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Abstract 

Since the emergence of SARS-CoV-2 in December 2019, Coronavirus Disease-2019 (COVID-19) 

has rapidly spread across the globe. Epidemiologic studies have demonstrated that age is one of 

the strongest risk factors influencing the morbidity and mortality of COVID-19. Here, we 

interrogate the transcriptional features and cellular landscapes of the aging human lung through 

integrative analysis of bulk and single-cell transcriptomics. By intersecting these age-associated 

changes with prior experimental data on host interactions between SARS-CoV-2 or its relative 

SARS-CoV, we identify several age-associated factors that may contribute to the heightened 

severity of COVID-19 in older populations. These analyses illuminate potential avenues for further 

studies on the relationship between the aging lung and COVID-19 pathogenesis, which may inform  

strategies to more effectively treat this disease.  

  



Main Text 

Age is one of the strongest risk factors for severe outcomes among patients with COVID-19 1,2. 

For instance, the case-fatality rate of patients 50-59 years old was reported to be 1.0% in Italy (as 

of March 17, 2020) and 1.3% in China (as of February 11, 2020) 3,4; in contrast, the case-fatality 

rate of patients ≥ 80 years old was 20.2% in Italy, and 14.8% in China during that same time frame 

(Figure 1a). Similarly, in the United States, the Center for Disease Control (CDC) estimated that 

from February 12 to March 16, 2020, the case-fatality rate of patients 55-64 years old was 1.4 – 

2%, and 10.4 -27.3% for patients ≥ 85 years old 5 (Figure 1a). Furthermore, a recent analysis of 

Chinese CDC data revealed that while patients of all ages shared a similar probability of becoming 

infected by SARS-CoV-2, the causative agent of COVID-19 6–8, the clinical manifestations of 

infection in children (< 18 years old) were less severe than in adults. With the exception of infants 

and younger children (< 1 years old and 1-5 years old, respectively), most children were 

asymptomatic or experienced mild illness9. Collectively, these observations indicate a strong 

association between age and COVID-19 morbidity and mortality. However, it must be emphasized 

that younger patients can still frequently contract the disease, possibly leading to hospitalization, 

ICU admission, or death (Supplementary Figure 1). 

 

While the effects of age on COVID-19 are likely to be multifactorial, involving a complex blend 

of systemic and local factors, we hypothesized that tissue-intrinsic changes that occur with aging 

may offer valuable clues. To explore possible mechanisms by which age influences the clinical 

manifestations of SARS-CoV-2 infection, here we investigate the transcriptomic features and 

cellular landscape of the aging human lung in relation to SARS-CoV-2. We emphasize that our 

findings are not intended to direct clinical practice, but rather to generate hypotheses and to further 

guide research efforts that can improve our understanding of this disease. 

 

Results 

We focused our analysis on the Genotype-Tissue Expression (GTEx) project10,11, a comprehensive 

public resource of gene expression profiles from non-diseased tissue sites. As the lung is the 

primary organ affected by COVID-19, we specifically analyzed lung RNA-seq transcriptomes 

from donors of varying ages (20-79 years old) (Figure 1b). A total of 578 lung RNA-seq profiles 

were compiled, of which 31.66% were from women. 



 

An initial hypothesis for why SARS-CoV-2 differentially affects patients of varying ages is that 

the expression of host factors essential for SARS-CoV-2 infection may increase with aging. To 

assess this possibility, we examined the gene expression of ACE2, which encodes the protein 

angiotensin-converting enzyme 2 that is coopted as the host receptor for SARS-CoV-2 8,12–15. 

There was no statistically significant association between age and ACE2 expression levels 

(Kruskal-Wallis test, p = 0.92) (Figure 1c). While ACE2 is the direct cell surface receptor for 

SARS-CoV-2, transmembrane serine protease 2 (TMPRSS2) and cathepsin L (CTSL) have been 

demonstrated to facilitate SARS-CoV-2 infection by priming the spike protein for host cell entry14. 

Expression of the corresponding genes TMPRSS2 and CTSL was modestly associated with age (p 

= 0.0039 and p = 0.026, respectively) (Figure 1c), but TMPRSS2 and CTSL expression levels 

tended to decrease with age. Of note, biological sex was not significantly associated with 

expression of ACE2, TMPRSS2, or CTSL (Supplementary Figure 2a-c), though it has been 

observed that males are more likely to be affected by COVID-19 than females16–18. Taken together, 

these data indicate that differential expression of SARS-CoV-2 host entry factors alone is unlikely 

to explain the relationship between age and severity of COVID-19 illness.  

