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Abstract: To thrive in dynamic environments, animals must be capable of rapidly and
flexibly adapting behavioral responses to a changing context and internal state. Examples of
behavioral flexibility include faster stimulus responses when attentive and slower responses
when distracted. Contextual or state-dependent modulations may occur early in the cor-
tical hierarchy and may be implemented via top-down projections from cortico-cortical or
neuromodulatory pathways. However, the computational mechanisms mediating the effects
of such projections are not known. Here, we introduce a theoretical framework to classify
the effects of cell-type specific top-down perturbations on the information processing speed
of cortical circuits. Our theory demonstrates that perturbation effects on stimulus process-
ing can be predicted by intrinsic gain modulation, which controls the timescale of the circuit
dynamics. Our theory leads to counter-intuitive effects such as improved performance with
increased input variance. We tested the model predictions using large-scale electrophysio-
logical recordings from the visual hierarchy in freely running mice, where we found that a
decrease in single-cell intrinsic gain during locomotion led to an acceleration of visual pro-
cessing. Our results establish a novel theory of cell-type specific perturbations, applicable
to top-down modulation as well as optogenetic and pharmacological manipulations. Our
theory links connectivity, dynamics, and information processing via gain modulation.
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1 Introduction

Animals respond to the same stimulus with different reaction times depending on the con-
text or the behavioral state. Faster responses may be elicited by expected stimuli or when
the animal is aroused and attentive [1]. Slower responses may occur in the presence of
distractors or when the animal is disengaged from the task [2–4]. Experimental evidence
suggests that neural correlates of these contextual modulations occur early in the cortical
hierarchy, already at the level of the primary sensory cortex [5, 6]. During the waking
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state, levels of arousal, attention, and task engagement vary continuously and are associ-
ated with ongoing and large changes in the activity of neuromodulatory systems [7–9] as
well as cortico-cortical feedback pathways [10–14]. Activation of these pathways modulate
the patterns of activity generated by cortical circuits and may affect their information-
processing capabilities. However, the precise computational mechanism underlying these
flexible reorganizations of cortical dynamics remains elusive.

Variations in behavioral and brain state, such as arousal, engagement and body move-
ments may act on a variety of timescales, both slow (minutes, hours) and rapid (seconds or
subsecond), and spatial scales, both global (pupil diameter, orofacial movements) and brain
subregion-specific; and they can be recapitulated by artificial perturbations such as opto-
genetic, chemogenetic or electrical stimulation. These variations have been associated with
a large variety of seemingly unrelated mechanisms operating both at the single cell and at
the population level. At the population level, these mechanisms include modulations of low
and high frequency rhythmic cortical activities [15]; changes in noise correlations [16, 17];
and increased information flow between cortical and subcortical networks [15]. On a cellular
level, these variations have been associated with modulations of single-cell responsiveness
and reliability [17]; and cell-type specific gain modulation [15]. These rapid, trial-by-trial
modulations of neural activity may be mediated by neuromodulatory pathways, such as
cholinergic and noradrenergic systems [7–9, 18], or more precise cortico-cortical projections
from prefrontal areas towards primary sensory areas [10–14]. The effects of these cortico-
cortical projections can be recapitulated by optogenetic activation of glutamatergic feedback
pathways [19]. In the face of this wide variety of physiological pathways, is there a common
computational principle underlying the effects they elicit on sensory cortical circuits?

A natural way to model the effect of activating a specific pathway on a downstream cir-
cuit is in the form of a perturbation to the downstream circuit’s afferent inputs or recurrent
couplings [20, 21]. Here, we will present a theory explaining how these perturbations con-
trol the information-processing speed of a downstream cortical circuit. Our theory shows
that the effects of perturbations that change the statistics of the afferents or the recurrent
couplings can all be captured by a single mechanism of action: intrinsic gain modulation,
where gain is defined as the rate of change of the intrinsic input/output transfer function of
a neuron measured during periods of ongoing activity. Our theory is based on a biologically
plausible model of cortical circuits using clustered spiking network [22]. This class of mod-
els capture complex physiological properties of cortical dynamics such as state-dependent
changes in neural activity, variability [23–27] and information-processing speed [20]. Our
theory predicts that gain modulation controls the intrinsic temporal dynamics of the cor-
tical circuit and thus its information processing speed, such that decreasing the intrinsic
single-cell gain leads to faster stimulus coding.

We tested our theory by examining the effect of locomotion on visual processing in
the visual hierarchy. We found that locomotion decreased the intrinsic gain of visual cor-
tical neurons in the absence of stimuli in freely running mice. The theory thus predicted
a faster encoding of visual stimuli during running compared to rest, which we confirmed
in the empirical data. Our theoretical framework links gain modulation to information-
processing speed, providing guidance for the design and interpretation of future manipu-
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lation experiments by unifying the changes in brain state due to behavior, optogenetic, or
pharmacological perturbations, under the same shared mechanism.

2 Methods

2.1 Spiking network model

Architecture. We modeled the local cortical circuit as a network of N = 2000 excitatory
(E) and inhibitory (I) neurons (with relative fraction nE = 80% and nI = 20%) with
random recurrent connectivity (Fig. 2). Connection probabilities were pEE = 0.2 and
pEI = pIE = pII = 0.5. Nonzero synaptic weights from pre-synaptic neuron j to post-
synaptic neuron i were Jij = jij/

√
N , with jij sampled from a gaussian distribution with

mean jαβ , for α, β = E, I, and standard deviation δ2. E and I neurons were arranged in
p clusters. E clusters had heterogeneous sizes drawn from a gaussian distribution with a
mean of N clust

E = 80 E-neurons and 20% standard deviation. The number of clusters was
then determined as p = round(nEN(1 − nbgr)/N

clust
E ), where nbgr = 0.1 is the fraction

of background neurons in each population, i.e., not belonging to any cluster. I clusters
had equal size N clust

I = round(nIN(1 − nbgr/p). Clusters were defined by an increase
in intra-cluster weights and a decrease in inter-cluster weights, under the constraint that
the net input current to a neuron would remain unchanged compared to the case without
clusters. Synaptic weights for within-cluster neurons where potentiated by a ratio factor
J+
αβ . Synaptic weights between neurons belonging to different clusters were depressed by

a factor J−αβ . Specifically, we chose the following scaling: J+
EI = p/(1 + (p − 1)/gEI),

J+
IE = p/(1 + (p − 1)/gIE), J−EI = J+

EI/gEI , J
−
IE = J+

IE/gIE and J−αα = 1 − γ(J+
αα − 1)

for α = E, I, with γ = f(2 − f(p + 1))−1, where f = (1 − nbgr)/p is the fraction of E
neurons in each cluster. Within-cluster E-to-E synaptic weights were further multiplied
by cluster-specific factor equal to the ratio between the average cluster size N clust

E and the
size of each cluster, so that larger clusters had smaller within-cluster couplings. We chose
network parameters so that the cluster timescale was 100 ms, as observed in cortical circuits
[20, 25, 28]. Parameter values are in Table 1.
Neuronal dynamics. We modeled spiking neurons as current-based leaky-integrate-and-fire
(LIF) neurons whose membrane potential V evolved according to the dynamical equation

dV

dt
= − V

τm
+ Irec + Iext ,

where τm is the membrane time constant. Input currents included a contribution Irec
coming from the other recurrently connected neurons in the local circuit and an external
current Iext = I0 + Istim + Ipert (units of mV s−1). The first term I0 = NextJα0rext (for
α = E, I) is a constant term representing input to the E or I neuron from other brain
areas and Next = nENpEE ; while Istim and Ipert represent the incoming sensory stimulus
or the various types of perturbation (see Stimuli and perturbations below). When V hits
threshold V thr

α (for α = E, I), a spike is emitted and V is then held at the reset value V reset

for a refractory period τrefr. We chose the thresholds so that the homogeneous network
(i.e.,where all J±αβ = 1) was in a balanced state with average spiking activity at rates
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Model parameters for clustered network simulations
Parameter Description Value
jEE mean E-to-E synaptic weights ×

√
N 0.6 mV

jIE mean E-to-I synaptic weights ×
√
N 0.6 mV

jEI mean I-to-E synaptic weights ×
√
N 1.9 mV

jII mean I-to-I synaptic weights ×
√
N 3.8 mV

jE0 mean E-to-E synaptic weights ×
√
N 2.6 mV

jI0 mean I-to-I synaptic weights ×
√
N 2.3 mV

δ standard deviation of the synaptic weight distribution 20%

J+
EE Potentiated intra-cluster E-to-E weight factor 14
J+
II Potentiated intra-cluster I-to-I weight factor 5
gEI Potentiation parameter for intra-cluster I-to-E weights 10
gIE Potentiation parameter for intra-cluster E-to-I weights 8
rext Average baseline afferent rate to E and I neurons 5 spks/s
V thr
E E-neuron threshold potential 1.43 mV
V thr
I I-neuron threshold potential 0.74 mV
V reset E- and I-neuron reset potential 0 mV
τm E- and I-neuron membrane time constant 20 ms
τrefr E- and I-neuron absolute refractory period 5 ms
τs E- and I-neuron synaptic time constant 5 ms

Table 1. Parameters for the clustered network used in the simulations.

(rE , rI) = (2, 5) spks/s [20, 22]. Post-synaptic currents evolved according to the following
equation

τsyn
dIrec
dt

= −Irec +
N∑
j=1

Jij
∑
k

δ(t− tk) ,

where τs is the synaptic time constant, Jij are the recurrent couplings and tk is the time of
the k-th spike from the j-th presynaptic neuron. Parameter values are in Table 1.

