated exchange of specific cargo
genes between pathogens and non-pathogens? These questions are fundamental to
understanding how bacterial communities respond to external stimuli, and how
these responses increase the overall risk posed by microbial communities of varying
composition [13, 14]. Understanding these dynamics, in turn, allows us to better
understand how human practices may increase "risky" microbial behaviors (such
as ICE-mediated exchange), and thus predispose to higher-risk microbial commu-
nities. For example, we can start to predict how antimicrobial use practices impact
the likelihood of pathogens obtaining AMR genes from the commensal microbiome
via ICE transfer.
These microbial ecological questions are becoming increasingly tractable as more

and more whole genome sequence (WGS) data are generated. As an example, the
analysis of HGT-associated genes from just 336 genomes across 16 phyla was suffi-
cient to significantly improve bacterial phylogenies as compared to those obtained
from conserved marker genes [15]. An analysis of 1,000 genomes demonstrated that
ICE machinery is ubiquitous across diverse prokaryotes, and likely one of the most
common mechanisms of bacterial evolution [11]. Today, public datasets contain
orders of magnitude more WGS data. However, despite the importance of HGT
in bacterial evolution and pathogenicity, there has not yet been a comprehensive,
systematic survey of the frequency of ICE and cargo protein sequences within or
between bacterial genera. The objective of this work was to describe intra- and
inter-genus ICE-cargo dynamics using the comprehensive set of WGS data and ICE
sequences currently available.
Using both sequence- and annotation-based queries of a relational database devel-

oped from the National Center for Biotechnology Information (NCBI), we report
a large-scale computational analysis of ICE and associated cargo proteins across
186,887 non-redundant bacterial genomes representing over 1,300 genera. Using 36
ICE features (Table 4) representing different families of ICE (i.e., specific proteins
or protein families from UniProtKB and the ICE literature), we identify 95,781
genomes that contain at least one ICE feature. We term these "ICE genomes",
and note that they represent 631 of the 1,345 analyzed genera (47%). In a detailed
analysis of potential ICE-mediated exchange within and between genera based on
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exact-match sequence similarity, we find that the ICE genomes contain 28,042 dis-
tinct ICE proteins and 11,276,651 corresponding cargo proteins (out of 51,362,178
total unique protein sequences in the source database). The full set of cargo genes
map to 20,550 distinct gene names (excluding ’putative protein’ or ’hypothetical
protein’), with a wide range of ICE-mediated transfer frequencies within and be-
tween genera.
To gain insight into ICE cargo genes, we perform a statistical comparison of all

genes annotated with names associated with AMR. By comparing the frequency
with which these genes appear in ICE genomes versus non-ICE genomes, we find
that out of 286 AMR gene names, 220 are found more often in ICE genomes and 63
are found more often in non-ICE genomes (and 3 with equal probability). Further-
more, we find that rare or less frequently observed AMR genes are more likely to be
associated with ICE genomes, while common or abundant genes are less likely to be
associated with ICE genomes. In an independent analysis of phenotypic antibiotic
susceptibility data contained in NCBI BioSample data, we evaluate all public as-
say data for ICE and non-ICE genomes. Considering all antibiotic drug compounds
with more than 60 phenotypic resistant measurements, the data show that resis-
tance occurs in ICE genomes with probability >80% regardless of compound. By
comparison, in a random process, the probability would be expected to be closer to
50% based on the prevalence of ICE genomes.
These results advance our understanding of the complex microbial ecological dy-

namics arising from ICE-mediated exchange, and represent a significant "big data"
resource for scientists working on microbiome research and pan-microbial evolution.
As such, our results have wide-reaching impact, spanning from theoretical under-
pinnings of microbial behavior to infectious disease and food safety.

Results
Determination of ICE genomes, ICE proteins, and those proteins with the greatest
supporting evidence as possible cargo proteins is described in detail in Methods.
To test the identification of ICE and cargo proteins we use the annotated locus to
ensure that the ICE protein features occur within regions of putative cargo (and not
surrounded by other chromosomal genes). Figure 1 shows that the vast majority of
putative cargo proteins are adjacent within contigs, and that the contigs containing
the ICE features themselves are more likely to be proximate to putative cargo
proteins (black regions) vs non-cargo proteins (grey regions). We note that each
genome in the figure is actually a linear representation of the contigs assembled
by SPAdes, in the order in which they were annotated by Prokka. Due to inherent
genome characteristics and the nature of short-read sequence data, SPAdes (and
other de novo genomic assemblers) can not always establish the assembly order for
all contigs. Therefore, when contigs containing no cargo proteins are interspersed
with cargo-containing contigs, we can not definitively determine whether this is due
to fragmented assemblies or biology. Such interspersion shows up as noise within
the (black) regions of likely cargo proteins; this is best observed by viewing the
heatmap in full screen. We emphasize that the noise is not evidence for or against
chromosomal rearrangement after ICE exchange, but rather could be artifact of the
contig-centric annotation process.
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Figure 1 is intended to test if the observed ICE features (Table 4) co-occur prox-
imate to regions of cargo proteins (shown in black). The figure shows the relative
position of cargo and ICE proteins within assembled contigs. Each row in the figure
represents a genome, with ICE proteins shown in color based on Table 4, cargo
proteins in black, and other sections of the genome in grey. Each genome’s data
are rotated (bit shifted) left so as to center the first ICE protein, which appears
as a colored, vertically-aligned pixel. For genomes containing more than one ICE
protein, additional ICE proteins appear as individual scattered colored pixels to the
right of the central line. In the supplement we provide a similar figure for each ICE
protein class listed in table 4.
From Figure 1, it is also evident that individual genomes may contain more than

one ICE protein, and that these proteins may in turn represent more than one ICE
feature (Table 4). Figure 2 plots the number of ICE features per genome (a), and
the number of ICE proteins per genome (b) as a function of the number of genomes
on a logarithmic scale. Note that the genome order in (a) and (b) is different and
selected to sort the feature counts from greatest to least in each case.
A priori, one might reasonably expect the number of observed ICE genomes to

scale with the number of genomes available for each genus. However, genus repre-
sentation in NCBI is not uniform across genera, leading to bias in available genomes
per genus. To correct for this imbalance, we computed the ICE genome frequency
by normalizing the number of observed ICE genomes to the number of genomes per
genus. Table 1 lists all genera with over 100 representative genomes in OMXWare,
ordered by the proportion of ICE genomes in the genus. The genera with the largest
fraction of ICE genomes are not the genera with the most genomes in NCBI. For ex-
ample, although Salmonella has by far the greatest number of high quality genomes
(N=39,574), it ranks fifth in terms of the proportion of genomes that contain an
ICE protein. The top 30 genera listed in Table 1 all have an ICE genome frequency
greater than 20%, with genomes from the genus Legionella containing ICE proteins
over 99% of the time. This high percentage may be due to sampling bias in the
available NCBI WGS datasets (for example, the Legionella pneumophila WGS ac-
cessions appear to have been collected from a single site), or it may represent the
propensity for ICE-mediated processes to occur within individual genera.
In order to minimize false positive identification of ICE and potential cargo pro-

