1	Title: A novel culture-independent method to search unknown dominant
2	bacterial groups and its application to microbial analysis of membrane
3	bioreactors.
4	Running title: A novel culture-independent enumeration method.
5	Byline: Katsuji Watanabe, and Naoto Horinishi
6	Affiliation line: Department of Life, Environment and Applied Chemistry, Graduate School of
7	Engineering, Fukuoka Institute of Technology, Fukuoka, Japan
8	
9	Corresponding author: Katsuji Watanabe, E-mail:k-watanabe@fit.ac.jp
10	
11	Key words: culture-independent method, numerically dominant bacteria, membrane bioreactor

13 ABSTRACT

14	As we could not get numerical information for unknown unculturable microorganisms through
15	conventional culture-independent analysis methods such as next-generation sequencing, or real time
16	PCR, we developed an original culture-independent method, and searched the numerically dominant
17	bacteria in three industrial membrane bioreactors for livestock farms.
18	Although Actinobacteria was the numerically dominant phylum ($9.3 \times 10^5 MPN/mL$) on
19	6/August/2014 in the MBR of A farm, when a bacteria with the same genotype to Arthrobacter sp.
20	(AF197047; 4.3×10^5 MPN/mL), and those similar to <i>Burkholderia</i> sp. (AB299593; 4.3×10^5 MPN/mL)
21	were the numerically dominant, after about 13 months (24/October/2015) a number of the
22	Arthrobacter genotype increased to 930x10 ⁵ MPN (230 times) and become dominant, and those
23	similar to the <i>Microbacterium</i> sp. (AM403628) increased to 92×10^5 MPN, while that of the
24	Burkholderia genotype disappeared. In the other MBR of B farm, bacteria having a similar genotype
25	to Enshifer sp. (AB195268, CP000738), or Shinorhizobium sp. (AF227755, AB195268), or
26	Mesorhizobium sp. (BA000012, Mso.tians29), or Agrobacterium vitis (D12795) was dominant on
27	18/August/2015 ($24x10^5$ MPN) and 30/August/2015 ($15.5x10^5$ MPN). In the other MBR of C farm
28	(9/October/2015), bacteria having a similar genotype to uncultured <i>Betaproteobacteria</i> (AY921864)
29	was dominant (430x10 ⁵ MPN), followed by uncultured bacterium (74x10 ⁵ MPN ; AM268745), and
30	Mycobacteriaceae (AB298730), or Propionibacteriaceae (AB298731) (7.4 x10 ⁵ MPN). There was no
31	common bacterial groups among tested three MBRs. Present results indicated that different kinds of

 $\mathbf{2}$

32 homogeneous bacteria were numerically dominant in the three tested membrane bioreactors, where

33 their numbers and ratios were varied with the duration of the driving periods.

34 **IMPORTANCE**

35	Although the conventional molecular-based culture independent methods have been used in
36	place of traditional culture-based methods for microbiological research and expanded information of
37	unculturable low-abundance bacterial groups, not all of them were always highly active in the
38	environment and it was difficult to search for microorganisms among them which were highly active
39	and play an important role in the environment. As numerical data of each bacteria might become an
40	important index to know their activity in environment, we had created a novel culture-independent
41	enumeration method for numerically dominant unidentified bacteria. Through the method, we found
42	that different kinds of homogeneous bacteria were numerically dominant in the three tested
43	membrane bioreactors, whose numbers were high enough to affect the performance of the reactor as
44	a single strain. The method was found useful to specify and trace unknown numerically dominant
45	bacterial groups in a culture independent manner.
40	

46

48 INTRODUCTION

49	Until now, the unculturability of microorganisms was reported to be caused from the following
50	different factors: artificial ones caused by unknown suitable growth condition such as cases in
51	filamentous bacteria in activated sludge $(1, 2)$, or <i>Dehalococcoides</i> sp. in soil (3) , intrinsic ones
52	caused from low-abundance, and slow growing environmental microorganisms, such as rare
53	biosphere (4, 5), and acquired ones caused from a dormancy state of culturable bacteria (6-10).
54	As most environmental bacteria were unculturable in growth media, over the past two decades,
55	molecular-based culture independent methods have been used in place of traditional culture-based
56	methods (11, 12), and has expanded information of unculturable bacterial groups in environments
57	(13). In particular, next-generation sequencing (NSG) was expected to become a powerful tool not
58	only to provide genetic information of all the low-abundance microorganisms but also to relate them
59	to their various functions (14).
60	Among environmental samples, biological wastewater treatment reactors have been widely been
61	studied by using them, based on the social demand that the reactor was an essential facility to purify
62	water by removing excess organics, nitrogen, phosphorus and pathogenic microorganisms in
63	wastewater (15), and that their microbial complex community primarily affected the performance of
64	reactors (16, 17).

65 As for conventional activated sludge (CAS) equipped with final settling tanks for solid-liquid

66	separation, the culture independent methods such as clone library sequencing (18), denaturing
67	gradient gel electrophoresis (DGGE) (19, 20), terminal restriction fragment polymorphisms analysis
68	(21-23), fluorescence in situ hybridization (FISH) (24, 25), microarray-based genomics (26), and
69	NGS (27-32) have been used to clarify bacterial relation to their performance. These methods have
70	also been used for membrane bioreactor (MBR), by which solids and liquids could be completely
71	separated through a membrane, was an increasingly implemented technology because of advantages
72	such as reduced excess sludge, higher effluent quality and operation under higher biomass
73	concentrations over CAS (23, 24, 30).
74	Most reports have focused mainly on the comparative study of overall microbial composition (23,
75	26-28, 32), and their changes in the reactor (29, 30). With respect to the well-known specific gene, or
76	bacteria, their numbers were estimated by using real-time PCR (33-35), or by FISH (24, 25). There
77	have been few reports to show whether numerically dominant specific microorganisms, which might
78	affect the performance of the reactor, existed in the reactor or not until now $(1, 2)$. Higher biomass in
79	effluent, and higher performance of the reactors (16, 20, 22-24, 27, 28, 30, 31) implied that the
80	unculturability of microorganisms in the reactor might mainly be cased from unknown growth
81	condition, and not by low-abundance and slow growing microorganisms, nor by dormant cell.
82	As microbial numbers might become a simple and useful index to show bacterial activity in the
83	environment, the author has developed an original method to specify and trace unknown dominant

84	microorganisms, in which taxonomies of each bacterial groups were elucidated from the multiple
85	enzyme restriction fragment length polymorphism (MERFLP) of 16S rDNA (36, 37), and each
86	number of the bacterial groups were estimated by most probable number (MPN) (38). Although the
87	method had mostly been applied as a culture-based method (39-43), we presented the results of our
88	application as culture-independent analyses of three industrial membrane bioreactors (MBR) situated
89	in the Hokkaido area. The results were compared with those by the culture-based same method, and
90	those by culture-independent PCR-DGGE.
91	
92	MATERIALS AND METHODS
93	Samples. The three industrial MBR had been constructed by BICOM Co.Ltd. (Osaka, Japan) to
94	purify and clean up wastewater from daily farms. All the samples were collected from equalizing
95	tanks before septic tanks having an immersion-type membrane filtration apparatus. Sludge in MBR
96	of A farm (Yubetsu Town in Monbetsu-Gun Hokkaido) was sampled on 6/August/2014 and
97	24/October/2015. That of B farm (Tsurui Village in Akan-Gun Hokkaido) was sampled on 18/
98	August /2014 and 30/August/2014. That of C farm (Onbetsu Town in Kushiro Branch Office,
99	Hokkaido) was sampled on 9/October/2015. Except for the MBR of A farm on 6/August/2014, when
100	a large amount of waste milk flowed into the MBR because of epidemic bovine mastitis and the
101	performance of the MBR became lower, the total performance of purifying and cleaning up

102 wastewater was kept in good condition.