Sensory stimuli. We considered two classes of inputs: sensory stimuli and perturbations.
In the “evoked” condition (Fig. 4a), we presented the network one of four sensory stimuli,
modeled as changes in the afferent currents targeting 50% of E-neurons in stimulus-selective
clusters; each E-cluster had a 50% probability of being selective to a sensory stimulus
(mixed selectivity). In the first part of the paper (Fig. 1-6, I-clusters were not stimulus-
selective. Moreover, in both the unperturbed and the perturbed stimulus-evoked conditions,
stimulus onset occurred at time t = 0 and each stimulus was represented by an afferent
current Istim(t) = Iextrstim(t), where rstim(t) is a linearly ramping increase reaching a value
rmax = 20% above baseline at t = 1. In the last part of the paper (Fig. 7), we introduced
a new stimulation protocol where visual stimuli targeted both E and I clusters in pairs,
corresponding to thalamic input onto both excitatory and inhibitory neurons in V1 [29–
32].. Each E-I cluster pair had a 50% probability of being selective to each visual stimulus.
If a E-I cluster pair was selective to a stimulus, then all E neurons and 50% of I neurons
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in that pair received the stimulus. The time course of visual stimuli was modeled as a
double exponential profiles with rise and decay times of (0.05,0.5)s, and peak equal to a
20% increase compared to the baseline external current.

External perturbations. We considered several kinds of perturbations. In the per-
turbed stimulus-evoked condition (Fig. 4b, right panel), perturbation onset occurred at
time t = −0.5 and lasted until the end of the stimulus presentation at t = 1 with a constant
time course. We also presented perturbations in the absence of sensory stimuli (“ongoing”
condition, Fig. 2-3); in that condition, the perturbation was constant and lasted for the
whole duration of the trial (5s). Finally, when assessing single-cell responses to perturba-
tions, we modeled the perturbation time course as a double exponential with rise and decay
times [0.1, 1]s (Fig. 6). In all conditions, perturbations were defined as follows:

• δmean(E), δmean(I): A constant offset Ipert = zI0 in the mean afferent currents was
added to all neurons in either E or I populations, respectively, expressed as a fraction
of the baseline value I0 (see Neuronal dynamics above), where z ∈ [−0.1, 0.2] for E
neurons and z ∈ [−0.2, 0.2] for I neurons.

• δvar(E), δvar(I): For each E or I neuron, respectively, the perturbation was a constant
offset Ipert = zI0, where z is a gaussian random variable with zero mean and standard
deviation σ. We chose σ ∈ [0, 0.2] for E neurons and σ ∈ [0, 0.5] for I neurons. This
perturbation did not change the mean afferent current but only its spatial variance
across the E or I population, respectively. We measured the strength of these per-
turbations via their coefficient of variability CV (α) = σα/µα, for α = E, I, where σ
and µ = I0 are the standard deviation and mean of the across-neuron distribution of
afferent currents.

• δAMPA: A constant change in the mean jαE → (1+z)jαE synaptic couplings (for α =

E, I), representing a modulation of glutamatergic synapses. We chose z ∈ [−0.1, 0.2].

• δGABA: A constant change in the mean jαI → (1+z)jαI synaptic couplings (for α =

E, I), representing a modulation of GABAergic synapses. We chose z ∈ [−0.2, 0.2].

The range of the perturbations were chosen so that the network still produced metastable
dynamics for all values.

Inhibition stabilization. We simulated a stimulation protocol used in experiments to test
inhibition stabilization (Fig. 2-1b). This protocol is identical to the δmean(I) perturbation
during ongoing periods, where the perturbation targeted all I neurons with an external
current Ipert = zI0 applied for the whole length of 5s intervals, with z ∈ [0, 1.2] and 40
trials per network and 10 networks for each value of the perturbation.

Simulations. All data analyses, model simulations, and mean field theory calculations
were performed using custom software written in MATLAB, C and Python. Simulations in
the stimulus-evoked conditions (both perturbed and unperturbed) comprised 10 realizations
of each network (each network with different realization of synaptic weights), with 20 trials
for each of the 4 stimuli. Simulations in the ongoing condition comprised 10 different real-
ization of each network, with 40 trials per perturbation. Each network was initialized with
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Model parameters for the reduced two-cluster network
Parameter Description Value
jEE mean E-to-E synaptic weights ×

√
N 0.8 mV

jEI mean I-to-E synaptic weights ×
√
N 10.6 mV

jIE mean E-to-I synaptic weights ×
√
N 2.5 mV

jII mean I-to-I synaptic weights ×
√
N 9.7 mV

jE0 mean E-to-E synaptic weights ×
√
N 14.5 mV

jI0 mean I-to-I synaptic weights ×
√
N 12.9 mV

J+
EE Potentiated intra-cluster E-to-E weight factor 11.2
rext Average baseline afferent rate to E and I neurons 7 spk/s
V thr
E E-neuron threshold potential 4.6 mV
V thr
I I-neuron threshold potential 8.7 mV
τs E- and I-neuron synaptic time constant 4 ms
nbgr Fraction of background E neurons 65%

Table 2. Parameters for the simplified two-cluster network used for the mean-field theory analysis
(the remaining parameters are in Table 1.

random synaptic weights and simulated with random initial conditions in each trial. Sample
sizes were similar to those reported in previous publications [20, 25, 26]. Dynamical equa-
tions for the leaky-integrate-and-fire neurons were integrated with the Euler method with
a 0.1ms step. MATLAB code to simulate the model with δvar(E) perturbation is located
at https://github.com/mazzulab/perturb_spiking_net. Code to reproduce the full set
of perturbations investigated in this paper are available upon request to the corresponding
author.

2.2 Mean field theory

We performed a mean field analysis of a simplified two-cluster network for leaky-integrate-
and-fire neurons with exponential synapses, comprising p+ 2 populations for p = 2 [20, 22]:
the first p representing the two E clusters, the last two representing the background E and
the I population. The infinitesimal mean µn and variance σ2

n of the postsynaptic currents
are:

µn = τm
√
N

[
nEpEEjEE

(
fJ+

EErn + J−EE(

p−1∑
l=1

rl + (1− pf)rbgrE ) +
jE0

jEE
rext

)
− nIpEIjEIrI

]
,

µbgr = τm
√
N

[
nEpEEjEE

(
J−EE

p∑
l=1

rl + (1− pf)rbgrE +
jE0

jEE
rext

)
− nIpEIjEIrI

]
,

µI = τm
√
N

[
nEpIEjIE

(
f

p∑
l=1

rl + (1− pf)rbgrE

)
− nIpII(jIIrI + jI0rext)

]
, (2.1)
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σ2
n = τm

√
N

[
nEpEEj

2
EE

(
f(J+

EE)2rn + (J−EE)2(

p−1∑
l=1

rl + (1− pf)rbgrE ))

)
− nIpEIj2

EIrI

]
,

σ2
bgr = τm

√
N

[
nEpEEj

2
EE

(
(J−EE)2

p∑
l=1

rl + (1− pf)rbgrE

)
− nIpEIj2

EIrI

]
,

σI = τm
√
N

[
nEpIEj

2
IE

(
f

p∑
l=1

rl + (1− pf)rbgrE

)
− nIpIIj2

IIrI

]
, (2.2)

where rn, rl = 1, . . . , p are the firing rates in the p E-clusters; rbgrE , rI , rext are the firing rates
in the background E population, in the I population, and in the external current. Other
parameters are described in Architecture and in Table 2. The network attractors satisfy
the self-consistent fixed point equations:

rl = Fl[µl(r), σ2
l (r)] , (2.3)

where r = (r1, . . . , rp, rbgr, rI) and l = 1, . . . , p, bgr, I, and Fl is the current-to-rate transfer
function for each population, which depend on the condition. In the absence of perturba-
tions, all populations have the LIF transfer function

Fl(µl, σl) =

(
τrefr + τm

√
π

∫ Θl

Hl

eu
2
[1 + erf(u)]

)−1

, (2.4)

where Hl = (V reset − µl)/σl + ak and Θl = (V thr
l − µl)/σl + ak. k =

√
τs/τm and

a = |ζ(1/2)|/
√

2 are terms accounting for the synaptic dynamics [33]. The perturbations
δvar(E) and δvar(I) induced an effective population transfer function F eff on the E and I
populations, respectively, given by [20]:

F pertα (µα, σα) =

∫
DzFα(µα + zσzµ

ext
α , σ2

α) , (2.5)

where α = E, I and Dz = dz exp(−z2/2/
√

2π) is a gaussian measure of zero mean and unit
variance, µextα = τm

√
Nnαpα0jα0rext is the external current and σz is the standard deviation

of the perturbation with respect to baseline, denoted CV(E) and CV(I). Stability of the
fixed point equation 2.3 was defined with respect to the approximate linearized dynamics
of the instantaneous mean ml and variance s2

l of the input currents [20, 25]:

τs
dml

dt
= −ml + µl(rl) ; τs

ds2
l

2dt
= −s2

l + σ2
l (rl) ; rl = Fl(ml(r), s2

l (r)) , (2.6)

where µl, σ2
l are defined in 2.1-2.2 and Fl represents the appropriate transfer function 2.4

or 2.5. Fixed point stability required that the stability matrix

Slm =
1

τs

(
∂Fl(µl, σ

2
l )

∂rm
−
∂Fl(µl, σ

2
l )

∂σ2
l

∂σ2
l (r)

∂rm
− δlm

)
, (2.7)

was negative definite. The full mean field theory described above was used for the com-
prehensive analysis of Fig. 3-2.For the schematic of Fig. 3c, we replaced the LIF transfer
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function 2.4 with the simpler function F̃ (µE) = 0.5(1 + tanh(µE)) and the δvar(E) pertur-
bation effect was then modeled as F̃ eff (µ) =

∫
DzF̃ (µE + zσzµext).