teins, we applied a strict rule that ICE proteins must be seen with identical amino
acid sequence in two or more genomes, and that cargo proteins must be seen in two
or more ICE genomes with exact amino acid sequence identity. The strict sequence
identity rule likely decreases the sensitivity to detect ICE-mediated transfer events,
as genomes continue to evolve after HGT events, including possible chromosomal
rearrangement [16]. However, if ICE-mediated HGT occurs frequently enough, and
if our reference database is large enough that we can rely on the "law of large
numbers" [17], then the set of all genomes should contain some pairs of genomes
that have not yet evolved so far as to obscure the cargo proteins. Figure 1 is a
test of this hypothesis, and provides evidence that cargo proteins identified by the
strict selection process exist in genomic proximity to each other and to the ICE
proteins that likely transferred them. This rule is also required to visualize the
transfer of ICE and cargo proteins within and between genera, as in Figure 3. In
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Table 1 Frequency of ICE genomes, by genus. The table lists all genera with over 100
representative genomes ordered by the frequency of ICE genomes in the genus. The green line
separates ICE frequency above or below 50%.

Genus ICE Total ICE Genome
Genomes Genomes Frequency

Legionella 1672 1686 0.99
Shigella 5423 5541 0.98
Klebsiella 4682 5304 0.88
Elizabethkingia 102 119 0.86
Escherichia 8140 9957 0.82
Stenotrophomonas 441 563 0.78
Enterobacter 894 1210 0.74
Vibrio 2902 4017 0.72
Acinetobacter 2621 3770 0.70
Pseudomonas 3222 4750 0.68
Enterococcus 1003 1516 0.66
Citrobacter 131 203 0.65
Salmonella 24123 38808 0.62
Clostridioides 1329 2183 0.61
Streptococcus 8244 13766 0.60
Xanthomonas 201 357 0.56
Staphylococcus 18034 32661 0.55
Rhizobium 110 202 0.54
Yersinia 215 437 0.49
Lactococcus 57 117 0.49
Serratia 230 619 0.37
Sinorhizobium 44 121 0.36
Bifidobacterium 137 403 0.34
Moraxella 65 192 0.34
Bacillus 471 1471 0.32
Campylobacter 5340 19501 0.27
Aeromonas 80 312 0.26
Brucella 230 970 0.24
Mesorhizobium 89 385 0.23
Helicobacter 118 529 0.22
Streptomyces 74 333 0.22
Corynebacterium 133 639 0.21
Neisseria 153 781 0.20
Burkholderia 341 2053 0.17
Haemophilus 65 403 0.16
Lactobacillus 144 962 0.15
Listeria 848 7716 0.11
Clostridium 40 454 0.09
Mycobacterium 1120 13129 0.09
Cutibacterium 10 118 0.08
Bordetella 60 733 0.08
Chlamydia 33 496 0.07
Bartonella 3 124 0.02
Mycoplasma 2 251 0.01
Francisella 0 120 0.00

this force-directed graph visualization, each node is a genus and edges represent
inter-genus transfer. Edges can be filtered based on various criteria, including type
of ICE involved in the transfer; number of ICE proteins; distinct cargo proteins
(by sequence); and the number of AMR cargo proteins by sequence. By definition,
edges in Figure 3 require sequence identity at each node, i.e., genus. Edge weights
represent either (1) the number of ICE proteins shared between the genera, (2) the
number of distinct proteins shared between the genera, or (3) the number of AMR
proteins shared between the genera – depending on filtering criteria used. The size
of nodes in Figure 3 represents the fraction of genomes within that genus identified
as ICE genomes. Full data are available in tabular form and the visualization is
available in the supplement.
A subset of the observed cargo protein names are associated with a set of con-

firmed antimicrobial resistance (AMR) protein names. We identified this subset by
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selecting only those names that Prokka assigned to sequences mapping to a name
defined in MEGARes v1.0 [18]. The entity relations in our database ensure a 1::1
mapping between gene and protein names and their respective sequences. Of the
3,824 distinct sequences contained in MEGARes, Prokka identified 3,674 of them as
valid sequences coding for protein. These 3,674 distinct proteins were assigned 286
distinct names, excluding ’putative protein’ and ’hypothetical protein’. While this
highly curated set is certainly not a comprehensive list of all proteins contributing
to AMR, it is a useful initial set to estimate the fraction of AMR proteins within
the larger set of ICE and cargo proteins.
We analyzed this set of AMR proteins in an attempt to estimate or bound the

number of possible false classifications of cargo proteins that are specifically re-
lated to ICE-mediated HGT. This was necessary because some genomic features
are shared between ICE and plasmids, an indeed some of the InterProScan codes
that define ICE features may also contain machinery required for the formation or
integration of plasmids. Accordingly, Figure 4 shows a 2-d histogram of AMR pro-
tein sequences (by AMR name). Along the x-axis, the histogram represents the fre-
quency with which AMR protein sequences are found on ICE vs non-ICE genomes.
Along the y-axis, the histogram represents the fraction of the protein sequences (by
AMR name) that have been observed on plasmids. Note the full scale on the y-axis.
The maximal frequency of sequence observation on a plasmid is 10%, and this pro-
vides an upper bound to possible false positive identification as ICE-related cargo.
In fact, observation of a sequence required for plasmid formation on a plasmid does
not rule out observation of the same sequence on ICE, and vice versa.
To analyze the distribution of AMR proteins across genomes, we calculated

the probability that each AMR gene name was identified in ICE versus non-ICE
genomes, (Table 2. From the complete list of 286 AMR protein names (see supple-
ment), 220 are found more often in ICE genomes, 3 are found in ICE and non-ICE
genomes with equal probability, and 63 are found more often in non-ICE genomes.
Given that the ratio of ICE:non-ICE genomes in our database is 51%, this suggests
that AMR genes are disproportionately represented within ICE genomes.
The analysis above does not distinguish between different ICE features, and treats

AMR proteins as independent features. However, the data in Figure 1 demonstrate
that many of the ICE features defined in Table 4 often co-occur in the same genome,
as do some of the AMR proteins. To gain insight into these correlations, and to iden-
tify groups of AMR proteins associated with different ICE families, we show in Fig-
ure 5 a co-occurrence matrix across all ICE features for the 43 AMR proteins with
an ICE:non-ICE genome frequency of >5x. This figure demonstrates that some ICE
features co-occur within genomes frequently with both other ICE features as well as
multiple AMR protein names. For example, IPR005094 appears to co-occur with the
widest diversity of AMR protein names. Many co-occurrence patterns in Figure 5
reflect known biological associations. For example, the Tn916 ICE feature co-occurs
most frequently with tetracycline ribosomal protection protein TetM, a genomic
association discovered over three decades ago [19]. While TetM seems to co-occur
with a few select ICE features (such as Tn916), other AMR protein names seem to
co-occur with many ICE features. For example, many of the AMR names associated
with extended-spectrum beta-lactam and carbapenem resistance co-occur with the
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Table 2 Probability of observing AMR names in ICE vs non-ICE genomes. Only those AMR
names that appear in more than 100 genomes are considered. The table shows those AMR
names that occur with ICE genome probability ≥ 0.98 (above line) and ≤ 0.15 (below line).
The full data is available in the online supplement.

