Understanding the B and T cells epitopes of spike protein of severe respiratory syndrome coronavirus-2: A computational way to predict the immunogens
 Yoya Vashi ${ }^{\dagger}$, Vipin Jagrit ${ }^{\dagger}$, Sachin Kumar ${ }^{*}$

Viral Immunology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039 Assam India.
\dagger Contributed equally
*Corresponding author Email: sachinku@iitg.ac.in (S Kumar)

Contact number: 91-3612582229
Tech Guwari, Guwah

Coresoning autor Emair sachinesitg (S Kumar)

若
路

Abstract

The 2019 novel severe respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak has caused a large number of deaths with thousands of confirmed cases worldwide. The present study followed computational approaches to identify B- and T-cell epitopes for spike glycoprotein of SARS-CoV-2 by its interactions with the human leukocyte antigen alleles. We identified twenty-four peptide stretches on the SARS-CoV-2 spike protein that are well conserved among the reported strains. The S protein structure further validated the presence of predicted peptides on the surface. Out of which twenty are surface exposed and predicted to have reasonable epitope binding efficiency. The work could be useful for understanding the immunodominant regions in the surface protein of SARS-CoV-2 and could potentially help in designing some peptide-based diagnostics.

Introduction

Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recent pandemic and declared as a public health emergency by World Health Organization (WHO) ${ }^{1}$. The disease rapidly spread across the globe and caused havoc to humanity ${ }^{2}$. By the end of March, SARS-CoV-2 had spread to 200 countries and infected over 4,50,000 people ${ }^{3}$. The WHO is continuously monitoring and updating the health-related plans to curtail the disease spread. The absence of specific treatment and vaccine worsen the situation and threat the world.

International Committee on Taxonomy of Viruses (ICTV), classified SARS-CoV-2 under family coronaviridae of order nidovirales. The genomic sequence of SARS-CoV-2 isolated from the bronchoalveolar lavage fluid of a patient from the Wuhan, China showed a length of 29,903 nucleotides (GenBank accession number NC_045512) ${ }^{4}$. The SARS-CoV-2 contains a positive single-stranded RNA with 5^{\prime} and 3^{\prime} UTR. The genome codes for ORF1a, ORF1b, Spike (S), ORF3a, ORF3b, Envelope (E), Membrane (M), ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF14, Nucleocapsid (N), and ORF10 from 5' to $3^{\prime \prime, 5}$.

The S glycoprotein forms homotrimers and represents a potential target for therapeutic and vaccine design as it mediates viral entry into host cells ${ }^{6,7}$. S glycoprotein comprises of two functional subunits. Whereas the S1 subunit is responsible for binding to the host cell receptor, the S2 subunit is responsible for the fusion of the viral with the cell membrane. Usually, in CoVs, S is cleaved at the boundary between the S 1 and S 2 subunits, which remain noncovalently bound in the prefusion conformation, to activate the protein for membrane fusion via extensive irreversible conformational changes ${ }^{8-10}$. Setting apart from other SARS-CoVs, it is found that S glycoprotein of SARS-CoV-2 harbors a furin cleavage site at the boundary between the $\mathrm{S} 1 / \mathrm{S} 2$ subunits ${ }^{11}$. By now, it is evident that SARS-CoV-2 S uses angiotensinconverting enzyme 2 (ACE2) receptor-mediated entry into cells. It is found that the receptor-
binding domains of S proteins of SARS-CoV-2 and SARS-CoV bind with similar affinities to human ACE2 ${ }^{11,12}$.

As the situation worsens, there is a growing need for the development of suitable therapeutics and alternate diagnostics against SARS-CoV-2 for effective disease management strategies. Diagnostic assays based on peptides have become increasingly substantial and indispensable for its advantages over conventional methods ${ }^{13}$. The present study aimed to locate appropriate epitopes within a particular protein antigen, which can elicit an immune response that could be selected for the synthesis of the immunogenic peptide. Using computational approach, S glycoprotein of SARS-CoV-2 was explored to identify various immunodominant epitopes for the development of diagnostics. Besides, the results could also help us to understand the SARS-CoV-2 surface protein response towards T and B cells.

Materials \& Methods

Collection of targeted protein sequence

We downloaded amino acid sequences $(\mathrm{n}=98)$ of S protein available at the time of study on targeted SARS-CoV-2 from the National Centre for Biotechnological Information (NCBI) database.

Identification of potential peptides

To identify an immunodominant region, it is of extreme importance to select the conserved region within the S protein of SARS-CoV-2. All the sequences were compared among themselves for variability using protein variability server by Shannon method ${ }^{14}$. The average solvent accessibility (ASA) profile was predicted for each sequence using SABLE server ${ }^{15}$. BepiPred 1.0 Linear Epitope Prediction module ${ }^{16-18}$ incorporated in Immune Epitope Database (IEDB) ${ }^{19}$ was used to predict potential epitopes within the S protein. The FASTA sequence of the targeted protein was used as an input for all the default parameters.

Identification of B-cell epitopes

We used two web-based tools for B-cell epitope prediction, viz., the IEDB, and ABCpred server ${ }^{20}$. S protein structure from protein data bank (PDB) (6VSB) ${ }^{21}$ was analyzed for linear and discontinuous B-cell epitopes using ElliPro module ${ }^{22}$ on IEDB server, with default settings. Also, ABCpred server was used to detect B-cell epitopes using artificial neural network (ann) method.

Identification of T-cell epitopes

T-cell epitopes having binding affinity towards MHC-I and MHC-II alleles were selected to boost up both cytotoxic T-cell and helper T-cell mediated immune response. IEDB server was used to predict the MHC-I and MHC-II binding epitopes for targeted protein. The reference set of alleles was used for predicting the MHC-I and MHC-II T-cell epitopes. ${ }^{23-27}$

Results and Discussion

In our study, we targeted the S glycoprotein of SARS-CoV-2 as it is present outside the virus and interacts with the host receptor. At the time of the study, there were 98 sequences available for the targeted protein of SARS-CoV-2. The S glycoprotein is 1273 amino acids long sequence except for the virus isolated from Kerala (India), which is 1272 amino acids long spike glycoprotein (GenBank accession number MT012098). Our interest here was to determine conserved regions first and then determine surface-exposed regions, which are potential epitopes to generate immune response. We found that sequences among all the S proteins in the analysis are least variable and highly conserved as shown in Figure 1. Regions having a high value of ASA are more surface exposed as compared to others. We identified a total of 24 peptides of varying length, as shown in Table 1, which are selected based on high ASA values. The potential epitope regions were predicted using the sequence of S protein of SARS-CoV-2, which showed the least variability (GenBank accession number NC_045512).

