
1

Graph convolutional networks for drug response
prediction

Tuan Nguyen, Giang T.T. Nguyen, Thin Nguyen and Duc-Hau Le

Abstract—Background: Drug response prediction is an important problem in computational personalized medicine. Many
machine-learning-based methods, especially deep learning-based ones, have been proposed for this task. However, these methods
often represent the drugs as strings, which are not a natural way to depict molecules. Also, interpretation (e.g., what are the mutation or
copy number aberration contributing to the drug response) has not been considered thoroughly.
Methods: In this study, we propose a novel method, GraphDRP, based on graph convolutional network for the problem. In GraphDRP,
drugs were represented in molecular graphs directly capturing the bonds among atoms, meanwhile cell lines were depicted as binary
vectors of genomic aberrations. Representative features of drugs and cell lines were learned by convolution layers, then combined to
represent for each drug-cell line pair. Finally, the response value of each drug-cell line pair was predicted by a fully-connected neural
network. Four variants of graph convolutional networks were used for learning the features of drugs.
Results: We found that GraphDRP outperforms tCNNS in all performance measures for all experiments. Also, through saliency maps
of the resulting GraphDRP models, we discovered the contribution of the genomic aberrations to the responses.
Conclusion: Representing drugs as graphs can improve the performance of drug response prediction.
Availability of data and materials: Data and source code can be downloaded at https://github.com/hauldhut/GraphDRP.

Index Terms—Drug response prediction, interpretability, Deep learning, Graph convolutional network, Saliency map.
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1 INTRODUCTION

U SING the right drug in the right dose at the right time is
a goal in personalized medicine. Thus, estimating how

each patient responds to a drug based on their biological
characteristics (e.g., omics data) is important in biomedical
research. However, patients’ drug response data is very
limited and not well-structured. Indeed, there have been
only a few studies on drug response for cancer patients
gathered in TCGA [1]. This has formed a barrier to large-
scale research on this topic.

Fortunately, large-scale projects on drug response for
“artificial patients” (i.e., cell line), such as GDSC [2], CCLE
[3] and NCI60 [4] have facilitated the development of com-
putational methods for drug response prediction [5], [6], [7],
[8]. Indeed, a DREAM challenge for drug sensitivity predic-
tion was launched and with methods proposed by many
research groups [9]. Most of them are machine learning-
based, where different strategies for data and model in-
tegration were introduced. For example, multiple-kernel
and multiple-task learning techniques were proposed to
integrate various types of –omics data of cell lines and
response data [10], [11]. Besides, ensemble learning strate-
gies were used to integrate individual models [12], [13],
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[14]. In parallel, network-based methods relying on similar-
ity networks (e.g., structural similarity between drugs and
biological similarity between cell lines) and known drug-
cell line responses [15], [16], [17] have been proposed. In
addition, protein interaction and gene regulatory networks
have also been used also used to predict drug response [18].

The machine learning-based methods have shown their
ability in the data and model integration, thus drug re-
sponse prediction was generally systematically approached.
However, drugs and cell lines are often represented by
predefined features such as structural features of drugs and
-omics profiles of cell lines. As the number of cell lines is
much smaller than the number of genes in -omics profiles
of cell lines, thus some of the traditional machine learning-
based methods often face the “small n, large p” problem.
Consequently, this limits the prediction performance of tra-
ditional machine learning-based methods.