103	Culture-independent MPN and culture based MPN. For culture-independent MPN, DNA
104	was extracted from samples (10mL fresh wt.) as described previously (36) after mixing in a 15 mL
105	Falcon tube (215rpm, 20min). After purification by conventional methods, the DNA solution was
106	further purified using a GenElute Agarose Spin Column (SIGMA). Serial 10-fold dilutions (10^{-2} to)
107	10^{-9}) were prepared from the DNA solution.
108	For culture-based MPN, serial 10-fold dilutions (10 ⁻² to 10 ⁻⁹) prepared from samples (1mL fresh
109	wt.) were inoculated to test vials (three replicates), including lactose broth (Difco, Sparks MD). After
110	three days incubation at 30°C, bacterial DNA in each vial was extracted as described previously and
111	purified by conventional methods (36, 37).
112	MERFLP of the amplified 16S rDNA. Using the V2 forward primer (41f), and the V6 reverse
113	primer (1066r) (44), 16S rDNA was amplified, as described previously (36, 37). Their restriction
114	fragment lengths were measured by microchip electrophoresis systems (MCE-202 MultiNA;
115	Shimadzu Co., Ltd. Kyoto, Japan) after digestion of the PCR product (10 μ l) using each of the
116	following 4 restriction enzymes: HaeIII or Hha I or Rsa I or Alu I (10 units, Takara Bio Co. Ltd.
117	Shiga, Japan) in buffer solution (10xLow salt buffer, Takara Bio Co. Ltd.) and 5 folds dilution by
118	de-ionized water, as described previously (36-43).
119	Reference database used for the phylogenetic estimation. The reference database used for

120	this research included 30,844 post-amplification sequence files for the 41f/1066r primers, which
121	were mainly re-edited from small subunit rRNA files in RDP II release 9_61 (45) under 5 - bases
122	mismatches in the both in primer annealing sites (36, 37), and consisted of 1,379 bacterial genera,
123	including uncultured and unidentified bacteria (40-43).
124	Data processing for multi-template DNA and phylogenetic estimation. As each MPN vial
125	included multi-template DNAs originating from heterogeneous bacteria, the measured MERFL
126	digested from the homogeneous 16S rDNA was selected among the mixed MERFLs digested from
127	the heterogeneous 16S rDNA, as described previously (36, 37). All the theoretical MERFLs
128	originated from the homogeneous 16S rDNA sequence data. The major restriction fragments (RFs)
129	(represented as H in Table 1-3) were those with the highest relative mole concentration (ratio of
130	fluorescent intensity to fragment size). After subtraction of the major RFs from the mixed
131	heterogeneous RFs, the 2nd major RFs were similarly selected (represented as M in Table 1-3). After
132	subtraction of the second major RFs from the remaining heterogeneous RFs, the 3rd major RFs were
133	similarly selected (represented as L in Table 1-3). The similarity between the measured RFLP (A)
134	and the reference RFLP (B) was calculated as described previously (36-43), based on the pairwise
135	distance (D_{AB}) according to Nei and Li (46). The pairwise distance of the MERFLPs (D_{ABME}) was an
136	average of all the D_{ABs} for used restriction enzymes. Similarity (%) was (1- D_{ABME}) x 100 (Table 1-3).
137	In the phylogenetic estimation, combinations of the three restriction enzymes were used when the

138	identical theoretical MERFL	(100% similarity)) was not found using the four restriction enzymes.
100	Identifedit tileofetiedit tillifti E	(10070 billinancy)) was not round asing the rour restriction enzymes

- 139 When the identical theoretical MERFL was not found using three restriction enzymes, combinations
- 140 of the two restriction enzymes was used. If the identical theoretical MERFL (100% similarity) was
- 141 not found using the two restriction enzymes, the theoretical MERFL having the highest similarity
- 142 (over 90%) to the measured MERFL was indicated in most cases (Table 1-3) (38-43).
- 143 Enumeration of bacterial groups by MPN. Through a three-tube, three-decimal-dilution
- 144 experiment, MPNs of each bacterial groups were estimated (Table 4-6). Using FDA's Bacterial
- 145 Analytical Manual (47), confidence limits were obtained and shown in the Tables. Confidence limits
- 146 shown in Table 4-6 were obtained using Woodward's method (48), except for the
- 147 culture-independent MPN in B farm on 30/August/2014, when we could not obtain the data of a 10^{-5}

148	dilution	sample,	and a	10^{-6}	dilution	sample.
-----	----------	---------	-------	-----------	----------	---------

149 PCR- DGGE. F984GC corresponding to positions 968–984 in *E. coli* 16S rRNA (49), and

- 150 R1378 corresponding to positions 1379-1401 were used as PCR primers (50). The PCR profile
- 151 consisted of a 2 min denaturation at 94°C, and 30 cycles of 30 sec denaturation at 94°C, a 1 min
- annealing at 55°C, and a 1 min extension at 72°C, followed by a 3 min extension at 72°C.
- 153 Amplicons, which were checked by agarose gel electrophoresis, were analyzed by DGGE using a
- 154 Bio-Rad DCodeTMsystem (Bio-Rad Laboratories, Hercules, CA, USA) according to the
- 155 manufacture's manual, as described in the report (51).

156

157 RESULTS

- 158 Culture independent analysis. There was not so large a difference among three replicate
- 159 electropherograms, which indicated higher reproducibility of the method (Fig. 1). The band strength
- 160 of the most RFs had gradually decreased in correlation with dilutions, which suggested each of the
- 161 bacterial numbers could be estimated by MPN (Fig. 1).
- 162 The total detected bacterial number amplified by the 41f/1066r primers was $24x10^{5}$ MPN/mL for
- 163 MBR in A farm on 6/August/2014. A numerically dominant phylum was Acitinobacteria
- 164 $(9.3 \times 10^5 \text{MPN})$ (Table 1, Table 4), where a homogeneous bacteria with the same MERFLP to
- 165 Arthrobacter sp. (AF197047) was one that was numerically dominant (4.3x10⁵MPN), and that which
- 166 was similar in MERFLP to *Burkholderia* sp. (AB299593) was the other $(4.3 \times 10^5 \text{MPN})$ (Table 1, 6).
- 167 After about 13 months (24/October/2015), the total detected bacterial numbers increased to 100
- 168 times (2400x10⁵MPN/mL) (Table 1, Table 4). All of them were Actinobacteria, where those with the
- 169 Arthrobacter sp. genotype were also the numerically dominant (930 $\times 10^{5}$ MPN), followed by those
- 170 with a similar MERFLP to *Microbacterium* sp.(AM403628) ($92x10^{5}$ MPN), and those with a
- 171 Burkholderia genotype disappeared (Table 1, Table 4). These results suggested that an increase of
- the total detected bacteria number during 13 months was caused by a proliferation of Actinobacteria,
- 173 such as the Arthrobacter genotype (230 times) and the Microbacterium genotype (Fig. 2).

174	The total detected bacterial numb	er was 46x10 ⁵ MPN in the	e other MBR of B farm on

- 175 18/August/2015 (Table 5). A numerically dominant phylum was Proteobacteria, in which a
- 176 homogeneous bacteria with a similar MERFLP to Alphaproteobacteria, such as Ensifer
- 177 sp.(CP000738,D14509,D14516), or Shinorhizobium sp.(Srh.fredi5, Srh.melil7), or Mesorhizobium
- 178 sp.(BA000012, Mso.tians2), or Agrobacterium vitis (D12795) was numerically dominant
- 179 (24x10⁵MPN (Table 2, Table 5)). After 12 days (30/August/2015), the total detected bacterial
- 180 numbers decreased to 24×10^5 MPN/mL (Fig. 2). Although those with the Alphaproteobacteria
- 181 genotype were also numerically dominant, its number decreased to 15.5x10⁵MPN, and a number of
- 182 bacteria having a similar MERFLP to Haloanaerobacter chitinovoran (U32596) increased
- 183 $(4.1 \times 10^5 \text{MPN})$ (Table 2, Table 5). The result implied that a decrease of the total number of detected
- 184 bacteria might be caused by a decrease of the numerically dominant Alphaproteobacteria genotype
- 185 (Fig. 2).
- 186 The total number of detected bacterial amplified by the 41f/1066r primers was $930x10^{5}$ MPN in the
- 187 other MBR of C farm on 9/October/2015 (Table 3, 6). A numerically dominant phylum was
- 188 Proteobacteria, in which a homogeneous bacteria having a similar MERFLP to uncultured
- 189 *Betaproteobacteria* (AY921864) was numerically dominant (430 x10⁵ MPN), followed by
- uncultured bacterium (74 x10⁵ MPN; AM268745), *Mycobacteriaceae* (AB298730), or
- 191 Propionibacteriaceae bacterium (7.4 x10⁵MPNA; B298731), Streotiverticillium baldaccii (6.2

¹⁹² x10⁵MPNA;X53164, X53169), and *Lactobacillus fermentum* (1.5 x10⁵MPN; DQ208931,

193	L.fermentm)	(Table 3,	6). There	was no	bacteria	with the	same M	ERFLP	among	the three	tested
-----	-------------	-----------	-----------	--------	----------	----------	--------	-------	-------	-----------	--------

