Graph convolutional networks for drug response prediction

Tuan Nguyen, Thin Nguyen and Duc-Hau Le

Abstract—Background: Drug response prediction is an important problem in computational personalized medicine. Many machine learning-, especially deep learning-, based methods have been proposed for this task. However, these methods often represented the drugs as strings, which are not a natural way to depict molecules. Also, interpretation has not been considered thoroughly in these methods.

Methods: In this study, we propose a novel method, GraphDRP, based on graph convolutional network for the problem. In GraphDRP, drugs are represented in molecular graphs directly capturing the bonds among atoms, meanwhile cell lines are depicted as binary vectors of genomic aberrations. Representative features of drugs and cell lines are learned by convolution layers, then combined to represent for each drug-cell line pair. Finally, the response value of each drug-cell line pair is predicted by a fully-connected neural network. Four variants of graph convolutional networks are used for learning the features of drugs.

Results: We find that GraphDRP outperforms tCNN in all performance measures for all experiments. Also, through saliency maps of the resulting GraphDRP models, we discover the contribution of the genomic aberrations to the responses.

Conclusion: Representing drugs as graphs are able to improve the performance of drug response prediction. Data and source code can be downloaded at https://github.com/hauldhut/GraphDRP.

Index Terms—Drug response prediction, interpretability, Deep learning, Graph convolutional network, Saliency map.

1 INTRODUCTION

Using the right drug in the right dose at the right time is the goal in personalized medicine. Thus, estimating how each patient responses to a drug based on their biological characteristics (e.g., -omics data) is an important problem in biomedical research. However, the drug response data on the patient is very limited and not well-structured. Indeed, there are only a few studies on drug response for cancer patients accumulated in TCGA [1]. This raises a barrier to drug response research at large-scale for patients.

Fortunately, large-scale projects on drug response for “artificial patient” (i.e., cell line), such as GDSC [2], CCLE [3] and NCI60 [4] have facilitated the development of computational methods for drug response prediction [5], [6], [7], [8]. Indeed, a DREAM challenge for drug sensitivity prediction was launched and many research groups proposed their methods for the problem [9]. A majority of them are machine learning-based, where different strategies for data and model integration have been introduced. For example, multiple-kernel and multiple-task learning techniques were proposed to integrate various types of -omics data of cell lines and response data [10], [11]. Besides, ensemble learning strategies were used to integrate individual models [12], [13], [14]. In parallel, network-based methods relying on similarity networks (e.g., structural similarity between drugs and biological similarity between cell lines) and known drug-cell line responses [15], [16], [17] have been proposed. In addition, protein interaction and gene regulatory networks were also used to predict drug response [18].

The machine learning-based methods have shown their ability in the data and model integration, thus the drug response prediction problem was generally systematically approached. However, drugs and cell lines are often represented by predefined features such as structural features of drugs and -omics profiles of cell lines. As the number of cell lines is much smaller than the number of genes in the -omics profiles of cell lines, thus the machine learning-based methods often face with the “small n, large p” problem. Consequently, this limits the prediction performance of the traditional machine learning-based methods.

Deep learning is a state-of-the-art branch of machine learning for extracting a feature from complex data and making accurate predictions [19]. Recently, deep learning has been applying to drug discovery [20], [21]. It has achieved superior performance compared to traditional machine learning techniques in many problems in drug development such as drug visual screening [22], [23], drug-target profiling [24], [25], [26], [27], drug repositioning [28], [29]. Especially in the drug response problem, deep learning is utilized to automatically learn genomic features of cell lines and the structural features of drugs to predict anticancer drug responsiveness [30], [31], [32], [33]. For example, the deep neural network is used in DeepDR [31] to predict the half-maximal inhibitory concentrations (IC50), the convolutional neural network is utilized in tCNNs [33] and CDRSscan [30] to extract the features of cell lines and drugs. In addition, in DeepDSC [32], a pre-trained stacked deep autoencoder is used to extract genomic features of cell lines from gene expression data and then combine with chemical features of compounds to predict response data. However, in these deep learning models, drugs are represented as
Graph convolutional networks are able to learn representations of compound structures represented as molecular graphs [34]. For example, in GraphDTA [35], the drugs are presented as graphs where the edges are the bonding of atoms and the model achieves the best performance compared to other deep learning-based methods which represent drugs as strings in the task of drug-target binding affinity prediction. However, the graph neural network has not been employed yet [34] for the drug response prediction problem. So it is promising to apply graph neural network to drug response prediction. In addition, although deep learning-based methods often achieve better prediction performance when compared to traditional machine learning-based methods, it is considered as a back-box approach because of being not interpretable. The saliency map [36] was introduced to visualize image features in classification task at first, now it plays an important role in various practical applications right from video surveillance [37] to traffic light detection [38]. This strategy can help evaluate the degree of genomics features such as aberration attributes to the prediction of drug response.