Deep learning is a state-of-the-art branch of machine
learning for extracting a feature from complex data and
making accurate predictions [19]. Recently, deep learning
has been applied to drug discovery [20], [21]. It has achieved
superior performance compared to traditional machine
learning techniques in many problems in drug development
such as visual screening [22], [23], drug-target profiling [24],
[25], [26], [27], drug repositioning [28], [29]. Especially in
drug response, deep learning is utilized to automatically
learn genomic features of cell lines and the structural fea-
tures of drugs to predict anticancer drug responsiveness
[30], [31], [32], [33]. For example, the deep neural network is
used in DeepDR [31] to predict the half-maximal inhibitory
concentrations (IC50) or the convolutional neural network is
utilized in tCNNS [33] and CDRScan [30] to extract the fea-
tures of cell lines and drugs. In addition, in DeepDSC [32],
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a pre-trained stacked deep autoencoder is used to extract
genomic features of cell lines from gene expression data
and then combine with chemical features of compounds
to predict response data. However, in these deep learning
models, drugs are represented as strings which are not
a natural presentation, thus the structural information of
drugs may be lost.

Graph convolutional networks can learn representations
of compound structures represented as molecular graphs
[34]. For example, in GraphDTA [35], the drugs are pre-
sented as graphs where the edges are the bonding of atoms
and the model achieves the best performance compared to
other deep learning-based methods which represent drugs
as strings in the task of drug-target binding affinity pre-
diction. However, the graph neural network has not been
employed yet [34] for drug response prediction. So it is
promising to apply graph neural network to drug response
prediction. In addition, although deep learning-based meth-
ods often achieve better prediction performance when com-
pared to traditional machine learning-based methods, it is
considered as a black-box approach because of not being
interpretable. The saliency map [36] was introduced to
visualize image features in classification task at first, now
it plays an important role in various practical applications
right from video surveillance [37] to traffic light detection
[38]. In this research, this strategy can help evaluate the
degree of genomics features such as aberration attributes
to drug response prediction.

tCNNS was recently published and shown to be the
state-of-the-art method among other deep learning-based
methods [33]. We also tested traditional machine learning
methods such as decision tree, gradient boosting but even
tCNNS surpassed these methods. So in our work, we only
compared our result directly with tCNNS.

In this study, we propose GraphDRP (Graph convo-
lutional network for drug response prediction), a new
neural network architecture capable of modeling drugs as
molecular graphs to predict drug response on cell-line.
We compared our method with the state-of-the-art, tCNNS
[33], where drug molecules were represented as SMILES
[39] strings. Experimental results indicate that our method
achieves better performance in terms of root mean square
error (RMSE) and Pearson correlation coefficient for all
experiments. Also, by visualizing the resulting networks
through saliency maps, we can discover the most signifi-
cant genomic aberrations for the prediction of the response
value. This suggests a novel way to interpret the result of
deep learning models for drug response prediction.

2 GRAPH CONVOLUTIONAL NETWORK FOR DRUG
RESPONSE PREDICTION (GRAPHDRP)
The proposed model of drug response prediction is shown
in Fig 1. The input data includes chemical information of
drugs and genomic features of cell lines including mutations
and copy number alternations (i.e., genomic aberration).

For the drug features, the drugs represented in SMILES
format [39] were downloaded from PubChem [40]. Then,
RDKit, an open-source chemical informatics software [41],
was used to construct a molecular graph reflecting inter-
actions between the atoms inside the drug. Atom feature

design from DeepChem [42] was used to describe a node
in the graph. Each node contains five types of atom fea-
tures: atom symbol, atom degree calculated by the number
of bonded neighbors and Hydrogen, the total number of
Hydrogen, implicit value of the atom, and whether the
atom is aromatic. These atom features constituted a multi-
dimensional binary feature vector [35]. If there exists a
bond among a pair of atoms, an edge is set. As a result,
an indirect, binary graph with attributed nodes was built
for each input SMILES string. Several graph convolutional
network models, including GCN [43], GAT [44], GIN [45]
and combined GAT-GCN architecture [35], were used to
learn the features of drugs. Following the graph neural
network, a fully connected layer (FC layer) was also used
to convert the result to 128 dimensions.