The potential epitopes are represented by blue peaks, while green-colored slopes represent nonepitopic regions (Figure 2).

The existence of B-cell linear and discontinuous (conformational) epitopes within the identified segments could help us to identify the peptides, which can elicit immune response ${ }^{28}$. We identified 18 linear epitopes, predicted by ElliPro (IEDB), which contains regions from 19 of our selected peptides highlighted in red in Table 2. These identified B-cell linear epitopes are placed based on their positional value, and scores. Epitopes with high scores have more potential for antibody binding. Five of our selected peptides (peptide numbers 3, 5, 19, 23, and 24 in Table 1) were not considered as potential linear B-cell epitopes.

Using the same module, B-cell discontinuous epitopes were predicted, which gave 16 epitope regions that contained regions from 18 of our selected peptides highlighted in red (Table 3). Six peptides (peptide numbers 3, 5, 14, 19, 23, and 24 in Table 1) were not predicted as discontinuous B-cell epitopes. To further confirm, we used ABCpred server to detect B-cell epitopes, with default threshold of 0.51 . It identified various epitopes with different length and scores; out of those, the regions which contained our selected peptides are highlighted in red (Table 4). A high score represents a good binding affinity with epitopes, and most of our peptides scored more than 0.7 and were predicted as linear B-cell epitopes.

We used the IEDB server to determine the binding affinity for human leucocyte antigen (HLA) with our selected peptides from Table 1. As recommended by the IEDB server, reference HLA allele sets were used for the prediction of MHC-I and MHC-II T-cell epitopes, as they provide comprehensive coverage of the population. All the predictions were made using IEDB recommended procedures. We observed good binding affinities for our selected peptides. The list of binding affinities for MHC-I T-cell epitopes is given in Table 5, where low rank represents high binding affinity. The epitopes with rank $<1 \%$ for very high binding affinity were selected. Regions from all of our selected peptides were found to be potential T-cell
epitope(s) with high binding affinity with HLA-A and HLA-B alleles, except one. Similarly, the list of binding affinities for MHC-II T-cell epitopes are given in Table 6. Regions from our selected peptides are highlighted in red. The results revealed that around half of our selected peptides are potential T-cell epitope(s) with high binding affinity with HLA-DRB and HLADP/DQ alleles.

Overall, it was found that the regions identified in Table 1 not only had good B-cell and T-cell affinities, but the majority of them had overlaps with discontinuous epitopes also (Table 3). The peptide segments identified from the set of 98 sequences of the SARS-CoV-2 S glycoprotein appear to hold reasonable potential to act as immunogens. Peptide-based diagnostics and vaccines have been proposed against virus outbreaks earlier ${ }^{29-33}$. The availability of a 3D structure (6VSB) of the SARS-CoV-2 S glycoprotein provided an opportunity to inspect the predicted peptides. Placement of the peptide segments identified by ASA and conserved sequence analysis on the S glycoprotein showed that 20 regions that we identified lie on the surface (Figure 3). In order to limit recognition and evade from immune response of host, coronaviruses use conformational masking and glycan shielding ${ }^{34,35}$. SARS-CoV-2 S trimer also exists in multiple distinct conformational states, which is necessary for receptor engagement leading to initiation of fusogenic conformational changes ${ }^{11}$. A considerable good number of peptides at the surface region of the S glycoprotein allows the potential use of those peptide regions as immunogens.

The emergence of new viral diseases like SARS-CoV-2 represents a substantial global disease burden. There is an urgent need for diagnostics, therapeutics, and vaccines against newly emerged SARS-CoV-2. Facilitated by high mutation rates, traditional vaccines based on antibody-mediated protection are often poor inducers of T cell responses and can have limited success ${ }^{36}$. In our study, we predicted both B-cell and T-cell epitopes for conferring immunity in different ways. We speculate that the identified epitopes with considerably good epitope
binding efficiency have the potential to be an immunodominant peptide. Peptide-based sensitive and rapid diagnostic kits are considered as a better alternative to the conventional serological tests including whole antigenic protein ${ }^{13}$. The study could help us to use the predicted peptide as an immunogen for the development of diagnostics against SARS-CoV-2.

Conclusion

In the present study, peptide segments were identified on S proteins for the development of diagnostics against SARS-CoV-2. The recent availability of 3D data on 2019-CoV spike glycoprotein has helped the search. SARS-CoV-2, being an RNA virus, has high mutations rate and undergoing active recombination ${ }^{37}$. Although the peptides identified are ideal candidates as immunogens for peptide-based diagnostics development, more refinement and lab trials are essential steps that are yet to be undertaken for early development of diagnostics before the identified epitopes are rendered obsolete.

References:

1. WHO. WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. 2020.
2. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China. JAMA. 2020.
3. WHO. Coronavirus disease 2019 (COVID-19) Situation Report - 66. 2020.
4. $\mathrm{Wu} \mathrm{F}, \mathrm{Zhao} \mathrm{S}, \mathrm{Yu} \mathrm{B}$, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-269.
5. Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-733.
6. Li F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu Rev Virol. 2016;3(1):237-261.
7. Tortorici MA, Walls AC, Lang Y, et al. Structural basis for human coronavirus attachment to sialic acid receptors. Nat Struct Mol Biol. 2019;26(6):481-489.
8. Park JE, Li K, Barlan A, et al. Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism. Proc Natl Acad Sci $U S A$. 2016;113(43):12262-12267.
9. Burkard C, Verheije MH, Wicht O, et al. Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner. PLoS Pathog. 2014;10(11):e1004502.
10. Walls AC, Tortorici MA, Snijder J, et al. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc Natl Acad Sci USA. 2017;114(42):11157-11162.
11. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020.
12. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020.
13. Mohanraj U, Chander S, Chavan YG. Peptide Based Viral Detection Systems for Effective Diagnosis of Common Viral Infections in India. Curr Protein Pept Sci. 2017;18(9):939-945.
14. Garcia-Boronat M, Diez-Rivero CM, Reinherz EL, Reche PA. PVS: a web server for protein sequence variability analysis tuned to facilitate conserved epitope discovery. Nucleic Acids Res. 2008;36(Web Server issue):W35-41.
15. Adamczak R, Porollo A, Meller J. Accurate prediction of solvent accessibility using neural networks-based regression. Proteins. 2004;56(4):753-767.
16. Larsen JE, Lund O, Nielsen M. Improved method for predicting linear B-cell epitopes. Immunome Res. 2006;2:2.
17. Ponomarenko JV, Bourne PE. Antibody-protein interactions: benchmark datasets and prediction tools evaluation. BMC Struct Biol. 2007;7:64.
18. Haste Andersen P, Nielsen M, Lund O. Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci. 2006;15(11):2558-2567.
19. Vita R, Mahajan S, Overton JA, et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 2019;47(D1):D339-D343.
20. Saha S, Raghava GP. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins. 2006;65(1):40-48.
21. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-1263.
22. Ponomarenko J, Bui HH, Li W, et al. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics. 2008;9:514.
23. Nielsen M, Lundegaard C, Worning P, et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 2003;12(5):10071017.
24. Peters B, Sette A. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics. 2005;6:132.
25. Karosiene E, Lundegaard C, Lund O, Nielsen M. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics. 2012;64(3):177-186.
26. Nielsen M, Lundegaard C, Lund O. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinformatics. 2007;8:238.
27. Sturniolo T, Bono E, Ding J, et al. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol. 1999;17(6):555-561.
28. Purcell AW, McCluskey J, Rossjohn J. More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov. 2007;6(5):404-414.
29. Oany AR, Emran AA, Jyoti TP. Design of an epitope-based peptide vaccine against spike protein of human coronavirus: an in silico approach. Drug Des Devel Ther. 2014;8:1139-1149.
30. Dey S, Nandy A, Basak SC, Nandy P, Das S. A Bioinformatics approach to designing a Zika virus vaccine. Comput Biol Chem. 2017;68:143-152.
31. Ichihashi T, Yoshida R, Sugimoto C, Takada A, Kajino K. Cross-protective peptide vaccine against influenza A viruses developed in HLA-A*2402 human immunity model. PLoS One. 2011;6(9):e24626.
32. Navalkar KA, Johnston SA, Stafford P. Peptide based diagnostics: are randomsequence peptides more useful than tiling proteome sequences? J Immunol Methods. 2015;417:10-21.
33. Zhao K, Liu Q, Yu R, et al. Screening of specific diagnostic peptides of swine hepatitis E virus. Virol J. 2009;6:186.
34. Walls AC, Xiong X, Park YJ, et al. Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion. Cell. 2019;176(5):1026-1039 e1015.
35. Xiong X, Tortorici MA, Snijder J, et al. Glycan Shield and Fusion Activation of a Deltacoronavirus Spike Glycoprotein Fine-Tuned for Enteric Infections. J Virol. 2018;92(4).
36. Rosendahl Huber S, van Beek J, de Jonge J, Luytjes W, van Baarle D. T cell responses to viral infections - opportunities for Peptide vaccination. Front Immunol. 2014;5:171.
37. Yi H. 2019 novel coronavirus is undergoing active recombination. Clin Infect Dis. 2020.

Figure legends

Figure 1. Profiles of average solvent accessibility (blue) in \% and amino acid sequence variability (green) in numbers of the 98 SARS-CoV-2 protein plotted against amino acid numbers.

Figure 2. Graphical representation of B-cell linear epitopes of spike protein of SARS-CoV-2. B-cell linear epitopes predicted using BepiPred 1.0 module incorporated in IEDB server using default threshold value (0.35).

Figure 3. Our selected peptides are highlighted on spike protein of SARS-CoV-2 protein structure downloaded from PDB (ID: 6VSB).

Figure 1.

ASA \& sequence variability profile for spike protein of SARS-CoV-2

Amino acid numbers

Figure 2.

Position

Figure 3.

Table 1. Conserved region with good average solvent accessibility selected for further analysis.

Sl. No.	Start	End	Length	Peptide
1	21	38	18	RTQLPPAYTNSFTRGVYY
2	69	81	13	HVSGTNGTKRFDN
3	144	155	12	YYHKNNKSWMES
4	178	191	14	DLEGKQGNFKNLRE
5	249	261	13	LTPGDSSSGWTAG
6	278	287	10	KYNENGTITD
7	314	325	12	QTSNFRVQPTES
8	407	428	22	VRQIAPGQTGKIADYNYKLPDD
9	437	450	14	NSNNLDSKVGGNYN
10	461	485	25	LKPFERDISTEIYQAGSTPCNGVEG
11	493	506	14	QSYGFQPTNGVGYQ
12	521	533	13	PATVCGPKKSTNL
13	567	581	15	RDIADTTDAVRDPQT
14	597	607	11	VITPGTNTSNQ
15	625	648	24	HADQLTPTWRVYSTGSNVFQTRAG
16	654	661	8	EHVNNSYE
17	673	691	19	SYQTQTNSPRRARSVASQS
18	700	713	16	GAENSVAYSNNSIA
19	768	780	13	TGIAVEQDKNTQE
20	788	799	14	IYKTPPIKDFGG
21	805	816	12	ILPDPSKPSKRS
22	1134	1150	17	NNTVYDPLQPELDSFKE
23	1153	1171	19	DKYFKNHTSPDVDLGDISG
24	1255	1267	13	KFDEDDSEPVLKG

Table 2. IEDB ElliPro predicted linear epitopes for spike protein of SARS-CoV-2. Sequences that match our selected peptides are marked in red.