Effective mean field theory for a reduced network. To calculate the potential energy
barrier separating the two network attractors in the reduced two-cluster network, we used
the effective mean field theory developed in [20, 34, 35]. The idea is to first estimate the
force acting on neural configurations with cluster firing rates r = [r̃1, r̃2] outside the fixed
points (2.3), then project the two-dimensional system onto a one-dimensional trajectory
along which the force can be integrated to give an effective potential E (Fig. 3-2). In the
first step, we start from the full mean field equations for the P = p+ 2 populations in 2.3,
and obtain an effective description of the dynamics for q populations “in focus” describing E
clusters (q = 2 in our case) by integrating out the remaining P − q out-of-focus populations
describing the background E neurons and the I neurons (P − q = 2 in our case). Given a
fixed value r̃ = [r̃1, . . . , r̃q] for the q in-focus populations, one obtains the stable fixed point
firing rates r′ = [r′q+1, . . . , r

′
P ] of the out-of-focus populations by solving their mean field

equations
r′β(r̃) = Fβ[µβ(r̃, r′), σ2

β(r̃, r′)] , (2.8)

for β = q+ 1, . . . , P , as function of the in-focus populations r̃, where stability is calculated
with respect to the condition (2.7) for the reduced (q + 1, . . . , P ) out-of-focus populations
at fixed values of the in-focus rates r̃. One then obtains a relation between the input r̃

and output values r̃out of the in-focus populations by inserting the fixed point rates of the
out-of-focus populations calculated in (2.8):

routα (r̃) = Fα[µα(r̃, r′(r̃)), σ2
α(r̃, r′(r̃))] , (2.9)

for α = 1, . . . , q. The original fixed points are r̃∗ such that r̃∗α = routα (r̃∗).
Potential energy barriers and transfer function gain. In a reduced network with two

in-focus populations [r̃1, r̃2] corresponding to the two E clusters, one can visualize Eq. (2.9)
as a two-dimensional force vector r̃−rout(r̃) at each point in the two-dimensional firing rate
space r̃. The force vanishes at the stable fixed points A and B and at the unstable fixed
point C between them (Fig. 3-2). One can further reduce the system to one dimension by
approximating its dynamics along the trajectory between A and B as [34]:

τs
dr̃

dt
= −r̃ + rout(r̃) , (2.10)

where y = rout(r̃) represents an effective transfer function and r̃− rout(r̃) an effective force.
We estimated the gain g of the effective transfer function as g = 1 − rout(r̃min)−rout(r̃min)

r̃min−r̃max
,

where r̃min and r̃max represent, respectively, the minimum and maximum of the force (see
Fig. 3-2). From the one-dimensional dynamics (2.10) one can define a potential energy via
∂E(r̃)
∂r = r̃− rout(r̃). The energy minima represent the stable fixed points A and B and the

saddle point C between them represents the potential energy barrier separating the two
attractors. The height ∆ of the potential energy barrier is then given by

∆ =

∫ C

A
dr̃[r̃ − rout(r̃)] , (2.11)
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which can be visualized as the area of the curve between the effective transfer function and
the diagonal line (see Fig. 3).

2.3 Experimental data

We tested our model predictions using the open-source dataset of neuropixel recordings from
the Allen Institute for Brain Science [36]. We focused our analysis on experiments where
drifting gratings were presented at four directions (0◦, 45◦, 90◦, 135◦) and one temporal
frequency (2 Hz). Out of the 54 sessions provided, only 7 sessions had enough trials per
behavioral condition to perform our decoding analysis. Neural activity from the visual
cortical hierarchy was collected and, specifically: primary visual cortex (V1) in 5 of these 7
sessions, with a median value of 75 neurons per session; lateral visual area (LM): 6 sessions,
47 neurons; anterolateral visual area (AL): 5 sessions, 61 neurons; posteromedial visual area
(PM): 6 sessions, 55; anteromedial visual area (AM): 7 sessions, 48 neurons. We matched
the number and duration of trials across condition and orientation and combined trials
from the drifting gratings repeat stimulus set, and drifting grating contrast stimulus set.
To do this, we combined trials with low-contrast gratings (0.08, 0.1, 0.13, 0.2; see Fig. 7-4)
and trials with high-contrast gratings (0.6, 0.8, 1; see Fig. 7-3) into separate trial types
to perform the decoding analysis, and analyzed the interval [−0.25, 0.5] seconds aligned to
stimulus onset.

For evoked activity, running trials were classified as those where the animal was running
faster than 3 cm/s for the first 0.5 seconds of stimulus presentation. During ongoing activity,
behavioral periods were broken up into windows of 1 second. Periods of running or rest
were classified as such if 10 seconds had elapsed without a behavioral change. Blocks of
ongoing activity were sorted and used based on the length of the behavior. Out of the 54
sessions provided, 14 sessions had enough time per behavioral condition (minimum of 2
minutes) to estimate single-cell transfer functions. Only neurons with a mean firing rate
during ongoing activity greater than 5Hz were included in the gain analysis (2119 out of
4365 total neurons).

2.4 Stimulus decoding

For both the simulations and data, a multi-class decoder was trained to discriminate be-
tween four stimuli from single-trial population activity vectors in a given time bin [37]. To
create a timecourse of decoding accuracy, we used a sliding window of 100ms (200ms) in
the data (model), which was moved forward in 2ms (20ms) intervals in the data (model).
Trials were split into training and test data-sets in a stratified 5-fold cross-validated man-
ner, ensuring equal proportions of trials per orientation in both data-sets. In the model,
a leave-2-out cross-validation was performed. To calculate the significance of the decoding
accuracy, an iterative shuffle procedure was performed on each fold of the cross-validation.
On each shuffle, the training labels were shuffled and the classifer accuracy was predicted
on the unshuffled test data-set. This shuffle was performed 100 times to create a shuffle
distribution to rank the actual decoding accuracy from the unshuffled decoder against and
to determine when the mean decoding accuracy had increased above chance. This time
point is what we referred to as the latency of stimulus decoding. To account for the speed
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of stimulus decoding (the slope of the decoding curve), we defined the ∆-Latency between
running and rest as the average time between the two averaged decoding curves from 40%
up to 80% of the max decoding value at rest.

2.5 Firing rate distribution match

To control for increases of firing rate due to locomotion (Fig. 7b), we matched the distribu-
tions of population counts across the trials used for decoding in both behavioral conditions.
This procedure was done independently for each sliding window of time along the decoding
time course. Within each window, the spikes from all neurons were summed to get a pop-
ulation spike count per trial. A log-normal distribution was fit to the population counts
across trials for rest and running before the distribution match (Fig 7-1a left). We sorted
the distributions for rest and running in descending order, randomly removing spikes from
trials in the running distribution to match the corresponding trials in the rest distribution
(Fig 7-1a right). By doing this, we only removed the number of spikes necessary to match
the running distribution to rest distribution. For example, trials where the rest distribution
had a larger population count, no spikes were removed from either distribution. Given we
performed this procedure at the population level rather than per neuron, we checked the
change in PSTH between running and rest conditions before and after distribution matching
(Fig 7-1b). This procedure was also performed on the simulated data (Fig. 7-5).

2.6 Single-cell gain

To infer the single-cell transfer function in simulations and data, we followed the method
originally described in [38] (see also [39, 40] for a trial-averaged version). We estimated the
transfer function on ongoing periods when no sensory stimulus was present. Briefly, the
transfer function of a neuron was calculated by mapping the quantiles of a standard gaussian
distribution of input currents to the quantiles of the empirical firing rate distribution during
ongoing periods (Fig. 3d). We then fit this transfer function with a sigmoidal function.
The max firing rate of the neuron in the sigmoidal fit was bounded to be no larger than 1.5
times that of the empirical max firing rate, to ensure realistic fits. We defined the gain as
the slope at the inflection point of the sigmoid.

2.7 Single-cell response and selectivity

We estimated the proportion of neurons that were significantly excited or inhibited by
cortical state perturbations in the model (Fig. 6) or locomotion in the data (Fig. 7) during
periods of ongoing activity, in the absence of sensory stimuli. In the model, we simulated
40 trials per network, for 10 networks per each value of the perturbation; each trial in the
interval [−0.5, 1]s, with onset of the perturbation at t = 0 (the perturbation was modeled
as a double exponential with rise and decay times [0.2, 1], Fig. 3a). In the data, we binned
the spike counts in 500ms windows for each neuron after matching sample size between rest
and running conditions, and significant difference between the conditions was assessed with
a rank-sum test.

We estimated single neuron selectivity to sensory stimuli in each condition from the
average firing rate responses rai (t) of the i-th neuron to stimulus a in trial t. For each pair
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Figure 1. Conceptual summary of the main results. a): In a network model of sensory cortex
featuring clusters of excitatory and inhibitory neurons with metastable dynamics, state changes
are induced by external perturbations controlling the timescale of cluster activation during ongoing
activity. The neural mechanism underlying timescale modulation is a change in the barrier height
separating attractors, driven by a modulation of the intrinsic gain of the single-cell transfer function.
b): During evoked activity, onset of stimulus encoding is determined by the activation latency
of stimulus-selective cluster. External perturbations modulate the onset latency thus controlling
the stimulus processing speed. The theory shows that the effect of external perturbations on
stimulus-processing speed during evoked activity (right) can be predicted by the induced gain
modulations observed during ongoing activity (left). c): Locomotion induced changes in intrinsic
gain in the visual cortical hierarchy during darkness periods. d): Locomotion drove faster coding of
visual stimuli during evoked periods, as predicted by the induced gain modulations observed during
ongoing activity.

of stimuli, selectivity was estimated as

d′(a, b) =
mean [r(t)a]−mean

[
r(t)b

]√
1
2 (var[r(t)a] + var[r(t)b])

,

where mean and var are estimated across trials. The d’ was then averaged across stimulus
pairs.
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Figure 2. Biological plausible model of cortical circuit. a) Schematics of the network architecture.
A recurrent network of E (black triangles) and I (red circles) spiking neurons arranged in clusters is
presented sensory stimuli targeting subsets of E clusters, in different cortical states implemented by
perturbations. Inset shows a membrane potential trace from representative E neuron. b) Synaptic
couplings Jij for a representative clustered network, highlighting the block diagonal structure of
potentiated intra-cluster synaptic weights for both E and I clusters, and the background E and I
populations (bgr). Cluster size was heterogeneous (inset). c) Representative neural activity during
ongoing periods; tick marks represent spike times of E (black) or I (red) neurons. The network
dynamics is metastable with clusters transiently activity for periods of duration τ . Inset: The
cumulative distributions of single-cell firing rates (in the representative network are lognormal (blue:
empirical data; orange: lognormal fit). c) Left: State-changing perturbation affecting the mean of
the afferent currents to E populations (knobs represent changes in afferent to three representative
E cells compared to the unperturbed state). Right: Histogram of afferent inputs to E-cells in the
perturbed state (brown, all neurons receive a 10% increase in input) with respect to the unperturbed
state (grey). d) Left: State-changing perturbation affecting the variance of afferent currents to E
populations. Right: In the perturbed state (brown), each E-cell’s afferent input is constant and
sampled from a normal distribution with mean equal to the unperturbed value (grey) and 10% CV.