- ¹⁹⁴ MBRs, which implied that the three MBRs had a different bacterial consortium (Fig. 2).
- 195 **Comparison to culture-independent PCR-DGGE**. There was not such a large difference among
- three replicate DGGE profiles, which indicated a higher reproducibility of the method (Fig.3, Fig.4).
- 197 The strength of each bands had gradually decreased in correlation with dilutions, which suggested
- 198 the numbers of each bands could be estimated by MPN (Fig.3, Fig.4). DGGE profile of MBR in A
- 199 farm on 6/August/2014 indicated the existence of the two numerically dominant bacteria (B1, and
- 200 C1), and two subdominant bacterial groups (A1, and D1) (Fig.3). Numbers of B1 and C1 were
- estimated to be over 11×10^5 MPN, and those of A1 and D1 were 2.3×10^5 MPN (Fig.3). The DGGE
- 202 profile of MBR in A farm on 24/October/2015 indicated the existence of one numerically dominant
- bacteria (E2), a subdominant bacteria (D2), and the three bacterial groups (A2, B2, and C2) (Fig.4).
- The number of E2 was estimated to be over $11,000 \times 10^5$ MPN, with that of D2 being $2,300 \times 10^5$ MPN.
- 205 Those of A2, B2, and C2 were 230×10^5 , 230×10^5 , and 23×10^5 , respectively (Fig.4).
- 206 **Comparison to culture-based MPN**. As there was a large difference among three replicate
- 207 electropherograms, this indicated poor reproducibility of the method. Most of the restriction
- 208 fragments had not always disappeared in correlation with dilutions, which suggested each bacterial
- 209 number could not precisely be estimated by MPN.

210	A total detected bacterial number amplified by the 41f/1066r primers was over 110x10 ⁸ MPN/mL
211	for MBR in farm A on 6/August/2014 (Table 4), and that of farm B on 24/October/2015 was
212	46×10^8 MPN/mL (Table 5). However, the numbers of total bacteria, and the numerical dominant for
213	MBR in farm C on 9/October/2015 were underestimated because the bacterial numbers scaled out of
214	the detection range of the MPN. A total detected bacterial number was over 1.1×10^8 MPN/mL (Table
215	6). There were no common MERFLPs between those of the culture independent method and the
216	culture-based method (Fig. 2).
217	
218	DISCUSSION
219	All the results of culture-independent MPN indicated that each sample included a homogeneous
220	MERFP (Table 1-Table 3) originated from a single strain (Table 4-Table 6), whose numbers were
221	high enough to affect performance of the reactor (33). However the total number of the detected
222	bacteria was lower than those by the culture-based MPN (Table 4-Table 6), and those by the other
223	reports (16, 33).
224	The lower bacterial number by the culture-independent MPN was attributed to the elimination of
225	low-abundance bacteria with huge diversity, as the following. There were smeared bands in DGGE
226	profiles lower than 10^{-4} dilution in Figure 3, and lower than 10^{-6} dilution in Figure 4, which were un-
227	

19). They were eliminated from the total bacterial count by our culture independent MPN.

229	In culture-based MPN, some of such low-abundance bacteria occasionally proliferated in the LB
230	medium, which resulted in the higher total bacterial count (Table 4-6) comparable to those of the
231	reported bacterial numbers (16, 33). However, such an occasional proliferation resulted in incubation
232	bias and poor reproducibility for composition analysis (11, 12), and resulted in a non-detection of the
233	numerically dominant bacteria. LB medium was not suitable for the numerically dominant bacteria
234	in the MBRs. By using growth media suitable for target microorganisms (40, 42), or those which
235	required higher selection bias, such as multi-drug resistant bacteria (38, 43), the culture-based MPN
236	afforded reproducible results.
237	The results of culture-independent DGGE were well consistent with those of culture-independent
238	MPN. The two numerically dominant bacteria (B1, and C1) in the DGGE profile (Fig.3) were
239	supposed to be the Arthrobacter genotype and the Burkholderia genotype. The one numerically
240	dominant bacteria (E2) in the DGGE profile (Fig.4) was supposed to be the Arthrobacter genotype,
241	and the subdominant bacteria (D2) was supposed to be the Microbacterium genotype (Fig.4).
242	Estimated numbers of each identified bacterial groups by our method were lower than those
243	estimated from band patterns in DGGE profiles. Because short RF that originated from higher
244	dilution samples only had lower intensity, it became difficult to select the RFs that originated from
245	homogeneous 16S rDNA precisely, which lowered similarity in the similarity search by MERFLP.

246	Although the highest number of the Arthrobacter genotype was estimated to be 930 $\times 10^{5}$ MPN/mL
247	by MERFLP/MPN in the MBR for A farm on 24/October/2015 (Table 4), its number might be
248	underestimated and estimated to be over 11,000x10 ⁵ MPN mL by DGGE/MPN (Fig. 4), which is
249	comparable to the reported total bacteria number in the CAS (from 10,100 $\times 10^5$ to
250	80,000x10 ⁵ cell/mL) (16, 33). The numerically dominant bacteria might primarily influence the
251	performance of the MBR as a single strain.
252	Although we could not get any information about low-abundance bacteria by our method, the
253	method was found to be effective in specifying and tracing the numerically dominant bacterial
254	groups in the tested three MBRs. This is because precise and reproducible phylogenetic affiliation
255	was possible with respect to the major bacterial groups in higher dilution DNA, where MERFLPs
256	originated from almost a single isolated strain.
257	As far as CAS reactors, Xia et al. suggested that all the reactors contained a core of bacterial
258	phylum with almost identical compositions, where Proteobacteria was the largest phylum and
259	Firmicutes, Actinobacteria, and Bacteroidetes were the subdominant phylum in five CAS reactors
260	(26). In contrast, Takada et al. reported that there was no core of bacterial phylum or similar
261	phylogenetic structure among 12 different MBRs (23). Our present results, that there was no
262	common numerically dominant bacterial groups in the tested three MBR reactors, was consistent
263	with the latter results (Fig. 2). Our other results, that the composition of overall classes was not

264 changed between sampling periods, was also consistent with those by the other conventional

- 265 techniques (29, 30) (Fig. 2).
- As a new finding through our method, which has not been reported by the other conventional
- techniques (23, 26-30, 32), the present results indicated that different homogeneous bacteria were
- 268 numerically dominant in all three MBRs individually, whose numbers were high enough to affect the
- 269 performance of the reactor as a single strain. The numerically dominant bacteria in A farm were the
- 270 homogeneous Arthrobacter genotype and the homogeneous Burkholderia genotype (AB299593)
- 271 (Table 1a, 1b), while those in B had the homogeneous Alphaproteobacteria genotype (Table 2a, 2b),
- and those in C had the homogeneous Betaproteobacteria genotype (Table 3), which occupied a
- higher ratio among the detected bacteria (Table 6). This finding could be obtained by the
- differentiation and elimination of low-abundance bacterial groups having huge diversity shown as
- smeared bands in the DGGE profiles (Fig. 3, Fig.4).
- 276 The present results also indicated that the method was effective to demonstrate the population
- 277 dynamics of unknown bacterial groups without cultivation, as the following. In the MBR of A farm,
- the number of the numerically dominant Arthrobacter genotype increased 230 times, and a number
- 279 of the Microbacterium genotpe increased to become the subdominant strain, while the other
- 280 numerically dominant Burkholderia genotype disappeared during 13 months (Table 4), when the
- 281 performance of the MBR recovered to normal condition from serious damage by a large effluent of

282	waste milk. In the MBR of B farm, the number of the numerically dominant Alphaproteobacteria
-----	--

- 283 genotype $(24 \times 10^5 \text{ MPN})$ slightly decreased to $15.5 \times 10^5 \text{MPN}$, the number of those of the
- 284 Haloanaerobacter chitinovoran genotype increased after 12 days (Table 5). Our present results
- 285 clearly demonstrated a dynamic transition of microbial composition in an MBR that particular
- 286 bacteria proliferated and became extinct.
- 287 Until now, most of the microbial research of CAS (18-22, 24-29, 31, 32), and MBR (23, 24, 30)
- has been focused on the exploration of microbial diversity using the conventional
- 289 culture-independent molecular techniques with aim to cover almost all the low-abundance
- 290 microorganisms. These approaches seemed to have targeted such bacterial groups as those that
- appeared as smeared bands in lower dilutions of DGGE profiles (Fig. 3, Fig.4), which seemed to be
- 292 not suitable to specify and trace numerically dominant bacterial groups. Our method was simple but
- 293 effective to clarify the dynamic transition of the numerically dominant unknown microbial group in
- bioreactors.
- 295