In this study, we propose GraphDRP (Graph convolutional network for drug response prediction), a new neural network architecture capable of modeling drugs as molecular graphs to predict drug response on cell-line. We compared our method with the state-of-the-art, TCNNs [33], where drug molecules were represented as SMILES [39] strings. Experimental results indicate that our method achieves better performance in terms of root mean square error (RMSE) and Pearson correlation coefficient for all experiments. Also, by visualizing the resulting networks through saliency maps, we can discover the most significant genomic aberrations for the prediction of the response value. This suggests a novel way to interpret the result of deep learning models for drug response prediction.

2 Graph convolutional network for drug response prediction (GraphDRP)

The proposed model to predict drug response is shown in Fig 1. The input data includes chemical information of drugs and genomic features of cell lines including mutations and copy number alternations (i.e., genomic aberration).

For the drug’s feature, the drugs represented in SMILES format [39] were downloaded from PubChem [40]. Then, RDKit, an open-source chemical informatics software [41], is used to construct a molecular graph reflecting interactions between the atoms inside the drug. Atom feature design from DeepChem [42] is used to describe a node in the graph. Each node contains five types of atom features: atom symbol, atom degree – number of bonded neighbors plus a number of Hydrogen, the total number of Hydrogen, implicit value of the atom, and whether the atom is aromatic. These atom features constitute a multi-dimensional binary feature vector [35]. If there exists a bond between a pair of atoms, an edge is set. As a result, an indirect, binary graph with attributed nodes is built for each input SMILES string. Several graph convolutional network models, including GCN [43], GAT [44], GIN [45] and combined GAT-GCN architecture [35], are used to learn the features of drugs. Following the graph neural network, a fully connected layer (FC layer) is also used to convert the result to 128 dimensions.

The genomic features of cell lines are represented in one-hot encoding. Since the input data are 1D feature vectors for cell lines, 1D convolutional neural network (CNN) layers are used to learn latent features on those data. Then the output is flattened to 128 dimension vector of cell line representation.

Finally, the 256-dimension vector, the combination of drug’s feature and cell line’s feature is put through two fully-connected layers with the number of nodes 1024 and 256 respectively, before predicting the response.

CNNs have recently achieved success in computer vision [46], [47] and natural language processing [48], [49], which motivates the use of convolutional neural networks to graph structures. Similar to the use of CNN with image, CNN in the graph also has two main layers including convolutional layer to learn receptive fields in graphs whose data points are not arranged as Euclidean grids and pooling layer to down-sample a graph [35]. Graph convolutional network (GCN) is well-fitting for the drug response problem because the drug molecular itself is represented in the form of a graph. In order to evaluate the effectiveness of graph-based models, we investigate several graph convolutional models, including GCN [43], GAT [44], GIN [45] and combined GAT-GCN architecture [35]. The details of each GCN architecture are described as follows.

2.1 Graph Convolutional Networks (GCN)

Formally, a graph for a given drug $G = (V, E)$ is stored in the form of two matrices, including feature matrix X and adjacency matrix A. $X \in R^{N \times F}$ consists of N nodes in the graph and each node is represented by F-dimensional vector. $A \in R^{N \times N}$ displays the edge connection between nodes. The original graph convolutional layer takes two matrices as input and aims to produce node-level output with C features each node. The layer is defined as:

$$AXW$$

where $W \in R^{F \times C}$ is the trainable parameter matrix. However, it has two main drawbacks. First, for every node, all feature vectors of all neighboring nodes are summed up but not the node itself. Second, matrix A is not normalized, so the multiplication with A will change the scale of the feature vector. GCN model [43] is introduced to solve these limitations by adding identity matrix to A and normalizing A. Also, it is found that symmetric normalization achieves more interesting result. The GCN layer is defined by [43] as

$$\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}XW$$

where \tilde{A} is the graph adjacency matrix with added self loop, \tilde{D} is the graph diagonal degree matrix.