Sl. No.	Start	End	Peptide	No. of residues	Score
1	27	37	AYTNSFTRGVY	11	0.701
2	56	196	LPFFSNVTWFHFDNPVLPFNDGVYFASTNIIRGWIFGTTLDSKTQSLLIVNNAT NVVIKVCEFQFCNDPFLGEFRVYSSANNCTFEYVSQPFLKNLREFVFKN	103	0.851
3	280	286	NENGTIT	7	0.521
4	322	375	PTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFS	54	0.646
5	393	515	TNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSY NYLYRPLQSYGFQPTVGYQPYRVVVLSF	80	0.842
6	464	511	FERDISTEIYNCYFPLQSYGFQPTVGYQPYRVV	33	0.707
7	465	509	ERDISTENCYFPLQSYGFQVGYQPYR	26	0.663
8	520	537	APATVCGPKKSTNLVKNK	18	0.617
9	577	585	RDPQTLEIL	9	0.665
10	603	608	NTSNQV	6	0.522
11	616	643	NCTEVTGSNVF	11	0.578
12	652	661	GAEHVNNSYE	10	0.594
13	687	691	VASQS	5	0.612
14	700	719	GAENSVAYSNNSIAIPTNFT	20	0.659
15	789	805	YKTPPIKDFGGFNFSQI	17	0.621
16	789	815	YKTPPIKDFGGFNFSQILPDPSKR	24	0.609
17	807	815	PDPSKR	6	0.558
18	1069	1146	PAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTF VSGNCDVVIGIVNNTVYDPLQPELD	78	0.832

Table 3. IEDB ElliPro predicted discontinuous epitopes for spike protein of SARS-CoV-2. Sequences that match our selected peptides are marked in red.

Sl. No.	Residues	No. of residues	Score
1	$\mathrm{~A}: \mathrm{D} 1139, \mathrm{~A}: \mathrm{P} 1140, \mathrm{~A}: \mathrm{L} 1141, \mathrm{~A}: \mathrm{Q} 1142, \mathrm{~A}: \mathrm{P} 1143, \mathrm{~A}: \mathrm{E} 1144, \mathrm{~A}: \mathrm{L} 1145, \mathrm{~A}: \mathrm{D} 1146$	8	0.962

A:T323, A:E324, A:S325, A:I326, A:V327, A:R328, A:L335, A:C336, A:P337, A:F338, A:G339, A:E340, A:V341, A:F342, A:N343, A:A344, A:T345, A:R346, A:F347, A:A348, A:S349, A:V350, A:Y351, A:A352, A:W353, A:N354, A:R355, A:K356, A:R357, A:I358, A:S359, A:N360, A:C361, A:V362, A:A363, A:D364, A:Y365, A:S366, A:V367, A:L368, A:Y369, A:N370, A:S371, A:A372, A:S373, A:F374, A:S375, A:T376, A:F377, A:K378, A:C379, A:Y380, A:V382, A:S383, A:P384, A:T385, A:L387, A:N388, A:L390, A:T393, A:N394, A:V395, A:Y396, A:A397, A:D398, A:S399, A:F400, A:V401, A:I402, A:R403, A:G404, A:D405, A:E406, A:V407, A:R408, A:Q409, A:I410, A:A411, A:P412, A:G413, A:Q414, A:T415, A:G416, A:K417, A:I418, A:A419, A:D420, A:Y421, A:N422, A:Y423, A:K424, A:L425, A:P426, A:D427, A:D428, A:F429, A:T430, A:G431, A:C432, A:V433, A:I434, A:A435, A:W436, A:N437, A:S438, A:N439, A:N440, A:L441, A:D442, A:S443, A:Y449, A:N450, A:Y451, A:L452, A:Y453, A:R454, A:P491, A:L492, A:Q493, A:S494, A:Y495, A:G496, A:F497, A:Q498, A:P499, A:T500, A:V503, A:G504, A:Y505, A:Q506, A:P507, A:Y508, A:R509, A:V510, A:V511, A:V512, A:L513, A:S514, A:F515, A:P521, A:A522, A:T523, A:V524, A:G526, A:P527, A:K528, A:K529, A:S530, A:T531, A:N532, A:L533, A:V534, A:K535, A:N536, A:K537, A:E554, A:S555, A:N556, A:K557, A:F559, A:L560, A:P561, A:F562, A:Q563, A:Q564, A:R577, A:D578, A:P579, A:Q580, A:T581, A:L582, A:E583, A:I584, B:A27, B:Y28, B:T29,

B:P322, B:T323, B:E324, B:S325, B:I326, B:V327, B:R328, B:F329, B:P330, B:N331, B:I332, B:T333, B:N334, B:L335, B:C336, B:P337, B:F338, B:G339, B:E340, B:V341, B:F342, B:N343, B:A344, B:T345, B:R346, B:F347, B:A348, B:S349, B:V350, B:Y351, B:A352, B:W353, B:N354, B:R355, B:K356, B:R357, B:I358, B:S359, B:N360, B:C361, B:V362, B:A363, B:D364, B:S366, B:V367, B:L368, B:N370, B:S371, B:A372, B:S373, B:F374, B:C391, B:F392, B:T393, B:A397, B:D398, B:S399, B:F400, B:V401, B:I402, B:R403, B:G404, B:Y421, B:N422, B:Y423, B:W436, B:N437, B:S438, B:N439, B:N440, B:L441, B:D442, B:S443, B:Y449, B:N450, B:Y451, B:L452, B:Y453, B:R454, B:N460, B:L461, B:K462, B:E465, B:R466, B:D467, B:I468, B:S469, B:T470, B:E471, B:I472, B:Y473, B:N487, B:C488, B:Y489, B:F490, B:P491, B:L492, B:Q493, B:S494, B:Y495, B:G496, B:F497, B:Q498, B:P499, B:T500, B:V503, B:G504, B:Y505, B:Q506, B:P507, B:Y508, B:R509, B:V510, B:V511, B:A520, B:P521, B:A522, B:T523, B:V524, B:C525, B:G526, B:P527, B:K528, B:K529, B:S530, B:T531, B:N532, B:L533, B:V534, B:K535, B:N536, B:K537, B:N544, B:T553, B:E554, B:S555, B:N556, B:K557, B:F559, B:L560, B:P561, B:F562, B:Q563, B:Q564, B:R577, B:D578, B:P579, B:Q580, B:T581, B:L582, B:E583, B:I584, B:L585, C:A27, C:Y28, C:T29, C:N30, C:S31, C:F32, C:T33, C:R34, C:G35, C:V36, C:Y37, C:K41, C:F43, C:L56,