296 ACKNOWLEDGMENTS

- All of the BMR samples were provided by BICOM Co. Ltd. (Osaka, Japan). We thank Mr. S.
- 298 Senkawa, representative director of BICOM Co. Ltd. for sending us samples. We thank Prof.
- 299 M.Sakai, and Assistant Prof. M. Ikenaga of the lab of soil science at Kagoshima University for

300	pro	viding us with various advice, information, and suggestions about DGGE techniques. We thank
301	Mis	s Y. Akahoshi, and Mr. T. Momoshima, undergraduate students, for analysis of the samples. We
302	also	thank Mr. Patrick Slusar of Fukuoka Institute of Technology for English proofreading.
303	Er	nglish.
304		
305	RE	FERENCES
306	1.	Layton AC, Karanth PN, Lajoie CA, Meyers AJ, Grefory IR, Stapleton RD, Taylor DE, Sayler
307		GS. 2000. Quantification of Hyphomicrobium Populations in Activated Sludge from an
308		Industrial Wastewater Treatment System as Determined by 16S rRNA Analysis. Appl. Environ.
309		Microbiol. 66: 1167–1174.
310	2.	Speirs L, Nittami T, McIlroy S, Schroeder S, Seviour R J. 2009. Filamentous Bacterium
311		Eikelboom Type 0092 in Activated Sludge Plants in Australia Is a Member of the Phylum
312		Chloroflexi_ Appl. Environ. Microbiol. 75: 2446–2452.
313	3.	Adrian L, Szewzyk U, Wecke J, Go¨risch H. 2000. Bacterial dehalorespiration with chlorinated
314		benzenes.Nature 408: 580–583.
315	4.	Pedrós-Alió C. 2012. The rare bacterial biosphere. Ann. Rev. Mar. Sci. 4: 449-466.
316	5.	Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl
317		GJ.2006. Microbial diversity in the deep sea and the underexplored "rare biosphere". Proc. Natl.
318		Acad. Sci. U.S.A. 103: 12115-12120.
319	6.	Lleo` MM, Pierobon S, Tafi MC, Signoreto C, Canepari P. 2000. mRNA detection by reverse
320		transcription-PCR for monitoring viability over time in an Enterococcus faecalis viable but
321		nonculturable population maintained in a laboratory microcosm. Appl. Environ. Microbiol. 66:
322		4564–4567.
323	7.	Oliver JD. 2010. Recent findings on the viable but nonculturable state in pathogenic bacteria.
324		FEMS Microbiol. Rev. 34:415–425.
325	8.	Chen DMJ, Zhang X, Li A, Li Y, Wang Y. 2007. Retention of virulence in a viable but
326		nonculturable Edwardsiella tarda isolate. Appl. Environ. Microbiol.73: 1349-1354.
327	9.	Quir 'os C, Herrero M, Garcia LA, Diaz M. 2009. Quantitative approach to determining the
328		contribution of viable-but nonculturable subpopulations of malolactic fermentation processes.
329		Appl. Environ. Microbiol. 75: 2977–2981.
330	10.	Sachidanandham R, Gin KYH. 2009. A dormancy state in nonspore-forming bacteria. Appl

- 331 Microbiol Biotec. 81:927–941.
- 11. Prakasam TBS, Dondero NC. 1967. Aerobic Heterotrophic Bacterial Populations of Sewage
 and Activated Sludge I. Enumeration' Appl. Environ. Microbiol. 15:461-467.
- 12. Dias FF, Bhat JV. 1964. Microbial Ecology of Activated Sludge I. Dominant Bacteria Appl
 Environ Microb, 12(5):412-417.
- 13. Rapp'e MS, Giovannoni SJ. 2003. The Uncultured Microbial Majority. Annu. Rev. Microbiol.
 2003. 57:369–94.
- 14. Fierera N, Leffb JW, Adamsc BJ, Nielsend UN, Batesb ST, Lauberb CL, Owense S, Gilberte J,
 Wallh DH, Caporasoe JG. 2012. Cross-biome metagenomic analyses of soil microbial
- 340 communities and their functional attributes. Proc. Natl. Acad. Sci. U.S.A.109:21390–213951.
- 341 15. Narihiro, T. 2016. Microbes in the water infrastructure: underpinning our society. Microbes
 342 Environ. 31:89–92.
- 343 16. Hiraishi, A. 1999. Distribution of viable but non-culturable bacteria in wastewater treatment
 344 systems. Microbes Environ. 14:91-99. (In Japanease).
- 345 17. Kamagata, Y. 2007. What are uncultured Microbe? J. Environ. Biotech. 7:69-73 (In
 346 Japanease).
- 18. Snaidr J, Amann R, Huber I., Ludwig W, Schleifer KH. 1997. Phylogenetic Analysis and In Situ
 Identification of Bacteria in Activated Sludge. Appl. Environ. Microbiol. 62:2884–2896.
- Piterina AV, Pembroke JT. 2013.Use of PCR-DGGE Based Molecular Methods to Analyse
 Microbial Community Diversity and Stability during the Thermophilic Stages of an ATAD
 Wastewater Sludge Treatment Process as an Aid to Performance Monitoring. ISRN Biotech.
 2013: 162645.
- 20. Hanada A, Kurogi T, Giang NM, Yamada T, Kamimoto Y, Kiso Y, Hiraishi A. 2014. Bacteria
 of the Candidate Phylum TM7 are Prevalent in Acidophilic Nitrifying Sequencing-Batch
 Reactors. Microbes Environ. 29: 353-362.
- 356 21. Saikaly PE, Stroot PG, Oerther DB. 2005. Use of 16S rRNA Gene Terminal Restriction
 357 Fragment Analysis to Assess the Impact of Solids Retention Time on the Bacterial Diversity of
- 358Activated Sludge. Appl. Environ. Microbiol. 71:814–5822. t-RFLP AEM 5814 2005
- 359 22. V.-Vargas A, T.-Labrador G, M.I-Deya AA 2012. Bacterial Community Dynamics in Full-Scale
- 360 Activated Sludge Bioreactors: Operational and Ecological Factors Driving Community
- 361 Assembly and Performance PLoS One 7:e42524.
- 362 23. Takeda K, Hashimoto K, Soda S, Ike M, Yamashita K, Hashimoto T. 2014. Characterization of
 363 Microbial Community in Membrane Bioreactors Treating Domestic Watewater. J. Water
 364 Environ. Tec. 12:99-107.
- 365 24. Silva AF, Carvalho G, Oehmen A, L.-Ferreira M, van Nieuwenhuijzen A, Reis MAM., Teresa

M, Crespo B. 2012. Microbial population analysis of nutrient removal-related organisms in

367		membrane bioreactors. Appl. Microbiol. Biotechnol. 93:2171-2180.
368	25.	Lenaerts J, Lappin-Scott HM, Porter J. 2007. Improved Fluorescent In Situ Hybridization
369		Method for Detection of Bacteria from Activated Sludge and River Water by Using DNA
370		Molecular Beacons and Flow Cytometry. Appl. Environ. Microbiol.73:2020–2023.
371	26.	Xia S, Duan L, Song Y, Li J, Andersen GL, Alvarez -Cohen L, Moreno-Andrade I, Huang CL,
372		Hermanowicz S. 2010. Bacterial Community Structure in Geographically Distributed Biological
373		Wastewater Treatment Reactors. Environ. Sci. Technol. 44:7391–7396.
374	27.	Zhang T, Shao MF, Ye L. 2012. 454 Pyrosequencing reveals bacterial diversity of activated
375		sludge from 14 sewage treatment plants. The ISME Journal 6:1137-1147.
376	28.	Wang X., Hu M, Xia Y, Wen X, Ding K. 2012. Pyrosequencing Analysis of Bacterial Diversity
377		in 14 Wastewater Treatment Systems in China. Appl. Environ. Microbiol, 78:7042-7047.
378	29.	Ibarbalz FM, Orellana E, Figuerola ELM, Erijman L. 2016. Shotgun Metagenomic Profiles
379		Have a High Capacity To Discriminate Samples of Activated Sludge According to Wastewater
380		Type. ApplEnviron. Microbiol. 82:5186-5196.
381	30.	Sato Y, Hori T, Navarro RR, Naganawa R, Habe H, Ogata A. 2016. Effects of
382		Organic-Loading-Rate Reduction on Sludge Biomass and Microbial Community in a
383		Deteriorated Pilot-Scale Membrane Bioreactor. Microbes Environ. 31:361-364.
384	31.	Narihiro T, Nobu MK, Hori T, Aoyagi T, Sato Y, Inaba T, Aizawa H, Tamaki H, Habe H. 2019.
385		Effects of the Wastewater Flow Rate on Interactions between the Genus Nitrosomonas and
386		Diverse Populations in an Activated Sludge Microbiome. Microbes Environ. 34:89-94.
387	32.	Xia S, Duan L, Song Y, L i J, Piceno YM, Andersen GL, A Cohen L, M-Andrade I,
388		Sanapareddy N, Hamp TJ, Gonzalez LC, Hilger HA, Fodor AA, Clinton SM. 2009. Molecular
389		Diversity of a North Carolina Wastewater Treatment Plant as Revealed by Pyrosequencing.
390		Appl. Environ. Microbiol. 75:1688–1696.
391	33.	Dionisi HM, Harms G, Layton AC, Gregory IR, Parker J, Hawkins SA, Robinson KG, Sayler
392		GS. 2003. Power Analysis for Real-Time PCR Quantification of Genes in Activated Sludge and
393		Analysis of the Variability Introduced by DNA Extraction. Appl. Environ. Microbiol. 69:6597–
394		6604.
395	34.	Baptista JDC, Lunn M, Davenport RJ, Swan DL, Read LF, Brown MR, Morais C, Curtisa TP.
396		2014. Agreement between amoA Gene-Specific Quantitative PCR and Fluorescence In Situ
397		Hybridization in the Measurement of Ammonia-Oxidizing Bacteria in Activated Sludge. Appl.
398		Environ. Microbiol. 80: 5901–5910.
399	35.	Nguyen VL, He X, de los Reyes III FL. 2016. Quantifying in situ growth rate of a filamentous
400		bacterial species in activated sludge using rRNA:rDNA ratio. FEMS. Microbiol. Letters.

