bioRxiv preprint doi: https://doi.org/10.1101/2020.04.07.031005; this version posted April 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

5			

2	Strains Bearing Novel Tubulin Mutations
3	

4 Takako Kato-Minoura^{1,2}*, Yutaro Ogiwara², Takashi Yamano³, Hideya Fukuzawa³,

Chlamydomonas reinhardtii Tubulin-Gene Disruptants for Efficient Isolation of

5 and Ritsu Kamiya¹

6

- ⁷ ¹Department of Biological Sciences, Faculty of Science and Engineering, Chuo University,
- 8 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
- ⁹ ²Biological Science Course, Graduate School of Science and Engineering, Chuo University,
- 10 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
- ³Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- 12
- 13
- 14 Running title: Tubulin mutants of *Chlamydomonas*
- 15
- 16
- 17 *Corresponding author.
- 18 E-Mail: minoura@bio.chuo-u.ac.jp
- 19

20 ABSTRACT

21The single-cell green alga *Chlamydomonas reinhardtii* possesses two α-tubulin genes (*tua1* 22and *tua2*) and two β -tubulin genes (*tub1* and *tub2*), with the two genes in each pair 23encoding identical amino acid sequences. Here, we used an *aphVIII* gene cassette 24insertional library to establish eight disruptants with defective *tua2*, *tub1*, or *tub2* 25expression. None of the disruptants exhibited apparent defects in cell growth, flagellar 26length, or flagellar regeneration after amputation. Because few tubulin mutants of C. 27reinhardtii have been reported to date, we then used our disruptants, together with a tual 28disruptant obtained from the Chlamydomonas Library Project (CLiP), to isolate novel 29tubulin-mutants resistant to the anti-tubulin agents propyzamide and oryzalin. As a result 30 of several trials, we obtained 8 strains bearing 7 different α -tubulin mutations and 24 31strains bearing 12 different β -tubulin mutations. Some of these mutations are known to confer drug resistance in human cancer cells. Thus, single-tubulin-gene disruptants are an 32 33 efficient means of isolating novel C. reinhardtii tubulin mutants.

34

35 **IMPORTANCE**: Chlamydomonas reinhardtii is a useful organism for the study of tubulin 36 function; however, only five kinds of tubulin mutations have been reported to date. This 37scarcity is partly due to C. reinhardtii possessing two tubulin genes each for α - and 38 β -tubulin. Here, we obtained several strains in which one of the α - or β -tubulin genes was 39 disrupted, and then used those disruptants to isolate 32 strains bearing 19 mostly novel 40 tubulin mutations that conferred differing degrees of resistance to two anti-tubulin 41 compounds. The majority of the tubulin mutations were located outside of the drug-binding 42sites in the three-dimensional tubulin structure, suggesting that structural changes underlie

43	the drug resistance	conferred by these	mutations. Thus,	, single-tubulin-	gene disruptants are
----	---------------------	--------------------	------------------	-------------------	----------------------

- 44 an efficient means of generating tubulin mutants for the study of the structure–function
- 45 relationship of tubulin and for the development of novel therapies based on anti-tubulin
- 46 agents.
- 47
- 48 Key Words: microtubule, herbicide, anti-cancer drug
- 49

50 INTRODUCTION

51Microtubules are fundamental cytoskeletal filaments that play pivotal roles in eukaryotic 52cell functions such as cell division, intra-cellular transport, cell shape development, and 53cilia and flagella assembly. Microtubules are produced by polymerization of α/β -tubulin 54heterodimers. Most eukaryotic cells possess multiple genes encoding α - and β -tubulin. For 55example, humans possess seven genes that encode α -tubulin and eight genes that encode 56 β -tubulin, with each gene encoding a slightly different amino acid sequence. The presence 57of multiple genes for the two types of tubulin makes it difficult to study the properties of a 58particular tubulin species by genetic analysis, because the effects arising from mutation of 59one of the genes can be masked by the expression of the remaining intact genes.

60 The single-cell green alga *Chlamydomonas reinhardtii* is a useful experimental 61 organism for studying tubulin function because it possesses a small number of tubulin 62 genes and it produces microtubule-based organelles, flagella. In addition, there is a wide 63 range of genetic tools available and a large amount of biological data has been 64 accumulated for this species. In contrast to the majority of eukaryotes, C. reinhardtii 65possesses only two genes (*tua1* and *tua2*) encoding α -tubulin and two genes (*tub1* and 66 *tub2*) encoding β -tubulin (1, 2). The two genes for each type of tubulin encode the same 67 amino acid sequence (2, 3), and the expression of all four genes is up-regulated after flagellar excision (4). Whether the two genes in each pair are expressed independently of 68 69 each other has not yet been firmly established, but the genes do appear to be expressed 70indiscriminately during flagella formation (4).

Although *C. reinhardtii* possess only two genes for each tubulin, the presence of more
than one gene expressing the same protein still makes it difficult to isolate tubulin mutants.