3 Results

To elucidate the effect of state changes on cortical dynamics, we modeled the local circuit as
a network of recurrently connected excitatory (E) and inhibitory (I) spiking neurons. Both
E and I populations were arranged in clusters [20, 22, 23, 25, 41], where synaptic couplings
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between neurons in the same cluster were potentiated compared to neurons in different
clusters, reflecting the empirical observation of cortical assemblies of functionally correlated
neurons [Fig. 2a; 42–45]. In the absence of external stimulation (ongoing activity), this E-I
clustered network generates rich temporal dynamics characterized by metastable activity
operating in inhibition stabilized regime, where E and I post-synaptic currents track each
other achieving tight balance (Fig. 2-1). A heterogeneous distribution of cluster sizes leads
to a lognormal distributions of firing rates (Fig. 2b). Network activity was characterized by
the emergence of the slow timescale of cluster transient activation, with average activation
lifetime of τ = 106± 35 ms (hereby referred to as “cluster timescale," Fig. 2b), much larger
than single neuron time constant [20ms; 23, 25].

To investigate how changes in cortical state may affect the network dynamics and infor-
mation processing capabilities, we examined a vast range of state-changing perturbations
(Fig. 2c-d, Table 3). State changes were implemented as perturbations of the afferent
currents to cell-type specific populations, or as perturbations to the synaptic couplings.
The first type of state perturbations δmean(E) affected the mean of the afferent currents
to E populations (Fig. 2c). E.g., a perturbation δmean(E)=10% implemented an increase
of all input currents to E neurons by 10% above their unperturbed levels. The perturba-
tion δmean(I) affected the mean of the afferent currents to I populations in an analogous
way. The second type of state perturbations δvar(E) affected the across-neuron variance
of afferents to E populations. Namely, in this perturbed state, the afferent current to each
neuron in that population was sampled from a normal distribution with zero mean and fixed
variance (Fig. 2d, measured by the coefficient of variability CV(E)=var(E)/mean(E) with
respect to the unperturbed afferents). This perturbation thus introduced a spatial variance
across neurons in the cell-type specific afferent currents, yet left the mean afferent current
into the population unchanged. The state perturbation δvar(I) affected the variance of
the afferent currents to I populations analogously. In the third type of state perturbations
δAMPA or δGABA, we changed the average GABAergic or glutamatergic (AMPA) recur-
rent synaptic weights compared to their unperturbed values. We chose the range of state
perturbations such that the network still retained non-trivial metastable dynamics within
the whole range. We will refer to these state changes of the network as simply perturbations,
and should not be confused with the presentation of the stimulus. We first established the
effects of perturbations on ongoing network dynamics, and used those insight to explain
their effects on stimulus-evoked activity.

3.1 State-dependent regulation of the network emergent timescale

A crucial feature of neural activity in clustered networks is metastable attractor dy-
namics, characterized by the emergence of a long timescale of cluster activation whereby
network itinerant activity explores the large attractor landscape (Fig. 2b). We first exam-
ined whether perturbations modulated the network’s metastable dynamics and introduced
a protocol where perturbations occurred in the absence of sensory stimuli (“ongoing activ-
ity”).

We found that perturbations strongly modulated the attractor landscape, changing
the repertoire of attractors the network activity visited during its itinerant dynamics (Fig.

– 13 –

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 25, 2021. ; https://doi.org/10.1101/2020.04.07.030700doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.07.030700
http://creativecommons.org/licenses/by-nc/4.0/


3a and 3-1a). Changes in attractor landscape were perturbation-specific. Perturbations
increasing δmean(E) (δmean(I)) induced a consistent shift in the repertoire of attractors:
larger perturbations led to larger (smaller) numbers of co-active clusters. Surprisingly,
perturbations that increased δvar(E) (δvar(I)), led to network configurations with larger
(smaller) sets of co-activated clusters. This effect occurred despite the fact that such per-
turbations did not change the mean afferent input to the network. Perturbations affecting
δAMPA and δGABA had similar effects to δmean(E) and δmean(I), respectively.

We then examined whether perturbations affected the cluster activation timescale. We
found that perturbations differentially modulated the average cluster activation timescale
τ during ongoing periods, in the absence of stimuli (Fig. 3b). In particular, increasing
δmean(E), δvar(E), or δAMPA led to a proportional acceleration of the network metastable
activity and shorter τ ; while increasing δmean(I), δvar(I) or δGABA induced the opposite
effect with longer τ . Changes in τ were congruent with changes in the duration of intervals
between consecutive activations of the same cluster (cluster inter-activation intervals, Fig.
3-1).
3.2 Changes in cluster timescale are controlled by gain modulation

What is the computational mechanism mediating the changes in cluster timescale, induced
by the perturbations? We investigated this question using mean field theory, where network
attractors, defined by sets of co-activated clusters, are represented as potential wells in an
attractor landscape [20, 23, 25, 34, 46]. Let us illustrate this in a simplified network with
two clusters (Fig. 3c and 3-2). Here, the attractor landscape consists of two potential
wells, each well corresponding to a configuration where one cluster is active and the other is
inactive. When the network activity dwells in the attractor represented by the left potential
well, it may escape to the right potential well due to internally generated variability. This
process will occur with a probability determined by the height ∆ of the barrier separating
the two wells: the higher the barrier, the less likely the transition [20, 23, 46, 47]. Mean
field theory thus established a relationship between the cluster timescale and the height of
the barrier separating the two attractors. We found that perturbations differentially control
the height of the barrier ∆ separating the two attractors (Fig. 3-2), explaining the changes
in cluster timescale observed in the simulations (Fig. 3b).

Since reconstruction of the attractor landscape requires knowledge of the network’s
structural connectivity, the direct test of the mean field relation between changes in at-
tractor landscape and timescale modulations is challenging. We thus aimed at obtaining
an alternative formulation of the underlying neural mechanism only involving quantities
directly accessible to experimental observation. Using mean field theory, one can show that
the double potential well representing the two attractors can be directly mapped to the
effective transfer function of a neural population [20, 34, 35]. One can thus establish a di-
rect relationship between changes in the slope (hereby referred to as “gain") of the intrinsic
transfer function estimated during ongoing periods and changes in the barrier height ∆

separating metastable attractors (see Fig. 3c, 3-2 and Methods). In turn, this implies a
direct relationship between gain modulation, induced by the perturbations, and changes in
cluster activation timescale. In particular, perturbations inducing steeper gain will increase
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Figure 3. Linking gain modulation to changes in cluster timescale. a) Top left: Clustered net-
work activity during a representative ongoing trial hops among different metastable attractors (grey
box: attractor with 3 co-active clusters). Bottom: Number of co-active clusters at each time bin
(right: frequency of occurrence of attractors with 2-6 co-active clusters in the representative trial).
Right: Perturbations strongly modulate the attractor landscape (color-coded curves: frequency of
occurrence of network attractors with different number of co-active clusters, for different values of
the representative δmean(E) perturbation, mean occurrence across 5 sessions). b) Perturbations
induce consistent changes in the average cluster activation timescale τ (mean±S.D. across 5 sim-
ulated sessions) and in the single neuron intrinsic gain (estimated as in panel d). c) Schematic of
the effect of perturbations on network dynamics. Dynamics in a two-cluster network is captured
by its effective potential energy (top panel). Potential wells represent two attractors where either
cluster is active (A and B). Perturbations that shrink the barrier height ∆ separating the attractors
induce faster transition rates between attractors and shorter cluster activation lifetime (black and
brown: unperturbed and perturbed conditions, respectively).
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well depths and barrier heights, and thus increase the cluster timescale, and vice versa.
Using mean field theory, we demonstrated a complete classification of the differential effect
of all perturbations on barrier heights and gain (Fig. 3-2).

We then proceeded to verify these theoretical predictions, obtained in a simplified two-
cluster network, in the high dimensional case of large networks with several clusters using
simulations. While barrier heights and the network’s attractor landscape can be exactly
calculated in the simplified two-cluster network, this task is infeasible in large networks with
a large number of clusters where the number of attractors is exponential in the number of
clusters. On the other hand, changes in barrier heights ∆ are equivalent to changes in gain,
and the latter can be easily estimated from spiking activity (Fig. 3b and 3-2). We thus
tested whether the relation between gain and timescale held in the high-dimensional case of
a network with many clusters. We estimated single-cell transfer functions from their spiking
activity during ongoing periods, in the absence of sensory stimuli but in the presence of
different perturbations (Fig. 3d, [38, 39]). We found that network perturbations strongly
modulated single-cell gain in the absence of stimuli, verifying mean field theory predictions
in all cases (Fig. 3d). In particular, we confirmed the direct relationship between gain
modulation and cluster timescale modulation: perturbations that decreased (increased) the
gain also decreased (increased) cluster timescale (Fig. 3e, R2 = 0.96). For all perturbations,
gain modulations explained the observed changes in cluster timescale.

3.3 Controlling information processing speed with perturbations

We found that changes in cortical state during ongoing activity, driven by external pertur-
bations, control the circuit’s dynamical timescale. The neural mechanism mediating the
effects of external perturbations is gain modulation, which controls the timescale of the
network switching dynamics. How do such state changes affect the network information
processing speed?

To investigate the effect of state perturbations on the network’s information-processing,
we compared stimulus-evoked activity by presenting stimuli in an unperturbed and a per-
turbed condition. In unperturbed trials (Fig. 4a), we presented one of four sensory stimuli,
modeled as depolarizing currents targeting a subset of stimulus-selective E neurons with
linearly ramping time course. Stimulus selectivities were mixed and random, all clusters
having equal probability of being stimulus-selective. In perturbed trials (Fig. 4b), in ad-
dition to the same sensory stimuli, we included a state perturbation, which was turned on
before the stimulus and was active until the end of stimulus presentation. We investigated

Legend continued : Mean field theory provides a relation between potential energy and transfer
function (bottom panel), thus linking cluster lifetime to neuronal gain in the absence of stimuli
(dashed blue line, gain). d): A single-cell transfer function (bottom, empirical data in blue; sig-
moidal fit in brown) can be estimated by matching a neuron’s firing rate distribution during ongoing
periods (top) to a gaussian distribution of input currents (center, quantile plots; red stars denotes
matched median values). e) Perturbation-induced changes in gain (x-axis: gain change in perturbed
minus unperturbed condition, mean±s.e.m. across 10 networks; color-coded markers represent dif-
ferent perturbations) explain changes in cluster lifetime (y-axis, linear regression, R2 = 0.96) as
predicted by mean field theory (same as in panel b).
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and classified the effect of several state changes implemented by perturbations affecting
either the mean or variance of cell-type specific afferents to E or I populations, and the
synaptic couplings. State perturbations were identical in all trials of the perturbed condi-
tion for each type; namely, they did not convey any information about the stimuli.