 

To discern the host cell types involved in COVID-19 entry, we turned to a single cell RNA-seq 

(scRNA-seq) dataset of 57,020 human lung cells from the Tissue Stability Cell Atlas19. In 

agreement with prior reports, analysis of the single cell lung transcriptomes revealed that alveolar 

type 2 (AT2) cells were comparatively enriched in ACE2 and TMPRSS2-expressing cells 20,21 

(Supplementary Figure 3a-b). However, ACE2-expressing cells represented only 1.69% of all 

AT2 cells, while 47.52% of AT2 cells expressed TMPRSS2. Alveolar type 1 (AT1) cells also 

showed detectable expression of ACE2 and TMPRSS2, but at lower frequencies (0.39% and 

26.70%). CTSL expression could be broadly detected in many different cell types including AT2 

cells, but its expression was particularly pronounced in macrophages (Supplementary Figure 3c).  

 

Since the expression of host entry factors ACE2, TMPRSS2 and CTSL did not increase with age, 

we next sought to identify all age-associated genes expressed in the human lung (Methods). Using 

a likelihood-ratio test22, we pinpointed the genes for which age significantly impacts their 

expression. With a stringent cutoff of adjusted p < 0.0001, we identified two clusters of genes in 



which their expression progressively changes with age (Figure 1d). Cluster 1 is composed of 643 

genes that increase in expression with age, while Cluster 2 contains 642 genes that decrease in 

expression with age. These 1,285 age-associated genes modestly overlapped with two published 

aging-related gene sets23,24, but 92.06% (1,183/1,285) of the age-associated genes identified in this 

study were not present in either of the published gene sets (Supplementary Figure 4a-b). 

 

Gene ontology and pathway analysis of Cluster 1 genes (increasing with age) revealed significant 

enrichment for cell adhesion, vascular smooth muscle contraction, oxytocin signaling, and platelet 

activation, in addition to several other pathways (Figure 1e). These findings are consistent with 

known physiologic changes of aging, including decreased pulmonary compliance25, and 

heightened risk for thrombotic diseases26. Of note, deregulation of the renin-angiotensin system 

has been implicated in the pathogenesis of acute lung injury induced by SARS-CoV 27,28, the 

closely related coronavirus responsible for the SARS epidemic of 2002-2003 29. In mice, SARS-

CoV infection downregulates ACE2, leading to disinhibition of angiotensin II production by ACE 

27,28,30–32 and subsequent vasoconstriction. A possible hypothesis is that increased baseline vascular 

smooth muscle contraction in older patients may predispose the development of acute respiratory 

distress syndrome (ARDS) in the setting of SARS-CoV and/or SARS-CoV-2 infection. In line 

with this hypothesis, recent analyses of COVID-19 cohorts in China have found that patients with 

hypertension were significantly more likely to develop ARDS17 and require ICU admission33, 

though we note that correlative epidemiologic studies do not necessarily demonstrate causality.  

 

Cluster 2 genes (decreasing with age) were significantly enriched for mitochondrion, 

mitochondrial translation, metabolic pathways, and mitosis, among other pathways (Figure 1f), 

which is consistent with prior observations of progressive mitochondrial dysfunction with aging34–

36. Of note, Cluster 2 was also enriched for genes involved in lipid metabolism, fatty acid 

metabolism, peroxisome, and lysosomal membranes. Age-associated alterations in lipid 

metabolism could impact SARS-CoV-2 infection, as SARS-CoV can enter cells through 

cholesterol-rich lipid rafts 37–40. Similarly, age-associated alterations in lysosomes could influence 

late endocytic viral entry, as the protease cathepsin L cleaves SARS-CoV spike proteins from 

within lysosomes 41,42. 

 



Having compiled a high-confidence set of age-associated genes, we sought to identify the lung cell 

types that normally express these genes, using the human lung single cell transcriptomics dataset 

from the Tissue Stability Cell Atlas19. By examining the scaled percentage of expressing cells 

within each cell subset, we identified age-associated genes predominantly enriched in different 

cell types. Cell types with highly enriched expression for certain Cluster 1 genes (increasing with 

age) included fibroblasts, muscle cells, and lymph vessels (Figure 2a). In contrast, cell types with 

highly enriched expression for certain Cluster 2 genes (decreasing with age) included 

macrophages, dividing dendritic cells (DCs)/monocytes, and AT2 cells (Figure 2b). Examining 

the muscle-enriched genes that increased in expression with age, gene ontology analysis revealed 

enrichment for vascular smooth muscle contraction, cGMP-PKG signaling, Z-disc, and actin 

cytoskeleton, among other pathways (Figure 2c). As for the AT2-enriched genes that decreased 

in expression with age, gene ontology analysis revealed enrichment for metabolic pathways, 

biosynthesis of antibiotics, lipid metabolism, extracellular exosome, and mitochondrial matrix 

(Figure 2d). A subset of these enriched gene ontologies had also been identified by the bulk RNA-

seq analysis (Figure 1e-f). Thus, integrative analysis of bulk and single-cell transcriptomes 

revealed that many of the age-associated transcriptional changes in human lung can be mapped to 

specific cell subpopulations, suggesting that either the transcriptional status, or overall abundance 

of these cell types, or both, may be altered with aging. 