73	To date, only five kinds of tubulin mutations have been reported: a <i>tual</i> mutation (Y24H)
74	that confers amiprophos-methyl (APM) and oryzalin resistance (upA12) (3); two kinds of
75	mutations in <i>tua2</i> (D205N and A208T) that confer colchicine hypersensitivity (<i>tua2-1</i> etc.,
76	suppressors of <i>uni-3-1</i> , a mutant lacking δ -tubulin) (5); and two mutations in <i>tub2</i> (K350E
77	and K350M) that confer colchicine resistance $(col^{R}4 \text{ and } col^{R}15)$ (6). APM, oryzalin,
78	colchicine, and propyzamide are compounds that inhibit tubulin polymerization. These
79	compounds other than colchicine inhibit plant tubulin polymerization at low concentrations
80	and are used as herbicides.
81	Here, we isolated eight <i>tua2</i> , <i>tub1</i> , or <i>tub2</i> disruptants from an insertional library
82	comprising around 8000 clones (7). We also obtained a <i>tua1</i> disruptant from the
83	Chlamydomonas Library Project (CLiP) (8). We then used one of the tub2 disruptants and
84	two double-disruptants possessing only one α -tubulin gene and one β -tubulin gene as
85	parent strains for the production of 32 mutants showing various degrees of resistance to
86	propyzamide and oryzalin. Thus, the use of single-tubulin-gene C. reinhardtii disruptants
87	enabled efficient isolation of a large number of tubulin mutants resistant to anti-tubulin
88	agents.
89	
90	RESULTS

91 Isolation of tubulin-gene disruptants

A library of around 8000 clones was constructed by inserting the *aphVIII* gene cassette into
the genome of *C. reinhardtii* (7). Then, the library was screened by PCR using primer pairs
consisting of one primer targeting a consensus sequence of the four tubulin genes and
another primer targeting the *aphVIII* fragment. As a result, we isolated eight tubulin gene
disruptants: three showing *tua2* disruption (*tua2-A*, *tua2-B*, *tua2-C*), two showing *tub1*

97	disruption (<i>tub1-A</i> , <i>tub1-B</i>), and three showing <i>tub2</i> disruption (<i>tub2-A</i> , <i>tub2-B</i> , <i>tub2-C</i>).
98	Fig. S1A shows the sites of the <i>aphVIII</i> cassette insertion in the eight disruptants, and Fig.
99	S1B shows the PCR confirmation of the structure of the disrupted genes. In six of the
100	disruptants (tua2-A, tua2-B, tua2-C, tub1-B, tub2-A, tub2-C), the aphVIII cassette was
101	inserted into the gene. In the remaining two disruptants, the aphVIII cassette was inserted
102	after the open reading frame (<i>tub1-A</i>) or within an intron (<i>tub2-B</i>). In all eight disruptants,
103	AphVIII cassette insertion resulted in total disruption of mRNA expression of the affected
104	tubulin gene, as confirmed by northern blot analysis (Fig. S2A). For tua1-A, tua2-A,
105	tub1-B, and tub2-A, semi-quantitative real-time PCR was performed and again no
106	expression of mRNA from the tubulin genes was detected (Fig. S2B).
107	None of the disruptants exhibited any apparent defects in growth rate (data not
108	shown), tubulin expression (Fig. S2C), or flagellar regeneration after amputation (Fig.
109	S2D), suggesting that the disruptants still produced sufficient α/β -tubulin heterodimer for
110	their cellular functions via the remaining intact genes. The mean flagellar length was
111	comparable among the disruptants (see Fig. S2D). The five β -tubulin disruptants showed
112	some difference in their sensitivity to colchicine: <i>tub1-A</i> and <i>tub1-B</i> showed stronger
113	resistance while <i>tub2-A</i> showed weaker resistance than wild type (Fig. 1), although the
114	sensitivity somewhat varied among alleles (Fig. 1).
115	

116 Mutant isolation using tubulin-gene disruptants

117 Next, we used the disruptants to isolate *C. reinhardtii* strains expressing tubulins with

118 missense mutations. Three parent strains were used: *tub2-A*, a double disruptant generated

119 by crossing *tua1-A* with *tub1-B*, and a double disruptant generated by crossing *tua2-A* and

120 *tub1-B*. As a result of 1-3 trials with each parental strain against oryzalin or propyzamide,

121 32 strains showing a total of 19 different tubulin missense mutations were isolated. Table 1 122shows the obtained mutants classified by the gene affected, as well as the results of a 123qualitative assessment of each strain's resistance to oryzalin and propyzamide. Most of the 124oryzalin-resistant strains, as well as a propyzamide-resistant mutant (pyz532), had a 125missense mutation in an α -tubulin gene. In contrast, most of the propyzamide-resistant 126 strains, other than pyz532, had mutations in a β -tubulin gene. 127Figure 2 shows a predicted three-dimensional structure of *C. reinhardtii* α/β-tubulin 128 heterodimer labeled with the site of each missense mutation reported here and in previous studies (3, 5, 6). Five of the isolates had mutations that have been reported previously: ory2 129130 had a *tua1* Y24H mutation as did upA12 (3); *pyz8*, *pyz9*, and *pyz523* had a *tub2* K350E mutation as did $col^{R}4$ (6); and *pyz6* had a *tub2* K350M mutation as did $col^{R}15$ (6). The five 131 132 mutants isolated in the present study exhibited stronger drug-resistance than the three

133 previously reported mutants (data not shown). This stronger drug-resistance may reflect the

134 fact that the mutants isolated here express only mutated α - or β -tubulin from a single gene,

135 whereas previously reported mutants express a mutated tubulin together with a wild-type

136 counterpart.