We assessed how much information about the stimuli was encoded in the population
spike trains at each moment using a multiclass classifier (with four class labels correspond-
ing to the four presented stimuli, Fig. 4c). In the unperturbed condition, the time course
of the cross-validated decoding accuracy, averaged across stimuli, was significantly above
chance after 0.21 + / − 0.02 seconds (mean±s.e.m. across 10 simulated networks, black
curve in Fig. 4c) and reached perfect accuracy after a second. In the perturbed condition,
stimulus identity was decoded at chance level in the period after the onset of the state per-
turbation but before stimulus presentation (Fig. 4c), consistent with the fact that the state
perturbation did not convey information about the stimuli. We found that state pertur-
bations significantly modulated the network information processing speed. We quantified
this modulation as the average latency to reach a decoding accuracy between 40% and 80%
(Fig. 4c, yellow area), and found that state perturbations differentially affected processing
speed.

State perturbations had opposite effects depending on which cell-type specific popula-
tions they targeted. Increasing δmean(E) monotonically improved network performance
(Fig. 4d, left panel): in particular, positive perturbations induced an anticipation of
stimulus-coding (shorter latency), while negative ones led to longer latency and slower
coding. The opposite effect was achieved when increasing δmean(I), which slowed down
processing speed (Fig. 4d, right panel). State perturbations that changed the spatial
variance of the afferent currents had counterintuitive effects (Fig. 4e). We measured the
strength of these perturbations via their coefficient of variability CV (α) = σα/µα, for
α = E, I, where σ and µ are the standard deviation and mean of the across-neuron dis-
tribution of afferent currents. Perturbations δvar(E) that increased CV (E) led to faster
processing speed. The opposite effect was achieved with perturbations δvar(I) inducing a
spatial variance across afferents to I neurons, which slowed down stimulus-processing speed
(Fig. 4e). Perturbations δAMPA which increased the glutamatergic synaptic weights im-
proved performance proportionally to the perturbation. The opposite effect was achieved
by perturbations δGABA that increased the GABAergic synaptic weights, which mono-
tonically decreased network processing speed (Fig. 4f). We thus concluded that afferent
current perturbations differentially modulated the speed at which network activity encoded
information about incoming sensory inputs. Such modulations exhibited a rich dynamical
repertoire (Table 3).

3.4 Gain modulation regulates the network information processing speed

Our mean field framework demonstrates a direct relationship between the effects of
perturbations on the network information processing speed and its effects on the cluster
timescale (Fig. 3). In our simplified network with two clusters, stimulus presentation
induces an asymmetry in the well depths, where the attractor B corresponding to the
activated stimulus-selective cluster has a deeper well, compared to the attractor A where
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Figure 4. Perturbations control stimulus-processing speed in the clustered network. a-b) Represen-
tative trials in the unperturbed (a) and perturbed (b) conditions; the representative perturbation is
an increase in the spatial variance δvar(E) across E neurons. After a ramping stimulus is presented
at t = 0 (black vertical line on raster plot; top panel, stimulus time course), stimulus-selective
E-clusters (brown tick marks represent their spiking activity) are activated at a certain latency
(brown vertical line). In the perturbed condition (b), a perturbation is turned on before stimulus
onset (gray-dashed vertical line). The activation latency of stimulus-selective clusters is shorter in
the perturbed compared to the unperturbed condition. c) Left: schematic of stimulus-decoding
analysis. A multi-class classifier is trained to discriminate between the four stimuli from single-trial
population activity vectors in a given time bin (curves represent the time course of population
activity in single trials, color-coded for 4 stimuli; the purple circle highlights a given time bin along
the trajectories), yielding a cross-validated confusion matrix for the decoding accuracy at that bin
(central panel). Right: Average time course of the stimulus-decoding accuracy in the unperturbed
(black) and perturbed (brown) conditions (horizontal brown: significant difference between condi-
tions, p < 0.05 with multiple bin correction). d-f: Difference in stimulus decoding latency in the
perturbed minus the unperturbed conditions (average difference between decoding accuracy time
courses in the [40%,80%] range, yellow interval of c; mean±S.D. across 10 networks) for the six
state-changing perturbations (see Methods and main text for details; the brown star represents the
perturbation in b-c).

the stimulus-selective cluster is inactive. Upon stimulus presentation, the network ongoing
state will be biased to transition towards the stimulus-selective attractor B with a transition
rate determined by the barrier height separating A to B. Because external perturbations
regulate the height of such barrier via gain modulation, they control in turn the latency
of activation of the stimulus-selective cluster. We thus aimed at testing the prediction
of our theory: that the perturbations modulate stimulus coding latency in the same way
as they modulate cluster timescales during ongoing periods; and, as a consequence, that
these changes in stimulus coding latency can be predicted by intrinsic gain modulation.
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Latency Activity Response τ Gain
δmean(E)↗ ↘ E[↗], I[↗] E[↗], I[↗] ↘ ↘
δmean(I)↗ ↗ E[↘], I[↘] E[↘], I[mixed] ↗ ↗
δvar(E)↗ ↘ E[↗], I[↗] E[mixed], I[mixed] ↘ ↘
δvar(I)↗ ↗ E[↘], I[=] E[↘], I[↘] ↗ ↗
δAMPA↗ ↘ E[↗], I[↗] E[↗], I[↗] ↘ ↘
δGABA↗ ↗ E[↘], I[↘] E[↘], I[mixed] ↗ ↗
Locomotion ↘ E[↗], I[↗] E[mixed], I[mixed] ↘ ↘

Table 3. Classification of state-changing perturbations. Effect of on neural activity of an increasing
(↗) state-changing perturbation: latency of stimulus decoding (’Latency’, Fig. 2d); average firing
rate modulation (’Activity’) and response to perturbations (’Response’, proportion of cells with
significant responses) of E and I cells in the absence of stimuli (Fig. 3); cluster activation timescale
(’τ ’, Fig. 4b); single-cell intrinsic gain modulation at rest (’Gain’, Fig. 5e). ↗,↘,= represent
increase, decrease, and no change, respectively. ’Mixed’ responses refer to similar proportions of
excited and inhibited cells. The effect of locomotion is consistent with a perturbation increasing
δvar(E).

Specifically, our theory predicts that perturbation driving a decrease (increase) in intrinsic
gain during ongoing periods will induce a faster (slower) encoding of the stimulus.

We thus proceeded to test the relationship between perturbations effects on cluster
timescales, gain modulation, and information processing speed. In the representative trial
where the same stimulus was presented in the absence (Fig. 4a) or in the presence (Fig. 4b)
of the perturbation δmean(E)= 10%, we found that stimulus-selective clusters (highlighted
in brown) had a faster activation latency in response to the stimulus in the perturbed con-
dition compared to the unperturbed one. A systematic analysis confirmed this mechanism
showing that, for all perturbations, the activation latency of stimulus-selective clusters was
a strong predictor of the change in decoding latency (Fig. 5a right panel, R2 = 0.93).
Moreover, we found that the perturbation-induced changes of the cluster timescale τ dur-
ing ongoing periods predicted the effect of the perturbation on stimulus-processing latency
during evoked periods (Fig. 5b,d). Specifically, perturbations inducing faster τ during on-
going periods, in turn accelerated stimulus coding; and vice versa for perturbations inducing
slower τ .

We then tested whether perturbation-induced gain modulations during ongoing periods
explained the changes in stimulus-processing speed during evoked periods, and found that
the theoretical prediction was borne out in the simulations (Fig. 5c,e). Let us summarize
the conclusion of our theoretical analyses. Motivated by mean field theory linking gain
modulation to changes in transition rates between attractors, we found that gain modulation
controls the cluster timescale during ongoing periods, and, in turn, regulates the onset
latency of stimulus-selective clusters upon stimulus presentation. Changes in onset latency
of stimulus-selective clusters explained changes in stimulus-coding latency. We thus linked
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gain modulation to changes in stimulus-processing speed (Fig. 5, Table 3).
3.5 Physiological responses to perturbations

Our results show that cortical processing speed can be accelerated or slowed down via
external perturbations. We found that different types of perturbations may induce similar
effects on processing speed: a dynamical acceleration may be obtained by either increasing
the mean or the variance of the external input to E neurons, or either decreasing the mean
or the variance of external inputs to I neurons. A dynamical deceleration may be obtained
by the opposite perturbations. In order to devise an experimental test of our theory to
dissect the specific effects of each type of perturbation, we then examined the single-cell
responses to perturbations. By combining single-cell responses with dynamical effects, we
will be able to isolate the effects of each perturbation.

We characterized single-cell responses to perturbations during ongoing periods, in the
absence of sensory stimuli (Fig. 6, 6-1). We found that perturbations differentially affected
neuronal responses in a cell-type specific way. Perturbations changed the average popula-
tion firing rates, and led to complex patterns of response across E and I populations (Fig.
6). Specifically, perturbations increasing δmean(E) induced higher firing rates and induced
proportionally excited responses in both E and I populations. On the other hand, pertur-
bations that increased δmean(I) led to a decrease in both E and I average firing rates (Fig.
6). This paradoxical effect [48] revealed that the network operates in the inhibition stabi-
lized regime (Fig. 2-1). When increasing the inhibitory current beyond δmean(I)=50%, the
network reached a reversal point where the E population activity became silent and the I
population rebounded, starting to increase their firing rates again (Fig. 2-1).