.

AMR Total ICE non-ICE ICE
Protein Genome Genome Genome Genome
Name Count Count Count Prob
Rob DNA-binding transcriptional activator 4559 4559 0 1.00
Transposon Tn10 TetD protein 4559 4559 0 1.00
Tetracycline resistance ribosomal protection pro-
tein Tet(M)

304 304 0 1.00

Outer membrane protein YedS 288 288 0 1.00
Regulator of RpoS 288 288 0 1.00
Tetracycline resistance protein TetM 137 137 0 1.00
Beta-lactamase Toho-1 319 318 1 1.00
AcrAD-TolC multidrug efflux transport system -
permease subunit

1584 1576 8 0.99

Multidrug efflux pump subunit AcrB 1584 1576 8 0.99
DNA topoisomerase subunit A 1091 1085 6 0.99
MATE family multidrug efflux pump protein 1607 1596 11 0.99
Carbapenem-hydrolyzing beta-lactamase KPC 1914 1899 15 0.99
Beta-lactamase OXA-1 1188 1175 13 0.99
Inner membrane protein HsrA 350 346 4 0.99
Putative transport protein YdhC 342 338 4 0.99
Aclacinomycin methylesterase RdmC 419 414 5 0.99
Beta-lactamase OXA-2 199 196 3 0.98
Chloramphenicol efflux MFS transporter CmlA1 795 783 12 0.98
Beta-lactamase OXA-10 521 513 8 0.98
16S rRNA (guanine(1405)-N(7))-
methyltransferase

994 978 16 0.98

Ribosomal RNA large subunit methyltransferase
H

4087 3989 98 0.98

Multidrug resistance operon repressor 486 67 419 0.14
Outer membrane protein OprM 478 65 413 0.14
Methicillin-resistance regulatory protein MecR1 8344 1007 7337 0.12
Phosphoethanolamine–lipid A transferase MCR-
1.1

8344 1007 7337 0.12

HTH-type transcriptional repressor BepR 467 55 412 0.12
Bifunctional polymyxin resistance protein ArnA 507 53 454 0.10
Methicillin resistance regulatory protein MecI 6583 395 6188 0.06
Metallothiol transferase FosB 6584 395 6189 0.06
Multidrug efflux transporter MdtL 419 9 410 0.02
Multidrug efflux pump subunit AcrA 420 7 413 0.02
HTH-type transcriptional regulator SyrM 1 414 3 411 0.01
Multidrug efflux RND transporter permease sub-
unit OqxB3

358 2 356 0.01

Aminoglycoside 2’-N-acetyltransferase 9723 5 9718 0.00
DNA-binding response regulator MtrA 9854 2 9852 0.00
Putative acetyltransferase 5232 1 5231 0.00
Quinolone resistance protein NorB 213 0 213 0.00

majority of evaluated ICE features (e.g., beta-lactamases Toho-1, OXA-1, OXa-2,
OXA-10, SHV-2, and KPC), which may provide partial explanation for the observed
rapid expansion of these important AMR proteins within Enterobacteriaceae [20].
Similarly, the recently widely-publicized mcr-1 protein seems to co-occur with mul-
tiple ICE features, which both strengthens and expands upon recent findings that
this AMR gene has been mobilized on numerous plasmid types [21]. Co-occurrence
data such as those provided in Figure 5 may represent a new and sustainable (i.e.,
easily updated) source of information regarding the potential for new and emerging
AMR genes to expand within and across bacterial populations. This information, in
turn, could help to prioritize and focus public health and human clinical decision-
making regarding AMR.
Conversely, in Figure 6 we display a co-occurrence matrix for all 29 AMR proteins

observed in non-ICE genomes with a frequency greater than 5x the frequency of
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observation in ICE genomes. Of note is the observation that no beta-lactam AMR
protein names occur in this list of 29 AMR names; this contrasts starkly to the
preponderance of beta-lactam-associated AMR names in Figure 5, again suggesting
that beta-lactam resistance is tightly coupled with ICE machinery, and that ICE-
mediated exchange is the primary evolutionary driver of beta-lactam resistance.
By comparison, several mechanisms of multi-drug resistance (MDR) are contained
within the list of 29 AMR proteins observed more frequently in non-ICE versus ICE
genomes, i.e., AcrB, AcrE, OqxB7, mdtA, mdtE, mdtH, and MexB. These mecha-
nisms of MDR tend to be multi-purpose, i.e., the proteins confer multiple functional
benefits to bacteria, in addition to AMR. Together, the results of Figures 5 and 6
suggest that proteins with more specific AMR functions tend to be disproportion-
ately represented amongst ICE genomes, while more generalist proteins tend to be
disproportionately represented within non-ICE genomes. One hypothesis for this
observation is that the fitness cost-benefit dynamics differ for generalist versus spe-
cialist genes, such that specialized genes are more likely to transiently yet rapidly
spread within bacterial populations via the so-called ’accessory genome’ (which
includes ICE-mediated exchange), whereas generalist genes are more likely to be
maintained permanently within bacterial genomes, and thus are less likely to be
identified as ICE-associated cargo.
Given our hypothesis that ICE-mediated spread of specialized AMR genes may

be promoted by more specific evolutionary pressure such as antimicrobial drug ex-
posures, we hypothesized that this signature of selective pressure may also manifest
in the phenotypic properties of ICE versus non-ICE genomes. To evaluate this, we
queried the NCBI BioSample assay metadata in our relational database (described
in Methods), to identify isolates that had been tested for phenotypic antibiotic
susceptibility (AST) to known antibiotic compounds. For the 186,887 highest qual-
ity genomes, the NCBI assay metadata contained 15,286 phenotypically-confirmed
resistant genome-compound tests, representing 13,076 tests for ICE genomes and
2,210 tests for non-ICE genomes. Altogether, 1,242 genomes were used in these
tests, of which 1,023 were ICE genomes and 219 were non-ICE genomes. For each
antibiotic compound listed, we computed the number of phenotypically resistant
isolates with ICE- vs non-ICE-containing genomes.
In Table 3 we list the probability of observing phenotypic resistance from ICE

genomes, for all antibiotic compounds with more than 100 assays in the NCBI
BioSample data. The full list is available in the supplement. The data reveal that
phenotypic resistance occurs in ICE genomes with probability >80%, regardless of
compound. As with the disproportionate representation of AMR genes within ICE
genomes, the phenotypic AMR data again suggest that microbial AMR dynamics
are driven largely by ICE-mediated processes. However, it is also important to
note that NCBI phenotypic assay data is likely biased due to the motivations for
clinicians and researchers to submit isolates for phenotypic testing. Therefore, to
test for SRA sampling bias with respect to these compounds, we also measured the
phenotypically-resistant fraction expected for randomly selected genomes, based on
the number of genomes tested per compound in table 4 and the actual number of
ICE and non-ICE genomes across the entire database. This null hypothesis was
tested by running 100 bootstrapped trials for each compound. The results are listed
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in table 4. The average ICE probability for all compounds listed in table 4, weighted
by total genomes tested per compound, is 0.85 ± .05 independent of antibiotic
compound. In a random process, the probability would be expected to be near 51%
given the fraction of all genomes with ICE features.