401 363:fnw255.

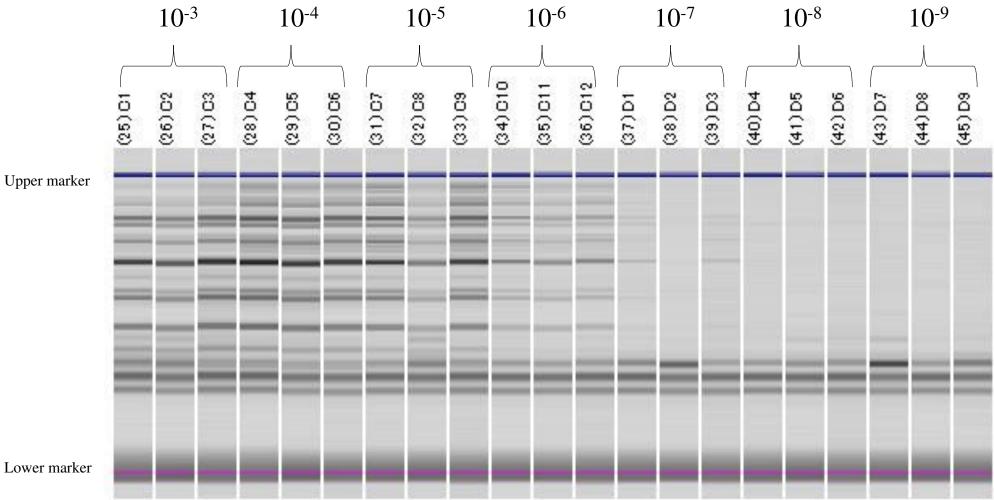
- 402 36. Watanabe K, Okuda M, Koga N. 2008. Newly developed system based on multiple enzyme
- restriction fragment length polymorphism-an application to proteolytic bacterial flora analysis,
 Soil Sci.Plant Nutr. 54:2, 204-215
- 405 37. Watanabe K, Koga N. 2009. Use of a Microchip Electrophoresis System for Estimation of
- Bacterial Phylogeny and Analysis of NO³ Reducing Bacterial Flora in Field Soils. Biosci.
 Biotech. Biochem. **73**:479-488.
- 38. Watanabe K, Horinishi N, Matumoto K, 2015. Antibiotic-Resistant Bacterial Group in Field Soil
 Evaluated by a Newly Developed Method Based on Restriction Fragment Length Polymorphism
 Analysis. Adv. Microbiol. 5:807-816.
- 411 39. Watanabe K, Horinishi N, Matumoto K, Tanaka A, Yakushido K. 2015. Bacterial Groups
- 412 Concerned with Maturing Process in Manure Production Analyzed by a Method Based on
- 413 Restriction Fragment Length Polymorphism Analysis. Adv. Microbiol. 5:832-841.
- 414 40. Watanabe K, Horinishi N, Matumoto K, Sogabe Y. 2016. Identification and Enumeration
 415 Method of both Eukaryotic and Prokaryotic Microorganisms in Food Sample. Food Nutr. Sci.
 416 7: 345-354.
- 41. Horinishi N, Matumoto K, Watanabe K. 2016. A Simple Evaluation System for Microbial
 418 Property in Soil and Manure. Adv. Microbiol. 6: 88-97.
- 419 42. Matumoto K, Shimada K, Horinishi,N, Watanabe K. 2016. Evaluation of the method based on
 420 restriction fragment length polymorphism analysis as simple analysis method of lactic acid
 421 bacteria in foods. Food Nutr. Sci. 7: 163-172.
- 42. 43. Watanabe K, Horinishi N, Matsumoto K, Tanaka A, Yakushido K. 2016. A new evaluation
 423 method for antibiotic-resistant bacterial groups in environment. Adv. Microbiol. 6:133-151.
- 424 44. Weidner S, Arnold W, Puhler A. 1996. Diversity of Uncultured Microorganisms Associated
 425 with the Seagrass *Halophila stipulacea* Estimated by Restriction Fragment Length
- 426 Polymorphism Analysis of PCR-Amplified 16S rRNAGenes. Appl. Environ.Microbiol.427 62:766-771.
- 428 45. Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM, Bandela AM,
 429 Cardenas E, Garrity GM, Tiedje JM. 2007. The Ribosomal Database Project (RDP-II):
- 430 Introducing myRDP Space and Quality Controlled Public Data. Nucleic Acids Res.
- 431 **35**:D169-D172.
- 432 46. Nei M, Li WH. 1979. Mathematical Model for Studying Genetic Variation in Terms of
- 433 Restriction Endonucleases. Proc. Natl. Acad. Sci. U.S.A. **76**:269-5273.
- 434 47. Blodgett R. 2010. FDA, Bacterial Analytical Manual, Appendix 2: Most Probable Number from
 435 Serial Dilutions.

436	http://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm109656.htm
437	48. Haas CN. 1989. Estimation of Microbial Densities from Dilution Count Experiments. Appl.
438	Environ. Microbiol. 55:1934-1942.
439	49. Nubel U, Engelen B, Felske A, Snaidir J, Wieshuver A, Amann RI, Ludwig W, Backhaous H.
440	1996. Sequence Heterogeneities of Genes Encoding 16S rRNAs in Paenibacillus polymyxa
441	Detected by Temperature Gradient Gel Electrophoresis J. Bacteriol. 178: 5636–5643.
442	50. Heuer H, Krsek M, Baker P, Smalla K, Wellington EH 1997. Analysis of Actinomycete
443	Communities by Specific Amplification of Genes Encoding 16S rRNA and Gel-Electrophoretic
444	Separation in Denaturing Gradients. Appl. Environ. Microbiol. 63:3233–3241.
445	51. Morimoto S, Hoshino Y. 2008. Methods for analysis of soil communities by PCR-DGGE (1)
446	bacterial and fungal communities. Soil Microorg. 62:63-68.
447	

449 Figure legends

- 450 Figure 1. Electropherograms of RFLP (*Hh* I) of serial 10-fold dilutions $(10^{-3}-10^{-9})$ in the MBR for C
- 451 farm on 9/October/2015.

452


- 453 Figure 2. Ratios of bacterial groups estimated by MPN for the tested three MBRs.
- 454 Capital letters indicate the results of culture-independent MPN as the following: A1, A2
- 455 were in the MBR for A farm on 6/August/2014, and 24/October/2015, B1and B2 were the MBR
- 456 for A farm on 18/ August /2014 and 30/August/2014, and C was the MBR for C farm on
- 457 9/October/2015. Small letters indicate the results of culture-based MPN as the following,
- 458 a1 was in the MBR for A farm on 6/August/2014, b1 was the MBR for B farm on 18/ August
- 459 /2014, and c was in that for C farm on 9/October/2015.Ratio of Actinobacteria
- 460 (\square), Firmicutes(\square), α-Proteobacteria (\square), β-Proteobacteria (\square), γ-Proteobacteria (\square),
- 461 δ-Proteobacteria (\square), ε -Proteobacteria (\square), Other bacteria (\square), unidentified bacteria (\blacksquare).
- 462
- 463 Figure 3. DGGE profiles of serial 10-fold dilutions $(10^{-2}-10^{-5})$ in the MBR for A farm on
- 464 6/August/2014.

