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Abstract 15 

Accurate identification of cell types from single-cell RNA sequencing (scRNA-seq) data plays 16 

a critical role in a variety of scRNA-seq analysis studies. It corresponds to solving an 17 

unsupervised clustering problem, in which the similarity measurement between cells in a high 18 

dimensional space affects the result significantly. Although many approaches have been 19 

proposed recently, the accuracy of cell type identification still needs to be improved. In this 20 

study, we proposed a novel single-cell clustering framework based on similarity learning, called 21 

SSRE. In SSRE, we model the relationships between cells based on subspace assumption and 22 

generate a sparse representation of the cell-to-cell similarity, which retains the most similar 23 

neighbors for each cell. Besides, we adopt classical pairwise similarities incorporated with a 24 

gene selection and enhancement strategy to further improve the effectiveness of SSRE. For 25 

performance evaluation, we applied SSRE in clustering, visualization, and other exploratory 26 

data analysis processes on various scRNA-seq datasets. Experimental results show that SSRE 27 

achieves superior performance in most cases compared to several state-of-the-art methods.  28 

KEYWORDS: Single-cell RNA sequencing; Clustering; Cell type; Similarity learning 29 

 30 

Introduction 31 

With the recent emergence of single-cell RNA sequencing (scRNA-seq) technology, numerous 32 

scRNA-seq datasets have been generated, bringing unique challenges for advanced omics data 33 
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analysis [1,2]. Unlike bulk sequencing averaging the expression of mass cells, scRNA-seq 34 

technique quantifies gene expression at the single cell resolution. Single cell techniques 35 

promote a wide variety of biological topics such as cell heterogeneity, cell fate decisions and 36 

disease pathogenesis [3–5]. Among all the applications, cell type identification plays a 37 

fundamental role and its performance has a deep impact on downstream researches [6]. 38 

However, identifying cell types from scRNA-seq data is still a challenging problem because of 39 

the high noise rate and high dropouts, which cannot be addressed by traditional clustering 40 

methods well [7]. Therefore, new efficient and reliable clustering methods for cell type 41 

identification are urgent and meaningful. 42 

In recent studies, several novel clustering approaches for detecting cell types from scRNA-43 

seq data have been proposed. Among these methods, cell types are mainly decided on the basis 44 

of cell-to-cell similarity learned from scRNA-seq data. SIMLR [8] visualizes and clusters cells 45 

using multi-kernel similarity learning [9] , which performs well on grouping cells. SNN-Cliq 46 

[10] firstly constructs a distance matrix based on the Euclidean distance, and then introduces 47 

the shared k-nearest-neighbors model to redefine the similarity. SNN-Cliq provides both the 48 

estimation of cluster number and the clustering results by searching for quasi-cliques. Jiang et 49 

al [11] proposed the differentiability correlation between pairs of cells instead of computing 50 

primary (dis)similarity using the Pearson correlation or the Euclidean distance. RAFSIL [12] 51 

divides genes into multiple clusters and concatenates the informative features from each gene 52 

cluster after dimension reduction, and finally applies the random forest to calculate the 53 

similarities for each cell recursively. Besides, NMF determines the cell types in latent space via 54 

nonnegative matrix factorization [13], while SinNLRR [14] learns a similarity matrix with 55 

nonnegative and low rank constraints. Instead of learning a specific similarity, some researchers 56 

have turned to use ensemble learning based on the consensus of multiple clustering methods in 57 

order to obtain robust results [15,16]. 58 

Even though many approaches have been applied to cell type identification, most of the 59 

previous methods compute the similarity between two cells merely considering their own gene 60 

expressions which is sensitive to the noise, especially on data with high dimension [17]. In this 61 

study, we develop SSRE, a novel method for cell type identification focused on similarity 62 

learning, in which the cell-to-cell similarity is measured by considering more similar neighbors. 63 

SSRE computes the linear representation between cells to generate a sparse representation of 64 

cell-to-cell similarity based on the sparse subspace theory [18]. Moreover, SSRE incorporates 65 

three classical pairwise similarities, motivated by the observations that each similarity 66 

measurement can represent data from a different aspect [15,19]. In order to reduce the effect of 67 
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irrelevant features and to improve the overall accuracy, we design a two-step procedure in 68 