 

As the pathophysiology of viral-induced ARDS involves an intricate interplay of diverse cell types, 

most notably the immune system43,44, aging-associated shifts in the lung cellular milieu25 could 

contribute an important dimension to the relationship between age and risk of ARDS in patients 

with COVID-19 33. To investigate the cellular landscape of the aging lung, we applied a gene 

signature-based approach45 to infer the enrichment of different cell types from the bulk RNA-seq 

profiles. Since bulk RNA-seq measures the average expression of genes within a cell population, 

such datasets will reflect the relative proportions of the cell types that comprised the input 

population, though with the caveat that cell types can have overlapping expression profiles and 

such profiles may be altered in response to stimuli. Using this approach, we identified age-

associated alterations in the enrichment scores of several cell types (Figure 3a). Whereas epithelial 

cells decreased with age, fibroblasts increased with age (Figure 3b). This finding is consistent 

with the progressive loss of lung parenchyma due to reduced regenerative capacity of the aging 



lung46, as well as the increased risk for diseases such as chronic obstructive pulmonary disease and 

pulmonary fibrosis47. In addition, these results are concordant with the findings from analysis of 

human lung single-cell transcriptomes (Figure 2a-b). 

 

Among the innate immune cell populations, the enrichment scores of total macrophages were 

inversely associated with age (Figure 3c). Macrophages are major drivers of innate immune 

responses in the lung, acting as first-responders against diverse respiratory infections48. Thus, the 

age-associated decrease in macrophage abundance may be a possible factor related to the greater 

severity of lung pathology in patients with COVID-19. Although macrophage accumulation is 

often associated with the pathologic inflammation of viral ARDS 49,50, pulmonary macrophages 

can act to limit the duration and severity of infection by efficiently phagocytosing dead infected 

cells and released virions 51–53. Notably, macrophages infected with SARS-CoV have been found 

to abort the replication cycle of the virus54,55, further supporting their role in antiviral responses. 

However, macrophages may suppress antiviral adaptive immune responses 48,56, inhibiting viral 

clearance in mouse models of SARS-CoV infection 57. In aggregate, these prior reports suggest 

that the precise role of lung macrophages in SARS-CoV-2 pathophysiology is likely context-

dependent. It is also plausible that the increased numbers of macrophages are not the primary 

distinction between young and old patients, but rather the functional status of the macrophages. In 

line with this, we observed that the age-associated changes in macrophages were specifically 

attributed to the pro-inflammatory M1 macrophage subset but not the immunoregulatory M2 

subset 58 (Figure 3c), though this binary classification scheme represents an oversimplification of 

macrophage function. Nevertheless, elucidating the consequences of age-associated changes in 

lung macrophages may reveal insights into the differential outcomes of older patients with 

COVID-19. Further studies are needed to investigate whether macrophages or other innate immune 

cells respond to SARS-CoV-2 infection, and how their numbers or function may change with 

aging. 

 

Among the adaptive immune cell populations, we observed that Th1 cells and CD4+ Tcm cells 

trended in opposite directions with aging (Figure 3d). While the lungs of younger donors were 

enriched for Th1 cells, they were comparatively depleted for CD4+ Tcm cells; the inverse was true 

in the lungs of older donors. Of note, mouse models of SARS-CoV infection have indicated 



important roles for CD4+ T cell responses in viral clearance 59,60. Additionally, Th1 cells are 

responsive to SARS-CoV vaccines 61 and promote macrophage activation against viruses 62. It is 

therefore possible that age-associated shifts in CD4+ T cell subtypes within the lung may influence 

the subsequent host immune response in response to coronavirus infection. However, future 

studies will be needed to determine the role of Th1 cells and other adaptive immune cells in the 

response to SARS-CoV-2, and how these dynamics may change with aging. 