Table 3 The role of ICE in phenotypic resistance for specific antibiotic compounds. The table
lists the probability of observing resistance in ICE genomes. Only compounds with 100 or more
non-redundant resistant genome measurements are listed. The table shows that phenotypic
AMR occurs in ICE genomes with probability >80% regardless of compound. The table also
shows the number of expected resistant ICE genomes based on a bootstrapped random
selection process with 100 trials (null hypothesis), using the number of assays and the actual
fraction of genomes with ICE features (~51%).

Total ICE Random ICE
Antibiotic Resistant Resistant Process Prob
Compound Genomes Genomes
doripenem 215 207 86 ± 7 0.96
cefepime 272 259 108 ± 8 0.95
ampicillin-
sulbactam 433 402 173 ± 10 0.93
imipenem 429 396 171 ± 11 0.92
piperacillin-
tazobactam 280 258 112 ± 9 0.92
meropenem 402 367 161 ± 11 0.91
trimethoprim-
sulfamethoxazole 868 775 348 ± 14 0.89
ertapenem 222 197 89 ± 8 0.89
levofloxacin 741 644 297 ± 14 0.87
gentamicin 813 706 325 ± 13 0.87
ciprofloxacin 915 794 367 ± 14 0.87
amoxicillin-
clavulanic acid 277 240 111 ± 8 0.87
ceftriaxone 984 849 394 ± 16 0.86
tetracycline 700 603 281 ± 12 0.86
ceftazidime 852 731 342 ± 14 0.86
cefotaxime 889 758 355 ± 15 0.85
tobramycin 674 574 270 ± 12 0.85
ampicillin 1042 852 418 ± 16 0.82
amikacin 383 313 154 ± 10 0.82
aztreonam 989 805 397 ± 15 0.81
cefazolin 1002 813 402 ± 16 0.81
cefoxitin 757 608 304 ± 15 0.8
nitrofurantoin 713 559 287 ± 12 0.78
cefotetan 124 95 49 ± 6 0.77

The specific proteins transferred between chromosomes are known to vary by ICE
feature. This is demonstrated in part by the AMR proteins analyzed in Figures 5
and 6. It is possible to classify these features in a general way considering all ICE
features used in this study. Figure Genome-IPR Co-occurrence Map shows the co-
occurrence of ICE proteins by genome, for the 6000 genomes with the highest cargo
protein fraction. To this set, 500 genomes containing the largest number of rare ICE
features were added to ensure representation of those families defined by a smaller
collection of well-characterized proteins from the literature (see Table 4. Figure 7
thus represents the co-occurrence of ICE features within the selected set of genomes.
From the co-occurrence matrix, one can calculate a distance between all pairs of
genomes using the Euclidean distance between their representation as normalized
ICE feature vectors. The resulting genome-genome distance map, shown in Figure
8, provides a hierarchical clustering of genomes based on the co-occurrence of ICE
features. In principle, one can use the same vectorization procedure on genomic
properties other than ICE features, defining a different set of genomes of interest
within the mobilome, to (re)classify organisms not by name, but by distance in a
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space of mobilization features. Note that only 1 in 75 genome labels (by genera) are
shown along the y-axis given the relatively large number of genomes included.

Discussion
The public availability of large scale genomic data makes it possible to apply cloud
computing technology and big data techniques to the study of important phenom-
ena in molecular and microbiology. Furthermore, putting all of this data in a rela-
tional database with biologically structured entity relations (i.e., linking genomes,
genes, proteins, domains, and metadata) provides a powerful new way to ask bio-
logical questions about the data. We leveraged this approach in the current study of
ICE and associated cargo proteins. Exchange of proteins by conjugative processes,
including ICE, is now understood to be an essential mechanism by which bacteria
acquire new phenotypes, transmit molecular functions, and adapt to stress. Further-
more, these events are critical for understanding bacterial evolution and phylogeny
[15, 11, 12]. Our work not only sheds light on ICE-cargo protein transfers between
and within genera, but also demonstrates the power of a "big data" approach for
improving our understanding of bacterial evolutionary dynamics, particularly sur-
rounding important phenotypes such as AMR.
In our analysis we identified sets of proteins with the strongest evidence as ICE

and ICE cargo proteins. This was accomplished by selecting only those proteins
that exhibited both 100% sequence identity and co-occurrence in pairs of genomes
containing identical ICE sequences. With this strict selection process, the putative
cargo proteins exhibited a high degree of spatial correlation within assembled contigs
(i.e., they were highly adjacent to each other, as well as to the ICE protein itself ).
Other proteins in these genomes may also have been transferred (or are transferable)
by ICE, but they did not meet our strict selection criteria. Considering only these
candidate cargo proteins, we were able to profile the frequency of ICE-mediated
protein exchange within and between genera.
Our results suggest that ICE-mediated exchange is not uncommon [12, 11]. ICE

proteins are observable in 51% of bacterial genomes and in 626 of 1,345 genera
( 47%). Rates of intra- and inter-genus ICE-mediated exchange varied significantly
depending on the taxa involved, suggesting that taxonomy is a significant "risk
factor" for genetic exchange of, e.g., AMR or pathogenicity proteins [22]. By quan-
tifying this risk across a large database of high-quality WGS data, we measured
the "exchange likelihood" between different taxa, and visualized these frequencies
as a force-directed graph (Figure 3). Our analysis revealed distinct clusters of gen-
era with high rates of cross-genus ICE-mediated exchange. This suggests that the
likelihood of protein transfer varies substantially by genus pair, and that the bac-
terial composition within a given environment is an important consideration when
attempting to evaluate mobilization potential within a microbial community. In
practical terms, this means that analysis of the risk posed by the commensal mi-
crobiome (i.e., as a potential reservoir of AMR) must take into account the specific
composition of differing microbiomes, including the presence of bacterial taxa that
are more likely to engage in genus-genus exchange with pathogens of interest. In
other words, there is no "one-size-fits-all" mobilization metric [14]. While we have
conducted this analysis for ICE features, the analytic approach can be applied to
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any mobile genetic element(s) and cargo protein(s) of interest. In this way, our
overall approach represents a method for obtaining a long-range evolutionary view
of transfer likelihood between diverse bacterial taxa, including pathogens and com-
mensal bacteria [11]. These "baseline" exchange likelihoods are critical parameters
for risk analysis at the microbial community level [13, 23].
Bacterial taxon is not the only significant driver of exchange likelihood; we have

also observed that putatively successful transfer events are more likely to involve
cargo proteins that infer fitness advantage to the involved bacterial populations,
such as AMR. While any gene can, in principle, be transmitted as a cargo gene in
conjugative exchange, only a subset of transferred proteins will increase the fitness
of the receiving organism. The likelihood of observing successful transfer depends
on a large number of factors including the environment, the existing proteins in the
recipient chromosome, the cargo proteins themselves, and the survival probability
of the organism [24].
ICE protein transfer that improves fitness may increase survival probability.