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.07.031104; this version posted April 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

466 Figure 4. DGGE profiles of serial 10-fold dilutions $(10^{-4}-10^{-8})$ in the MBR for A farm on

467 24/October/2015.

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.07.031104; this version posted April 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Upper marker

Figure 1.

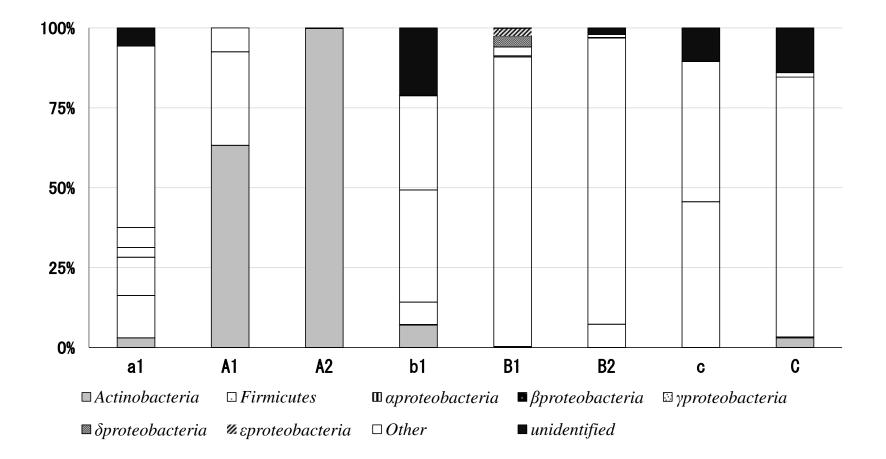


Figure 2.

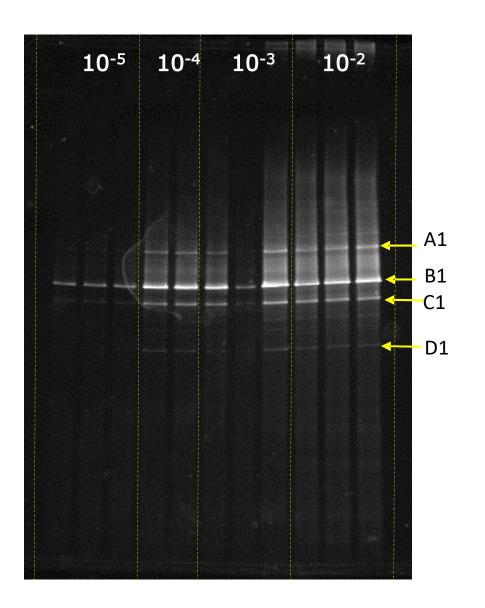


Figure 3.

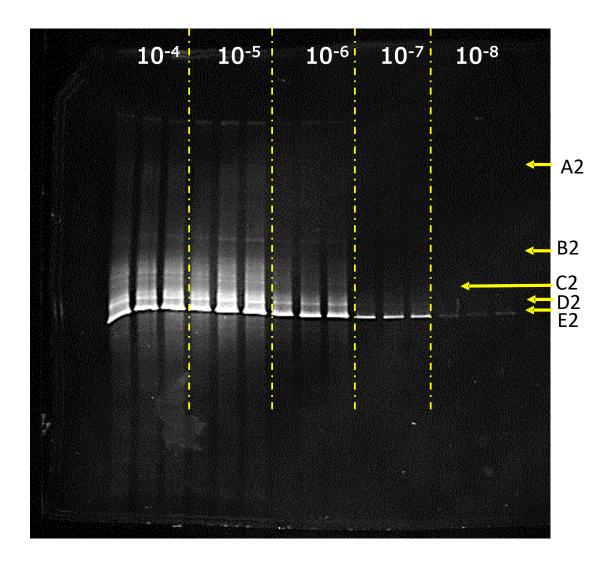


Figure 4.

A1 Vial No. ^b Restriction Similarity Name (Acession number) ^d enzymes ^c (%)	A2	Vial No. ^b	Restriction enzymes ^c		rity Name (Acession number) ^d
A110 ⁻² -2H A.Ha.Hh 100		A210 ⁻³ -1H	A,Ha,Hh	91.7	
A110 ⁻² -3H A,Ha,Hh 100		A210 ⁻³ -2H	A,Ha,Hh	100	
A110 ⁻³ -1H A,Ha,Hh 100		A210 ⁻³ -3H	A,Ha,Hh	91.7	
		A210 ⁻⁴ -1H	A,Ha,Hh	100	
A110 ⁻³ -2H A,Ha,Hh 100 A110 ⁻³ 2H A H- H- 100 Arthrobacter sp.(AF197047)		A210 ⁻⁴ -2H	A,Ha,Hh	100	
A110 ⁻ -3H A,Ha,Hn 100		A210 ⁻⁴ -3H	A,Ha,Hh	91.7	
A110 ⁻⁴ -1H A,Ha,Hh 100		A210 ⁻⁵ -1H	A,Ha,Hh	91.7	Arthrobacter sp.(AF197047,AF197044,AM11056,AM491459)
A A110 ⁻⁴ -2H A,Ha,Hh 100		A210 ⁻⁵ -2H	A,Ha,Hh	91.7	
A110 ⁻⁴ -3H A,Ha,Hh 100		A210 ⁻⁵ -3H	A,Ha,Hh	91.7	
A110 ⁻⁵ -3H A,Ha,Hh 100		A210 ⁻⁶ -1H	A,Ha,Hh	91.7	
A 110-2 111 A D III A D IIII A D III A	A	A210 ⁻⁶ -2H	A,Ha,Hh	91.7	
A110 ⁻² -1H A,R,Hh 91.7 Streptmyces baatus(A1999785), S.tavenautae(D85110, D85111)		A210 ⁻⁶ -3H A210 ⁻⁷ -1H	A,Ha,Hh	91.7	
A110 ⁻⁵ -2H A,R 100 <i>Micromonospora carbonacea</i> (Mms.carbo2, Mmscarbor <i>M.chalcea</i> (Mms.chalc2), <i>M.echinospora</i> (Mms echns2)		A210 ⁻⁷ -3H	A,Ha A,Ha,Hh	100 91.7	
A110 ⁻² -1MA,Ha, 93	poru (will's cellis2)	A210 ⁻³ -1M	Ha,Hh	100	
A110 ⁻² -2M A,Ha, 93		A210 ⁻³ -3M	Ha,Hh	100	Microbacterium sp.(AM403628)
		A210 ⁻⁶ -3M	Ha,Hh	100	
A110 ⁻² -3MA,Ha, 93		A210 ⁻⁶ -2M	Ha,Hh	100	Microbacterium lavaniforman (D21344)
A110 ⁻³ -1MA,Ha, 93		A210 ⁻⁴ -1M	Ha,Hh	100	Cellulosimicrobium sp.(AB188217), Streptmyces shandongensi.
βP A110 ⁻³ -2MA,Ha, 93 <i>Burkholderia</i> sp.(AB299593)					(AY875718), Promicromonospora enterophil (X83807)
A110 ⁻³ -3MA,Ha, 93		A210 ⁻⁷ -2H	R,Hh	90	Streptomyces cirratus (AY944265), S.lavendulae (Stm.lave12)
A110 ⁻⁴ -1M A,Ha, 93		A210 ⁻³ -2L	A,Hh	93	Lactobacillus reuteri (L23507, L.reuteri)
A110 ⁻⁴ -2M A,Ha, 93	F	A210 ⁻³ -3L	A,Hh	93	
A110 ⁻⁴ -3M A,Ha, 93		A210 ⁻⁵ -2L	A,Hh	93	Eubacterium sp.(Eub.W 1365), uncultured Buleidia sp.(AM420
γP A110 ⁻⁵ -1H A,R,Hh 93.3 Cedecea neteri (AB086230)	<u>α</u> Ρ	A210 ⁻³ -1L	A,R	100	Leisingera methylohalidivorans(AY005463)
		A210 ⁻³ -2M	A,Ha	94.4	uncultured Gammaproteobacteria (AY354844)
ping was based on affiliation by MERFL; <i>Actinobacteria</i> (A), <i>Firmicutes</i> (F), roteobacteria (α P), <i>Betaproteobacteria</i> (βP), <i>Gammaproteobacteria</i> (γP), <i>Deltaproteobact</i>	teria	A210 ⁻⁴ -3M	A,Ha		Photobacterium profundum(CR378673)
Epsilonproteobacteria (EP), the other bacteria (O), and unidentified or uncultured bacterial g		A210 ⁻⁴ -2M	A,Ha	94.4	
	r i	A210 ⁻⁵ -1M	A,Ha	94.4	uncultured Gammaproteobacteria(AJ704665)
nential of vial number represents the decimal dilution of the vial. The 2nd number of vial		A210 ⁻⁵ -2M	A,Ha		C'unh a dan an (DO100720)
r (1-3) represents number in 3 replicates for the each decimal dilution. "H" of last letter		A210 ⁻⁵ -3M	A,Ha	94.4	Citrobacter sp.(DQ190736)

Table 1. Affiliation^a of bacteria in serially diluted DNA extract of MBR in A farm on 6/August/2014 (A1) and on 24/October/2015 (A2) by MERFLP (culture-independent MPN).

rDNA, and "L" represents from the 3rd major 16S rDNA. ^c Restriction enzymes used for similarity search; "Ha", "R", and "Hh" stand for Hae III, Rsa I, and Hha I. For the measured MERFLP, which had no completely identical theoretical MERFLP having the highest similarity using all the RFLPs, was presented with the similarity as described in the materials and method.