In our GCN-based model, three consecutive GCN layers are utilized and ReLU function is applied after each layer. A global max pooling layer is added right after the last GCN layer to learn the representation vector of whole graph and then combine with the representation of cell-line to make the prediction of response value.
2.2 Graph Attention Networks (GAT)

Self-attention technique has been shown to be self-sufficient for state-of-the-art-level results on machine translation [50]. Inspired by this idea, the self-attention technique is used in graph convolutional network in GAT [44]. We adopt a graph attention network (GAT) in our model. The proposed GAT architecture is built by stacking a graph attention layer. The GAT layer takes the node feature vector \(x \) as input, then applies a linear transformation to every node by a weight matrix \(W \). Then the attention coefficients are computed at every pair of nodes that the edge exists. The coefficients between node \(i \) and \(j \) are computed as

\[
\alpha_{ij} = \sigma \left(\sum_{j \in \mathcal{N}(i)} \alpha_{ij} Wx_j \right)
\]

This value indicates the importance of node \(j \) to node \(i \). These attention coefficients are then normalized by applying a soft-max function. Finally, the output features for each node is computed as

\[
\sigma \left(\sum_{j \in \mathcal{N}(i)} \alpha_{ij} Wx_j \right)
\]

where \(\sigma(\cdot) \) is a non-linear activation function and \(\alpha_{ij} \) are the normalized attention coefficients.

In our model, we use two GAT layers, activated by a ReLU function, then a global max pooling layer is followed to obtain the graph representation vector. In details, for the first GAT layer, we use multi-head-attentions with 10 heads, and the number of output features is equal to the number of input features. The number of output features of the second GAT is set to 128, similar to cell-line representation vector.

2.3 Graph Isomorphism Network (GIN)

We adopt a recently proposed graph learning method, namely Graph Isomorphism Network (GIN) [45] in our model. It is theoretically proven that it achieves maximum discriminative power among GNNs [45]. Specifically, the node feature is updated by multi layer perceptron (MLP) as

\[
MLP((1 + \mu)x_i + \sum_{j \in \mathcal{N}(i)} x_j)
\]

where \(\mu \) is either a learnable parameter or a fixed scalar, \(x \) is the node feature vector, and \(\mathcal{N}(i) \) is the set of nodes neighbor to \(i \).

In our model, five GIN layers are stacked to build GIN architecture, batch normalization layer is used after each layer. Similar to previous architectures, a global max pooling layer is added to aggregate a graph representation vector.

2.4 Combined graph neural network (GAT&GCN)

A combination of GAT [44] and GCN [43] is also proposed to learn graph feature [35]. At first, the input graph is passed to GAT layers. Then the GCN layer is used to learn convolved feature matrix from GAT layers.

3 Model Interpretation: Genomic Aberration Contribution Using Saliency Map

Given a drug-cell line pair, saliency value is defined by using the idea of the saliency map [36] to measure the importance of each genomic aberration to the prediction of response value (\(Y \)). In our proposed model, each drug (\(D \)) is represented by a graph, meanwhile, each cell-line (\(C \)) is displayed by a binary vector of 735 dimensions, with each value indicates whether or not the cell-line has a specific genomic aberration.

\[
f = \text{whole deep learning model function.}
Y = f(C, D)
\]

Then saliency value (\(S \)) is defined as the gradient of cell-line with respect to predicted response as following:

\[
S = \frac{\partial Y}{\partial C}
\]

This saliency value has the same size as cell-line vector. The higher value indicates the more important of genomic aberration that is encoded in this position.