SSRE, i.e., 1) adaptive gene selection and 2) similarity enhancement. Experiments show that 69 

the new similarities in SSRE, combined with spectral clustering (SC), can reveal the block 70 

structure of scRNA-seq data reliably. Also, the experimental results on ten real scRNA-seq 71 

datasets and five simulated scRNA-seq datasets show that SSRE achieves higher accuracy on 72 

cell type detection in most cases compared with popular approaches. Moreover, we also show 73 

that SSRE can be easily extended to other scRNA-seq tasks such as differential expression 74 

analysis and data visualization. 75 

 76 

Materials and methods 77 

Framework of SSRE 78 

We introduce the overview of SSRE briefly. A schematic diagram of SSRE is shown in Figure 79 

1, and detailed steps of SSRE will be introduced later in this section. Given a scRNA-seq 80 

expression matrix, we first remove genes whose expression are zero in all the cells. Then, the 81 

informative genes are selected based on the sparse subspace representation (SSR), Pearson, 82 

Spearman and Cosine similarities. With the preprocessed gene expression matrix, SSRE learns 83 

sparse representation for each cell simultaneously. Then, SSRE derives an enhanced similarity 84 

matrix from these learned sparse similarities. Finally, SSRE uses the enhanced similarity to 85 

identify cell types and visualize results.  86 

 87 

Figure 1  The schematic diagram of SSRE 88 

The main steps of SSRE are displayed, which include gene filtering, gene selection, calculating 89 

different similarities, similarity enhancement and clustering. 90 
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Sparse subspace representation 91 

Estimation of the similarity (or distance) matrix is a crucial step in clustering [8]. If the 92 

similarity matrix is well generated, it could be relatively easier to distinguish the cluster. In this 93 

paper, we adopt sparse subspace theory [18] to compute the linear representation between cells 94 

and generate a sparse representation of the cell-to-cell similarity. Some subspace-based 95 

clustering methods have been successfully applied to computer vision field and proved to be 96 

highly robust in corrupted data [20,21]. For scRNA-seq data, the sparse representation of the 97 

cell-to-cell similarity is measured by considering the linear combination of similar neighbors 98 

instead of only these two cells, which tends to catch more global structure information and 99 

generate more reliable similarity. The specific calculation processes are described as follows. 100 

Mathematically, given a gene expression dataset with 𝑝 genes and 𝑛 cells, denoted by 101 

𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛] ∈ 𝑅𝑝×𝑛, where 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝]𝑇indicates the expression profiles of 102 

the 𝑝 genes in cell 𝑖, the linear representation coefficient matrix 𝐶 = [𝑐1, 𝑐2, … , 𝑐𝑛] ∈ 𝑅𝑛×𝑛 103 

satisfies the equation 𝑋 = 𝑋𝐶 . With the assumption that the expression of a cell can be 104 

represented by the other cells with the same type, only the similarity of cells in the same cluster 105 

is non-zero, which means the coefficient matrix 𝐶 is usually sparse. With the relaxed sparse 106 

constraint, the coefficient matrix 𝐶 can be computed by solving an optimization problem as 107 

follows: 108 

                                      𝑚𝑖𝑛
1

2𝜆
‖𝑋 − 𝑋𝐶‖𝐹

2 + ‖𝐶‖1        𝑠. 𝑡. , 𝑑𝑖𝑎𝑔(𝐶) = 0                                 (1) 109 

Where || · ||𝐹  denotes the Frobenius norm which calculates the square root of sum of all 110 

squared elements constraint  𝑑𝑖𝑎𝑔(𝐶)  =  0  prevents the cells from being represented by 111 

themselves, while 𝜆 is a penalty factor. An efficient approach to solve Equation (1) is the 112 

alternating direction method of multipliers (ADMM) [22]. We rewrite Equation (1) as follows: 113 

                                                     𝑚𝑖𝑛
1

2𝜆
‖𝑋 − 𝑋𝑍‖𝐹

2 + ‖𝐶‖1                                                              (2)  114 

                   𝑠. 𝑡. , 𝑍 − 𝐶 = 0,      𝑑𝑖𝑎𝑔(𝐶) = 0                                  115 

where 𝑍 is an auxiliary matrix. According to the model of ADMM, the augmented Lagrangian 116 

with auxiliary matrix 𝑍 and penalty parameter (𝛾) > 0 for the optimization formula (2) is 117 