Therefore, chromosomal arrangements that group fitness-conferring cargo proteins
near the ICE machinery will be observed more frequently than those arrangements
that involve neutral or disadvantageous proteins. Conversely, very common proteins
that aid in stress response may be less likely to be transferred as cargo, since the rel-
ative fitness advantage is diminished for proteins that are already likely to be present
within a bacterium. The particular stressor – as well as the specific advantageous
stress response proteins of interest – depend on phenotype of interest. This view is
exemplified by the data in Table 2 which shows that rare AMR proteins are more
likely to be found as cargo in ICE versus non-ICE genomes. Conversely, common
AMR proteins are less likely to be found in ICE genomes. One might hypothesize
that, with chromosomal rearrangement, nature effects a real world "Monte Carlo"
experiment to dynamically optimize cargo protein collections - thereby spreading
rare (but useful) proteins and gene combinations over time.
The particular proteins transferred between chromosomes is known to vary with

the different features of ICE, as demonstrated by the AMR proteins analyzed in
Figures 5 and 6. Considering all ICE features used in this study, Figure 7 shows
the co-occurrence of ICE proteins by genome for the 6000 genomes with the highest
cargo protein fraction. To this set, 500 genomes containing the largest number of
rare ICE features were added to ensure representation of those families defined by
a smaller collection of well characterized proteins from the literature (see Table 4.
Each row of this matrix corresponds to one genome, labeled not by accession but
by genus. These results suggest that ICE dynamics are important in structuring
genomic content, and thus driving phylogenetic evolution. Based on Figure 7, it
seems that sometimes these evolutionary ICE dynamics overpower other taxonomic
drivers, such that genus-level genomes do not cluster together. To demonstrate this
ICE-driven phylogeny, we used the data in Figure 7 to generate Figure 8, which
represents the distance between all pairs of genomes based on Euclidean distance
between their representations as normalized ICE feature vectors. The resulting hi-
erarchical clustering shows that the dominant ICE features include genomes across
different genera and, conversely, that individual genera include genomes representa-
tive of different ICE features. This abrogation of genus-level taxonomy due to ICE-
related genomic content is an inevitable consequence of the cross-genus transfers
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visualized in Figure 3 and the corresponding Force-Directed graph of ICE trans-
fer. Given the reality of conjugative exchange, there is no reason to expect that
taxonomic classification by organism name will always predict the composition of
ICE cargo. However, by selecting genomes based on a particular phenotype of in-
terest, it is possible to classify organisms and genome-genome distances based on
a feature space defined by ICE (or other mobilization) proteins. Given the ubiq-
uity and diversity of ICE and other types of conjugative exchange [11], these types
of genome clustering techniques may provide crucial information about bacterial
evolution that is not contained within traditional phylogenies.
This approach may also be useful in exploring the role of HGT in bacterial evo-

lution as it related to AMR mechanisms in particular. The environments in which
bacteria live, the stresses they encounter, and their genetic composition are all dy-
namic. If the proteins required for successful response to a commonly encountered
environmental stress are themselves common, then the fitness advantage gained by
maintaining those proteins as ICE cargo is diminished. If the environmental stress
is relatively new (e.g., a new antibiotic compound), and the protein(s) required for
survival against this antibiotic are rare, then the right combination of proteins may
significantly increase the organism’s survival probability and, therefore, the likeli-
hood of transmitting (and of observing) those proteins as ICE-associated cargo is
also increased. Under this hypothesis, the ICE process is an important mechanism
for spreading new or less common stress responses and resistance mechanisms; but
is relatively unimportant for maintaining the genetic material required for stress
response in common or oft-encountered environments. Given that the widespread
use of most antibiotic compounds is a relatively new phenomenon (at least in evolu-
tionary terms), this may explain why AMR genes that are specific to antibiotic drug
compounds are over-represented within ICE genomes, while more generalist AMR
mechanisms are over-represented within non-ICE genomes. Furthermore, this may
explain why the resistance phenotype for all analyzed antibiotic drugs was much
more likely to be associated with isolates containing ICE feature(s), compared to
isolates not containing ICE features.

Conclusions
By using a big data approach on both genotypic and phenotypic NCBI data, we
generate important insights into bacterial population-level genetic exchange and
evolution, and demonstrate the importance of microbial composition in the likeli-
hood of ICE-mediated transfer events. Because our analysis is based on over 166,000
curated and high-quality WGS datasets from NCBI, it can serve as the basis for un-
derstanding differences in the ICE transfer likelihood of specific cargo genes between
specific bacterial genera. These "baseline likelihoods" are crucial to quantifying the
likelihood of pathogens obtaining genetic material (e.g., AMR genes) from commen-
sal microbes residing in the same environment. Furthermore, we demonstrate that
the importance of ICE-mediated exchange may differ based on the relative rarity
of the cargo gene, suggesting that ICE-containing genomes may be an important
target for surveillance of emerging phenotypes. Given the human and public health
importance of AMR, virulence and pathogenicity, our results therefore provide an
important foundation for improved quantitative assessment of the microbial risk
posed by various microbiomes.
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Methods
Data Description
NCBI Sequence Data
NCBI maintains a large, public domain repository of raw WGS data. As described
in Genome Curation and Selection, we retained 186,887 (non-redundant) public
genomes, which included raw Illumina paired-end bacterial sequence data from the
Sequence Read Archive (SRA), and high quality assembled genomes maintained in
the RefSeq Complete genome collection, genbank, and NCBI’s pathogen tracker.
A detailed description of the genome curation, assembly, and annotation pipelines
may be found in methods, the online supplement, and in a recent paper by Seabolt
et al. [25, 26, 27]. This selection provided us with genomes representing 1,345 gen-
era of bacteria. Accession identifiers for all of these data sets are available in the
supplement. In order to obtain evidence for candidate cargo proteins (i.e., proteins
that had potentially been transferred between bacteria via ICE-mediated HGT), it
was necessary to first identify genomes containing known ICE proteins. We further
restricted this set by considering only sets of genomes that shared particular ICE
proteins with identical amino acid sequence (hereafter referred to as ICE genomes).
For those specific genomes sharing identical ICE proteins we then searched for other
proteins (with sequence identity). These are then labeled possible cargo.
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Table 4 Table of ICE features included in this study. The first column indicates the pixel color
representing ICE features observed in Figure 1. The genome count represents the number of
genomes that contain the corresponding ICE feature.