Perturbations increasing the variance δvar(E) and δvar(I) led to surprising effects (Fig.
6, 6-1). Increasing δvar(E) induced higher firing rates in both E and I populations, despite
leaving the mean afferents unchanged; moreover, it led to mixed responses at the single
cell level, with a prevalence of excited responses in both E and I populations. We will see
below that this set of responses is consistent with locomotion-induced effects in the visual
cortical hierarchy. Increasing δvar(I) left firing rates of I populations unchanged but led to
a decrease of E population firing rates. This perturbation also induced mixed responses at
the single cell level, with a prevalence of inhibited responses in both populations. Finally,
perturbations δAMPA and δGABA led to responses similar to those found when driving
the mean E- or I-afferents, respectively.

Our theory thus suggests that it is possible to identify a specific perturbation by com-
bining all its effects, including gain modulation, changes in stimulus-processing speed and
single-cell physiological responses (Table 3) .

3.6 Changes in single-cell responses cannot explain the effects of perturbations
on evoked activity

Although we found that gain modulation captures the effects of perturbations on network
activity, we investigate whether alternative explanations were also possible, in terms of
traditional measures of stimulus responsiveness and selectivity.
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Figure 5. Linking gain modulation to changes in processing speed. a) Left: Schematic of the
effect of an accelerating perturbation on stimulus encoding during evoked activity (same notations
as in 3c). A shrinking barrier from non-selective to selective attractors drives a faster activation of
stimulus-selective cluster after stimulus presentation. Right: Changes in stimulus processing speed
(y-axis: latency of stimulus decoding from 4d-f) are predicted by changes in activation latency
of stimulus selective clusters (x-axis: mean±S.D. across 10 simulated sessions; linear regression,
R2 = 0.93); b, d) by changes in cluster timescale (same values as 3b; R2 = 0.93); c, e) and by
changes in single-cell intrinsic gain (same values as 3b; R2 = 0.71).

We found that perturbations strongly affected the peak of single-cell responses to stim-
uli compared to baseline (∆PSTH, Fig. 6-1b), as well as single-cell selectivity to stimuli
with significant changes in their d’ (Fig. 6-1c). We then tested whether perturbation-
induced changes in stimulus responses or selectivity could explain the observed changes in
stimulus-processing speed. We first hypothesized that, if the response increase induced by
the perturbation were larger for stimulus-selective compared to nonselective neurons (i.e.,
if ∆PSTH(sel)>∆PSTH(nonsel)), then a perturbation increasing stimulus-responses could
lead to faster stimulus-processing speed. Likewise, we hypothesized that faster stimulus-
processing speed may be induced by perturbations improving single-cell selectivity (d’)
to stimuli. Surprisingly, we found a complex relation between changes in single-cell re-
sponsiveness and selectivity to stimuli, induced by the perturbations, and modulation of
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Figure 6. Single-cell responses to perturbations. Top: Average firing rate change across E (full)
and I (dashed) populations in response to each state-changing perturbations (mean±S.D. across 10
simulated networks). Histograms: Average fractions of E (top row) and I (bottom row) neurons
whose firing rate significantly increase (positive bars) or decrease (negative bars) in responses to the
perturbations (single-cell significant response was based on a t-test of the baseline vs. perturbation
evoked activity, p < 0.05).

stimulus-processing speed (Fig. 6-1). For perturbations targeting I populations (δmean(I),
δvar(I), and δGABA) changes in responsiveness and selectivity were consistent with changes
in processing speed (R2 = 0.92, 0.70 for responsiveness and selectivity, respectively). How-
ever, for perturbations targeting E populations (δmean(E), δvar(E), and δAMPA) changes
in responsiveness and selectivity were not consistent with changes in processing speed
(R2 = 0.05, 0.02 for responsiveness and selectivity, respectively). Strikingly, in the case of
the perturbation δvar(E), processing speed increased with larger perturbations even though
responses and selectivity increasingly degraded. In the case of the perturbation δmean(E)
and δAMPA, network performance likewise increased but single-cell metrics where non-
monotonic in the value of the perturbation (Fig. 6-1e, f). Because changes in single-cell
stimulus properties were only consistent with changes in processing speed for some pertur-
bations (δmean(I), δvar(I), and δGABA), but inconsistent for other perturbations, we thus
conclude that they could not represent an alternative mechanism underlying the observed
effects of perturbations.

3.7 Locomotion decreases single-cell gain and accelerates visual processing
speed

Our theory predicts a link between gain modulations measured during ongoing periods and
changes in stimulus-processing speed during evoked periods. We sought to experimentally
test this prediction in freely running mice using electrophysiological recordings from the
visual hierarchy including the primary visual cortex (V1) and 4 higher cortical visual areas
LM, AL, PM, AM [open-source neuropixels dataset available from the Allen Institute, 36].
We interpreted periods where the animal was resting as akin to the “unperturbed” condition
in our model, and periods where the animal was running as the “perturbed” condition (Fig.
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7a in the data). We thus set out to test our theory in the following three steps: i) in
each area, we estimated the effect of locomotion on single-cell responses and on intrinsic
gain during ongoing periods, ii) based on these changes, we built a biologically plausible
model of cortical circuits processing visual stimuli and predicted whether locomotion would
accelerate or slow down visually-evoked responses; iii) we tested the prediction in each area
with a decoding analysis of visually-evoked population activity.

During periods of ongoing activity (in the absence of visual stimuli), we found that
locomotion induced an overall increase in firing rate across all visual cortical areas (Fig.
7b left), in agreement with previous studies [49–51]. Although, we found that locomotion
led to complex responses inducing mixed excited and inhibited responses across neurons
(Fig. 7b right), as previously reported [51]. We then estimated the single-cell transfer
functions from spiking activity during ongoing periods both when the animal was at rest
and in motion (Fig. 7c). We found that locomotion strongly modulated the single-cell gain
in the absence of stimuli in all visual cortical areas (Fig. 7d). Specifically, we found that
locomotion on average decreased the single-cell gain.

Our theory predicts that, in all visual cortical areas, the locomotion-induced increase in
firing rates, the mixed excited and inhibited neural responses and the decrease in intrinsic
gain are consistent with a state-changing perturbation mediated by an increase in the
variance of the input currents to E neurons (δvar(E), Table 3). According to our theory,
the decrease in gain leads to an acceleration of stimulus-processing speed in all visual cortical
areas.

We aimed at refining the model predictions on the locomotion effects on V1 and the
visual cortical hierarchy by introducing a biologically plausible stimulation protocol in our
spiking network. Following experimental evidence on anatomical connectivity in the visual
pathway [29–32], we then modeled incoming visual stimuli as a transient increase in the
input currents to both E and I neurons (Fig. 7e). We then modeled the effect of locomotion
as an external perturbation inducing an increase in the variance of the inputs to E neurons
δvar(E), capturing the observed empirical effects of locomotion on ongoing periods in terms
of gain decrease and mixed single-cell responses. In this model of visual processing, we found
that locomotion accelerated visual processing speed during evoked period by 21 ± 9ms on
average (mean±S.D. across 10 sessions, Fig. 7f). We thus set out to test this prediction in
the empirical data.

Previous studies have observed an improvement in peak decoding performance during
locomotion [17], but changes in decoding latency have not been investigated. To probe
the speed and accuracy of visual responses in perturbed and unperturbed conditions, we
performed a cross-validated classification analysis to assess the amount of information re-
garding the orientation of drifting grating stimuli present in population spiking activity
along the visual cortical hierarchy. Crucially, because decoding accuracy depends on sam-
ple size, we equalized number of trials between resting and running conditions. We found
that trials in which the animal was running revealed both an increase in peak decoding
accuracy and an anticipation of stimulus coding (shorter latency) as compared to trials
where the animal was stationary (Fig. 7g), consistently across the whole visual hierarchy
(Fig. 7i). Furthermore, the time to reach significant decoding for each cortical area followed
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Figure 7. Locomotion effects on visual processing are mediated by gain modulation. a) Repre-
sentative raster plots from five cortical visual areas (color-coded) with population spiking activity
during passive presentation of drifting gratings (dashed red line represents stimulus onset) during
periods of running (right, running speed in top panels) rest (left).b) Left: Firing rate modulation
induced by running per area (colors) and in the model (gray, CV(E)=5%), averaged across all
periods of ongoing activity. Right: Fraction of neurons by area (colors) and in the model (gray,
CV(E)=5%) with significantly excited (positive bars) and inhibited (negative bars) responses to
bouts of running (rank-sum test, ∗ = p < 0.005). c): A representative single-cell distribution of
firing rates for rest (blue) and running (red) conditions. The overlaid distributions of firing rates
are obtained by passing a standard normal distribution through the sigmoidal transfer function fit
shown in the inset for rest (full gray line) and running (dashed gray line). The gain for each behav-
ioral condition (orange lines) was estimated as the slope of the sigmoidal transfer function fit at the
inflection point (see Methods). d): Single-cell gain modulation (∆gain=gain(running)-gain(rest))
by area (colors) and in the model (gray, CV(E)=5%) across all neurons during ongoing periods
(bars show 95% confidence interval; rank-sum test ∗ = p < 0.005). e) Time course of the mean
stimulus-decoding accuracy across orientations during running and rest using neurons from V1 as
predictors shows the anticipation of stimulus coding in the running condition (single sessions and
session average, thin and thick lines, respectively; see Methods). f Decoding latency (first bin above
chance decoding regions in e) slows down along the anatomical hierarchy (x-axis: anatomical hier-
archy score from [36]). Dotted (dashed) line with diamond ("x") symbols show the latency during
rest (running). g) Difference in processing speed between running and resting (average latency of
decoding accuracy between 40% and 80%, yellow area in panel e) reveals running-induced coding
acceleration in all areas (colors) and in the model (gray, CV(E)=5%). t-test, ∗ = p < 0.01.

the anatomical hierarchy score in both unperturbed and perturbed conditions, consistent
with the idea that information about the visual stimulus travels up a visual hierarchy in a
feed-forward fashion [Fig. 7h, 36].