                       ℒ1
𝛾

(𝑍, 𝐶, 𝑌) =
1

2𝜆
‖𝑋 − 𝑋𝑍‖𝐹

2 + ‖𝐶‖1 + 𝑡𝑟(𝑌𝑇(𝑍 − 𝐶)) +
1

2𝛾
‖𝐶 − 𝑍‖2          (3) 118 
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where 𝑌 is the dual variable. The derivation of its update also can be found in section 1 of File 119 

S1. The matrix 𝐶  is the target sparse representation matrix. To keep the symmetry and 120 

nonnegative nature of the similarity matrix, the element of sparse representation similarity 121 

𝑠𝑖𝑚𝑠𝑝𝑎𝑟𝑠𝑒 is calculated as 𝑠𝑖𝑚𝑠𝑝𝑎𝑟𝑠𝑒(𝑖, 𝑗) = |𝑐𝑖𝑗| + |𝑐𝑗𝑖|. The above similarity learning with 122 

sparse constraint is named SSR. 123 

 124 

Data preprocessing and gene selection 125 

Before applying SSR in cell type detection, data preprocessing is required. Various data 126 

preprocessing methods have been used in the previous studies, such as gene filter [12,15] and 127 

imputation [23,24]. In our method, we first remove genes with zero expression in all of cells 128 

and apply 𝐿2-norm to each cell to eliminate the expression scale difference between different 129 

cells. Then, we compute the preliminary 𝑠𝑖𝑚𝑠𝑝𝑎𝑟𝑠𝑒  with the normalized gene expression 130 

matrix. Next, we adopt the Laplacian score [25] on 𝑠𝑖𝑚𝑠𝑝𝑎𝑟𝑠𝑒 to measure the contribution of 131 

genes to the learned cell-to-cell similarity and select significant genes for the following study. 132 

Genes with higher Laplacian scores are considered as more informative in distinguishing cell 133 

types [8]. Besides the sparse similarity 𝑠𝑖𝑚𝑠𝑝𝑎𝑟𝑠𝑒, we also consider three additional pairwise 134 

similarities, i.e. Pearson, Spearman, and Cosine, to evaluate the importance of genes (denoted 135 

as 𝑠𝑖𝑚𝑝𝑒𝑎𝑟𝑠𝑜𝑛, 𝑠𝑖𝑚𝑠𝑝𝑒𝑎𝑟𝑚𝑎𝑛 and 𝑠𝑖𝑚𝑐𝑜𝑠𝑖𝑛𝑒, respectively). For each similarity, we rank genes 136 

in descending order by the Laplacian score and select the top 𝑡 genes as important gene set 137 

that is denoted by 𝐺1. The determination of the threshold 𝑡 can be formulated as 138 

                                                      𝑚𝑖𝑛 𝑣𝑎𝑟(𝐿𝑆𝐺1) + 𝑣𝑎𝑟(𝐿𝑆𝐺2)                                                        (4) 139 

         𝑠. 𝑡.    0.1 ∗ 𝑝 < |𝐺1| < 0.5 ∗ 𝑝                  140 

where 𝐺1= [𝑔1, 𝑔2, … 𝑔𝑡−1] and 𝐺2  =  [𝑔𝑡, 𝑔𝑡+1, … 𝑔𝑝] denote two gene sets divided by 𝑡. 141 

The 𝐿𝑆𝐺1 and 𝐿𝑆𝐺2 are the Laplacian scores of genes in sets 𝐺1 and 𝐺2, respectively, and 142 

|∗| is the cardinality of a set. The 𝑣𝑎𝑟(∗) indicates variance of a set while 𝑝 is the number 143 

of genes. Finally, we recompute 𝑠𝑖𝑚𝑠𝑝𝑎𝑟𝑠𝑒, 𝑠𝑖𝑚𝑝𝑒𝑎𝑟𝑠𝑜𝑛, 𝑠𝑖𝑚𝑠𝑝𝑒𝑎𝑟𝑚𝑎𝑛 and 𝑠𝑖𝑚𝑐𝑜𝑠𝑖𝑛𝑒 based 144 

on the intersection of four selected important gene sets. In the next section, we introduce an 145 

enhancement strategy to further improve the learned sparse similarity 𝑠𝑖𝑚𝑠𝑝𝑎𝑟𝑠𝑒. 146 