4 Experimental Setting

4.1 Datasets

Large-scale drug sensitivity screening projects such as CCLE [3] and GDSC [2] have generated not only -omics but also drug response data for anti-cancer drugs on thousands of cell lines. The -omics data includes gene expression (i.e.,
transcriptomic data), which indicates an amount of RNAs transcribed from DNA and thus amount of translated proteins in a cell. Therefore, the expression level of a gene indicates the activity level of a gene in a certain state (e.g., diseased or normal) in a cell. In addition, the –omics data also implies genomic aberrations such as mutations and copy number variations (CNVs) in genome. Meanwhile, drug response is a measure of drug efficiency to inhibit the vitality of cancer cells. More specifically, cell lines are cultured and treated with different doses of drugs. Finally, either an IC50 value, which indicates dose of a particular drug needed to inhibit the biological activity by half, or an AUC (area under dose-response curve) value is used as a response measure of a particular drug.

GDSC is the largest database of drug sensitivity for cell lines. Indeed, there are 250 drugs tested on 1,074 cell lines in that database, meanwhile only 24 drugs were tested on 504 cell lines in CCLE. Thus, we select GDSC as the benchmark dataset for this study. Following the same procedure as in tCCN [33], after preprocessing, 223 drugs and 948 cell lines were finally selected. A total of 172,114 (81.4%) drug-cell line pairs were tested with response values, and the remaining (18.6%) of pairs were missing. Similarly, the response values in terms of IC50 were also normalized in a range (0,1) as in [51]. In addition, at the input stage, a cell line was described by a binary vector of 735 dimensions, where 1 or 0 indicate whether a cell line has or has not a genomic aberration respectively. Meanwhile, drugs were represented in canonical SMILES format [39].

4.2 Experimental design

In this section, the performance of our model is demonstrated through three experiments: performance comparison, prediction of unknown drug-cell line response and investigation of genomic aberration contribution to the response. To compare to previous studies, the same setting is used for performance comparison. Several graph models including GCN, GIN, GAT, GCN_GAT were used to learn the representation of the drug. The prediction of unknown response pairs and the contribution of genomic aberrations by saliency map help to interpret the proposed model. Detailed experiments are described below.

4.2.1 Performance comparison

Mixed test

This experiment evaluates the performance of models in known drug-cell line pairs. Of all 211,404 possible drug-cell line pairs, GDSC provides the response for 172,114 pairs [33]. The data is shuffled before splitting to help the model remains general and reduces overfitting. The known pairs are split into 80% as the training set, 10% as the validation set and 10% as the testing set. While the validation set is used to modify the hyperparameter of the model in the training phase, the testing set is used to evaluate the performance of the model.

Blind test

In the previous experiment, a drug appeared in the testing set may also appear in the training phase. However, we sometimes need to predict the response of a new drug, for example, newly invented one. This experiment is designed to evaluate the prediction performance of unseen drugs. Drugs are constrained from existing in training and testing at the same time. Of 90% (201/223) drugs, their IC50 values are randomly selected for training, including 80% drugs for the training set and 10% drugs for the validation set. The remaining set, 10% (22/223) drugs are used as the testing set.

Similarly, it is sometimes required to make predictions for a new cell-line that are not in the training phase. We also do an experiment to test the prediction of unseen cell-lines. Cell-lines are constrained from existing in training and testing at the same time. A total of 90% (891/990) cell-lines are randomly selected and their IC50 values are kept for the training phase. The remaining, 10% (99/990) cell-lines, is used as the testing set.

4.2.2 Prediction of unknown drug-cell line response

This experiment aims at predicting missing drug-cell line response. The best pre-trained model in the mixed test experiment is used to predict missing pairs in GDSC dataset. Then we select top 10 drugs that have the lowest and highest IC50 values to further investigate whether drugs having lower IC50 are more effective to the treatment of cancer, meanwhile the ones having higher IC50 are less effective.

4.2.3 Investigation of genomic aberration contribution to the response

Given a pair of drug and cell-line, the saliency value is calculated by taking derivative of predicted response with respect to the cell-line, in one-hot vector format. To do this experiment, we chose a drug, which has the lowest average IC50 among all drugs in the prediction of unknown drug-cell line response. Then we selected three cell-lines that have lowest IC50 values to that drug. Then, for each pair, we calculate the saliency value then take ten most important genomic aberrations. After that, we find evidence to support the contribution of the genomic aberrations to the response of that drug on the selected cell-lines.

4.3 Performance Evaluation

Two metrics are adopted to measure the performance of models: root mean square error (RMSE) and Pearson correlation coefficient (CC_p).