Given that locomotion induced an increase in firing rates in all cortical areas (Fig.
7b), we then examined the extent to which the observed effects of locomotion (increased
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peak accuracy and anticipation) were merely due to the increase in firing rates. We thus
matched the distribution of firing rates between running and resting (see methods and Fig.
7-1). We found that after rate matching the change in peak decoding accuracy decreased
significantly (Fig. 7-2-7-4). Crucially, the anticipation of stimulus processing speed induced
by locomotion was still present in the rate-matched condition (Fig. 7-2), confirming that
it was independent of changes in firing rates. The same effect was preserved in the rate-
matched model simulations as well (Fig. 7-5). We thus concluded that the anticipation
of visual processing speed induced by locomotion is consistent with a mechanism whereby
locomotion decreases single-cell gain via an increase in the afferent variance δvar(E) as
predicted by our theory (Table 3).

4 Discussion

Cortical circuits flexibly adapt their information processing capabilities to changes in en-
vironmental demands and internal state. Empirical evidence suggests that these state-
dependent modulations may occur already in the sensory cortex where they may be induced
by top-down pathways or neuromodulation. Here, we presented a mechanistic theory ex-
plaining how stimulus-processing speed can be regulated in a state-dependent manner via
gain modulation, induced by transient changes in the afferent currents or in the strength of
synaptic transmission.

Our theory entails a recurrent spiking network where excitatory and inhibitory neu-
rons are arranged in clusters, generating metastable activity in the form of transient ac-
tivation of subsets of clusters. We showed that gain modulation controls the timescale of
metastable activity and thus the network’s information-processing speed and reaction times
upon stimulus presentation. Specifically, our theory predicted that perturbations that de-
crease (increase) the intrinsic single-cell gain during ongoing periods accelerate (slow down)
the latency of stimulus responses.

We tested this prediction by examining the effect of locomotion on visual processing
in freely running mice. We found that locomotion reduced the intrinsic single-cell gain
during ongoing periods, thus accelerating stimulus-coding speed across the visual cortical
hierarchy. Our theory suggests that the observed effects of locomotion are consistent with
a perturbation that increases the spatial variance of the afferent currents to the local ex-
citatory population. These results establish a new theory of state-dependent adaptation
of cortical responses via gain modulation, unifying the effect of different pathways under a
shared computational mechanism.

4.1 Metastable activity in cortical circuits

The crucial dynamical feature of our model is its metastable activity, whereby single-trial
ensemble spike trains unfold through sequences of metastable states. State are long-lasting,
with abrupt transitions between consecutive states. Metastable activity has been ubiq-
uitously observed in a variety of cortical and subcortical areas, across species and tasks
[28, 52–59]. Metastable activity can be used to predict behavior and was implicated as a
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neural substrate of cognitive function, such as attention [53], expectation [20], and deci-
sion making [38, 56, 58]. Metastable activity was observed also during ongoing periods,
in the absence of sensory stimulation, suggesting that it may be an intrinsic dynamical
regime of cortical circuits [25, 53]. Here, we showed how cortical circuits can flexibly adjust
their performance and information-processing speed via modulations of their metastable
dynamics.

Metastable activity may naturally arise in circuits where multiple stable states, or at-
tractors, are destabilized by external perturbations [60] or intrinsically generated variability
[20, 23–25, 27, 38, 41]. Biologically plausible models of metastable dynamics have been
proposed in terms of recurrent spiking networks where neurons are arranged in clusters,
reflecting the empirically observed assemblies of functionally correlated neurons [42–45].
Clustered network models of metastable dynamics provide a parsimonious explanation of
several physiological observations such as stimulus-induced reductions of trial-to-trial vari-
ability [24, 25, 27, 61, 62], of firing rate multistability [25], and of neural dimensionality
[26]. Compared to previous models of metastable dynamics, our results extend the bio-
logical plausibility of clustered networks in several aspects. The introduction of pairs of E
and I clusters induces a tight balance where the E and I contributions to the postsynaptic
currents of each neuron closely track each other with opposite signs (Fig. 2-1), as observed
experimentally in cortical circuits [63]. Moreover, we showed that these networks operate
in the inhibition stabilized regime (Fig. 2-1), which is believed to be the operational regime
of cortical circuits [64–66]. We showed that a heterogeneous distribution of cluster sizes
naturally give rise to lognormal distribution of firing rates (Fig. 2b inset), as observed in
cortical circuits [67–70]. We then generalize the results in [20] to establish gain modulation
as the general mechanism controlling that state-dependent changes in processing speed in
recurrent circuits with metastable dynamics. This class of models thus provide a biologically
plausible, mechanistic link between connectivity, dynamics, and information-processing.

4.2 Linking metastable activity to flexible cognitive function via gain modu-
lation

Recent studies have shown that cortical circuits may implement a variety of flexible cognitive
computations by modulating the timescale of their intrinsic metastable dynamics [20, 35,
53, 56, 59]. Our results establish a comprehensive framework to investigate the extent
of this hypothesis. We propose that gain modulation is the neural mechanism underlying
flexible state-dependent cortical computation. Specifically, we showed that gain modulation
controls the timescale of metastable dynamics, which, in turn, determines the network’s
information-processing speed.

Our theoretical framework to link gain modulation to changes in potential barrier
heights is based on the effective mean field theory following [20, 34, 35], which we used to
reduce a multidimensional system to obtain an effective potential describing a single popu-
lation. Although this approach is exact in the case of networks with symmetric connectivity,
it represents only an approximation to the full network dynamics in the case of networks
with asymmetric couplings such as the ones considered in this study [71]. It would be in-
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teresting to extend our results to an exact framework by estimating the network Lyapunov
function [72].

4.3 Alternative models of gain modulation

Previous studies have suggested gain modulation as a mechanism to sharpen single-cell
tuning curves without affecting selectivity [73, 74], potentially mediating attention [75–
77]. In those studies, gain modulation was defined as change in the single-neuron response
function to stimuli of increasing contrast. Here, we have taken a different approach and
defined gain as the slope of the intrinsic neuronal current-to-rate function during ongoing
periods [i.e., in the absence of stimuli, see also 20, 74, 78], as opposed to the contrast
response function. We have classified mechanisms of gain modulation which act by changing
the mean or spatial variance across neurons of the cell-type specific afferent currents to the
local cortical circuit, where we modeled afferent currents as constant biases; or by changing
the recurrent couplings. The rationale for our choice was to investigate the effects on
internally generated variability in a network whose dynamics were entirely deterministic.
Alternatively, one could model external currents as time-dependent inputs with fast noise,
such as Poisson processes or colored noise. In that case, changes in background noise due
to barrages of synaptic inputs are capable of inducing gain modulation as well [74, 78].
Previous work compared these different kinds of perturbations (Poisson noise or afferent
spatial variance) in the case of the perturbation δvar(E) [20], showing they may lead to
similar outcomes.

4.4 Physiological mechanisms of gain modulation

Several different physiological pathways can modulate the gain of the intrinsic neuronal
transfer function, including neuromodulation, top-down and cortico-cortical interactions.
Gain modulation can also be induced artificially by means of optogenetic or pharmacological
manipulations. The perturbations investigated in our model may be related to different
pathways and implicated in various types of cognitive function.

Neuromodulation

Neuromodulatory pathways strongly affect sensory processing in cortical circuits by chang-
ing cell-type specific afferent currents to the circuit, in some cases controlling their dynam-
ical regime [15]. Our theory may be applicable to explain the effects of cholinergic and
serotonergic activation on sensory cortex.

Cholinergic pathways, modulating ionic currents in pyramidal cells [79], can control
cortical states and mediate the effects of arousal and locomotion. Artificial stimulation of
cholinergic pathways was shown to improve sensory coding in visual [8, 80] and barrel cortex
[81]. Cholinergic stimulation alone in the absence of sensory stimuli was shown to induce
mixed responses with different neural populations increasing or decreasing their spiking
activity [80]. Our theory shows that these combined experimental observations (coding
improvement and mixed firing rate changes) are consistent with a mechanism whereby
cholinergic activation induces an increase in δvar(E) afferents to sensory cortex, inducing
an acceleration of sensory processing (Fig. 2e and S1a).
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Activation of serotonergic pathways by stimulation of dorsal raphe serotonergic neurons
or local iontophoresis was shown to transiently degrade stimulus coding in sensory cortex,
decreasing responses to mechanosensory stimuli [82] and increasing the latency of the first
spike evoked by auditory stimuli [83]. Serotonergic stimulation was shown to decrease
firing rates in the olfactory cortex [84], inferior colliculus [83], and primary visual cortex
[85, 86]. Our theory shows that these experimental observations (coding degradation and
decreased firing rates) are consistent with two alternative mechanisms (Fig. 2d and S1a):
either an increase in the afferent currents to I populations (i.e., δmean(I)> 0) implementing
the paradoxical inhibition effect [48]; or a decrease in the afferents to E populations (i.e.,
δmean(E)< 0). Future experiments could test between these two alternatives.

Top-down projections

A prominent feature of sensory cortex is the integration of feedforward and cortico-cortical
feedback pathways at each stage of sensory processing [87]. In particular, top-down pro-
jections from higher cortical areas to sensory cortex are known to modulate the speed and
accuracy of sensory processing [20]. Our theory may explain the effects of activating several
cortico-cortical pathways.

Activation of feedback axons from motor cortex (M1) to somatosensory cortex (S1) was
shown to increase activity in S1 during whisking [88] and led to faster and more accurate
responses to whisker stimulation [89]. Suppression of the same pathway induced slower S1
responses to whisking in awake mice. Our theory shows that the effect of these cortico-
cortical perturbations is consistent with an increase in the mean afferent currents to E
populations in S1 (i.e., the δmean(E) perturbation in Fig. 2d), leading to higher firing
rates and faster processing speed.

Expectation and arousal are known to strongly modulate neural activity in sensory
cortices [90]. Expected stimuli are processed faster and more accurately than unexpected
stimuli both in auditory [5] and gustatory cortex [6]. Experimental evidence shows that
the anticipation of sensory processing induced by expectation is mediated by top-down
projections from the amygdala to the gustatory cortex [6], whose activation elicits mixed
excited and inhibited responses in both pyramidal and inhibitory cells in the gustatory
cortex [6, 91]. Our model shows that, while an acceleration of stimulus processing speed
may in principle be mediated by different state-changing perturbations, only the δvar(E)
perturbation is consistent with the empirically observed mixed responses. Indeed, our
theory suggests that these top-down projections may operate by inducing an increase in the
spatial variance of the afferent currents to the E population [δvar(E) in Fig. 2d, extending
previous results in 20, to networks including inhibitory clusters] .