 147 
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Similarity enhancement  148 

The sparse representation similarity 𝑠𝑖𝑚𝑠𝑝𝑎𝑟𝑠𝑒 may suffer from the high-level technical noise 149 

in the data resulting in underestimation. Inspired by the consensus clustering and resource 150 

allocation, we further enhance 𝑠𝑖𝑚𝑠𝑝𝑎𝑟𝑠𝑒  by integrating multiple pairwise similarities 151 

including 𝑠𝑖𝑚𝑝𝑒𝑎𝑟𝑠𝑜𝑛 , 𝑠𝑖𝑚𝑠𝑝𝑒𝑎𝑟𝑚𝑎𝑛  and 𝑠𝑖𝑚𝑐𝑜𝑠𝑖𝑛𝑒 , which partially reveal the local 152 

information between cells.  153 

Based on the similarity matrices described in previous Section, we impute missing values 154 

in 𝑠𝑖𝑚𝑠𝑝𝑎𝑟𝑠𝑒  according to the nearest neighbors’ information in all the three pairwise 155 

similarity matrices. We firstly define a target similarity matrix 𝑃 as follows: 156 

                                                         𝑃(𝑥𝑖, 𝑥𝑗) = {
1,    𝑥𝑗 ∈ 𝐾𝑁𝑁(𝑥𝑖)

0,           𝑒𝑙𝑠e           
                                                 (5) 157 

where 𝐾𝑁𝑁(𝑥𝑖) indicates the k-nearest neighbors of cell 𝑥𝑖 . Then we mark the similarity 158 

𝑠𝑖𝑚𝑠𝑝𝑎𝑟𝑠𝑒(𝑥𝑖, 𝑥𝑗) between cells 𝑥𝑖 and 𝑥𝑗 as a missing value when it is zero in the 𝑠𝑖𝑚𝑠𝑝𝑎𝑟𝑠𝑒 159 

but 𝑃(𝑥𝑖 , 𝑥𝑗) = 1 in at least one pairwise similarity matrix. Let 𝐼𝑠𝑖𝑚𝑠𝑝𝑎𝑟𝑠𝑒 = 𝑂𝑛×𝑛 denotes 160 

the initial matrix to be imputed and n is the number of cells. For a marked missing value, the 161 

similarity 𝐼𝑠𝑖𝑚𝑠𝑝𝑎𝑟𝑠𝑒(𝑥𝑖, 𝑥𝑗) is computed by the modified Weighted Adamic/Adar [26, 27]. It 162 

is formulated as follows: 163 

                                𝐼𝑠𝑖𝑚𝑠𝑝𝑎𝑟𝑠𝑒(𝑥𝑖, 𝑥𝑗) = ∑
𝑠𝑖𝑚𝑠𝑝𝑎𝑟𝑠𝑒(𝑥𝑖,𝑥𝑧)+𝑠𝑖𝑚𝑠𝑝𝑎𝑟𝑠𝑒(𝑥𝑗,𝑥𝑧)

|𝛤(𝑥𝑧)|𝑥𝑧∈𝐶𝑁(𝑥𝑖,𝑥𝑗)                 (6)  164 

where |𝛤(𝑥𝑧)| indicates the number of neighbors of cell 𝑥𝑧 while 𝐶𝑁(𝑥𝑖, 𝑥𝑗) denotes the set 165 

of common neighbors of cell 𝑥𝑖 and 𝑥𝑗. Note that the imputed similarity 𝐼𝑠𝑖𝑚𝑠𝑝𝑎𝑟𝑠𝑒(𝑥𝑖, 𝑥𝑗) 166 

is zero when 𝐶𝑁(𝑥𝑖, 𝑥𝑗) = ∅. At the end of the process, an enhanced and more comprehensive 167 

sparse representation matrix 𝐸𝑠𝑖𝑚𝑠𝑝𝑎𝑟𝑠𝑒  is obtained and computed as 𝐸𝑠𝑖𝑚𝑠𝑝𝑎𝑟𝑠𝑒 =168 