Given O the ground-truth, Y the predicted value, n is the number of samples, o_i is a ground-truth of i^{th} sample, y_i is the predicted value of i^{th} sample. RMSE measures the difference of them

$$RMSE = \sqrt{\frac{1}{n} \sum_{i}^{n}(o_i - y_i)^2}$$

where n is the number of data points.

Pearson correlation coefficient measures how strong a relationship is between two variables. Let the standard deviation of O and Y be σ_{o}, σ_{y} respectively, CC_p is defined as

$$CC_p = \frac{\sum_{i}^{n}(o_i - \bar{o})(y_i - \bar{y})}{(\sigma_{o}\sigma_{y})}$$
5 RESULTS AND DISCUSSION

5.1 Performance comparison

Tables 1, 2 & 3 present the prediction performance in terms of \(CC_p \) and RMSE for different experiments by the baseline (tCNN [33]) and our proposed method.

TABLE 1
Performance comparison in terms of \(CC_p \) coefficient and RMSE on the GDSC dataset in the mixed test experiment. The best performance is in bold.

<table>
<thead>
<tr>
<th>Method</th>
<th>(CC_p)</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>tCNN [33]</td>
<td>0.9160</td>
<td>0.0284</td>
</tr>
<tr>
<td>GCN</td>
<td>0.9216</td>
<td>0.0259</td>
</tr>
<tr>
<td>GIN</td>
<td>0.9310</td>
<td>0.0244</td>
</tr>
<tr>
<td>GAT</td>
<td>0.9270</td>
<td>0.0290</td>
</tr>
<tr>
<td>GCN_GAT</td>
<td>0.9308</td>
<td>0.0223</td>
</tr>
</tbody>
</table>

Mixed test

In this experiment, we evaluate and compare the prediction performance of GraphDRP with tCNN. RMSE and \(CC_p \) are calculated for both methods based on the same benchmark dataset and settings. The performance of the two methods is shown in Table 1. It is obvious that our model GraphDRP outperforms tCNN for all graph convolutional networks. tCNN achieved a RMSE of 0.0284 and a \(CC_p \) of 0.9160, meanwhile the worse RMSE and \(CC_p \) in our models are 0.0259 and 0.9216, respectively. GraphDRP achieved the best RMSE (0.0243) with GIN model and the best \(CC_p \) (0.9308) with GCN_GAT model. For RMSE, GIN obtained the second best result (0.0244), which is just a little smaller than the best (0.0243). Thus, we considered it the best model in this experiment.

TABLE 2
Performance comparison in terms of \(CC_p \) and RMSE on the GDSC dataset in the blind test with unseen drug experiment. The best performance is in bold.

<table>
<thead>
<tr>
<th>Method</th>
<th>(CC_p)</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>tCNN [33]</td>
<td>0.0617</td>
<td>0.0680</td>
</tr>
<tr>
<td>GCN</td>
<td>0.3241</td>
<td>0.0542</td>
</tr>
<tr>
<td>GIN</td>
<td>0.1451</td>
<td>0.0602</td>
</tr>
<tr>
<td>GAT</td>
<td>0.2271</td>
<td>0.0616</td>
</tr>
<tr>
<td>GCN_GAT</td>
<td>0.1683</td>
<td>0.0610</td>
</tr>
</tbody>
</table>

Blind test

In the mixed test experiment, one drug should present in both training and testing sets. However, it is more challenging to predict the response of unseen drugs/cell-lines. So in this experiment, drugs/cell-lines in the testing stage are not present in the training stage.

Table 2 shows the prediction performance for the blind test with unseen drugs. It is observed that our proposed models, for all kinds of convolution graphs, achieve better RMSE than tCNN. In particular, the GCN gains the best RMSE of 0.0542. Meanwhile, for \(CC_p \), except for GIN, other three graph-based methods gained better performance when compared to tCNN. Especially, GCN-based gained a five-fold increase, 0.3241 versus 0.0617 compare to tCNN in terms of \(CC_p \) and it is the best method in terms of both \(CC_p \) and RMSE in this experiment.

TABLE 3
Performance comparison in terms of \(CC_p \) and RMSE on the GDSC dataset in the blind test with unseen cell-line experiment. The best performance is in bold.