In deep learning models, 1D convolutions are normally
used for genomic features. We used the same approach as
other models because 1D convolution with a large kernel
has the ability to combine genomic abbreviations in the
genomic features to make good predictions. In addition,
1D pooling was also used to reduce the size of input fea-
ture then 1D convolutions can learn abstract features from
genomic features. The genomic features of cell lines were
represented in one-hot encoding. 1D convolutional neural
network (CNN) layers were used to learn latent features on
those data. Then the output was flattened to 128 dimension
vector of cell line representation.

Finally, the 256-dimension vector, the combination of
drug’s feature and cell line’s feature was put through two
fully-connected layers with the number of nodes 1024 and
256 respectively, before predicting the response.

CNNs have recently achieved success in computer vision
[46], [47] and natural language processing [48], [49], which
motivates the use of convolutional neural networks to graph
structures. Similar to the use of CNN with image, CNN in
the graph also has two main layers: convolutional layer and
pooling layer. While convolutional layer is for learning re-
ceptive fields in graphs whose data points are not arranged
as Euclidean grids, pooling layer is for down-sampling a
graph [35]. Graph convolutional network (GCN) is well-
fitted for the drug response because the drug molecular
itself is represented in the form of a graph. In order to evalu-
ate the effectiveness of graph-based models, we investigated
several graph convolutional models, including GCN [43],
GAT [44], GIN [45] and combined GAT-GCN architecture
[35]. The details of each GCN architecture are described as
follows.

2.1 Graph Convolutional Networks (GCN)

Formally, a graph for a given drug G = (V,E) was stored
in the form of two matrices, including feature matrix X and
adjacency matrix A. X ∈ RN×F consists of N nodes in
the graph and each node is represented by F -dimensional
vector. A ∈ RN×N displays the edge connection between
nodes. The original graph convolutional layer takes two
matrices as input and aims to produce a node-level output
with C features each node. The layer is defined as:

AXW (1)
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Fig. 1. An illustration of GraphDRP. Each cell line was converted to one-hot format with a vector of 735 dimensions. Then 1D convolutional layers
were applied three times to these features. After that, the fully connected (FC) layer was used to convert ConvNet results in 128 dimensions. Drug
in SMILE string was converted to graph format. Then graph convolutional networks were used to learn the drug’s feature. Following the graph neural
network, the fully connected layer was also used to convert the result to 128 dimensions. Finally, the two representations were then concatenated
and put through two FC layers to predict the response.

where W ∈ RF×C is the trainable parameter matrix.
However, there are two main drawbacks. First, for every
node, all feature vectors of all neighboring nodes were
summed up but not the node itself. Second, matrix A was
not normalized, so the multiplication with A will change the
scale of the feature vector. GCN model [43] was introduced
to solve these limitations by adding identity matrix to A
and normalizing A. Also, it was found that symmetric
normalization achieved more interesting results. The GCN
layer is defined by [43] as

D̃−
1
2 ÃD̃−

1
2XW (2)

where Ã is the graph adjacency matrix with added self
loop, D̃ is the graph diagonal degree matrix.

In our GCN-based model, three consecutive GCN layers
were utilized and ReLU function was applied after each
layer. A global max pooling layer was added right after the
last GCN layer to learn the representation vector of whole
graph and then combine with the representation of cell-line
to make the prediction of response value.

2.2 Graph Attention Networks (GAT)

Self-attention technique has been shown to be self-sufficient
for state-of-the-art-level results on machine translation [50].
Inspired by this idea, we used self-attention technique in
graph convolutional network in GAT [44]. We adopted a
graph attention network (GAT) in our model. The proposed
GAT architecture was built by stacking a graph attention
layer. The GAT layer took the node feature vector x, as input,
then applied a linear transformation to every node by a
weight matrix W. Then the attention coefficients is computed
at every pair of nodes that the edge exists. The coefficients
between node i and j were computed as

a(Wxi,Wxj) (3)

This value indicates the importance of node j to node i.
These attention coefficients were then normalized by apply-
ing a soft-max function. Finally, the output features for each
node was computed as

σ(
∑

j∈N (i)

αijWxj) (4)

where σ(.) is a non-linear activation function and αij are
the normalized attention coefficients.