Color Code Count Description
ICE6013 93267 Includes IS30-like DDE transposase. more closely related

to ICEBs1 than Tn5801[28]

Tn916 59718 TetM and other resistance genes[29]
IPR025955 49841 Type-IV secretion system protein TraC[30]
ICEEc2 49543 set of three genes encoding DNA mobility enzymes and

type IV pilus[31]
IPR005094 42760 Endonuclease relaxase, MobA, VirD2[30]
ICEhin1056 42252 Antibiotic resistance island[32]
IPR011119 28752 Unchar. domain, putative helicase, relaxase[30]
IPR014862 26295 TrwC relaxase[30]
IPR014059 23368 Conjugative relaxase, N-terminal[30]
PAPI-1 22855 Pathogenicity island PAPI-1 of strain PA14. 115 gene

cluster includes virulence phenotypes[33]
pKLC102 22460 Hybrid of plasmid and phage origin includes replication,

partitioning, conjugation, pili, & integrase genes[34]
IPR021300 22284 Integrating conjugative element protein[30]
IPR022391 21465 Integrating conjugative element relaxase, PFGI-1 class

[30]
IPR022303 19664 Conjugative transfer ATPase[30]
ICEPdaSpa1 19424 An SXT-related ICE derived; causative agent of fish

pasteurellosis[35]
IPR014129 18029 Conjugative transfer relaxase protein TraI[30]
SXT 17525 Family of conjugative-transposon-like mobile elements

encoding multiple AR genes[36, 37]
ICEEc1 10170 High-pathogenicity island (HPI); evidence for Combina-

torial Transfers[38]
R391 9916 Archetype of IncJ; carries AR, DNA repair, & mercury

resistance genes[39]
ICEKp1 9117 Resembles functional ICEEc1[38]
ICESde3396 9088 Carries genes predicted to be involved in virulence and

resistance to various metals[40]
ICEBs1 8504 Plasmid mobilization and putative coupling protein[41]
RD2 8370 Encodes seven putative secreted extracellular proteins[42]
IPR011952 2640 Conserved hypothetical protein CHP02256[30]
IPR014136 2050 Ti-type conjugative transfer relaxase TraA[30]
TnGBS2 1630 See ICE6013[43]
CTnBST 1520 Tyrosine recombinase family[44]
ICEclc 1465 Cargo for ortho-cleavage of chlorocatechols & aminophe-

nol metabolism (amr genes)[45]
GI3 1340 Degradation of aromatic compounds and detoxification

of heavy metals[46]
Tn1549 648 VanB-type resistance to glycopeptides with regions[47]
CTn341 389 Encodes tetracycline resistance and its transfer is induced

by tetracycline[48]
IPR020369 119 Mobilisation protein B[30]

(i) excision-integration process;[47]
Tn4555 79 Includes cfxA gene encoding

broad-spectrum beta-lactamase[49]
ICESt1 26 Integrative and putative transfer functions[50, 51]
ICEMISymR7A 16 Rhizobial symbiosis genes [52]
ICESt3 14 Integrative and putative transfer functions[51]

(ii) vanB2 operon replaces tet(M)[47]
(iii) Conjugative transfer[47]

Tn4371 0 Biphenyl and 4-chlorobiphenyl degradation[53]
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This calculation is of order O(N2), but is straightforward to compute on any large
cluster or cloud infrastructure. However, due to the high compute cost, we chose
to first put the required intermediate artifacts into a relational database we call
OMXWare [27]. With an appropriate schema, the database links each genome to all
of its relevant unique proteins, domains, and functional annotations, as described in
Genome Assembly and Annotation. Analysis of ICE genomes and candidate cargo
proteins then simply becomes a set of database queries. This process not only re-
duces final storage requirements (since the unique gene and protein tables are non-
redundant), but also makes the large-scale computation and database reusable for
future biological studies.

NCBI Antibiotic Susceptibility Testing BioSample Data
To analyze associations between phenotypic AMR and ICE, we retrieved metadata
for each NCBI accession that contained antimicrobial susceptibility testing (AST)
data. Retrieved metadata included genomic accession number for each isolate, as
well as the antibiotic compound against which it was tested, the test type and the
phenotypic outcome (resistant, susceptible, or intermediate). We considered only
those isolates with a "resistant" phenotypic outcome to be resistant. By linking
the BioSample accession with the SRA accessions in OMXWare, we were able to
identify genomes for which corresponding AST data are available. These genomes
were used in our analysis of phenotyic AMR and ICE.

Genome Assembly and Annotation
All of the bioinformatic tools used are open source. To assemble Whole Genome Se-
quence from the SRA, Trimmomatic 0.36 [54] is used to remove poor-quality base
calls, poor-quality reads and adapters from the sequence files. For removal of PhiX
control reads, Bowtie 2 2.3.4.2 [55] is used to align the sequences to references de-
rived from PhiX174 (Enterobacteria phage phiX174 sensu lato complete genome).
FLASh 1.2.11 [56] is used to merge paired-end reads from the sequences to improve
quality of the resulting assembly. Once these pre-assembly steps are complete, the
files are passed through SPAdes 3.12.0 [57] and QUAST 5.0.0 [58] in an iterative as-
sembly/quality evaluation process. After assembly, genes and proteins are annotated
using Prokka 1.12 . [59] Following gene and protein annotation, protein domains are
determined using InterProScan 5.28-67.0 [60]. All 16 available analyses provided by
InterProScan are run over all input sequences. Results are output in JSON format.
For each of the 16 resulting JSON documents produced by InterProScan, we parse
the annotated domain information into a set of delimited files which are then loaded
into the appropriate structured tables in a DB2 database.
Due to the large scale of sequence data in this study, we implemented a cloud-based

architecture to effectively orchestrate the complex use of the bioinformatic tools de-
scribed above across multiple servers. These tools and the detailed architecture are
described in the supplement. The bioinformatic tools were provisioned and deployed
on the IBM Cloud utilizing a combination of bare metal and virtual machines to-
taling over 1468 CPUs, 6TB RAM, and 160TB of hard drive space. IBM Spectrum
Scale version 5 was used for cluster filesystem access. Apache Mesos version 1.6.1
provided cluster resource management and scheduling. Marathon version 1.6.352
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was used for container orchestration and health checking with all deployed processes
running as Docker containers. The system utilizes a message-oriented methodology
for executing pipelines using RabbitMQ 3.7.2 as a broker. System events emitted
from all pipelines are captured in the timeseries database InfluxDB 1.2.0, and anno-
tated information was stored in DB2 v11.1.3.3. A core component in our architecture
is the OMXWare Distributed Pipeline Framework (ODPF). This component coor-
dinates incoming messages from the broker, executes individual stages of a pipeline,
records events as each stage of a pipeline progresses, and routes messages to ad-
ditional queues when requested. The supplement provides additional details about
the architecture including pipeline execution mechanics and annotation processing.
This annotation process identified a total of 66,945,714 unique gene sequences and
51,362,178 unique protein sequences, yielding 138,327,556 unique protein domains
along with related functional annotations (e.g., IPR codes).

Genome Curation and Selection
OMXWare systematically curates WGS files from NCBI because the accuracy of
metadata and quality of WGS files maintained by NCBI varies dramatically. Some
files, for example, may have been derived from contaminated samples and are there-
fore not technically WGS files, while others may be labeled improperly with the
incorrect microbial genus ID.
Bacterial SRA datasets that were at least 100 MB of size were downloaded and

converted to FASTQ format using SRA-tools [25]. Genome assemblies containing
greater than 150 contigs (of size > 500 bp) and an N50 of less than 100k bp were
discarded with the exception of genomes from the genus Shigella, where assemblies
containing greater than 500 contigs (of size > 500 bp) and an N50 of less than
15,000 bp were discarded. From the original assemblies (at the time of this study),
186,888 genomes passed the quality criteria described above. A detailed description
of the entire assembly, annotation, and InterPorScan process is reported elsewhere
[27].