Some of the identified mutations involved the substitution of amino acids with
different charges. For example, the propyzamide-resistant missense strains *pyz2/pyz524*,

139 pyz503, and pyz530/pyz534/pyz502/pyz525/pyz526/pyz527 expressed β -tubulins with the

140 mutations Q134H, E198L, and E198K, respectively. The isoelectric point (pI) values of

141 these β -tubulins predicted from their amino acid sequences were 4.59, 4.58, and 4.63,

142 respectively, which were greater than the pI of wild-type β -tubulin (4.55). We confirmed

143 the expression of β -tubulins with different pIs in those strains by two-dimensional

polyacrylamide gel electrophoresis (2D-PAGE) of axonemal proteins from the mutants and

8

145	wild type (Fig. 2). As expected, the spot of β -tubulin appeared at higher pH values in the
146	order <i>pyz530</i> (E198K) > <i>pyz2</i> (Q134H) > <i>pyz503</i> (E198L) > wild type. The 2D-PAGE
147	analysis also verified that each mutant expressed β -tubulin from only a single gene, since it
148	detected no β -tubulin spots with the wild-type pI in mutant samples.
149	
150	Novel tubulin mutant strains exhibited various sensitivities to anti-tubulin agents
151	The mutant strains displayed various patterns of sensitivity to anti-tubulin agents (Table 1,
152	Fig. 1). Several strains showed high oryzalin resistance in the order $ory304 > ory3 >$
153	ory205 > ory313 > ory314. Three of these strains also showed hypersensitivity to
154	propyzamide in the order $ory304 > ory205 > ory3$, and one of these strains, $ory205$, was
155	also hypersensitive to colchicine. Several strains (pyz2, pyz501, pyz503, pyz506, pyz513,
156	pyz529, pyz530, and pyz532) showed strong propyzamide resistance, remaining viable on a
157	Tris–acetate–phosphate (TAP) agar plate containing more than 400 μ M propyzamide
158	whereas wild-type C. reinhardtii (CC-125) was barely viable at 40 μ M. Of these eight
159	mutant strains, three showed hypersensitivity to colchicine ($pyz532 > pyz503 > pyz2$) and
160	the remaining five showed resistance to colchicine (pyz529, pyz513, pyz530, pyz501, and
161	pyz506). The different sensitivities to colchicine and propyzamide in these mutants are
162	interesting because the two agents bind to almost the same position on the tubulin
163	heterodimer (9). Four of the eight propyzamide-resistant mutants exhibited oryzalin
164	resistance in the order $pyz530 > pyz513 > pyz2 > pyz532$, and two, $pyz501$ and $pyz529$,

- 165 were hypersensitive to oryzalin.
- 166

144

167 **DISCUSSION**

168 By screening an AphVIII insertional library, we isolated three disruptants lacking tua2, two 169 lacking *tub1*, and three lacking *tub2*. All were most likely null mutants (Fig. S2A). 170 Although these disruptants lacked one of their tubulin-encoding genes, their cytoplasmic 171tubulin levels remained normal (Fig. S2C), suggesting the presence of an auto-regulatory 172mechanism that maintains the tubulin mRNA level, as observed in other eukaryotic cells 173(10). Indeed, in *tua1-A*, *tub1-B*, and *tub2-A*, the mRNA expression level of the remaining 174 α - or β -tubulin gene was increased approximately 2-fold compared with wild type (Fig. 175S2B). Also, flagellar length, ability to produce flagella after amputation (Fig. S2D), and 176 overall cell growth rate did not noticeably differ from the wild-type growth rate (data not 177 shown). Thus, although C. reinhardtii possesses two α -tubulin genes and two β -tubulin 178genes, a single gene for each type is enough to supply the tubulin necessary for its cellular 179 functions. However, it should be noted that the present findings do not mean that the two 180 genes for each tubulin have exactly the same function; rather, the two genes may differ 181 from each other in a subtle manner. For example, we observed that whereas the *tub1* 182 disruptants were resistant to colchicine, the *tub2* disruptants were sensitive although some 183 allele-specific variation was observed (Fig. 1). This suggests that there is some difference 184 in the regulation of gene expression that is dependent on the concentration of free tubulin 185 in the cytoplasm (11). Thus, how the two genes encoding the two tubulins differ in their 186 function and regulation warrants further investigation, and our single-tubulin-gene mutants 187 established here should be useful for such investigations. 188 Next, we used the disruptants to obtain mutants with resistance to two anti-tubulin 189 agents, propyzamide and oryzalin. Several rounds of trials to isolate mutants resistant to

190 one or both of the agents afforded 8 mutants with 7 different α -tubulin gene missense

191 mutations and 24 mutants with 12 different β -tubulin gene missense mutations. The