In our model, we used two GAT layers, activated by a
ReLU function, then a global max pooling layer was fol-
lowed to obtain the graph representation vector. In details,
for the first GAT layer, we used multi-head-attentions with
10 heads, and the number of output features was equal
to the number of input features. The number of output
features of the second GAT was set to 128, similar to cell-
line representation vector.

2.3 Graph Isomorphism Network (GIN)
We adopted a recently proposed graph learning method,
namely Graph Isomorphism Network (GIN) [45] in our
model. It is theoretically proven to achieve maximum dis-
criminative power among GNNs [45]. Specifically, the node
feature was updated by multi layer perceptron (MLP) as

MLP ((1 + µ)xi +
∑

j∈N(i)

xi) (5)

while µ is either a learnable parameter or a fixed scalar,
x is the node feature vector, and N(i) is the set of nodes
neighbor to i.

In our model, five GIN layers with 32 features were
stacked to build GIN architecture. For each layer, batch
normalization layer was used, then ReLU activation func-
tion was applied to learn the nonlinear mapping function.
Similar to GAT architectures, a global max pooling layer was
added to aggregate a graph representation vector.

2.4 Combined graph neural network (GAT&GCN)
A combination of GAT [44] and GCN [43] was also proposed
to learn graph features [35]. At first the GAT layers learned
to combine nodes in attention manner, so after GAT layers
these features in each node were abstract and contained
high-level information of the graph. Finally, GCN layers
were used to learn convolved features to combine these
abstract nodes to make final prediction.

3 MODEL INTERPRETATION: GENOMIC ABERRA-
TION CONTRIBUTION USING SALIENCY MAP

Given a drug-cell line pair, saliency value was defined by
using the idea of the saliency map [36] to measure the
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importance of each genomic aberration to the prediction
of response value (Y). In our proposed model, each drug
(D) was represented by a graph, meanwhile, each cell-line
(C) was displayed by a binary vector of 735 dimensions,
with each value indicates whether or not the cell-line had a
specific genomic aberration.

f is the whole deep learning model function.

Y = f(C,D) (6)

Then saliency value (S) was defined as the gradient of
cell-line with respect to predicted response as follows:

S =
∂Y

∂C
(7)

This saliency value has the same size as cell-line vector.
The higher value indicates the more important of genomic
aberration that was encoded in this position.

4 EXPERIMENTAL SETTING

4.1 Datasets

Large-scale drug sensitivity screening projects such as CCLE
[3] and GDSC [2] generated not only –omics but also drug
response data for anti-cancer drugs on thousands of cell
lines. The –omics data includes gene expression (i.e., tran-
scriptomic data), which indicates an amount of RNAs tran-
scribed from DNA and thus amount of translated proteins
in a cell. Therefore, the expression level of a gene indicates
the activity level of a gene in a certain state (e.g., diseased or
normal) in a cell. In addition, the –omics data also implies
genomic aberrations such as mutations and copy number
variations (CNVs) in genome. Meanwhile, drug response is
a measure of drug efficiency to inhibit the vitality of cancer
cells. More specifically, cell lines are cultured and treated
with different doses of drugs. Finally, either an IC50 value,
which indicates the dose of a particular drug needed to
inhibit the biological activity by half, or an AUC (area under
dose-response curve) value is used as a response measure of
a particular drug.