A:A701, A:E702, A:N703, A:S704, A:V705, A:A706, A:Y707, A:S708, A:N709, A:N710, A:S711, A:I712, A:A713, A:I714, A:P715, A:T716, A:N717, A:F718, A:T719, A:Q787, A:Y789, A:K790, A:T791, A:P792, A:P793, A:I794, A:K795, A:D796, A:F797, A:G798, A:G799, A:F800, A:N801, A:F802, A:S803, A:Q804, A:I805, A:L806, A:T883, A:G891, A:A892, A:A893, A:L894, A:Q895, A:I896, A:P897, A:F898, A:A899, A:M900, A:A903, A:F906, A:N907, A:G910, A:V911, A:T912, A:Q913, A:N914, A:V915, A:L916, A:Y917, A:E918, A:N919, A:Q920, A:L922, A:I923, A:A924, A:N925, A:Q926, A:F927, A:N928, A:S929, A:G932, A:D936, A:P1069, A:A1070, A:Q1071, A:E1072, A:K1073, A:N1074, A:F1075, A:T1076, A:T1077, A:A1078, A:P1079, A:A1080, A:I1081, A:C1082, A:H1083, A:D1084, A:G1085, A:K1086, A:A1087, A:H1088, A:F1089, A:P1090, A:R1091, A:E1092, A:G1093, A:V1094, A:F1095, A:V1096, A:S1097, A:N1098, A:G1099, A:T1100, A:H1101, A:W1102, A:F1103, A:V1104, A:T1105, A:Q1106, A:R1107, A:N1108, A:F1109, A:Y1110, A:E1111, A:P1112, A:Q1113, A:I1114, A:I1115, A:T1116, A:T1117, A:D1118, A:N1119, A:T1120, A:F1121, A:V1122, A:S1123, A:G1124, A:N1125, A:C1126, A:D1127, A:V1128, A:V1129, A:I1130, A:G1131, A:I1132, A:V1133, A:N1134, A:N1135, A:T1136, A:V1137, A:Y1138, B:G700, B:A701, B:E702, B:N703, B:S704, B:V705, B:A706, B:Y707, B:S708, B:N709, B:N710, B:S711, B:I712, B:A713, B:I714, B:P715, B:T716, B:N717, B:F718, B:T719, B:Q787, B:I788, B:Y789, B:K790, B:T791, B:P792, B:P793, B:I794, B:K795, B:D796, B:F797, B:G798, B:G799, B:F800, B:N801, B:F802, B:S803, B:Q804, B:I805, B:L806, B:T883, B:G891, B:A892, B:A893, B:L894, B:Q895, B:I896, B:P897, B:F898, B:A899, B:M900, B:M902, B:A903, B:F906, B:N907, B:G910, B:V911, B:T912, B:Q913, B:N914, B:V915, B:L916, B:Y917, B:E918, B:N919, B:Q920, B:K921, B:L922, B:I923, B:A924, B:N925, B:Q926, B:F927, B:N928, B:S929, B:P1069, B:A1070, B:Q1071, B:E1072, B:K1073, B:N1074, B:F1075, B:T1076, B:T1077, B:A1078, B:P1079, B:A1080, B:I1081, B:C1082, B:H1083, B:D1084, B:G1085, B:K1086, B:A1087, B:H1088, B:F1089, B:P1090, B:R1091, B:E1092, B:G1093, B:V1094, B:F1095, B:V1096, B:S1097, B:N1098, B:G1099, B:T1100, B:H1101, B:W1102, B:F1103, B:V1104, B:T1105, B:Q1106, B:R1107, B:N1108, B:F1109, B:Y1110, B:E1111, B:P1112, B:Q1113, B:I1114, B:I1115, B:T1116, B:T1117, B:D1118, B:N1119, B:T1120, B:F1121, B:V1122, B:S1123, B:G1124, B:N1125, B:C1126, B:D1127, B:V1128, B:V1129, B:I1130, B:G1131, B:I1132, B:V1133, B:N1134, B:N1135, B:T1136, B:V1137, B:Y1138, B:D1139, B:P1140, B:L1141, B:Q1142, B:P1143, B:E1144, B:L1145, B:D1146, C:A701, C:E702, C:N703, C:S704, C:V705, C:A706, C:Y707, C:S708, C:N709, C:N710, C:S711, C:I712, C:A713, C:I714, C:P715, C:T716, C:N717, C:F718, C:T719, C:Q787, C:I788, C:Y789, C:K790, C:T791, C:P792, C:P793, C:I794, C:K795, C:D796, C:F797, C:G798, C:G799, C:F800, C:N801, C:F802, C:S803, C:Q804, C:I805, C:L806, C:P807, C:D808, C:P809, C:S810,