192	number of mutations obtained was much larger than the total number that has been
193	reported previously (i.e., 3 kinds of α -tubulin mutations and 2 kinds of β -tubulin
194	mutations)(3, 5, 6). In addition, we found that about one-third of the colonies picked from
195	the screening plates harbored a mutation in a tubulin gene (data not shown). Together,
196	these findings suggest that our approach of using single-tubulin-gene disruptants is a
197	highly efficient means of obtaining tubulin mutant strains.
198	How the sensitivity to anti-tubulin agents varied in the mutants is an important issue
199	that warrants clarification. Some of the tubulin mutants that conferred resistance to the
200	anti-tubulin agents had a mutation near to where the anti-tubulin agents bind to the
201	α/β -tubulin heterodimer (Fig. 3). The binding site of oryzalin, inferred from that of an
202	analogous compound, tubulysin M, is at the intra-dimer interface (12) close to the
203	α -tubulin mutation F351L (in strain <i>pyz532</i>). Other <i>ory</i> mutants whose mutation sites
204	occur independently of the tubulysin M-binding site may confer oryzalin resistance by
205	modulating the three-dimensional structure of α -tubulin. Likewise, a propyzamide-like
206	compound, 2RR, is known to bind at the inter-dimer interface (13) close to several of the
207	identified β -tubulin mutation sites: E198K/L (in
208	<i>pyz530/pyz534/pyz502/pyz525/pyz526/pyz527</i> and <i>pyz503</i>), I236N (in <i>pyz513</i>),
209	K350N/E/M (in <i>pyz528, col^R4/ pyz8/pyz9/pyz523</i> , and <i>col^R15/pyz6</i>), and I368F (in
210	pyz501/pyz504/pyz514/pyz535). Other mutations may confer propyzamide resistance
211	through some structural change in α/β -tubulin. Another interesting observation is that the
212	β -tubulin mutation E198K conferred colchicine resistance whereas the E198L mutation
213	conferred high colchicine sensitivity. This suggests that the electric charge of E198 is a
214	critical determinant of colchicine sensitivity.

215	Several o	of the mutat	tions dete	ected in the	he present	study are	e similar to t	hose reported	d in

- 216 other organisms (Table S1). For α -tubulin, mutation F49C in *ory314*, F52L in *ory3*, and
- 217 S165A in *ory205/ory505* have been reported in a *Toxoplasma gondii* oryzalin-resistant
- 218 mutants (14, 15). For β -tubulin, mutation Q134H in *pyz2/pyz524* has been reported in a
- 219 Beauveria bassiana benzimidazole-resistant mutant (16); mutations E198K/L in
- 220 *pyz530/pyz534/pyz502/pyz525/pyz526/pyz527* and *pyz503* are found in fungi and
- 221 nematodes that confer benzimidazole resistance and phenylcarbamate hypersensitivities
- 222 (17-22); I236N in *pyz513* corresponded to the mutation responsible for resistance to the
- anti-cancer drug 2-methoxyestradiol in human epithelial cancer cells (23); K350N in
- 224 pyz528 corresponded to the mutations responsible for colcemid and vinblastine resistance
- in Chinese hamster ovary (CHO) cells (24) and indanocine resistance in human leukemia
- cells (25). Mutations Y24N, F138V, and F351L in α-tubulin (*ory304*, *ory313*, and *pyz532*)
- and mutations L165Q, F266C and I368F in β -tubulin (*pyz506*,
- 228 *pyz529/pyz531/pyz533/pyz536*, and *pyz501/pyz504/pyz514/pyz535*) are being reported here
- 229 for the first time; further investigations are needed to examine whether these mutations are
- 230 responsible for altered drug sensitivity in other organisms.
- Although the present study selected mutants based only on their resistance to twoanti-tubulin agents, use of other agents such as the microtubule-stabilizing agent paclitaxel,
- 233 or screening for other properties such as hypersensitivity to drugs, resistance to low
- temperature, or deficiency in flagellar formation and motility will lead to the isolation of a
- 235 greater variety of mutants. Detailed analyses of many such mutants will deepen our
- 236 understanding of the structure–function relation of tubulins. Since some of the tubulin
- 237 mutations identified in the present study corresponded to mutations found in human
- tubulins that confer drug resistance in cancer cells, we expect that studies of

- 239 *Chlamydomonas* tubulin mutants will contribute to the development of improved cancer
- therapies.

242 MATERIALS AND METHODS

243 Isolation of tubulin-gene disruptants

- Eight tubulin-gene disruptants were isolated from a library of mutants generated by
- inserting the *aphVIII* gene (paromomycin resistance gene) into the genome of *C*.
- 246 reinhardtii (7). Disruptants tua2-B, tua2-C, tub1-B, tub2-A, tub2-B, and tub2-C were
- 247 isolated by performing PCR on the pooled transformants using primers targeting the
- 248 aphVIII sequence (PSI103-F2 and RB02) and two tubulin consensus sequences
- 249 (3'-Tus1891g and 3'-Tus1803g). A disruptant, *tub1-A*, was isolated using two alternative
- tubulin consensus primers (5'-Tus1082c and 5'-Tus1596g). A disruptant, *tua2-A*, was
- isolated using RB02 and an alternative consensus primer (3'-TuA2-3254g). Supplementary
- 252 Information 1 shows the primers used in the present study. After screening, the disruptants
- 253 were sequenced in the vicinity of their disrupted tubulin gene (Macrogen Japan Co.,
- 254 Japan).
- In addition, a *tua1* disruptant (LMJ.RY0402.158052; referred to as *tua1-A* in the
- 256 present study) was obtained from the *Chlamydomonas* Library Project (8); this disruptant
- 257 has a long insertion composed of two facing paromomycin-resistant CIB1cassettes
- 258 immediately before the stop codon in *tua1*.
- 259 The disruptants were backcrossed with wild-type C. reinhardtii (CC-125) and
- 260 selected for tubulin-gene disruption by PCR before use. Double disruptants were
- 261 constructed by standard methods (26), and selected from tetrads by PCR analysis.
- 262
- 263 Isolation of anti-tubulin drug resistant mutants
- 264 *C. reinhardtii* strains whose *tub1* or *tub2* was disrupted with or without *tua2* disruption
- were grown to the mid-log phase and then irradiated by ultraviolet light until about 50% of