GDSC is the largest database of drug sensitivity for cell
lines. Indeed, there are 250 drugs tested on 1,074 cell lines
in that database, meanwhile only 24 drugs were tested on
504 cell lines in CCLE. Thus, we selected GDSC version
6.0 as the benchmark dataset for this study. Following
the same procedure as in tCCN [33], after preprocessing,
223 drugs and 948 cell lines were finally selected. A total
of 172,114 (81.4%) drug-cell line pairs were tested with
response values, and the remaining (18.6%) of pairs were
missing. Similarly, the response values in terms of IC50 were
also normalized in a range (0,1) as in [51]. In addition, at the
input stage, a cell line was described by a binary vector of
735 dimensions, where 1 or 0 indicate whether a cell line has
or has not a genomic aberration respectively. Meanwhile,
drugs were represented in canonical SMILES format [39].

4.2 Experimental design

In this section, the performance of our model is demon-
strated through three experiments: performance compar-
ison, prediction of unknown drug-cell line response and
investigation of genomic aberration contribution to the

response. To compare to previous studies, the same set-
ting was used for performance comparison. Several graph
models including GCN, GIN, GAT, GCN GAT were used
to learn the representation of the drug. The prediction of
unknown response pairs and the contribution of genomic
aberrations by saliency map help to interpret the proposed
model. Initially, we chose the hyperparameter values based
on previous work. Then we tuned a lot of parameters such
as learning rate, batch size to achieve the better result. Detail
experiments are described below.

4.2.1 Performance comparison
Mixed test
This experiment evaluates the performance of models in
known drug-cell line pairs. Of all 211,404 possible drug-
cell line pairs, GDSC provides the response for 172,114 pairs
[33]. The data was shuffled before splitting to help the model
remain general and reduce overfitting. The known pairs are
split into 80% as the training set, 10% as the validation set
and 10% as the testing set. While the validation set was used
to modify the hyperparameter of the model in the training
phase, the testing set was used to evaluate the performance
of the model.
Blind test
In the previous experiment, a drug which had appeared
in the testing set might also appear in the training phase.
However, we sometimes need to predict the response of a
new drug, for example, a newly invented one. This experi-
ment was designed to evaluate the prediction performance
of unseen drugs. Drugs were constrained from existing in
training and testing at the same time. Of 90% (201/223)
drugs, their IC50 values were randomly selected for train-
ing, including 80% drugs for the training set and 10% drugs
for the validation set. The remaining set, 10% (22/223) drugs
were used as the testing set.

Similarly, it is sometimes required to make predictions
for a new cell-line that are not in the training phase. So we
also did an experiment to test the prediction of unseen cell-
lines. Cell-lines were constrained from existing in training
and testing at the same time. A total of 90% (891/990) cell-
lines were randomly selected and their IC50 values were
kept for the training phase. The remaining, 10% (99/990)
cell-lines, was used as the testing set.

4.2.2 Prediction of unknown drug-cell line response
This experiment aims at predicting missing drug-cell line
response. The best pre-trained model in the mixed test ex-
periment was used to predict missing pairs in GDSC dataset.
Then we selected top 10 drugs that had the lowest and
highest IC50 values to further investigate whether drugs
having lower IC50 are more effective to the treatment of
cancer and whether the ones having higher IC50 are less
effective.

4.2.3 Investigation of genomic aberration contribution to
the response
Given a pair of drug and cell-line, the saliency value is
calculated by taking derivative of predicted response with
respect to the cell-line, in one-hot vector format. To do this
experiment, we chose a drug with the lowest average IC50
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among all drugs in the prediction of unknown drug-cell
line response. Then we selected three cell-lines that have
the lowest IC50 values to that drug. Then, for each pair,
we calculated the saliency value then took ten most impor-
tant genomic aberrations. Eventually, we found evidence to
support the contribution of the genomic aberrations to the
response of that drug on the selected cell-lines.

4.3 Performance Evaluation
Two metrics were adopted to measure the performance
of models: root mean square error (RMSE) and Pearson
correlation coefficient (CCp).