In attentional tasks, distractors slow down reaction times [2, 3], a behavioral effect that
may be mediated by changes in the speed and accuracy of sensory processing in cortical
circuits [4]. The presence of distracting stimuli within a neurons receptive field suppresses
its responses to the preferred stimulus [92]. The underlying mechanism may recruit lateral
inhibition onto the local cortical circuit [93, 94]. Our theory shows that this mechanism is
consistent with a modulation of the afferents to local I populations, mediated by either an
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increase in δmean(I) or δvar(I) in Fig. 2d. It would be interesting to discriminate between
these two perturbations with future experiments.

Optogenetic and pharmacological manipulations

Our theory may shed light on the effects of manipulation experiments. Optogenetic activa-
tion (inactivation) of specific E or I cells [95, 96] has been modeled as an increase (decrease)
of the afferent currents to those cells [65, 97, 98]. However, protein expression may not be
complete across all cells of the targeted population, and even in the case of complete ex-
pression across the targeted population, different cells may be more or less sensitive to
laser stimulation. Thus the effect of optogenetic stimulation on the targeted population
may then be more accurately modeled by a concurrent change in both mean and variance
of the targeted cell-type specific afferents (e.g., δmean(E) and δvar(E) for E populations;
δmean(I) and δvar(I) for I populations). Recent studies showed that, while a homogeneous
stimulation of all I cell types simultaneously can be captured by a model of E-I recurrently
coupled neurons (as in our model), partial activation of specific inhibitory cell-types may
induced more complex responses [65, 96, 98–101]. We plan to revisit this issue in the future.

Our theory may also be applicable to the effects of pharmacological manipulations
of different synaptic receptors. In particular, the effects of combined local injection of
AMPA/kainate and NMDA receptor antagonists (agonists) may be recapitulated by a de-
crease (increase) in δAMPA, which correspondingly perturb the value of JIE , JEE couplings
(Fig. 2d). Similarly, the effects of local injection of GABA receptor antagonists (agonists)
may be recapitulated by a decrease (increase) in δGABA, which correspondingly perturb
the value of JEI , JII couplings.

4.5 Locomotion and gain modulation

Locomotion has been shown to modulate visually evoked activity [49] and is sufficient in
driving activity in mouse V1 [13, 102]. Our results were consistent with previous studies in
showing that locomotion affects the activity of neurons in the visual cortical hierarchy during
both ongoing and stimulus-evoked activity. We found that locomotion in the absence of
sensory stimuli induces an average increase in firing rates. At the single-cell level we reported
a complex mix of excited and inhibited responses in both E and I cells, also consistent with
previous results [9, 51]. Crucially, we uncovered that locomotion decreased the single-cell
gain during ongoing activity across the board in the visual cortical hierarchy (Fig. 7d).
Our theory predicted that the observed decrease in gain would lead to an acceleration of
visual processing during locomotion in cortex. This prediction was confirmed in the data
(Fig. 7i). The acceleration of processing speed observed in cortex did not depend on the
locomotion-induced changes in firing rates and was still present even after matching the
firing rate distributions between running and rest conditions (Fig. 7-1). Our model of the
perturbation effects induced by locomotion (increased firing rates with mixed excited and
inhibited responses, and faster visual processing) suggests that the effect of locomotion may
be mediated by a increase in the spatial variance of the afferent current to the E populations
(δvar(E) perturbation) [9, 49, 103]. Concretely, gain modulation may be implemented via
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the combined effect of activating neuromodulatory pathways such as cholinergic [9] and
noradrenergic [104] inputs.
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Figure 2-1. Inhibition stabilized balanced regime. a) Top: Membrane potential from representa-
tive E (blue) and I (red) neurons (vertical bars: action potentials; horizontal dashed lines: threshold
for spike emission; grey and black arrows represent state-changing δvar(E) perturbation onset and
sensory stimulus onset, respectively; same network as in 4b). Incoming post-synaptic current (PSC)
to an I (center) and an E (bottom) neuron: EPSC (blue trace), IPSC (red trace), external current
(green line), and total current (black trace) are in a tight balanced regime. b) When increasing
the inhibitory drive (afferent current to the I population, same as δmean(I) perturbation), both E
and I firing rates decrease (black and red curve in right panel, mean±s.e.m. across 10 simulated
networks), highlighting the paradoxical effect, signature of the inhibition stabilized regime [48]. Be-
yond δmean(I)=50% the E population shuts down and the I population rebounds (dashed vertical
line).
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Figure 3-1. a) Perturbations modulate the attractor landscape (color-coded curves: frequency
of occurrence of network attractors with specified number of activated clusters, for each value of
the perturbation, mean across 5 sessions; notations as in 3a). Perturbations-induced modulations
of timescales. Perturbation-induced changes in the cluster inter-activation interval (IAI, b) closely
track the changes in cluster activation lifetime τ (c).
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Figure 3-2. Effective mean field theory for barrier height and gain. a) Left: Reduced two-cluster
theory showing the force vector (black arrows, color-coded map represents the log of the force
vector norm) acting on a configuration where the two clusters have firing rates r̃1, r̃2. The force
vanishes at the stable fixed points A and B, corresponding to attractors where either cluster is
active and the other inactive (inset), and at saddle point C between them. Top right: From the
projection of the force vector on the trajectory between the attractors (white curve in left panel)
one obtains an effective transfer function rout(r̃) whose slope yields the population intrinsic gain.
Bottom right: The energy barrier separating the two attractors A and B is defined as the line
integral of the projected force along the trajectory. b): The perturbation δvar(E) lowers the energy
barrier between the two attractors (darker color-shades represent increasing values CV(E) of the
perturbation). c) Mean field theory predicts a direct relationship between the height of the barrier
∆ separating the attractors and the gain for all perturbations.
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Figure 6-1. Perturbation-induced changes in single-cell response. a) Representative single cell
response to the perturbation δvar(E)=10% in the absence of stimuli (top: dashed line, time course
of perturbation, occurring at t = 0; bottom: dashed line, perturbation onset; red curve, response
PSTH, mean±S.D. across 20 trials; horizontal red bar: significant response, t-test, p < 0.05 with
multiple bin correction. b) Changes in peak-firing rate compared to baseline (∆PSTH=peak-
baseline; positive for firing rate increase, negative decrease) for E and I neurons (only neurons
responsive to the state-changing perturbations, fractions reported in Fig. 3b), in response to a
perturbation with time course as in panel a. c: Single-cell changes in stimulus selectivity due to
the perturbations: d’(perturbed trials)-d’(unperturbed trials). e) Single-cell changes in firing rate
response to stimuli due to the perturbations (∆ =peak response-baseline in each perturbed or un-
perturbed condition) are overall uncorrelated to changes in stimulus-decoding latency (mean±s.e.m.
across 5 networks; same as panel b). f) Single-cell changes in stimulus selectivity due to the pertur-
bations (d’) are overall uncorrelated to changes in stimulus-decoding latencies (same notation as in
panel c).
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Figure 7-1. Anticipation of stimulus decoding persists even after matching the distribution of
firing rates across behavioral conditions. a) Firing rate distributions for both rest and running
before (left) and after (right) randomly removing spikes from the running condition. Black lines
show log-normal fits of distributions. b) ∆ PSTH between behavioral conditions before and after
distribution matching shows effects of match across each neuron’s firing rate. c) Mean stimulus-
decoding accuracy across orientations per behavioral condition using neurons from V1 as predictors
shows the anticipation of the stimulus in the running condition after distribution matching (same
sessions as in Fig. 6e). d) Summary of changes in processing speed due to locomotion by area after
distribution matching. (t-test, p< 0.01)
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Figure 7-2. Matching the distribution of firing rates between behavioral conditions reduces the
change in peak decoding, but preserves the change in decoding latency between behavioral condi-
tions. a) ∆-Latency over all areas, separated by the grating contrast shows that even after matching
the distribution of firing rates between conditions (purple), the increase in sensory processing during
running was still significant (rank-sum test, gray ∗ = p < 0.005) b) The difference in peak decod-
ing between behavioral conditions is reduced for low and high contrast drifting grating trials after
matching the distributions (rank-sum test, gray ∗ = p < 0.005). The change in ∆-Decoding peak
between non-matched and matched datasets was significant (rank-sum test, black ∗ = p < 0.005)
for both contrasts.
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Figure 7-3. Mean stimulus-decoding accuracy of high-contrast drifting gratings across sessions
per behavioral condition and area before (a) and after (b) matching the distribution of firing rates
shows the decrease in ∆-Decoding peaks and preservation of ∆-Latency. Notations as in Fig. 6e.
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Figure 7-4. Mean stimulus-decoding accuracy of low-contrast drifting gratings across sessions per
behavioral condition and area before (a) and after (b) matching the distribution of firing rates
shows the decrease in ∆-Decoding peaks and preservation of ∆-Latency. Notations as in Fig. 6e.

– 45 –

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 25, 2021. ; https://doi.org/10.1101/2020.04.07.030700doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.07.030700
http://creativecommons.org/licenses/by-nc/4.0/


0 .75
Time [s]

0

100

A
cc

u
ra

cy
 [

%
]

Unmatched Matched
200

100

0

50

-L
a

te
n

cy
 [

m
s]

* *

c

0 .75
Time [s]

0

100

A
cc

u
ra

cy
 [

%
]

a

b

Change in   -Latency after matching firing rate distributions

Unmatched Matched

Figure 7-5. In the model, matching the distribution of firing rates between perturbed (δvar(E)
with CV(E)=20%) and unperturbed conditions preserved the perturbation-induced acceleration in
stimulus processing speed (same data as in Fig. 2b). a) ∆-Latency over 10 simulated networks
shows that even after matching the distribution of firing rates between conditions (purple), the
increase in sensory processing speed during the perturbed condition was still significant (rank-sum
test, ∗ = p < 0.005). There was no significant change in ∆-Latency between unmatched and
matched datasets (rank-sum test,p > 0.05). Time course of stimulus-decoding accuracy over all 10
simulated networks before (b) and after (c) matching the distribution of firing rates.
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