266	the cells were killed. The culture was spread on TAP-agar plates containing 20 μ M
267	propyzamide or 10 μ M oryzalin, kept in the dark for 12 h, and then incubated under light
268	for 5–10 days. Colonies that appeared were transferred to liquid TAP medium in 96-well
269	plates containing the same concentration of propyzamide or oryzalin. From each culture
270	that grew, genomic DNA was extracted and subjected to PCR using the following primers:
271	5'-ChlaTuA1_long969 and 3'-TuA6260 (for <i>tua1</i>), 5'-Tua2-10g and 3'-TuA2-3288g (for
272	tua2), 5'-tub1-33c and 3'-tub1-1667c (for tub1), and 5'-EcoTuB2-upper and
273	3'-XhoTuB2-lower (for <i>tub2</i>). The PCR products were processed for DNA sequencing
274	(Macrogen Japan Co.).
275	
276	Drug-resistance test
277	C. reinhardtii strains were grown in liquid TAP medium until the mid-log phase, and then
278	diluted or concentrated to 5×10^6 cells/mL. Then, 3 μL of culture was spotted on a
279	TAP-agar plate containing Propyzamide Reference Material (0-400 µM), Oryzalin
280	Standard (0–40 μ M), or colchicine (0–8000 μ M) (all from Fujifilm Wako Pure Chemical
281	Co., Japan) and cultured for a week at 26°C under 12-h light/12-h dark conditions. A
282	wild-type strain (CC-125) and a colchicine-resistant mutant strain $(col^{R}4 (6))$ were used as
283	references.
284	
285	Three-dimensional structure prediction of C. reinhardtii α/β -tubulin heterodimer
286	The three-dimensional structure of the <i>C</i> . <i>reinhardtii</i> α/β -tubulin heterodimer was
287	predicted by using FAMS software (27) based on a known tubulin tetramer structure
288	obtained from the Protein Data Bank (PDB ID: 1Z2B (28)). To determine the amino acids

- that most likely interacted with the examined drugs, *in silico* molecular docking analyses
- 290 were performed using the ChooseLD program (29).
- 291

292 **2D-PAGE of isolated axonemes**

- 293 Axonemes were isolated from the *C. reinhardtii* strains by using standard procedures (30).
- A small aliquot of axonemal precipitate (~2 or 10 μ g) was extracted with a buffer
- $295 \qquad \text{containing 5 M urea and 2 M thiourea and analyzed by 2D-PAGE as described previously}$
- 296 (31). Since α and β -tubulin are modified post-translationally, the loading amount was
- adjusted so that their major forms only were detectable by silver staining. The predicted pI
- 298 values of the wild-type and mutant tubulins were calculated by using the EMBOSS
- 299 database and the Sequence Manipulation Suite, which is a collection of JavaScript
- 300 programs for examining short protein sequences
- 301 (https://www.bioinformatics.org/sms2/protein_iep.html) (32).
- 302

303 ACKNOWLEDGMENTS

- 304 We thank Ms. Ai Tashiro, Haruka Fujisawa, and Tomoko Kurihara (Chuo University,
- 305 Tokyo, Japan) for conducting the tubulin disruptant screening, and Ryosuke Suzuki,
- 306 Hinano Sugai, Mami Ishigaki, and Yidong Tang (Chuo University) for performing the
- 307 gene analysis of the tubulin mutants. We also thank Dr. Mitsuo Iwadate (Chuo University)
- 308 for conducting the three-dimensional structure prediction and in silico molecular docking
- 309 analyses, and Dr. Hiroko Kawai-Toyooka (The Univ. of Tokyo, Tokyo, Japan) for her
- 310 technical support with the real-time polymerase chain reaction analyses.
- 311

312 **COMPETING INTERESTS**

- 313 The authors have no competing interests to declare.
- 314

315 Funding

- 316 This study was supported by grants from Chuo University (Joint Research Grant and Grant
- 317 for Special Research).
- 318
- 319

320 AUTHOR CONTRIBUTIONS

- 321 TKM and RK designed and conducted the research and wrote the paper. YO performed the
- 322 real-time polymerase chain reaction analysis. TY and HF produced a temporal library of
- 323 Chlamydomonas reinhardtii carrying the aphVIII gene.
- 324

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.07.031005; this version posted April 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.07.031005; this version posted April 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