5	A:A27, A:Y28, A:T29, A:N30, A:S31, A:F32, A:T33, A:R34, A:G35, A:V36, A:Y37, A:Y38, A:K41, A:F43, A:L56, A:P57, A:F58, A:F59, A:S60, A:N61, A:V62, A:T63, A:W64, A:F65, A:F79, A:D80, A:N81, A:P82, A:V83, A:L84, A:P85, A:F86, A:N87, A:D88, A:G89, A:V90, A:Y91, A:F92, A:A93, A:S94, A:T95, A:I100, A:I101, A:R102, A:G103, A:W104, A:I105, A:F106, A:G107, A:T108, A:T109, A:L110, A:D111, A:S112, A:K113, A:T114, A:Q115, A:S116, A:L117, A:L118, A:I119, A:V120, A:N121, A:N122, A:A123, A:T124, A:N125, A:V126, A:V127, A:I128, A:K129, A:V130, A:C131, A:E132, A:F133, A:Q134, A:F135, A:C136, A:N137, A:D138, A:P139, A:F140, A:L141, A:G142, A:E156, A:F157, A:R158, A:V159, A:Y160, A:S161, A:S162, A:A163, A:N164, A:N165, A:C166, A:T167, A:F168, A:E169, A:Y170, A:V171, A:S172, A:Q173, A:P174, A:F175, A:L176, A:K187, A:N188, A:L189, A:R190, A:E191, A:F192, A:V193, A:F194, A:N196, A:G199, A:F201, A:K202, A:I203, A:Y204, A:S205, A:K206, A:H207, A:T208, A:P209, A:I210, A:N211, A:L212, A:V213, A:R214, A:D215, A:L216, A:P217, A:Q218, A:G219, A:F220, A:S221, A:A222, A:L223, A:E224, A:P225, A:L226, A:V227, A:D228, A:L229, A:P230, A:I231, A:G232, A:I233, A:N234, A:I235, A:T236, A:R237, A:F238, A:Q239, A:T240, A:L241, A:L242, A:A243, A:L244, A:H245, A:R246, A:G261, A:A262, A:A263, A:A264, A:Y265, A:Y266, A:V267, A:G268, A:Y269, A:L270, A:R273, A:N280, A:E281, A:N282, A:G283, A:T284, A:T286, C:P322, C:T323, C:E324, C:S325, C:I326, C:V327, C:R328, C:F329, C:P330, C:N331, C:I332, C:T333, C:N334, C:L335, C:C336, C:P337, C:F338, C:G339, C:E340, C:V341, C:F342, C:N343, C:A344, C:T345, C:R346, C:F347, C:A348, C:S349, C:V350, C:Y351, C:A352, C:N354, C:R357, C:I358, C:S359, C:N360, C:C361, C:V362, C:A363, C:D364, C:S366, C:V367, C:N370, C:S371, C:A372, C:S373, C:F374, C:T393, C:S399, C:V401, C:G404, C:W436, C:N437, C:S438, C:N439, C:N440, C:L441, C:D442, C:S443, C:Y449, C:N450, C:Y451, C:L452, C:Y453, C:R454, C:E465, C:R466, C:D467, C:I468, C:S469, C:T470, C:E471, C:F490, C:P491, C:L492, C:Q493, C:S494, C:Y495, C:G496, C:F497, C:Q498, C:V503, C:G504, C:Y505, C:Q506, C:P507, C:Y508, C:R509, C:A522, C:T523, C:G526, C:P527, C:K528, C:K529, C:S530, C:T531, C:N532, C:L533, C:V534, C:K535, C:N536, C:K537, C:T553, C:E554, C:S555, C:N556, C:K557, C:K558, C:F559, C:L560, C:P561, C:F562, C:Q563, C:Q564, C:R577, C:D578, C:P579, C:Q580, C:T581, C:L582, C:E583, C:I584, C:L585	301	0.723
6	A:V687, A:A688, A:S689, A:Q690, A:S691	5	0.612
7	B:T638, B:G639, B:S640, B:N641, B:V642, B:F643, B:G652, B:A653, B:E654, B:H655, B:V656, B:N657, B:N658, B:S659, B:Y660, B:A672, B:V687, B:A688, B:S689, B:Q690, B:S691, B:I692, B:I693, B:A694, B:S698	25	0.607
8	A:P807, A:D808, A:P809, A:S810, A:K811	5	0.596

9	C:N641, C:V642, C:G652, C:A653, C:E654, C:H655, C:V656, C:N657, C:N658, C:S659, C:Y660, C:V687, C:A688, C:S689, C:Q690, C:S691, C:I693	17	0.592
10	A:H655, A:V656, A:N657, A:N658, A:S659, A:Y660	6	0.57
11	A:S640, A:N641, A:V642, A:G652, A:A653	5	0.551
12	B:P807, B:D808, B:P809, B:S810, B:K811, B:R815	6	0.549
13	B:G932, B:K933, B:D936	3	0.532
14	B:N280, B:E281, B:N282, B:G283, B:T284, B:T286	6	0.523
15	B:K558, C:S45, C:N280, C:E281, C:N282, C:G283, C:T284	7	0.519
16	C:G932, C:Q935, C:D936	3	0.519

Table 4. ABCpred determination of B-cell binding affinities. Note that high score indicates good binding affinity.

Sl. No.	Sequence	Start	Score
1	PPAYTNSFTRGVYY	25	0.91
2	IHVSGTNGTKRFDNPVLPFN	68	0.89
3	VYYHKNNKSWMESEFRVYSS	143	0.9
4	DLEGKQGNFKNLREFVFKNI	178	0.82
5	YLTPGDSSSGWT	248	0.7
6	LLKYNENGTITDAVDCALDP	276	0.76
7	IYQTSNFRVQPTES	312	0.68
8	RQIAPGQTGKIADYNYKLPD	408	0.75
9	WNSNNLDSKVGGNYNYLY	436	0.67
10	SNLKPFERDISTEIYQAGST	459	0.82
11	LQSYGFQPTNGVGYQP	492	0.9
12	HAPATVCGPKKSTN	519	0.72
13	QQFGRDIADTTDAVRDPQTL	563	0.82
14	VITPGTNTSNQVAV	597	0.77
15	AIHADQLTPTWRVYSTGS	623	0.67
16	IGAEHVNNSYECDIPIGAGI	651	0.9
17	YQTQTNSPRRARSVASQS	674	0.82
18	GAENSVAYSNNSIAIPTN	700	0.63
19	AVEQDKNTQEVFAQ	771	0.89
20	IYKTPPIKDFGGFN	788	0.77
21	ILPDPSKPSKRSFIEDLL	805	0.63
22	VIGIVNNTVYDPLQPE	1129	0.83
23	DKYFKNHTSPDVDLGD	1153	0.69
24	CSCGSCCKFDEDDSEPVLKG	1248	0.73

Table 5. IEDB prediction of binding affinity with MHC-I alleles, only our selected peptides with percentile rank less than 1.00 are shown here. The binding affinity is considered higher for low percentile rank. Sequences that match our selected peptides are marked in red.