 

We next explored the roles of lung age-associated genes in host responses to viral infection. Since 

functional screening data with SARS-CoV-2 has not yet been described (as of March 30, 2020), 

we instead searched for data on SARS-CoV. While these two viruses belong to the same genus 

(Betacoronaviridae) and are conserved to some extent 8, they are nevertheless two distinct viruses 

with different epidemiological features, indicating unique virology and host biology. Therefore, 

data from experiments performed with SARS-CoV must be interpreted with caution.  

 

We reassessed the results from a prior in vitro siRNA screen of host factors involved in SARS-

CoV infection 63. In this kinase-focused screen, 130 factors were determined to have a significant 

effect on SARS-CoV replication. Notably, 11 of the 130 factors exhibited age-associated gene 

expression patterns (Figure 4a), with 4 genes in Cluster 1 (increasing with age) and 7 genes in 

Cluster 2 (decreasing with age). The 4 genes in Cluster 1 were all associated with increased SARS 

infectivity upon siRNA knockdown; these genes included CLK1, AKAP6, ALPK2, and ITK. 

Paradoxically, while knockdown of CLK1 was associated with increased SARS infectivity, cell 

viability was also found to be increased (Figure 4b). Of the 7 genes in Cluster 2, 6 were associated 

with increased SARS infectivity and reduced cell viability upon siRNA knockdown (AURKB, 

CDKL2, PDIK1L, CDKN3, MST1R, and ADK). Age-related downregulation of these 6 factors 

could be related to the increased severity of illness in older patients. However, we emphasize that 

until rigorous follow-up experiments are performed with SARS-CoV-2, the therapeutic potential 

of targeting these factors in patients with COVID-19 is unknown.  

 

Using the human lung scRNA-seq data, we then determined which cell types predominantly 

express these host factors. Of the 4 genes in Cluster 1 that had a significant impact on SARS-CoV 

replication, CLK1 was universally expressed, while ALPK2 expression was rarely detected 



(Figure 4c). ITK was preferentially expressed in lymphocytic populations, and AKAP6 was most 

frequently expressed in ciliated cells and muscle cells. Of the 7 overlapping genes in Cluster 2, 

AURKB and CDKN3 were predominantly expressed in proliferating immune cell populations, such 

as macrophages, DCS/monocytes, T cells, and NK cells (Figure 4d). MST1R, PDIK1L, and 

PSKH1 were infrequently expressed, through their expression was detected in a portion of AT2 

cells (5.54%, 5.30%, and 5.47%, respectively). Finally, ADK and CDKL2 exhibited preferential 

enrichment in AT2 cells (51.40% and 34.43%). In aggregate, these analyses showed that the age-

associated genes with functional roles in SARS-CoV are expressed in specific cell types of the 

human lung. 

 

We then investigated whether age-associated genes in the human lung interact with proteins 

encoded by SARS-CoV-2. A recent study interrogated the human host factors that interact with 27 

different SARS-CoV-2 proteins 64, revealing the SARS-CoV-2 : Human protein interactome in 

cell lines expressing recombinant SARS-CoV-2 proteins. By cross-referencing the interacting host 

factors with the set of age-associated genes, we identified 20 factors at the intersection (Figure 

5a). 4 of these genes showed an increase in expression with age (i.e. Cluster 1 genes), while 16 

decreased in expression with age (Cluster 2 genes). Mapping these factors to their interacting 

SARS-CoV-2 proteins, we noted that the age-associated host factors which interact with M, 

Nsp13, Nsp1, Nsp7, Nsp8, Orf3a, Orf8, Orf9c, and Orf10 proteins generally decrease in expression 

with aging (Figure 5b). However, a notable exception was Nsp12, as the age-associated host-

factors that interact with Nsp12 both showed increased expression with aging (CRTC3 and 

MYCBP2) (Figure 5c). Nsp12 encodes for the primary RNA-dependent RNA polymerase (RdRp) 

of SARS-CoV-2, and is a prime target for developing therapies against COVID-19. The 

observation that CRTC3 and MYCBP2 increase in expression with aging is intriguing, as these 

genes may be related to the activity of Nsp12/RdRp in host cells. Of note, MYCBP2 is a known 

repressor of cAMP signaling 65,66, and cAMP signaling potently inhibits contraction of airway 

smooth muscle cells 67. Thus, age-associated increases in MYCBP2 could promote smooth muscle 

contraction, which is concordant with our analyses on age-associated gene signatures in the lung 

(Figure 1e). MYCBP2 might therefore possibly contribute to COVID-19 pathology by not only 

interacting with SARS-CoV-2 RdRp, but also through its normal physiologic role in promoting 

smooth muscle contraction. 