326		REFERENCES
327		
328	1.	Silflow CD, Chisholm RL, Conner TW, Ranum LP. 1985. The two
329		alpha-tubulin genes of Chlamydomonas reinhardi code for slightly
330		different proteins. Mol Cell Biol 5:2389–2398.
331	2.	Youngblom J, Schloss JA, Silflow CD. 1984. The two beta-tubulin genes
332		of <i>Chlamydomonas reinhardtii</i> code for identical proteins. Mol Cell Biol
333		4:2686–2696.
334	3.	James SW, Silflow CD, Stroom P, Lefebvre PA. 1993. A mutation in the
335		a1-tubulin gene of Chlamydomonas reinhardtii confers resistance to
336		anti-microtubule herbicides. J Cell Sci:209–218.
337	4.	Brunke KJ, Young EE, Buchbinder BU, Weeks DP. 1982. Coordinate
338		regulation of the four tubulin genes of Chlamydomonas reinhardi.
339		Nucleic Acids Res 10:1295–1310.
340	5.	Fromherz S, Giddings TH, Jr., Gomez-Ospina N, Dutcher SK. 2004.
341		Mutations in alpha-tubulin promote basal body maturation and flagellar
342		assembly in the absence of delta-tubulin. J Cell Sci 117:303–314.
343	6.	Lee VD, Huang B. 1990. Missense mutations at lysine 350 in beta
344		2-tubulin confer altered sensitivity to microtubule inhibitors in
345		Chlamydomonas. Plant Cell 2:1051–1057.
346	7.	Yamano T, Sato E, Iguchi H, Fukuda Y, Fukuzawa H. 2015.
347		Characterization of cooperative bicarbonate uptake into chloroplast
348		stroma in the green alga <i>Chlamydomonas reinhardtii</i> . Proc Natl Acad Sci
349		USA 112:7315–7320.
350	8.	Li X, Zhang R, Patena W, Gang SS, Blum SR, Ivanova N, Yue R,
351		Robertson JM, Lefebvre PA, Fitz-Gibbon ST, Grossman AR, Jonikas MC.
352		2016. An indexed, mapped mutant library enables reverse genetics
353		studies of biological processes in <i>Chlamydomonas reinhardtii</i> . Plant Cell
354		28:367–387.
355	9.	Silflow CD, Sun X, Haas NA, Foley JW, Lefebvre PA. 2011. The Hsp70
356		and Hsp40 chaperones influence microtubule stability in
357		Chlamydomonas. Genetics 189:1249–1260.

358	10.	Cleveland DW, Havercroft JC. 1983. Is apparent autoregulatory control
359		of tubulin synthesis nontranscriptionally regulated? J Cell Biol 97:919–
360		924.
361	11.	Cleveland DW, Lopata MA, Sherline P, Kirschner MW. 1981.
362		Unpolymerized tubulin modulates the level of tubulin mRNAs. Cell
363		25:537-546.
364	12.	Wang Y, Benz FW, Wu Y, Wang Q, Chen Y, Chen X, Li H, Zhang Y, Zhang
365		R, Yang J. 2016. Structural insights into the pharmacophore of vinca
366		domain inhibitors of microtubules. Mol Pharmacol 89:233–242.
367	13.	Prota AE, Danel F, Bachmann F, Bargsten K, Buey RM, Pohlmann J,
368		Reinelt S, Lane H, Steinmetz MO. 2014. The novel
369		microtubule-destabilizing drug BAL27862 binds to the colchicine site of
370		tubulin with distinct effects on microtubule organization. J Mol Biol
371		426:1848–1860.
372	14.	Morrissette NS, Mitra A, Sept D, Sibley LD. 2004. Dinitroanilines bind
373		alpha-tubulin to disrupt microtubules. Mol Biol Cell 15:1960–1968.
374	15.	Ma C, Li C, Ganesan L, Oak J, Tsai S, Sept D, Morrissette NS. 2007.
375		Mutations in alpha-tubulin confer dinitroaniline resistance at a cost to
376		microtubule function. Mol Biol Cell 18:4711–4720.
377	16.	Zou G, Ying SH, Shen ZC, Feng MG. 2006. Multi-sited mutations of
378		beta-tubulin are involved in benzimidazole resistance and
379		thermotolerance of fungal biocontrol agent Beauveria bassiana. Environ
380		Microbiol 8:2096–2105.
381	17.	Jung MK, Wilder IB, Oakley BR. 1992. Amino acid alterations in the
382		benA (beta-tubulin) gene of Aspergillus nidulans that confer benomyl
383		resistance. Cell Motil Cytoskel 22:170–174.
384	18.	Cai M, Lin D, Chen L, Bi Y, Xiao L, Liu XL. 2015. M233I mutation in the
385		beta-tubulin of <i>Botrytis cinerea</i> confers resistance to zoxamide. Sci Rep
386		5:16881.
387	19.	Wright AJ, Hunter CP. 2003. Mutations in a beta-tubulin disrupt spindle
388		orientation and microtubule dynamics in the early Caenorhabditis
389		<i>elegans</i> embryo. Mol Biol Cell 14:4512–4525.
390	20.	Buhr TL, Dickman MB. 1994. Isolation, characterization, and expression