Given O the ground-truth, Y the predicted value, n is
the number of samples, oi is a ground-truth of ith sample,
yi is the predicted value of ith sample. RMSE measures the
difference of them

RMSE =

√
1

n

∑n

i
(oi − yi)2 (8)

where n is the number of data points.
Pearson correlation coefficient measures how strong a

relationship is between two variables. Let the standard
deviation of O and Y be σO, σY respectively, CCp is defined
as

CCp =

∑n
i (oi − yi)2

(σOσY )
(9)

The lower RMSE, the better the model is. Whereas, the
higher CCp, the better the model is.

5 RESULTS AND DISCUSSION

5.1 Performance comparison
Tables 1, 2 & 3 present the prediction performance in terms
of CCp and RMSE for different experiments by the baseline
(tCNNS [33]) and our proposed method.

TABLE 1
Performance comparison in terms of CCp coefficient and RMSE on the
GDSC dataset in the mixed test experiment. The best performance is in

bold.

Method CCp RMSE
tCNNS [33] 0.9160 0.0284

GraphDRP

GCN 0.9216 0.0259
GIN 0.9310 0.0244
GAT 0.9270 0.0250
GCN GAT 0.9308 0.0243

Mixed test
In this experiment, we evaluate and compare the prediction
performance of GraphDRP with tCNNS. RMSE and CCp

were calculated for both methods based on the same
benchmark dataset and settings. The performance of
the two methods is shown in Table 1. It is obvious that
our model GraphDRP outperforms tCNNS for all graph
convolutional networks. tCNNS achieved a RMSE of 0.0284
and a CCp of 0.9160, meanwhile the worse RMSE and
CCp in our models were 0.0259 and 0.9216, respectively.
GraphDRP achieved the best RMSE (0.0243) with GIN
model and the best CCp (0.9308) with GCN GAT model.
For RMSE, GIN obtained the second best result (0.0244),
which was just a little smaller than the best result (0.0243).

Thus, we considered it the best model in this experiment.

TABLE 2
Performance comparison in terms of CCp and RMSE on the GDSC
dataset in the blind test with the unseen drug experiment. The best

performance is in bold.

Method CCp RMSE
tCNNS [33] 0.0617 0.0680

GraphDRP

GCN 0.3241 0.0542
GIN 0.0481 0.0602
GAT 0.2751 0.0616
GCN GAT 0.1683 0.0610

Blind test
In the mixed test experiment, one drug should have been
presented in both training and testing sets. However, it
was more challenging to predict the response of unseen
drugs/cell-lines. So in this experiment, drugs/cell-lines in
the testing stage were not present in the training stage.

Table 2 shows the prediction performance for the blind
test with unseen drugs. We observed that our proposed
models, for all kinds of convolution graphs, achieved bet-
ter RMSE than tCNNS. In particular, the GCN gained the
best RMSE of 0.0542. Meanwhile, for CCp, except for GIN,
other three graph-based methods gained better performance
when compared to tCNNS. Particularly, GCN-based gained
a five-fold increase, 0.3241 versus 0.0617 compared to tC-
NNS in terms of CCp and it was the best method in terms
of both CCp and RMSE in this experiment.

TABLE 3
Performance comparison in terms of CCp and RMSE on the GDSC
dataset in the blind test with unseen cell-line experiment. The best

performance is in bold.

Method CCp RMSE
tCNNS [33] 0.3490 0.0576

GraphDRP

GCN 0.8399 0.0363
GIN 0.8460 0.0358
GAT 0.8312 0.0380
GCN GAT 0.8402 0.0362

Similar to the drug blind test, this experiment evaluates
the performance of the model on unseen cell-lines. Cell-
lines are prevented from existing in the training and testing
phase at the same time. In the prediction of response for
unknown cell-line, our proposed methods achieved better
performance in terms of both RMSE and CCp than tCNNS
for all kinds of GCN. Particularly, GIN method gained the
best CCp at 0.8460 and the best RMSE at 0.0358.