<table>
<thead>
<tr>
<th>Method</th>
<th>(CC_p)</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>tCNN [33]</td>
<td>0.3490</td>
<td>0.0856</td>
</tr>
<tr>
<td>GCN</td>
<td>0.8399</td>
<td>0.0363</td>
</tr>
<tr>
<td>GIN</td>
<td>0.8460</td>
<td>0.0355</td>
</tr>
<tr>
<td>GAT</td>
<td>0.8312</td>
<td>0.0380</td>
</tr>
<tr>
<td>GCN_GAT</td>
<td>0.8402</td>
<td>0.0362</td>
</tr>
</tbody>
</table>

Similar to the drug blind test, this experiment evaluates the performance of the model on unseen cell-lines. Cell-lines are prevented from existing in the training and testing phase at the same time. In the prediction of response for unknown cell-line, our proposed methods achieve better performance in terms of both RMSE and \(CC_p \) than tCNN for all kinds of GCN. Especially, GIN method gain the best \(CC_p \) at 0.8460 and the best RMSE at 0.0358.

For both the drug and cell-line blind test, the prediction performances are not good as that in mixed test experiment for all models. This indicates that it is harder to predict the drug-cell line response for unseen drugs or unseen cell-lines. Interestingly, we observed that the performance of predicting response for unseen cell-line (i.e., average values are 0.8393 (±0.0061) for \(CC_p \) and 0.0366 (±0.001) for RMSE) is better than that for unseen drug (i.e., average values are 0.2039 (±0.1226) and 0.059 (±0.0034) for \(CC_p \) and RMSE respectively).

We tested several graph models including GCN, GIN, GAT, GCN_GAT for learning the representation of drugs. It is clearly shown that our models outperformed the tCNN in all experiments. This is because, in tCNN, the SMILE string format used for drug is not natural representation. While in our model, the graph convolutional networks are used to extract information from graph representation of drugs, so the performance is better.

Amongst three experiments, GIN achieve the best prediction performance in terms of both RMSE and \(CC_p \) in the mixed test and the blind test with unseen cell-lines. It unleashes the potential of GIN in graph representation, partly supporting the claim in [45] that GIN is among the most powerful GCNs.

5.2 Prediction of unknown drug-cell line response

In this experiment, the best model trained on the mixed test experiment (i.e., GIN) was used to predict the response for 39,290 missing pairs. Figure 2 shows top 10 drugs that have the highest and lowest in predicted IC50. Interestingly, top 3 drugs that have the highest and lowest response values are the same as the result in tCNN. It is shown that Bortezomib achieves the lowest response that means it is the most sensitive drugs for anti-cancer. Indeed, it was reported that Bortezomib has differential cellular and molecular effects in human breast cancer cells [52]. Also, it has a wide range of applications in antitumor activity [53]. The second most effective drug for anti-cancer in this experiment is Epothilone B, which acts by blocking cell division through its interaction with tubulin [54]. For drugs having low IC50, AICA Ribonucleotide and Phenformin have the highest response that means less sensitive to cancer. While AICA Ribonucleotide...
has been used clinically to treat and protect against cardiac ischemic injury [55]. Phenformin is an antidiabetic drug from the biguanide class [33]. Because these two drugs can prevent the growth of cell (Aica ribonucleotide) or inhibit the growth of Complex I (Phenformin), they have the potential to cure cancer. However, anticancer is only the side effect of them, so the treatment of cancer is limited.

Those evidence show that drugs having low IC50 are more sensitive to cancer, meanwhile, those having high IC50 are less sensitive to cancer. The results also indicate that our model is potential to the prediction of missing drug-cell line pairs.

5.3 Investigation of genomic aberration contribution to the response

The drug Bortezomib, which is the most sensitive drug, is chosen in this experiment to further investigate the contribution of genomic aberrations to the response on cell-lines. Thus three cell-lines that have the lowest response with that drug was taken to do the experiment. Saliency value of each genomic aberration is considered as the degree of their contribution to the response. Table 4 shows ten most contributed genomic aberrations for the three cell-lines. Some evidence is found from literature to support their contribution. Indeed, a study [56] showed that TP53 mutation (i.e., a mutation in cell line EW-3) was targeted by Bortezomib. In addition, the combination of Bortezomib, standard chemotherapy, and HDAC inhibition is currently being evaluated in clinical trials for MLL mutation (i.e, a mutation in cell line NCI-H748) [57]. It means that the model pays more attention to the genomic aberrations that are related to the corresponding drug. As a result, the GraphDRP model is not a kind of black-box, it could learn the relation between the drug and genomic aberrations in cell-line.