 

To assess the cell type-specific expression patterns of these various factors, we further analyzed 

the lung scRNA-seq data. Of the SARS-CoV-2 interacting genes that increase in expression with 

age, MYCBP2 was frequently expressed across several populations, particularly proliferating 

immune populations (DC/monocyte, T cells, macrophages), muscle cells, fibroblasts, and lymph 

vessels (Figure 5d). MYCBP2 was also expressed in 21.86% of AT2 cells. CEP68 was 

preferentially expressed in lymph vessels, while AKAP8L and CRTC3 showed relatively uniform 

expression frequencies across cell types, including a fraction of AT2 cells (8.53% and 9.07% 

expressing cells, respectively). Of the SARS-CoV-2 interacting genes that decrease in expression 

age, NPC2 and NDUFB9 were broadly expressed in many cell types, including AT2 cells (99.96% 

and 81.91%, respectively) (Figure 5e). AT2 cells also frequently expressed ATP1B1, ALG5, 

NEU1, and ATP6V1A (70.21%, 50.64%, 43.24%, and 27.78%). Taken together, these analyses 

highlight specific age-associated factors that interact with the SARS-CoV-2 proteome, in the 

context of the lung cell types in which these factors are normally expressed. 

 

Discussion 

Here we systematically analyzed the transcriptome of the aging human lung and its potential 

relationship to SARS-CoV-2. We found that the aging lung is characterized by a wide array of 

changes that could contribute to the worse outcomes of older patients with COVID-19. On the 

transcriptional level, we first identified 1,285 genes that exhibit age-associated expression patterns. 

We subsequently demonstrated that the aging lung is characterized by several gene signatures, 

including increased vascular smooth muscle contraction, reduced mitochondrial activity, and 

decreased lipid metabolism. By integrating these data with single cell transcriptomes of human 

lung tissue, we further pinpointed the specific cell types that normally express the age-associated 

genes. We showed that epithelial cells, macrophages, and Th1 cells decrease in abundance with 

age, whereas fibroblasts and pericytes increase in abundance with age. These systematic changes 

in tissue composition and cell interactions can potentially propagate positive feedback loops that 

predispose the airways to pathological contraction 68. Notably, some of the age-associated genes 

have been previously identified as host factors with a functional role in SARS-CoV replication 63, 

and a fraction of the age-associated factors have been shown to directly interact with the SARS-



CoV-2 proteome64. Whether any of these age-associated changes causally contribute to the 

heightened susceptibility of COVID-19 in older populations remains to be experimentally tested. 

 

It is important to note that the prior datasets analyzed here were not from patients with COVID-

19. Although transcriptomic data from patients will be beneficial for better understanding COVID-

19, the health of the patients should continue to be the highest priority. Given the limited data that 

is currently publicly available, we emphasize that the analyses presented here are exploratory in 

nature, and as such should not be used to guide clinical practice. Instead, we hope that these 

analyses will illuminate new directions for subsequent research efforts on SARS-CoV-2 by 

generating hypotheses for why advanced age is one of the strongest risk factors for COVID-19 

morbidity and mortality. Ultimately, we hope this knowledge may help the field to sooner develop 

rational therapies for COVID-19 that are rooted in concrete biological mechanisms.  
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Figure Legends 

Figure 1: Identification of age-associated genes in the human lung 

a. Case-fatality statistics in China, Italy, and the United States. Data are from the Chinese CDC 

(as of February 11, 2020), the Italian ISS (as of March 17, 2020), and the US CDC (as of March 

16, 2020), respectively. Error bars for case-fatality in the United States represent lower and 

upper bounds of the estimated rates, given the preliminary nature of the data. 

b. Demographics of the human lung RNA-seq profiles in the GTEx dataset, detailed by sex and 

age group (total n = 578). 

c. Tukey boxplots detailing the expression of SARS-CoV-2 entry factors ACE2, TMPRSS2, and 

CTSL in the lung. Data are shown as log2 transcripts per million (TPM). Statistical significance 

of the expression variation across all age groups is shown on top of each plot (Kruskal-Wallis 

test). Pairwise comparisons of each age group to the 20-29 year-old group are also shown, color-

coded by the age group (two-tailed Mann-Whitney test). 

d. Dot plot of age-associated genes in human lung. Cluster 1 contains genes that increase in 

expression with aging (left, n = 643), while cluster 2 contains genes that decrease in expression 

with aging (right, n = 642). Statistical significance was assessed by DESeq2 likelihood ratio test 

(adj. p < 0.0001). Data are shown in terms of median z-score, with lines connecting the same 

gene across different age groups. 

e. DAVID gene ontology and pathway analysis of Cluster 1 genes (increasing with age). 

f. DAVID gene ontology and pathway analysis of Cluster 2 genes (decreasing with age). 