𝐼𝑠𝑖𝑚𝑠𝑝𝑎𝑟𝑠𝑒 + 𝐼𝑠𝑖𝑚𝑠𝑝𝑎𝑟𝑠𝑒
𝑇+ 𝑠𝑖𝑚𝑠𝑝𝑎𝑟𝑠𝑒. 169 

 170 

Spectral clustering 171 

Spectral clustering is a typical clustering technique that divides multiple objects into disjoint 172 

clusters depending on the spectrum of the similarity matrix [28]. Compared with the traditional 173 

clustering algorithms, spectral clustering is advantageous in model simplicity and robustness. 174 

In this study, we perform spectral clustering on the final enhanced sparse representation 175 

similarity 𝐸𝑠𝑖𝑚𝑠𝑝𝑎𝑟𝑠𝑒. The inputs of spectral clustering are the cell-to-cell similarity matrix 176 
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and the cluster number. The detailed introduction and analysis of spectral clustering could be 177 

found in previous studies [28,29]. 178 

 179 

Datasets 180 

Datasets used in this study consist of two parts, real scRNA-seq dataset and simulated scRNA-181 

seq dataset. The real scRNA-seq datasets are obtained from Gene Expression Omnibus (GEO) 182 

[30] and ArrayExpress [31]. We collect ten real scRNA-seq datasets that vary either in terms 183 

of species, tissues, and biological processes. They include Treutlein dataset [32], Yan dataset 184 

[33], Deng dataset [34], Goolam dataset [35], Ting dataset [36], Song dataset [37], Engel dataset 185 

[38], Haber dataset [39], Vento dataset [40], Macosko dataset [41]. The scale of these ten 186 

datasets varies from dozens to thousands, and the gene expression values are computed by 187 

different units. The details of these real datasets are described in Table 1. In addition, we use 188 

Splatter [42] to simulate five scRNA-seq datasets which have different size and different 189 

sparsity for more comprehensive analysis. We set group.prob to (0.65, 0.25, 0.1) for all 190 

simulated datasets, and change the scale and sparsity by adjusting nCells and dropout.mid 191 

respectively. The other parameters are set to default. The samples of the five simulated datasets 192 

are 1000, 1000, 1000, 500, 1500, and the corresponding sparsity is 0.61, 0.8, 0.94, 0.94, 0.94, 193 

respectively. 194 

Table 1  The details of real scRNA-seq datasets used in this study 195 

Dataset No. of cells No. of genes No. of groups Units 

Treutlein [32] 80 959 5 FPKM 

Yan [33] 90 20,214 7 RPKM 

Deng [34] 135 12,548 7 RPKM 

Goolam [35] 124 40,315 5 CPM 

Ting [36] 114 14,405 5 RPM 

Song [37] 214 27,473 4 TPM 

Engel [38] 203 23,337 4 TPM 

Haber [39] 1522 20,108 9 TPM 

Vento [40] 5418 33,693 38 HTSeq-count 

Macosko [41] 6418 12,822 39 UMI 

Note: FPKM, fragments per kilobase of exon model per million mapped fragments; RPKM, reads per kilobase of 196 

exon model per million mapped reads; CPM/RPM, counts /reads of exon model per million mapped reads; TPM, 197 

transcripts per kilobase of exon model per million mapped reads; UMI, unique molecular identifiers. 198 

 199 

scRNA-seq clustering methods 200 

For performance comparison, we take the original SSR and eight state-of-the-art clustering 201 

methods, i.e. SIMLR [8], MPSSC [19], Corr [11], SNN-Cliq [10], NMF [13], SC3 [15], 202 

dropClust [43], and Seurat [44] as comparison. Among these methods, SIMLR, MPSSC, Corr, 203 
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and SNN-Clip focus on similarity learning. Both SIMLR and MPSSC learn a representative 204 

similarity matrix from multi-Gaussian-kernels with different resolutions. Corr introduces a cell-205 

pair differentiability correlation to relieve the effect of drop-outs. SNN-Cliq applies the shared-206 

nearest-neighbor to redefine the pairwise similarity. NMF detects the type of cells by projecting 207 

the high dimensional data into a latent space, in which each dimension of the latent space 208 

denotes a specific type. SC3 is a typical and powerful consensus clustering method. It obtains 209 

clusters by applying different upstream processes and the final clusters are desired to fit better. 210 