^d Species name (accession number) of the theoretical MERFL having the highest similarity with the measured MERFL

represents MERFL originating from the major 16S rDNA, "M" represents from the 2nd major 16S

B1	Vial No. ^b	Restriction enzymes ^c	Similar (%)	ity Name (Acession number) ^d	B 2	Vial No. ^b	Restrictior enzymes ^c	n Similaı (%)	rity Name (Acession number) ^d
^	B110 ⁻³ -2L	Ha,Hh	0.1	Actinotelluria brasiliensis(DQ029102)		B210 ⁻³ -2M	R,Hh	90	
A	B110 ⁻³ -3L	Ha,Hh	93	uncultured actinobacterium(AJ575510,AJ575514)	F	B210 ⁻⁴ -1M	R,Hh	90	Haloanaerobacter chitinovoran (U32596)
	B110 ⁻³ -1H	R,Hh	100			B210 ⁻⁵ -3M	R,Hh	90	
	B110 ⁻³ -3H	R,Hh	100			B210 ⁻¹ -1H	A,R,Hh	96.3	
	B110 ⁻⁴ -1H	R,Hh	100	Ensifer fredii (D14516), E.meliloti (D14509), E. medicae		B210 ⁻¹ -2H	A,R,Hh	96.3	
	B110 ⁻⁴ -2H	R,Hh	100	(CP000738), Shinorhizobium fredi (Srh.fredi5), S. meliloti		B210 ⁻¹ -3H B210 ⁻² -1H	A,R,Hh	96.3	
ıΡ	B110 ⁻⁴ -3H	R.Hh	100	(Srh.melil7), Mesorhizobium tianshanense (Mso.tians2), M.		B210 ⁻² -1H B210 ⁻² -2H	A,R,Hh	96.3	
	B110 ⁻⁵ -1H	R,Hh	100	loti (BA000012), Agrobacterium vitis (D12795)		B210 2H B210 ⁻² -3H	A,R,Hh A,R,Hh	96.3 96.3	$E_{11}=\{f_{11}, f_{12}, f_{13}, f_{1$
	B110 ⁻⁵ -2H	R,Hh	100		αP	B210 -3H B210 ⁻³ -1H	A,R,Hh	90.5 96.3	Ensifer fredii (AB195268), E.medicae(CP000738), Shinorhizobium sp.(AF227755,AB195268)
	B110 ⁻⁵ -3H	R,Hh	100			B210 ⁻³ -3H	A,R,Hh	96.3	Sunorm2001um sp.(AI 227755,AD 195208)
	B110 - 3H B110 ⁻³ -2H	Ha.Hh	100	Aquaspirillum peregrinum (AB074521)		B210 ⁻⁴ -1H	A,R,Hh	95.2	
sР		,				B210 ⁻⁴ -3H	A,R,Hh	96.3	
	B110 ⁻³ -3M	A,Hh	90	Neisseria elongata(Nis,elong2)		B210 ⁻⁵ -2H	A,R,Hh	96.3	
	B110 ⁻³ -1M	A,Hh	90	Vibrio shilonii (AY911395), V.harveyi(AY911396),		B210 ⁻⁵ -3H	A,R,Hh	96.3	
-	B110 ⁻³ -2M	A,Hh	90	<i>V.alginolyticus</i> (V.alginol3), <i>Neisseria elongata</i> (Nis,elong2)	βP	B210 ⁻³ -2H	Ha,Hh	100	Aquaspirillum peregrinum (AB074521)
P	B110 ⁻⁴ -3M	A,Hh				B210 ⁻¹ -1M	R,Hh	90	
	B110 ⁻⁵ -2M	A,Hh	90	<i>Escherichia coli</i> (E.colirnB3,E.colirnC3,E.colirnD3), <i>Shigella dyenteriae</i> (X96966)		B210 ⁻¹ -2M B210 ⁻¹ -3M	R,Hh R,Hh	90 90	
	B110 ⁻⁴ -1M	A,Hh	93	uncultured Deltaproteobacterium (AJ581352)		B210 ⁻² -1M	R.Hh	90 90	
Р	B110 ⁻⁴ -2M	A,R	90	Deltaproteobacterium (AY162123)		B210 ⁻² -2M	R,Hh	90	uncultured bacterium (AB186826, AB186827, AB186829)
	B110 ⁻⁵ -1M	Ha,Hh	90			B210 ⁻² -3M	R,Hh	90	
:Р	B110 ⁻⁵ -3M	Ha.Hh	90	uncultured Epsilonproteobacterium (AB013262, AB015535)		B210 ⁻³ -1M	R,Hh	90	
0	B110 ⁻³ -2L	R,Hh	90	<i>Treponema</i> sp.(AF182834,AF182837)		B210 ⁻³ -3M	R,Hh	90	
<u> </u>	DIIO 22	10,111	20	110ponenia sp.(111102001,111102001)		B210 ⁻⁴ -3M	R,Hh	90	
						B210 ⁻¹ -1L	R,Hh	90	
^a Grouping was the same as described in Table 1.					B210 ⁻¹ -2L	R,Hh	90		
^b Vial number was the same as described in Table 1.				B210 ⁻² -3L	R,Hh	90	uncultured bacterium(DQ154841)		
				rity search as described in Table 1.		B210 ⁻³ -3L	R,Hh	90	
۳ S	pecies name (accession nu	mber) w	as the same as described in Table 1.		B210 ⁻⁴ -3L	R,Hh	90	

Table 2. Affiliation^a of bacteria in serially diluted DNA extract of MBR in B farm on 18/August/2014 (B2) and on 30/August/2014 (B2) by MERFLP (culture-independent MPN).

	Vial No. ^b	Restriction		ity Name (Acession number) ^d
		enzymes ^c	(%)	
	C10 ⁻³ -1L	R,Hh	100	
А	C10 ⁻⁴ -1L	R,Hh	100	Mycobacteriaceae bacterium (AB298730), Propionibacteriaceae bacterium (AB298731)
	C10 ⁻⁵ -1L	R,Hh	100	Mycobacteriaceae bacteriain (AD250750), 170pionibacteriaceae bacteriain (AD250751)
	C10 ⁻⁶ -2L	R,Hh	100	
	C10 ⁻⁶ -1M	Ha,Hh	90	Streotiverticillium baldaccii (X53164,X53169)
	C10 ⁻⁶ -2M	Ha,Hh	90	
	C10 ⁻³ -2H	Ha,R	100	uncultured <i>Eubacterium</i> (AY356378,AY356789,AY356381,AY356382)
	C10 ⁻³ -3L	R,Hh	100	
F	C10 ⁻⁴ -2L	R,Hh	100	Lactobacillus fermentum (M58809, M58819, DQ208931, L.Fermentm), L.bifermentum
	C10 ⁻⁴ -3L	R,Hh	100	(L.bifermen)
	C10 ⁻⁵ -3L	R,Hh	100	
	C10 ⁻³ -1H	Ha,R	100	
	C10 ⁻³ -3H	Ha,R	100	
	C10 ⁻⁴ -1H	Ha,R	100	
	C10 ⁻⁴ -3H	Ha,R	100	
3P	C10 ⁻⁵ -1H	Ha,R	100	uncultured Betaproteobacteria (AY921864)
JF	C10 ⁻⁵ -3H	Ha,R	100	uncuntifed Betaproteobacierta (A1921804)
	C10 ⁻⁶ -1H	Ha,R	100	
	C10 ⁻⁶ -2H	Ha,R	100	
	C10 ⁻⁶ -3H	Ha,R	100	
	C10 ⁻⁷ -1H	Ha,R	100	
	C10 ⁻³ -1M	Ha,R	90	Aquiflexum balticum (AJ744861)
~	C10 ⁻⁴ -2H	Ha,R	100	(A, V) = (
0	C10 ⁻⁵ -2H	Ha,R	100	uncultured Chloroflexi bacteria(AY921893)
	C10 ⁻⁶ -1M	Ha,R	90	uncultured Cytophaga sp.(AB015265)
	C10 ⁻³ -2M	Ha,Hh	100	
	C10 ⁻⁵ -1M	Ha,Hh	100	uncultured bacterium(AY942753,AY942754)
	C10 ⁻⁵ -3M	Ha,Hh	100	
	C10 ⁻⁴ -2M	A,Ha	100	uncultured bacterium(AY375083)
	C10 ⁻⁶ -3L	R,Hh	100	upoultured protomysts (AM269745)
	C10 ⁻⁷ -1L	R,Hh	100	uncultured prokaryote(AM268745)

Table 3. Affiliation^a of bacteria in serially diluted DNA extract of MBR in C farm 9/October/2015 by MERFLP (culture-independent MPN).