 

Figure 2: Lung single-cell transcriptomics pinpoints cell type-specific expression of age-

associated genes 

a. Heatmap showing the percentage of cells expressing each of the Cluster 1 genes (increasing 

with age), scaled by gene across the different cell types. 

b. Heatmap showing the percentage of cells expressing each of the Cluster 2 genes (decreasing 

with age), scaled by gene across the different cell types. 

c. DAVID gene ontology and pathway analysis of Cluster 1 age-associated genes that exhibit 

enriched expression in muscle cells. 

d. DAVID gene ontology and pathway analysis of Cluster 2 age-associated genes that exhibit 

enriched expression in alveolar type 2 (AT2) cells. 



 

Figure 3: The evolving cellular landscape of the aging human lung. 

a. Heatmap of cell type enrichment scores in the human lung across different age groups. Data 

are expressed as median z-scores within each subpopulation. 

b. Tukey boxplots detailing the enrichment scores of epithelial cells (top) and fibroblasts 

(bottom) in the lung across age groups. Statistical significance of age-associated variation was 

assessed by Kruskal-Wallis test. 

c. Tukey boxplots detailing the enrichment scores of macrophages, M1 macrophages, and M2 

macrophages in the lung across age groups. Statistical significance of age-associated variation 

was assessed by Kruskal-Wallis test. 

d. Tukey boxplots detailing the enrichment scores of Th1 cells, naive CD4+ T cells, and CD4+ 

Tcm cells in the lung across age groups. Statistical significance of age-associated variation was 

assessed by Kruskal-Wallis test. 

 

Figure 4: Age-associated genes in human lung that influence SARS-CoV replication 

a. Scatter plot of data from a published siRNA screen of host factors that influence SARS-CoV 

pathogenesis (from de Wilde et al., 2015). Data are shown in terms of relative SARS-CoV 

infectivity and relative cell viability upon perturbation of various host factors. Values >1.0 for 

relative SARS-CoV infectivity suggest that knockdown of the target gene promotes infection. 

Values >1.0 for relative cell viability suggest that knockdown of the target gene promotes cell 

survival. The size of each point is scaled by the statistical strength of the association between 

expression of the gene and aging. Genes identified in Cluster 1 (increasing with age) and Cluster 

2 (decreasing with age) are additionally color-coded (blue and orange, respectively). 

b. Tukey boxplots detailing the expression of select age-associated genes with potential roles in 

SARS-CoV pathogenesis, highlighted in (d). Data are shown as log2 transcripts per million 

(TPM) for CLK1, CDKL2, PDIK1L, MST1R, ADK, and AURKB. Statistical significance of the 

expression variation across all age groups was assessed by Kruskal-Wallis test. 

c. Heatmap showing the percentage of cells expressing each of the Cluster 1 genes (increasing 

with age) with an effect on SARS-CoV, as highlighted in (a). 

d. Heatmap showing the percentage of cells expressing each of the Cluster 2 genes (decreasing 

with age) with an effect on SARS-CoV, as highlighted in (a). 



 

Figure 5: Age-associated genes in human lung and their relation to SARS-CoV-2 proteins. 

a. Venn diagram of the intersection between age-associated genes in human lung and the SARS-

CoV-2 : Human protein interactome (Gordon et al., 2020). Of the 20 age-associated genes that 

were found to also interact with SARS-CoV-2, 4 of them increased in expression with age, while 

16 decreased with age. 

b. Age-associated genes in human lung and their interaction with SARS-CoV-2 proteins, where 

each block contains a SARS-CoV-2 protein (underlined) and its interacting age-associated 

factors. Blocks are colored by the dominant directionality of the age association (orange, 

decreasing with age; blue, increasing with age). Gene targets with already approved drugs, 

investigational new drugs, or preclinical molecules are additionally denoted with an asterisk. 

c. Tukey boxplots detailing the expression of select age-associated genes that interact with 

SARS-CoV-2 proteins, highlighted in (b). Data are shown as log2 transcripts per million (TPM) 

for ATP1B1, HOOK1, PRIM1, AGPS, NARS2, CRTC3, ALG5, NPC2, NDUFB9, and PPT1. The 

SARS-CoV-2 interacting protein is also annotated in parentheses. Statistical significance of the 

expression variation across all age groups was assessed by Kruskal-Wallis test. 

d. Heatmap showing the percentage of cells expressing each of the Cluster 1 genes (increasing 

with age) that interact with SARS-CoV-2 proteins, as highlighted in (b). 

e. Heatmap showing the percentage of cells expressing each of the Cluster 2 genes (decreasing 

with age) that interact with SARS-CoV-2 proteins, as highlighted in (b). 