ICE and Cargo Protein Selection
ICE proteins are still being discovered. Large families of such proteins are known in
the literature [61, 3, 4] and those used in this study are enumerated in Table 4. In
addition to these features, InterProScan implements a coding system for classifica-
tion of proteins [60]. The complete set of Interpro codes used in this study is listed
in Table 4. These codes describe conserved domains or larger families of proteins
that provide essential function in the ICE transfer process including conjugative
relaxases, nickase, helicase, and other mobilisation proteins.[62, 63, 64, 65] Relax-
ases are DNA strand transferases that bind to the origin of transfer (oriT) in the
ICE transfer process and melt the double helix.[66, 64] Helicase is required to sepa-
rate double-stranded DNA into separate strands for duplication. Nickases introduce
single-strand breaks in DNA. Together, these proteins define a relaxation complex
or relaxosome. In some cases, several different domains on the same protein will
each contribute distinct function required for ICE. These InterPro (IPR) codes as-
signed to ICE related proteins are also listed in Table 4. [67, 61, 60]. These groups
of integrative conjugative element proteins exhibit significant sequence diversity
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[1, 2, 5, 6, 7], but represent conserved domains involved in the machinery required
for ICE. Of the 186,888 bacterial genomes processed, 95,781 genomes (~51%) were
found to contain a protein belonging to one or more of the ICE families listed in
Table 4. The genomes with one or more ICE feature contained 405,065,204 total
proteins, representing 26,491,056 unique protein sequences.
There are a total of twelve Interpro codes associated with ICE listed in Table

4. The IPR005094 family (exemplified by MobA/VirD2) describes relaxases and
mobilisation proteins. [62, 63, 60] The code IPR011119 represents a domain found
in a family of proteins in proteobacteria annotated as helicase, conjugative relax-
ase or nickase.[68, 60] IPR014059 codes for a domain in the N-terminal region of a
relaxase-helicase (TrwC) that acts in plasmid R388 conjugation. It has been associ-
ated with both DNA cleavage and strand transfer activities. Members of this family
are frequently are "near other proteins characteristic of conjugative plasmids and
appear to identify integrated plasmids when found in bacterial chromosomes".[64, 60]
The IPR014129 family represents proteins in the relaxosome complex (exemplified
by TraI). TraI mediates the single-strand nicking and ATP-dependent unwinding
of the plasmid molecule. The two activities are driven by separate domains in the
protein. [66, 60] IPR014862 represent a conserved domain found in proteins in the
relaxosome complex (exemplified by TrwC). [64, 60] The IPR021300 family repre-
sents a conserved domain observed in ICE elements in the protein family PFL_4695
(originally identified in Pseudomonas fluorescens Pf-5). [61, 60] IPR022303 describes
a family of conjugative transfer ATPase representing predicted ATP-binding pro-
teins associated with DNA conjugal transfer. They are found both in plasmids and
in bacterial chromosomal regions that appear to derive from integrative elements
such as conjugative transposons (so they may not be unique to ICE). IPR025955
describes a family of TraC-related proteins observed in Proteobacteria. TraC is a
cytoplasmic, membrane protein encoded by the F transfer region of the conjuga-
tive plasmid. It is also required for the assembly of the F pilus structure. The
family includes predicted ATPases associated with DNA conjugal transfer. [65, 60]
IPR022391 represents a conjugative relaxase domain in the PFGI-1 class. Proteins
with this domain include TraI putative relaxases required for ICE and found in
Pseudomonas fluorescens Pf-5. They are similar in function to TraI relaxases of
the F plasmid, but have no sequence homology. This Interpro entry represents a
N-terminal domain of proteins in this class.[60] IPR025955 represents a family of
conserved Type-IV secretion system proteins, TraC/Conjugative transfer ATPase,
in Proteobacteria. TraC is a encoded by the F transfer region of the conjugative
plasmid and is required for construction of the F pilus structure. The filamentous
F pili are serve to create and maintain physical contact between conjugating donor
and recipient cells. The family also includes predicted ATPases associated with
DNA conjugal transfer. They are found in ICE elements. [65, 60]
Taking advantage of the relational database, which contains tables that associate

protein UIDs with INTERPRO ACCESSIONs, we used SQL queries first to obtain
a full list of UIDs for all the proteins which matched one or more of the features
described above and listed in table 4. This exhaustive list produced a list of 28,042
candidate ICE proteins, from which we then removed all those that appear in only
1 genome (by sequence identity). As part of this culling step, performed using SQL
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and which resulted in 15,398 ICE proteins associated to the selected IPR codes or
features, and appear in at least two genomes (see Table 5), we persisted the contain-
ing 95,781 genomes, which we call ICE genomes. To determine the percentage of
ICE proteins in these ICE genomes, we also obtained counts of all distinct proteins
that these genomes contain, 21,207,794.
Upon identification of the ICE proteins and corresponding containing genomes,

further SQL queries were used to identify proteins most likely to be cargo proteins
based on evidence of ICE transfer. To make this selection we queried for proteins
that are not only present in the same genome pair as ICE proteins, but with the
added restriction that they not be present in any non-ICE genome. For this purpose
we first queried the database for all proteins in the 95,781 ICE genomes, which
returned 387,682,038 distinct <ICE genome accession number, protein UID> tuples.
In many cases a unique sequence is observed in more than one genome; in total there
were 21,207,794 distinct protein sequences in the set of ICE genomes. This group
was then filtered to identify the subset of distinct proteins appearing in two or
more (ICE) genomes. If a protein sequence is seen only once, then by definition
there is no supporting evidence of it being "transferred". To further reduce false
positive identification of transfer by ICE (vs being vertically transferred), we discard
any protein that appears in any of the 99,052 non-ICE genomes, thus effectively
establishing a rigid approach whereby proteins of interest must exclusively appear
in ICE genomes. With this strict selection process, we identified 11,276,651 distinct
sequences that are associated with ICE, have evidence of transfer, and lack evidence
of transfer in a non-ICE genome. We refer to this set as cargo proteins, i.e. proteins
with the greatest evidence of transfer in an ICE process. Furthermore, tabulating
the number of <cargo protein, ICE genome A, ICE genome B> triples where ICE
genome A and ICE genome B contain at least one identical ICE protein sequence,
yields a total of 4,938,737,476 transfers. The data is summarized in Table 5

Table 5 ICE-Related Statistical Counts
Description Unique Sequences
Total genomes examined 186,887 genomes
Genomes containing an 95,781 genomes
ICE protein
Candidate ICE proteins 28,042 amino acid
All proteins in ICE genomes 21,207,794 amino acid
ICE proteins found in 2 15,398 amino acid
or more genomes
Distinct cargo proteins in 2 11,276,651 amino acid
or more ICE genomes
Cargo transfer count within 4,938,737,476 amino acid
ICE genomes

Estimating False Positives: Classification of Plasmid Proteins
Some of the features used to identify families of proteins indicative of ICE cor-
respond to proteins that mediate required for Integrative Conjugative Exchange.
However, some may also be required for the formation (or integration) of plasmids.
In order to measure or bound the possible rate of false ICE classification, all bacte-
rial plasmids were downloaded from NCBI, and the annotated proteins placed in a
database table of plasmid proteins. The MD5 Hash was used as the primary key for
entries in this table. The MD5 hash is used as the primary key for every sequence
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entity in the database. Determining if a protein has been observed on a plasmid
in the NCBI reference is then accomplished by querying if the primary key of the
protein in question exists in the table of plasmid proteins. This data was used in
the analyses shown in Figure 4.