DropClust is a clustering algorithm designed for large-scale single cell data, and it exploits an 211 

approximate nearest neighbour search technique to reduce the time complexity of analyzing 212 

large-scale data. Seurat, a popular R package for single cell data analysis, obtains cell groups 213 

based on KNN-graph and Louvain clustering. Moreover, the native spectral clustering [29] with 214 

the Pearson similarity is considered as a baseline.  215 

 216 

Metric of performance evaluation 217 

We evaluate the proposed approach using two common metrics, i.e. normalized mutual 218 

information (NMI) [45] and adjusted rand index (ARI) [46] which have been widely used to 219 

assess clustering performance. Both NMI and ARI evaluate the consistency between the 220 

obtained clustering and pre-annotated labels while have a slightly different on the emphases 221 

[47]. Given the real labels 𝐿1 and the clustering labels 𝐿2, NMI is calculate as 222 

                                               NMI(𝐿1, 𝐿2) =
𝐼(𝐿1, 𝐿2)

[𝐻(𝐿1) + 𝐻(𝐿2)]/2
                                                  (7) 223 

( 1, 2)I L L is the mutual information between 𝐿1 and 𝐿2 and H denotes entropy. For ARI, 224 

given 𝐿1 and 𝐿2, it is computed as  225 

                         ARI(𝐿1, 𝐿2) =
∑ (

𝑛𝑖𝑗
2

)𝑖𝑗 −∑ (
𝑛𝑖𝑗

2
)𝑖𝑗 ∑ (

𝑛𝑖𝑗
2

)𝑖𝑗 ]/(𝑛
2)

1

2
[∑ (

𝑎𝑖
2

)𝑖 +∑ (
𝑏𝑗
2

)𝑗 ]−[∑ (
𝑎𝑖
2

)𝑖 ∑ (
𝑏𝑗
2

)𝑗 ]/(𝑛
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                                      (8) 226 

where 𝑛𝑖𝑗 is the number of cells in both group 𝐿1𝑖 and group 𝐿2𝑗 , 𝑎𝑖 and 𝑏𝑗 denote the 227 

number of cells in group 𝐿1𝑖 and group 𝐿2𝑗  respectively. 228 

 229 

Results and discussion 230 

Cell type identification and comparative analysis 231 

In order to evaluate the performance of SSRE comprehensively, we first apply it on ten pre-232 

annotated real scRNA-seq datasets and compare its performance with the original SSR, the 233 

native SC and eight state-of-the-art clustering methods from different categories. See details in 234 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.08.028779doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.08.028779
http://creativecommons.org/licenses/by-nc-nd/4.0/


the Materials and methods section. Then, we perform all these methods on five simulated 235 

datasets for further comparison. In our experiments, for a fairer comparison, we set the number 236 

of clusters of all methods to the number of pre-annotated types for all methods except SNN-237 

Cliq and Seurat, because SNN-Cliq and Seurat does not need the number of clusters as input. 238 

The other parameters in all the methods are set to the default values described in the original 239 

papers. Table 2 and Table 3 summarizes the NMI and ARI values of all methods on ten real 240 

scRNA-seq datasets respectively. The results of Corr in large datasets are unreachable because 241 

of the high computational complexity. As shown in Table 2 and Table 3, the proposed method 242 

SSRE outperforms all other methods in most cases. SSRE achieves the best or tied first on 243 

seven datasets upon NMI and ARI. Moreover, SSRE ranks second on three datasets based on 244 

NMI and two datasets based on ARI respectively. It demonstrates that SSRE obtains more 245 

reliable results independent to the scale and the biological conditions of scRNA-seq data. When 246 

is compared with original SSR, SSRE performs better in all of the datasets regarding NMI and 247 

ARI, which validates the effectiveness of the enhancement strategy in SSRE. The results of 248 

simulation experiment are shown in Table S1 and Table S2. We can see that SSRE has the 249 

better performance overall in terms of NMI and ARI, which shows the good stability of SSRE 250 

under different conditions. SSRE is slightly time-consuming compared with some methods like 251 