391		of a second beta-tubulin-encoding gene from Colletotrichum
392		gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol 60:4155–
393		4159.
394	21.	Fujimura M, Kamakura T, Inoue H, Yamaguchi I. 1994. Amino-acid
395		alterations in the beta-tubulin gene of Neurospora crassa that confer
396		resistance to carbendazim and diethofencarb. Curr Genet 25:418–422.
397	22.	Chen CJ, Yu JJ, Bi CW, Zhang YN, Xu JQ, Wang JX, Zhou MG. 2009.
398		Mutations in a beta-tubulin confer resistance of Gibberella zeae to
399		benzimidazole fungicides. Phytopathology 99:1403–1411.
400	23.	Escuin D, Burke PA, McMahon-Tobin G, Hembrough T, Wang Y, Alcaraz
401		AA, Leandro-Garcia LJ, Rodriguez-Antona C, Snyder JP, Lavallee TM,
402		Giannakakou P. 2009. The hematopoietic-specific beta1-tubulin is
403		naturally resistant to 2-methoxyestradiol and protects patients from
404		drug-induced myelosuppression. Cell Cycle 8:3914–3924.
405	24.	Hari M, Wang Y, Veeraraghavan S, Cabral F. 2003. Mutations in alpha-
406		and beta-tubulin that stabilize microtubules and confer resistance to
407		colcemid and vinblastine. Mol Cancer Ther 2:597–605.
408	25.	Hua XH, Genini D, Gussio R, Tawatao R, Shih H, Kipps TJ, Carson DA,
409		Leoni LM. 2001. Biochemical genetic analysis of indanocine resistance in
410		human leukemia. Cancer Res 61:7248–7254.
411	26.	Harris EH, Stern DB, Witman GB. 2009. The <i>Chlamydomonas</i>
412		sourcebook, vol 1. Elsevier San Diego, CA.
413	27.	Umeyama H, Iwadate M. 2004. FAMS and FAMSBASE for protein
414		structure. Curr Protoc Bioinformatics Chapter 5:Unit5 2.
415	28.	Gigant B, Wang C, Ravelli RB, Roussi F, Steinmetz MO, Curmi PA, Sobel
416		A, Knossow M. 2005. Structural basis for the regulation of tubulin by
417		vinblastine. Nature 435:519–522.
418	29.	Takaya D, Takeda-Shitaka M, Terashi G, Kanou K, Iwadate M,
419		Umeyama H. 2008. Bioinformatics based Ligand-Docking and in-silico
420		screening. Chem Pharm Bull (Tokyo) 56:742–744.
421	30.	Witman GB. 1986. Isolation of <i>Chlamydomonas</i> flagella and flagellar
422		axonemes. Methods Enzymol 134:280–290.
423	31.	Kato-Minoura T, Hirono M, Kamiya R. 1997. <i>Chlamydomonas</i> inner-arm

424		dynein mutant, <i>ida5</i> , has a mutation in an actin-encoding gene. J Cell
425		Biol 137:649–656.
426	32.	Stothard P. 2000. The sequence manipulation suite: JavaScript programs
427		for analyzing and formatting protein and DNA sequences. Biotechniques
428		28:1102, 1104.
429	33.	Gokmen-Polar Y, Escuin D, Walls CD, Soule SE, Wang Y, Sanders KL,
430		Lavallee TM, Wang M, Guenther BD, Giannakakou P, Sledge GW, Jr.
431		2005. beta-tubulin mutations are associated with resistance to
432		2-methoxy estradiol in MDA-MB-435 cancer cells. Cancer Res $65 \ensuremath{\overset{\circ}{\to}} 9406 \ensuremath{-}$
433		9414.
434		

Gene altered		Mutation (DNA)	Mutation (protein)	Resistance to		
	Strain			oryzalin	propyzamide	colchicin
tua1	ory2	TAC->CAC	Y24H	+++	+/-	+/-
	ory3	TTC->CTC	F52L	++++		+
	ory205, ory505	TCC->GCC	S165A	++++		
	руz532	TTC->TTA	F351L	+	+++	
tua2	ory304	TAC->AAC	Y24N	++++		+/-
	ory314	TTC->TGC	F49C	+++	-	+/-
	ory313	TTC->GTC	F138V	++++	+/-	+/-
tub1	pyz530, pyz534	GAG->AAG	E198K	+++	+++	++
	pyz529, pyz531, pyz533	TTC->TGC	F266C		+++	+++
tub2	pyz2, 524	CAG->CAT	Q134H	++	+++	-
	<i>pyz506</i>	CTG->CAG	L165Q	+/-	+++	+
	pyz502, pyz525, pyz526, pyz527	GAG->AAG	E198K	N.E.	N.E.	N.E.
	pyz503	GAG->TTG	E198L	+/-	+++	
	pyz513	ATC->AAT	I236N*	+++	+++	+++
	pyz536	TTC->TGC	F266C	N. E.	N.E.	N.E.
	pyz8, pyz9, pyz523	AAG->GAG	K350E	+	+	++++
	ругб	AAG->ATG	K350M	N.E.	N.E.	N.E.
	<i>pyz528</i>	AAG->AAT	K350N**	N.E.	N.E.	N.E.
	pyz501, pyz504, pyz514, pyz535	ATC->TTC	I368F		+++	+

Table 1 Tubulin missense mutants isolated in this study.