Characterizing Cargo Proteins
Once all candidate ICE and cargo proteins were identified, the database was then
queried to obtain annotated protein names, along with the genomes and genera in
which they were observed. This data was saved to a delimited file, which was then
used as input to python scripts to obtain a list and count of intra- and inter-genera
cargo protein transfers, per protein name. This O(n2) algorithm required an ex-
haustive pairwise comparison of genomes, detecting initially the intersection of ICE
proteins between each genome pair and, if non-empty, the pair’s common cargo
proteins. This process initially identified a total of 5956 ICE-related genus-genus
transfers (i.e. triples of the form (genus1, genus2, protein-name), carrying a total of
23,353,196,048 exchanged protein sequences. The resulting count is non-distinct by
protein name as, for instance, Tyrosine recombinase XerD is transferred both be-
tween Salmonella-Salmonella genomes, as well as between Oligella-Proteus genomes
and other genera pairs. Of these triples, 1680 transfers are observed to occur be-
tween genome pairs belonging to the same genus, carrying a total of 23,242,566,032
sequences. Additionally, counts of per protein transfers are similarly maintained, by
genus. Note that this approach does not allow us to determine transfer direction,
therefore no determination was made regarding source and target.

Intra and Inter-genus protein transport
Inter-genus protein transport was represented as a graph in which each genus is a
node, and an edge between a pair of nodes represent a value of co-occurrence of
<ICE protein, cargo protein> pairs, as a Force Directed Graph shown in Figure 3,
discussed in Results. The Force Directed Graph is also available as a simple Web
Application that allows users to select which ICE families and or types of Cargo
genes to display.

ICE and Cargo Proximity
To test the loci proximity of ICE and cargo genes in the discovered genome pairs, we
utilized our compiled list of genera, genomes, ice and cargo proteins, and leveraged
Prokka’s accession index (a positional indicator of a gene or protein’s sequence in a
particular genome). While this approach is limited by the fact that assembly-based
contigs are unordered, and therefore introduce gaps in the genome sequences in
our database, data from the accession gene or protein index indicates sequential
placement of ICE and cargo proteins (Figure 1).

Characterizing AMR Genes
Once all candidate ICE and cargo proteins were identified, the database was then
queried to obtain annotated protein names, along with the genomes and genera in
which they were observed. To gain insight into putative cargo that co-occurs with
ICE proteins but not yet annotated as ICE, we looked in particular at the cargo
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proteins with AMR names. To accomplish this we used the MEGARes database,
which contains AMR gene sequences with associated unique identifiers, as well as
a hierarchical ontology to classify each AMR gene [18]. All unique sequences in
MEGARes were run through the same pipeline used to annotated the set of all
proteins in OMXWare. This provides a self consistent annotation. We then obtained
all putative cargo proteins with names that matched any AMR protein name. This
data was used to compute, for every AMR name, the frequency of observation as
possible cargo in an ICE genome and the frequency of observation in genomes not
associated with ICE.

Tabulation of Data
To perform key analysis reported here, data was first tabulated in database tables
or views (and exported to delimited files for the supplement). ICE genomes (defined
above) were tabulated by Genus as shown in Table 1. Observed ICE features from
Table 4 were tabulated by Genome for the analysis shown in Figures 2 and 7.
Similarly, proteins assigned names associated with antimicrobial resistance were
tabulated by number of ICE and non-ICE genomes, and the fraction of unique
sequences observed in plasmids were tabulated as well (See Figure 2).

Hierarchical Clustering and Co-occurrence
The proteins studied here, and the ICE families themselves, are not in-dependant
features. Hierarchical clustering was used to characterize the correlations an co-
occurrence of proteins or genomes by ICE family (see Figures 7, 5, and 6. This
was accomplished by forming a co-occurrence matrix and using the Seaborne clus-
termap algorithm which does single linkage clustering to form heatmap and den-
drogram relating the co-occurring features [69]. The vector is ICE features for an
entity (protein or genome) are then be used as a Euclidean metric (dimensionality
reduction) to compute an effective distance between the entities. This approach
was used to cluster and visualize the genome-genome distance shown in Figure 8.
Seaborne clustermap was used for this step as well.
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Figures

Figure 1 Heatmap with relative positions of ICE features.Heat map showing the relative
position of ICE features and putative cargo proteins within contigs for the 2,000 genomes with the
greatest number of cargo proteins. ICE features are represented as color pixels based on the colors
shown in Table 4. Cargo proteins are shown in black and other chromosomal DNA in grey. Each
genome is bit shifted to the left until the first ICE feature is centered in the figure. Most genomes
contained more than one ICE protein (see text).
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Figure 2 ICE Features per Genome.Individual genomes typically contain more than one ICE
feature (Table 4, and often contain more than one protein per feature. Figure 2 (a) shows the
number of ICE features per genome, and Figure 2 (b) shows the number of ICE proteins per
genome for all 106,433 genomes containing at least one ICE feature. For both panels, the genome
order is sorted by number of features (largest to smallest).
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Figure 3 Force-Directed GraphForce-directed graph showing the frequency of ICE and cargo
proteins shared within and between genera. See: large format animation in supplement
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Figure 4 Probability AMR Genes Found in ICE Genomes2-d Histogram showing the
probability that AMR proteins (by name) are found in ICE Genomes (x-axis) and the fraction of
AMR protein sequences (by name) observed on plasmids (y-axis). Independent of ICE probability,
5-10% of AMR sequences have been observed on plasmids. The majority of AMR proteins are
found on ICE genomes.
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Figure 5 Co-occurrence of 138 AMR proteins (by name) with ICE features. Co-occurrence of
AMR proteins (by name) with ICE features, for the 138 AMR proteins that are observed in ICE
genomes with a frequency greater than 5x the frequency of observation in non-ICE genomes. Of
these proteins, 43 are only observed in ICE genomes.
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Figure 6 Co-occurrence of 29 AMR proteins (by name) with ICE features. Co-occurrence of
AMR proteins (by name) with ICE features for the 29 AMR proteins observed in non-ICE genomes
with a frequency at least 5x the frequency of observation in ICE genomes

Figure 7 Genome-IPR Co-Occurance Map. The co-occurrence of ICE features by genome, for
the 6000 genomes with the highest cargo protein fraction and 500 genomes containing rare ICE
features (see text). Co-occurrence of particular ICE features does vary with taxonomic group.
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Figure 8 Heatmap of Genome-Genome DistancesGenome-Genome distance based on
Euclidean distance between vectors of ICE features for the 6500 genomes used in 7. One in 75
labels are rendered on each axis. The figure shows how different sets of genomes cluster based on
different co-occurring ICE features (see text).
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