6 Conclusion

In this work, we propose a novel method for drug response prediction, called GraphDRP. In our model, drug molecules were presented as graphs instead of strings, cell-lines were encoded into one-hot vector format. Then graph convolutional layers were used to learn the features of compounds and 1D convolutional layers were used to learn cell-line representation. After that the combination of drug and cell-line representation is used to predict IC50 value. Four variants of graph neural networks including GCN, GAT, GIN and combination of GAT&GCN are used for learning features of drugs. We compared our method with state-of-the-art one, tCNN [33], where drug molecules were represented as SMILES strings.

Experimental results indicate that our method achieves better performance in terms of both root mean square error and Pearson correlation coefficient. The performance suggests that representing drugs in graphs is more suitable than in strings since it conserves the nature of chemical structures of drugs. Furthermore, the responses of missing drug-cell line pairs in GDSC dataset are predicted and analyzed. We figured out that Bortezomib and Epothilone B have the lowest response values and we found the evidence showing that they are sensitive to some types of cancer. Similarly, we also found that drugs having the highest response values are less sensitive to cancer. It means that the model actually learns from data and has a potential to predict the response of new drug-cell line pairs. Also, through saliency maps, we discovered ten most important genomic aberrations of the three cell-lines having lowest responses to that drug and seek their contribution to the sensitivity of that drug. This technique suggests a novel way to interpret the result of deep learning model in drug response problem.
<table>
<thead>
<tr>
<th>Aberration</th>
<th>Salinity</th>
<th>Aberration</th>
<th>Salinity</th>
<th>Aberration</th>
<th>Salinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWSRT-FL1</td>
<td>mut</td>
<td>cnaPANCAN84</td>
<td>0.0131</td>
<td>cnaPANCAN257</td>
<td>0.0123</td>
</tr>
<tr>
<td>NSD1</td>
<td>mut</td>
<td>cnaPANCAN247</td>
<td>0.0028</td>
<td>cnaPANCAN120</td>
<td>0.0058</td>
</tr>
<tr>
<td>cnaPANCAN144</td>
<td></td>
<td>cnaPANCAN13</td>
<td>0.0026</td>
<td>ASXL1</td>
<td>mut</td>
</tr>
<tr>
<td>cnaPANCAN108</td>
<td></td>
<td>cnaPANCAN384</td>
<td>0.0023</td>
<td>TP53</td>
<td>mut</td>
</tr>
<tr>
<td>MAPK3K4</td>
<td>mut</td>
<td>cnaPANCAN383</td>
<td>0.0019</td>
<td>ASH1L</td>
<td>mut</td>
</tr>
<tr>
<td>PCDH18</td>
<td>mut</td>
<td>BMP2Q2</td>
<td>0.0019</td>
<td>NR4A2</td>
<td>mut</td>
</tr>
<tr>
<td>cnaPANCAN247</td>
<td></td>
<td>cnaPANCAN22</td>
<td>0.0018</td>
<td>TP53BP1</td>
<td>mut</td>
</tr>
<tr>
<td>SRGAP3</td>
<td>mut</td>
<td>cnaPANCAN211</td>
<td>0.0018</td>
<td>cnaPANCAN238</td>
<td>0.0027</td>
</tr>
<tr>
<td>MLL</td>
<td>mut</td>
<td>cnaPANCAN143</td>
<td>0.0018</td>
<td>cnaPANCAN247</td>
<td>0.0025</td>
</tr>
<tr>
<td>cnaPANCAN460</td>
<td></td>
<td>cnaPANCAN177</td>
<td>0.0017</td>
<td>cnaPANCAN103</td>
<td>0.0025</td>
</tr>
</tbody>
</table>

Ten most important genomic aberrations, sorted by the saliency, in the prediction of Bortezomib against NCI-H748, SW684 and EW-3 cell lines.

References