438 N.E., not examined; +, resistant; -, sensitive; +/-, wild-type level. The number of + and -

439 symbols represents the qualitative difference among the strains. *, mutation found in

440 human cancer cells resistant to 2-methoxyestradiol(23).**, mutation found in human

441 cancer cells resistant to indanocine and 2-methoxyestradiol(25, 33).

റ	റ
•	-≺
4	J

442	Figure 1. Drug sensitivities of tubulin-gene disruptants and missense mutant strains.
443	Cell growth on TAP agar plates containing different concentrations of anti-tubulin drugs.
444	Three plates each inoculated with nine strains were used for each condition, as summarized
445	in panel (A). Sensitivity to colchicine (B), oryzalin (C), and propyzamide (D) was
446	examined.
447	
448	Figure 2. Two-dimensional polyacrylamide gel electrophoresis analysis of axonemes from
449	strains <i>pyz2</i> , <i>pyz503</i> , and <i>pyz530</i> .
450	Protein extracts of axonemes of wild type (CC-125), pyz2, pyz503, and pyz530 were loaded
451	on a two-dimensional polyacrylamide gel and stained with silver. pH range: 4.0–7.0. (A)
452	Electrophoresis pattern of wild-type axoneme (~10 µg loaded). (B) Portions of
453	polyacrylamide gels showing the major spots of α - and β -tubulin. Upper panel shows a
454	close-up of the area indicated by the box in (A). The lower four panels show the
455	polyacrylamide gels after loading approximately 2 μ g of axoneme. The predicted pIs of the
456	wild-type and three mutant α - and β -tubulins are indicated to the right of the panels.
457	
458	Figure 3. Predicted three-dimensional structure of Chlamydomonas reinhardtii
459	α/β -tubulin heterodimer showing the mutations reported in the present and previous
460	studies.
461	Light gray, α -tubulin; dark gray, β -tubulin. Altered amino acids are shown as sphere
462	representations. The binding sites of tubulysin M (red, an oryzalin-like compound) and
463	2RR (blue,
464	3-[(4-{1-[2-(4-aminophenyl)-2-oxoethyl]-1H-benzimidazol-2-yl}-1,2,5-oxadiazol-3-yl)a

- 465 mino]propanenitrile, a propyzamide-like compound) were determined by applying the
- alignment command in MacPyMol software to the tubulin structures 4ZOL and 4O2A
- 467 reported in the presence of these compounds (12, 13). The orange stick representations
- 468 show GTP (in α -tubulin) and GDP (in β -tubulin). Mutations identical to previously
- 469 reported mutations are marked with asterisks: *, (3); **, (5); and ***, (6).
- 470

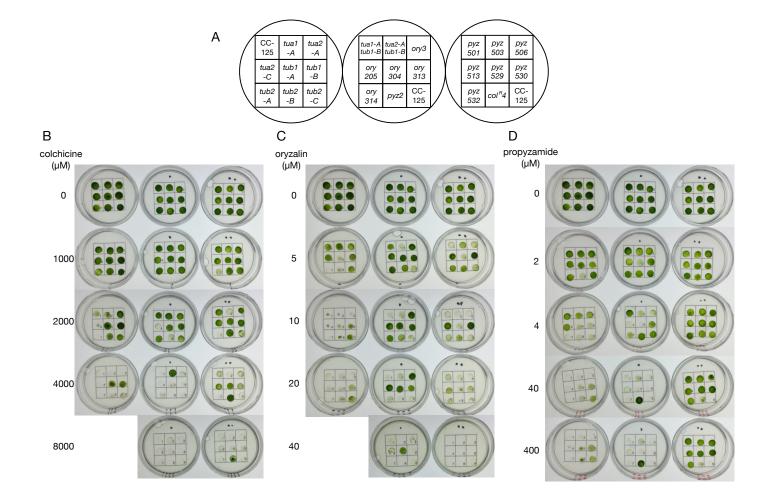


Figure 1 Kato-Minoura, T. et al.

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.07.031005; this version posted April 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Figure 2 Kato-Minoura, T et al.

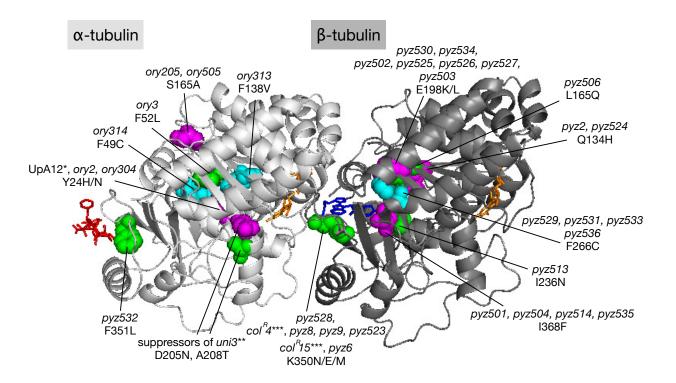


Figure 3 Kato-Minoura, T. et al.