 

Supplementary Figure 1: Severe outcomes of COVID-19 in the United States 

Rates of hospitalization, ICU admission, and case-fatality from COVID-19 in the United States, 

stratified by age group. Data from the US CDC (as of March 16, 2020). Error bars represent 

lower and upper bounds of the estimated rates, given the preliminary nature of the data. 

 

Supplementary Figure 2: Sex-specific analysis of SARS-CoV-2 host entry factor expression 

a. Expression of ACE2 in lungs from female or male donors, stratified by age. Statistical 

significance was assessed by two-tailed Mann-Whitney test. 

b. Expression of TMPRSS2 in lungs from female or male donors, stratified by age. Statistical 

significance was assessed by two-tailed Mann-Whitney test. 



c. Expression of CTSL in lungs from female or male donors, stratified by age. Statistical 

significance was assessed by two-tailed Mann-Whitney test. 

 

Supplementary Figure 3: Expression of SARS-CoV-2 host factors across lung cell types 

a. Left, normalized expression of ACE2 across different lung cell types. Right, bar plot showing 

the percentage of ACE2-expressing cells, grouped by cell type. 

b. Left, normalized expression of TMPRSS2 across different lung cell types. Right, bar plot 

showing the percentage of TMPRSS2-expressing cells, grouped by cell type. 

c. Left, normalized expression of CTSL across different lung cell types. Right, bar plot showing 

the percentage of CTSL-expressing cells, grouped by cell type. 

 

Supplementary Figure 4: Comparison of the lung age-associated gene set with other 

published gene sets 

a. Venn diagram of the intersection between age-associated genes in human lung (this study) and 

the GenAge database 23 of age-associated genes. Statistical significance of the overlap was 

assessed by two-tailed hypergeometric test. 

b. Venn diagram of the intersection between age-associated genes in human lung (this study) and 

a previously published age-associated gene set 24. Statistical significance of the overlap was 

assessed by two-tailed hypergeometric test. 

 

 

  



Methods 

Data accession 

 The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of 

the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, 

NIDA, NIMH, and NINDS 10,11. RNA-seq raw counts and normalized TPM matrices were 

downloaded from the GTEx Portal (https://gtexportal.org/home/index.html) on March 18, 2020, 

release v8. All accessed data used in this study are publicly available on the web portal and have 

been de-identified, except for patient age range and gender. 

 Case-fatality rates in China and Italy were from the Chinese CDC and Italian ISS, 

respectively, as described in a recent publication3,4. Statistics on COVID-19 cases in the United 

States from February 12 – March 16, 2020 were compiled from the CDC Morbidity and 

Mortality Weekly Report dated March 18, 2020 5. Given the preliminary nature of the data, only 

estimated lower and upper bounds were reported. 

 Single cell transcriptomes of human lungs were obtained from the Tissue Stability Cell 

Atlas (https://www.tissuestabilitycellatlas.org/) 19.  

 

RNA-seq gene expression visualization and statistical analysis 

 For visualization of RNA-seq expression data, the TPM values were log2 transformed and 

plotted in R (v3.6.1). All boxplots are Tukey boxplots, with interquartile range (IQR) boxes and 

1.5 × IQR whiskers. Pairwise statistical comparisons in the plots were assessed by two-tailed 

Mann-Whitney test, while statistical comparisons across all age groups were performed by 

Kruskal-Wallis test.  

  

Identification of age-associated genes in human lung 

 To identify age-associated genes, the raw counts values were analyzed by DESeq2 

(v1.24.0) 22, using the likelihood ratio test (LRT). Age-associated genes were determined at a 

significance threshold of adjusted p < 0.0001. Genes passing the significance threshold were then 

scaled to z-scores and clustered using the degPatterns function from the R package DEGreport 

(v1.20.0). Gene clusters with progressive and consistent trends with age were retained for 

downstream analysis. 

 

https://commonfund.nih.gov/GTEx
https://gtexportal.org/home/index.html
https://www.tissuestabilitycellatlas.org/


Comparison of age-associated gene sets 

 The lung age-associated gene set identified in this study was compared with other 

published age-associated gene sets. Specifically, we accessed the GenAge dataset 23 (build 20) 

on March 24, 2020 (https://genomics.senescence.info/genes/human.html), as well as another 

previously published gene list in human lung 24, which had analyzed an earlier release of the 

GTEx dataset (v3) using a different statistical methodology. Statistical significance of overlaps 

between the gene sets was assessed by hypergeometric test, assuming 20,449 total genes in the 

human genome as annotated in the GRCh38.p13 Ensembl assembly. 