For both drug and cell-line blind test, the prediction per-
formances were not good as that in mixed test experiment
for all models. This indicates that it is harder to predict
the drug-cell line response for unseen drugs or unseen
cell-lines. Interestingly, we observed that the performance
of predicting response for unseen cell-line (i.e., average
values were 0.8393 (±0.0061) for CCp and 0.0366 (±0.001)
for RMSE) is better than that for unseen drug (i.e., average
values are 0.2039 (±0.1226) and 0.059 (±0.0034) for CCp and
RMSE respectively).

We tested several graph models including GCN, GIN,
GAT, GCN GAT for learning the representation of drugs. It
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is clearly shown that our models outperformed the tCNNS
in all experiments. This is because, in tCNNS, the SMILE
string format used for drug was not natural representation.
While in our model, the graph convolutional networks were
used to extract information from graph representation of
drugs, so the performance was better.

Amongst three experiments, GIN achieved the best pre-
diction performance in terms of both RMSE and CCp in
the mixed test and the blind test with unseen cell-lines.
It unleashed the potential of GIN in graph representation,
partly supporting the claim in [45] that GIN is among the
most powerful GCNs. However, it is noticeable that in these
two experiments, all drugs were observed in both training
set and validation set so that the GIN model could learn
the features of drugs. However, in the blind test for unseen
drugs, the drugs in the validation sets did not appear in the
training set. As a result, the GIN model did not perform
well in this experiment.

5.2 Prediction of unknown drug-cell line response
In this experiment, the best model trained on the mixed test
experiment (i.e., GIN) was used to predict the response for
39,290 missing pairs. Figure 2 shows top 10 drugs that have
the highest and lowest predicted IC50. Interestingly, top 3
drugs that have the highest and lowest IC50 values are
the same result as in tCNNS. It is shown that Bortezomib
achieveed the lowest IC50, which means it is the most
sensitive drug for anti-cancer. Indeed, it was reported that
Bortezomib had differential cellular and molecular effects
in human breast cancer cells [52]. Also, it had a wide
range of applications in antitumor activity [53]. The second
most effective drug for anti-cancer in this experiment was
Epothilone B, which acted by blocking cell division through
its interaction with tubulin [54]. In contrast, AICA Ribonu-
cleotide and Phenformin had the highest IC50, which means
cancers were less sensitive to these drugs. Indeed, while
AICA Ribonucleotide has been used clinically to treat and
protect against cardiac ischemic injury [55], Phenformin is
an antidiabetic drug from the biguanide class [33]. Thus,
they were not designed to cure cancer.

Those evidence show that cancers are more sensitive
to drugs having low IC50, meanwhile, cancers are less
sensitive to those having high IC50. The results also indicate
that our model is potential to the prediction of untested
drug-cell line pairs.

5.3 Investigation of genomic aberration contribution to
the response
Bortezomib, the most sensitive drug, was chosen in this
experiment to further investigate the contribution of ge-
nomic aberrations to the response on cell-lines. Thus three
cell-lines that had the lowest IC50 with that drug were
taken to do the experiment. Saliency value of each genomic
aberration is considered as the degree of their contribution
to the response. Table 4 shows ten most contributed genomic
aberrations for the three cell-lines. Some evidence was found
from literature to support their contribution. Indeed, a study
[56] showed that TP53 mutation (i.e., a mutation in cell line
EW-3) was targeted by Bortezomib. In addition, the combi-
nation of Bortezomib, standard chemotherapy, and HDAC

inhibition is currently being evaluated in clinical trials for
MLL mutation (i.e, a mutation in cell line NCI-H748) [57]. It
means that the model paids more attention to the genomic
aberrations that are related to the corresponding drug. As
a result, the GraphDRP model could be interpretable as it
could identify which genomic aberrations in cell-lines were
mainly responsible for the response of a particular drug.