Sl. No.	Allele	Start	End	Peptide	Method	Percentile Rank
1	HLA-A*01:01	17	28	NLTTRTQLPPAY	ann	0.21
2	HLA-A*30:01	19	27	TTRTQLPPA	Consensus	0.2
3	HLA-A*31:01	21	34	RTQLPPAYTNSFTR	ann	0.47
4	HLA-A*68:01	21	34	RTQLPPAYTNSFTR	ann	0.82
5	HLA-B*15:01	23	32	QLPPAYTNSF	Consensus	0.43
6	HLA-A*30:02	24	37	LPPAYTNSFTRGVY	ann	0.76
7	HLA-B*07:02	24	32	LPPAYTNSF	Consensus	0.6
8	HLA-B*35:01	24	32	LPPAYTNSF	Consensus	0.6
9	HLA-A*01:01	25	38	PPAYTNSFTRGVYY	ann	0.04
10	HLA-A*01:01	27	38	AYTNSFTRGVYY	ann	0.04
11	HLA-A*68:01	69	78	HVSGTNGTKR	Consensus	0.41
12	HLA-A*03:01	142	150	GVYYHKNNK	Consensus	0.2
13	HLA-A*11:01	142	150	GVYYHKNNK	Consensus	0.43
14	HLA-A*23:01	144	157	YYHKNNKSWMESEF	ann	0.62
15	HLA-A*24:02	144	157	YYHKNNKSWMESEF	ann	0.38
16	HLA-A*33:01	145	158	YHKNNKSWMESEFR	ann	0.56
17	HLA-A*11:01	182	195	KQGNFKNLREFVFK	ann	0.99
18	HLA-A*31:01	182	190	KQGNFKNLR	Consensus	0.19
19	HLA-A*23:01	185	194	NFKNLREFVF	Consensus	0.71
20	HLA-A*33:01	185	195	NFKNLREFVFK	ann	0.67
21	HLA-B*44:03	187	200	KNLREFVFKNIDGY	ann	0.64

22	HLA-B*57:01	246	259	RSYLTPGDSSSGWT	ann	0.38
23	HLA-B*58:01	246	259	RSYLTPGDSSSGWT	ann	0.47
24	HLA-B*53:01	250	258	TPGDSSSGW	Consensus	0.2
25	HLA-A*30:02	252	265	GDSSSGWTAGAAAY	ann	0.28
26	HLA-A*26:01	253	266	DSSSGWTAGAAAYY	ann	0.11
27	HLA-A*01:01	254	266	SSSGWTAGAAAYY	ann	0.34
28	HLA-A*68:02	254	267	SSSGWTAGAAAYYV	ann	0.39
29	HLA-A*30:02	255	266	SSGWTAGAAAYY	ann	0.09
					Consensus	0.69
30	HLA-A*68:02	281	289	ENGTITDAV		
					ann	0.72
31	HLA-A*33:01	306	319	FTVEKGIYQTSNFR	ann	0.37
32	HLA-A*68:01	306	319	FTVEKGIYQTSNFR	Consensus	0.28
33	HLA-A*31:01	310	319	KGIYQTSNFR	Consensus	0.68
34	HLA-A*23:01	312	320	IYQTSNFRV	0.34	
35	HLA-A*24:02	312	320	IYQTSNFRV	Consensus	0.63
36					ann	0.61
37	HLA-A*03:01	408	417	RQIAPGQTGK	ann	0.3
38	HLA-B*15:01	408	421	RQIAPGQTGKIADY	Consensus	0.7
39	HLA-A*02:01	408	421	RQIAPGQTGKIADY	Consensus	0.5
40	HLA-A*32:01	417	425	KIADYNYKL		
		425	KIADYNYKL	ann	0.08	
41	HLA-A*01:01	440	453	NLDSKVGGNYNYLY	ann	0.31
42	HLA-A*30:02	441	453	LDSKVGGNYNYLY	ann	0.47
43	HLA-A*31:01	441	454	LDSKVGGNYNYLYR	ann	0.67
44	HLA-A*33:01	442	454	DSKVGGNYNYLYR	ann	ann
45	HLA-A*24:02	443	456	SKVGGNYNYLYRLF	0.46	
46	HLA-A*33:01	444	457	KVGGNYNYLYRLFR	ann	0.16
47	HLA-A*33:01	455	466	LFRKSNLKPFER	ann	0.96

48	HLA-A*31:01	458	466	KSNLKPFER	Consensus	0.14
49	HLA-A*01:01	460	473	NLKPFERDISTEIY	ann	0.63
50	HLA-B*40:01	464	472	FERDISTEI	Consensus	0.88
51	HLA-B*15:01	473	486	YQAGSTPCNGVEGF	ann	0.97
52	HLA-B*35:01	478	489	TPCNGVEGFNCY	ann	0.81
53	HLA-B*40:01	479	492	PCNGVEGFNCYFPL	ann	0.31
54	HLA-A*23:01	488	497	CYFPLQSYGF	Consensus	0.13
55	HLA-A*24:02	488	497	CYFPLQSYGF	Consensus	0.12
56	HLA-A*24:02	488	501	CYFPLQSYGFQPTN	ann	0.7
57	HLA-B*35:01	490	497	FPLQSYGF	Consensus	0.71
58	HLA-B*53:01	490	497	FPLQSYGF	Consensus	0.71
59	HLA-B*15:01	492	505	LQSYGFQPTNGVGY	ann	0.14
60	HLA-A*68:02	495	503	YGFQPTNGV	Consensus	0.8
61	HLA-A*01:01	499	508	PTNGVGYQPY	Consensus	0.8
62	HLA-A*03:01	517	529	LLHAPATVCGPKK	ann	0.82
63	HLA-B*07:02	520	533	APATVCGPKKSTNL	ann	0.9
64	HLA-A*68:01	568	577	DIADTTDAVR	Consensus	0.34
65	HLA-A*68:02	568	576	DIADTTDAV	Consensus	0.7
66	HLA-A*01:01	599	612	TPGTNTSNQVAVLY	ann	0.55
67	HLA-A*30:02	603	612	NTSNQVAVLY	Consensus	0.79
68	HLA-B*53:01	620	633	VPVAIHADQLTPTW	ann	0.21
69	HLA-B*57:01	622	633	VAIHADQLTPTW	ann	0.47
70	HLA-B*58:01	622	635	VAIHADQLTPTWRV	ann	0.27
71	HLA-B*35:01	625	636	HADQLTPTWRVY	ann	0.54
72	HLA-B*53:01	625	633	HADQLTPTW	Consensus	0.2
73	HLA-A*24:02	630	643	TPTWRVYSTGSNVF	ann	0.51