^a Grouping was the same as described in Table 1. ^b Vial number was the same as described in Table 1. ^c Restriction enzymes used for similarity search as described in Table 1. ^d Species name (accession number) were the same as described in Table 1.

Table 4. Most probable numbers of the numbers of each group in the MBE in A farm on 6/August/2014 by culture-based MPN (a1), on 6/August /2014 (A1) and on 24/October /2015 (A2)
by culture-independent MPN and 5% confidence limits obtained using the FDA's Bacterial Analytical Manual (47, 48).
*Under estimated MPN number due to an absence of MPN dilution vials higher than 10 ⁻⁹ .

		lture-based N	IPN)	A1(culture-	independ	ent MPN)	A2 (culture- independent MPN)				
	Three Score		x10 ⁶ MPN/n	L 5%limits	Three	Score	x10 ⁴ MP	N/mL 5%	Three	Score	x106MPN/r	/mL 5% limits
	dilutions			Low-High	dilutions		limits	Low-High	dilutions			Low-High
Actinobacteria	10-710-810-9	0-0-1	30	1.5-96	10-410-510-6	3-2-0	93	18-420	10-610-710-8	3-3-0	240	42-1000
Arthrobacter sp.					10-410-510-6	3-1-0	43	9-180	10-610-710-8		93	18-420
Microbacterium sp.									10-610-710-8		9.2	1.4-38
Firmicutes	10-710-810-9	2 - 0 - 1	140	36-420					$10^{-3}10^{-4}10^{-5}$	2-0-1	0.01	0.004 - 0.042
oproteobacteria	10-510-610-7	2 - 0 - 0	0.92	0.14-3.8					10-310-410-5	1-0-0	0.004	0.00002-0.018
βproteobacteria	10-710-810-9	0-1-0	30	1.5-90	10-410-510-6	3-1-0	43	9-180				
Burkholderia sp.					$10^{-4}10^{-5}10^{-6}$	3-1-0	43	9-180				
yproteobacteria	10-710-810-9	1-1-0	74	13-200	10-410-510-6	0-1-0	11	0.15-11	10-410-510-6	2-3-0	0.29	0.09 - 0.94
δproteobacteria												
E proteobacteria												
Other	10-710-810-9	3-1-0	430	90-1800								
unidentified	10-410-510-6	1-0-0	0.04	0.002 - 0.18								
Total number	10-710-810-9	3-3-3	>11,000*	420-	10-410-510-6	3-3-0	240	42-1000	10-610-710-8	3-3-0	240	42-1000

	b1 (culture-based MPN)				B1 (culture- independent MPN)				B2 (culture- independent MPN)			
	Three	Three Score		x106MPN/mL 5% limits		Score	x104MPN/mL 5% limits		Three	Score	x106MPN/mL 5% limits	
	dilutions			Low-High	dilutions			Low-High	dilutions			Low-High
Actinobacteria	10-710-810-9	0-0-1	30	1.5-96	10-310-410-5	2-0-0	0.92	10.14-3.8				
Firmicutes	$10^{-5}10^{-6}10^{-7}$	1-0-1	0.72	0.13-1.8					$10^{-4}10^{-5}10^{-6}$	1-1-0	12.6	2.4-41
H.chitinovoran									$10^{-4}10^{-5}10^{-6}$	1-1-0	12.6	2.4-41
oproteobacteria	10-710-810-9	0-1-0	30	1.5-300	$10^{-4}10^{-5}10^{-6}$	3-3-0	240	42-1000	$10^{-4}10^{-5}10^{-6}$	2 - 2 - 0	155	*
Ensifer/Shinorhizobium					$10^{-4}10^{-5}10^{-6}$	3-3-0	240	42-1000	$10^{-4}10^{-5}10^{-6}$	2 - 2 - 0	155	*
ßproteobacteria	10-710-810-9	2-1-0	150	37-420	$10^{-3}10^{-4}10^{-5}$	2 - 0 - 0	0.92	0.14 - 3.8	$10^{-3}10^{-4}10^{-5}$	1-0-0	0.37	*
yproteobacteria	10-710-810-9	0-3-1	126	37-265	$10^{-4}10^{-5}10^{-6}$	1-1-0	7.4	1.3-20				
δproteobacteria					$10^{-4}10^{-5}10^{-6}$	2 - 0 - 0	9.2	1.4-30				
E proteobacteria					$10^{-4}10^{-5}10^{-6}$	0-2-0	6.2	1.2-18				
Other	10.510.610.2	1-1-0	0.74	0.13-2	10-310-410-5	0-1-0	0.36	0.017-1.8	$10^{-3}10^{-4}10^{-5}$	2-1-0	1.58	*
unidentified	10-710-810-9	0-0-3	90	32-808					10-310-410-5	3-0-0	3.56	*
Total number	10.710.810.9	3-3-1	4,600	900-2000	$10^{-4}10^{-5}10^{-6}$	3-3-1	460	90-2000	10-410-510-6	3-3-0	240	42-1000

Table 5. Most probable numbers of the numbers of each group in the MBE in B farm on 18/August/2014 by culture-based MPN (b1), on 18/August/2014 (B1) and on 30/August/2014 (B2)
by culture-independent MPN and 5% confidence limits obtained using the FDA's Bacterial Analytical Manual (47, 48).
*We could not calculate 5% confidence limits because of the lack a 10^{-5} dilution sample, and a 10^{-6} dilution sample.

Table 6. Most probable numbers of the numbers of each group in the MBE in farm C on 9/October/2015 by culture-based MPN (c), and by culture-independent MPN (C) and 5% confidence limits obtained using the FDA's Bacterial Analytical Manual (47, 48). *Under estimated MPN number due to an absence of MPN dilution vials higher than 10⁻⁷.

		c (cultu	ure-based MPN	1)	${f C}$ (culture- independent MPN)				
	Three		x106MPN/mI	5%limits	Three	Score	Score x10 ⁶ MPN/mL 5%limi		
	dilutions			Low-High	dilutions		Low-Hig	h	
Actinobacteria					10-510-610-7	1-3-0	1.6	0.45 - 4.2	
Mycobacteriaceae					$10^{-5}10^{-6}10^{-7}$	1-1-0	0.74	0.13 - 2	
S. baldaccii					$10^{-5}10^{-6}10^{-7}$	0-2-0	0.62	0.12 - 1.8	
Firmicutes					10-410-510-6	2-1-0	0.15	0.037 - 0.42	
L. fermentum aproteobacteria					10 ⁻⁴ 10 ⁻⁵ 10 ⁻⁶	2-1-0	0.15	0.037-0.42	
βproteobacteria	$10^{-5}10^{-6}10^{-7}$	0-2-3	>1.56*	0.41- 2.39	10-610-710-8	3-1-0	43	9-180	
AY921864					10-610-710-8	3-1-0	43	9-180	
yproteobacteria	10-510-610-7	2-1-0	1.5	0.37-4.3					
δproteobacteria									
E proteobacteria									
Other					10-510-610-7	1-1-0	0.74	0.13 - 2	
unidentified	10-510-610-7	1-0-0	0.36	0.017-1.8	10-610-710-8	1-1-0	7.4	1.3-20	
AM26874					10-610-710-8	1-1-0	7.4	1.3-20	
Total number	10-510-610-7	3-3-3	>110*	42-	10.610.710.8	1-1-0	93	18-420	