6 CONCLUSIONS AND DISCUSSION

In this study, we proposed a novel method for drug re-
sponse prediction, called GraphDRP. In our model, drug
molecules were presented as graphs instead of strings, cell-
lines were encoded into one-hot vector format. Then graph
convolutional layers were used to learn the features of
compounds and 1D convolutional layers were used to learn
cell-line representation. After that the combination of drug
and cell-line representation was used to predict IC50 value.
Four variants of graph neural networks including GCN,
GAT, GIN and combination of GAT&GCN were used for
learning features of drugs. We compared our method with
state-of-the-art one, tCNNS [33], where drug molecules were
represented as SMILES strings.

Experimental results indicate that our method achieves
better performance in terms of both root mean square error
and Pearson correlation coefficient. The performance sug-
gests that representing drugs in graphs is more suitable than
in strings since it conserves the nature of chemical structures
of drugs. Furthermore, the responses of missing drug-cell
line pairs in GDSC dataset were predicted and analyzed. We
figured out that Bortezomib and Epothilone B have the lowest
IC50 values and we found the evidence showing that some
types of cancer are sensitive to these drugs. Similarly, we
also found that cancers are less sensitive to drugs having
the highest IC50 values. It means that the model actually
learns from data and has a potential to predict the response
of new drug-cell line pairs. Also, through saliency maps,
we discovered ten most important genomic aberrations of
the three cell-lines having lowest IC50s to that drug and
seek their contribution to the sensitivity of that drug. This
technique suggests a novel way to interpret the result of
deep learning model in drug response.

Since cell lines in the same tissue types will share similar
genetic information, in the future, we will split the cell
lines based on different tissue types to demonstrate how
the performance varies as cell line similarity decreases.

Because all drugs are screened at a certain concentration,
if this concentration is low, that does not necessarily make
it a good cancer drug. Rather, a drug that is particularly
toxic to a cancer cell line compared to non-cancer cells is
a good drug for this cell line. However, this non-cancer
toxicity is not measured in the GDSC panel, and hence
only looking at a low IC50 value is not sufficient. In this
study, we only focused on improving the prediction of IC50
values by using GCNs. Also, in our study, we concentrated
on improving drug response prediction by extracting drug
features from their graph representation by GCN; thus, we
used the same dataset with the tCNNS study, which learned
drug’s features from their string format. In addition, only
genomic data of cell lines was used in our study. Therefore,
in future work, we will additionally use other -omics data
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Fig. 2. The boxplot of predicted missing value for top 10 drugs that have highest IC50 values and top 10 drugs that have lowest IC50 values.

NCI-H748 SW684 EW-3
Aberration Saliency Aberration Saliency Aberration Saliency
EWSR1-FLI1 mut 0.0131 cnaPANCAN84 0.0099 cnaPANCAN257 0.0123
NSD1 mut 0.0059 cnaPANCAN247 0.0028 cnaPANCAN120 0.0058
cnaPANCAN144 0.0037 cnaPANCAN13 0.0026 ASXL1 mut 0.0047
cnaPANCAN108 0.0036 cnaPANCAN384 0.0023 TP53 mut 0.0046
MAP3K4 mut 0.0027 cnaPANCAN383 0.0019 ASH1L mut 0.004
PCDH18 mut 0.0027 BMPR2 mut 0.0019 NR4A2 mut 0.0031
cnaPANCAN247 0.0027 cnaPANCAN22 0.0018 TP53BP1 mut 0.003
SRGAP3 mut 0.0025 cnaPANCAN211 0.0018 cnaPANCAN238 0.0027
MLL mut 0.0023 cnaPANCAN143 0.0018 cnaPANCAN247 0.0025
cnaPANCAN146 0.0021 cnaPANCAN377 0.0017 cnaPANCAN103 0.0025

TABLE 4
Ten most important genomic aberrations, sorted by the saliency, in the prediction of Bortezomib against NCI-H748, SW684 and EW-3 cell-lines

such as gene expression, since it is proven to support drug
response prediction [58] [59] [60].
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