74	HLA-A*31:01	633	646	WRVYSTGSNVFQTR	ann	0.29
75	HLA-A*23:01	634	643	RVYSTGSNVF	Consensus	0.62
76	HLA-B*15:01	634	643	RVYSTGSNVF	Consensus	0.21
77	HLA-A*68:01	637	646	STGSNVFQTR	Consensus	0.96
78	HLA-A*02:06	643	651	FQTRAGCLI	Consensus	0.64
79	HLA-A*30:02	651	660	IGAEHVNNSY	Consensus	0.35
80	HLA-A*30:01	683	691	RARSVASQS	Consensus	0.5
81	HLA-A*30:02	683	695	RARSVASQSIIAY	ann	0.46
82	HLA-A*31:01	673	682	SYQTQTNSPR	Consensus	0.64
83	HLA-A*33:01	673	682	SYQTQTNSPR	Consensus	0.7
84	HLA-A*33:01	677	685	QTNSPRRAR	Consensus	0.55
85	HLA-B*07:02	676	689	TQTNSPRRARSVAS	ann	0.7
86	HLA-B*07:02	679	692	NSPRRARSVASQSI	ann	0.09
87	HLA-B*07:02	680	692	SPRRARSVASQSI	ann	0.04
88	HLA-B*08:01	680	688	SPRRARSVA	Consensus	0.72
89	HLA-B*57:01	685	697	RSVASQSIIAYTM	ann	0.7
90	HLA-B*58:01	685	693	RSVASQSII	Consensus	0.4
91	HLA-A*23:01	705	718	VAYSNNSIAIPTNF	ann	0.65
92	HLA-A*32:01	704	712	SVAYSNNSI	Consensus	0.8
93	HLA-A*68:02	703	712	NSVAYSNNSI	Consensus	0.99
94	HLA-B*15:01	699	707	LGAENSVAY	Consensus	0.8
95	HLA-B*35:01	699	707	LGAENSVAY	Consensus	0.3
96	HLA-B*44:02	700	712	GAENSVAYSNNSI	ann	0.49
97	HLA-B*44:02	701	714	AENSVAYSNNSIAI	ann	0.12
98	HLA-B*44:03	701	714	AENSVAYSNNSIAI	ann	0.31
99	HLA-A*68:02	773	785	EQDKNTQEVFAQV	ann	0.71

100	HLA-A*02:06	786	794	KQIYKTPPI	Consensus	0.38
101	HLA-A*03:01	786	795	KQIYKTPPIK	Consensus	0.47
102	HLA-A*30:01	786	795	KQIYKTPPIK	Consensus	0.52
103	HLA-A*32:01	786	794	KQIYKTPPI	Consensus	0.3
104	HLA-B*15:01	786	797	KQIYKTPPIKDF	ann	0.73
105	HLA-A*03:01	787	795	QIYKTPPIK	Consensus	0.27
106	HLA-B*07:02	811	818	KPSKRSFI	Consensus	0.95
107	HLA-B*57:01	811	823	KPSKRSFIEDLLF	ann	0.65
108	HLA-A*03:01	1136	1149	TVYDPLQPELDSFK	ann	0.15
109	HLA-A*11:01	1136	1149	TVYDPLQPELDSFK	ann	0.14
110	HLA-A*68:01	1136	1149	TVYDPLQPELDSFK	ann	0.34
111	HLA-A*01:01	1142	1155	QPELDSFKEELDKY	ann	0.55
112	HLA-B*40:01	1257	1265	DEDDSEPVL	Consensus	0.86
113	HLA-A*01:01	1259	1272	DDSEPVLKGVKLHY	ann	0.64

Table 6. IEDB prediction of binding affinity with MHC-II alleles, only our selected peptides with percentile rank less than 1.00 are shown here. The binding affinity is considered higher for low percentile rank. Sequences that match our selected peptides are marked in red.

SI. No.	Allele	Start	End	Method	Peptide	Percentile Rank
1	HLA-DPA1*01:03/DPB1*04:01	168	185	NetMHCIIpan	FEYVSQPFLMDLEGKQGN	0.87
2	HLA-DPA1*02:01/DPB1*05:01	183	197	Consensus	QGNFKNLREFVFKNI	0.74
3	HLA-DPA1*02:01/DPB1*05:01	184	197	Consensus	GNFKNLREFVFKNI	0.62
4	HLA-DQA 1*05:01/DQB1*03:01	255	268	Consensus	SSGWTAGAAAYYVG	0.76
5	HLA-DQA ${ }^{*} 05: 01 / \mathrm{DQB} 1 * 03: 01$	255	269	Consensus	SSGWTAGAAAYYVGY	0.94
6	HLA-DRB1*04:01	314	331	Consensus	QTSNFRVQPTESIVRFPN	1
7	HLA-DRB1*15:01	319	335	Consensus	RVQPTESIVRFPNITNL	0.95
8	HLA-DRB3*01:01	400	413	Consensus	FVIRGDEVRQIAPG	0.47
9	HLA-DRB3*01:01	402	418	Consensus	IRGDEVRQIAPGQTGKI	0.94
10	HLA-DRB1*11:01	443	460	Consensus	SKVGGNYNYLYRLFRKSN	0.65
11	HLA-DRB1*11:01	444	457	Consensus	KVGGNYNYLYRLFR	0.9
12	HLA-DRB3*01:01	461	472	Consensus	LKPFERDISTEI	0.79
13	HLA-DPA1*02:01/DPB1*01:01	501	518	Consensus	NGVGYQPYRVVVLSFELL	0.38
14	HLA-DPA1*01:03/DPB1*02:01	501	518	Consensus	NGVGYQPYRVVVLSFELL	0.6
15	HLA-DRB1*01:01	514	526	Consensus	SFELLHAPATVCG	0.02
16	HLA-DRB1*01:01	515	528	Consensus	FELLHAPATVCGPK	0.49
17	HLA-DRB1*07:01	684	701	Consensus	ARSVASQSIIAYTMSLGA	0.77
18	HLA-DQA1*04:01/DQB1*04:02	763	775	Consensus	LNRALTGIAVEQD	0.73
19	HLA-DQA1*03:01/DQB1*03:02	764	776	Consensus	NRALTGIAVEQDK	0.91
20	HLA-DPA1*01:03/DPB1*04:01	809	826	NetMHCIIpan	PSKPSKRSFIEDLLFNKV	0.59
21	HLA-DRB1*13:02	1127	1141	Consensus	DVVIGIVNNTVYDPL	0.7