 

Gene ontology and pathway analysis of lung age-associated genes 

 Gene ontology and pathway enrichment analysis was performed using DAVID (v6.8) 69 

(https://david.ncifcrf.gov/), separating the age-associated genes into the two clusters (increasing 

or decreasing with age), as described above. 

 

scRNA-seq data analysis 

scRNA-seq data were analyzed in R (v3.6.1) using Seurat70,71 and custom scripts. Of the 

1,285 age-associated genes identified from GTEx bulk transcriptomes, 1,049 genes could be 

matched in the scRNA-seq dataset. To determine the percentage of cells expressing a given gene, 

the expression matrices were converted to binary matrices by setting a threshold of expression > 

0. Cell type-specific expression frequencies for each gene were then calculated using the 

provided cell type annotations. To identify genes preferentially expressed in a specific cell type, 

we further scaled the expression frequencies in R to obtain z-scores. Data were visualized in R 

using the NMF package 72. Where applicable, gene ontology analysis was performed with 

DAVID (v6.8) 69, using genes with z-score > 2 in the cell type of interest for analysis. 

 

Inferring the cellular compositions of the human lung 

 To infer the cellular composition of each lung sample, we analyzed the TPM expression 

matrices using the xCell algorithm45. The resultant cell type enrichment tables were analyzed in 

R. For data visualization, cell type enrichment scores were scaled to z-scores, and the median z-

score for each age group was expressed as a heatmap, using the superheat package 73. Age-

association was assessed across all age groups by Kruskal-Wallis test.  

https://genomics.senescence.info/genes/human.html
https://david.ncifcrf.gov/


 

Assessing functional roles of lung age-associated genes in SARS-CoV 

 To assess whether any age-associated genes affect host responses to SARS-CoV (a 

coronavirus related to SARS-CoV-2), we analyzed the data from a published siRNA screen of 

host factors influencing SARS-CoV 63 (Data Set S1 in the publication; accessed on March 20, 

2020). For data visualization, each point corresponding to a target gene was size-scaled and 

color-coded according to the age-association statistical analyses described above.  

 

Age-associated genes that interact with the SARS-CoV-2 proteome 

 To assess whether any lung age-associated genes encode proteins that interact with the 

SARS-CoV-2 proteome, we compiled the data from a preprint manuscript detailing the human 

host factors that interact with 27 different proteins in the SARS-CoV-2 proteome 64 (accessed on 

March 23, 2020).  

 

Statistical information summary 

Comprehensive information on the statistical analyses used are included in various places, 

including the figures, figure legends and results, where the methods, significance, p-values 

and/or tails are described. All error bars have been defined in the figure legends or methods. 

 

Code availability 

Codes used for data analysis or generation of the figures related to this study are available upon 

request to the corresponding author and will be deposited to GitHub upon publication for free 

public access. 

 

Data and resource availability 

All relevant processed data generated during this study are included in this article and its 

supplementary information files. Raw data are from various sources as described above. All data 

and resources related to this study are freely available upon request to the corresponding author. 

 

 

  



Supplementary Tables 

Table S1: Demographics of donors for GTEx lung samples. 

Table S2: Normalized expression matrix for SARS-CoV-2 host entry factors in human lung. 

Table S3: Cell type-specific expression frequencies for SARS-CoV-2 host entry factors in human 

lung. 

Table S4: Likelihood-ratio test table for evaluating age-associated genes. 

Table S5: Final set of age-associated genes. 

Table S6: DAVID analysis table for genes that increase in expression with age. 

Table S7: DAVID analysis table for genes that decrease in expression with age. 

Table S8: Cell type-specific expression frequencies for genes that increase in expression with age. 

Table S9: Cell type-specific expression frequencies for genes that increase in expression with age, 

transformed to z-scores. 

Table S10: Cell type-specific expression frequencies for genes that decrease in expression with 

age. 

Table S11: Cell type-specific expression frequencies for genes that decrease in expression with 

age, transformed to z-scores. 

Table S12: DAVID analysis table for muscle-enriched genes that increase in expression with age. 

Table S13: DAVID analysis table for AT2-enriched genes that decrease in expression with age. 

Table S14: Table of scaled cell enrichment scores, median value of each age group. 

Table S15: Age-association statistics for cell enrichment scores. 

Table S16: Annotation of a prior SARS-CoV siRNA screen (de Wilde et al., 2015) with age-

association statistics from this study. 

Table S17: Annotation of the SARS-CoV-2 : Human protein interactome (Gordon et al., 2020) 

with age-association statistics from this study. 
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Supplementary Figure 4
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