SC, Seurat, and dropClust, but is still in the reasonable range. More detailed descriptions can 252 

be found in section 2 of File S1. 253 

Estimating number of clusters is another key step in most clustering methods, which affects 254 

the accuracy of clustering method. In SSRE, we perform eigengap [29] on the learned similarity 255 

matrix to estimate the number of clusters. Eigengap is a typical cluster number estimation 256 

method, and it determines the number of clusters by calculating max gap between eigenvalues 257 

of a Laplacian matrix. To assess reliability of the estimation in different methods, we compare 258 

their estimated numbers and pre-annotated number. The results are summarized in Table S3. 259 

Besides SSRE and SSR, another four methods which also focus on similarity learning are 260 

selected for comparison. More experimental details can be seen in section 3 of File S1. 261 

 262 

Parameter selection and analysis 263 

In SSRE, four parameters are required to be set by users, i.e. penalty coefficients 𝜆 and 𝛾 in 264 

solving sparse similarity 𝑠𝑖𝑚𝑠𝑝𝑎𝑟𝑠𝑒 , gene selection threshold 𝑡 , and the number of nearest 265 

neighbors 𝑘  in similarity enhancement procedure. The selection of the threshold 𝑡  can be 266 

determined adaptively by solving Equation (4) described in Section data preprocessing and  267 
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Table 2  NMI values of all analyzed methods across ten real datasets 268 

Methods Treutlein Yan Deng Goolam Ting Song Engel Haber Vento Macosko 

SC 0.71 0.69 0.63 0.72 0.89 0.51 0.71 0.40 0.70 0.80 

SNN-Cliq 0.64 0.76 0.78 0.62 0.73 0.54 0.31 0.24 0.51 0.55 

SIMLR 0.69 0.79 0.84 0.56 0.98 0.67 0.74 0.40 0.64 0.72 

SC3 0.73 0.81 0.72 0.72 1.00 0.73 0.81 0.05 0.66 0.83 

NMF 0.67 0.64 0.68 0.55 0.60 0.52 0.70 0.05 0.68 0.72 

MPSSC 0.80 0.76 0.76 0.56 0.98 0.60 0.55 0.17 0.40 0.71 

Corr 0.64 0.81 0.72 0.56 0.71 0.60 0.29 - - - 

dropClust 0.82 0.76 0.73 0.81 0.91 0.61 0.29 0.43 0.67 0.71 

Seurat 0.53 0.72 0.68 0.62 0.80 0.71 0.72 0.62 0.69 0.62 

SSR 0.73 0.86 0.79 0.69 1.00 0.69 0.76 0.52 0.70 0.84 

SSRE 0.82 0.92 0.81 0.83 1.00 0.73 0.77 0.53 0.72 0.87 

 269 

Table 3  ARI values of all analyzed methods across ten real datasets 270 

Methods Treutlein Yan Deng Goolam Ting Song Engel Haber Vento Macosko 

SC 0.59 0.44 0.33 0.54 0.89 0.49 0.67 0.19 0.37 0.52 

SNN-Cliq 0.26 0.49 0.54 0.20 0.55 0.27 0.13 0.00 0.03 0.07 

SIMLR 0.51 0.60 0.67 0.30 0.98 0.55 0.67 0.21 0.38 0.52 

SC3 0.65 0.71 0.47 0.54 1.00 0.70 0.71 0.09 0.40 0.77 

NMF 0.47 0.42 0.44 0.30 0.29 0.31 0.62 0.06 0.45 0.51 

MPSSC 0.61 0.60 0.48 0.40 0.98 0.50 0.48 0.10 0.16 0.43 

Corr 0.56 0.71 0.53 0.32 0.50 0.41 0.13 - - - 

dropClust 0.88 0.62 0.46 0.59 0.89 0.58 0.24 0.24 0.45 0.45 

Seurat 0.57 0.64 0.53 0.53 0.73 0.66 0.69 0.43 0.46 0.33 

SSR 0.51 0.79 0.56 0.49 1.00 0.63 0.74 0.31 0.45 0.73 

SSRE 0.62 0.91 0.65 0.67 1.00 0.75 0.75 0.32 0.47 0.86 

 271 

gene selection. For the number of nearest neighbors 𝑘, we set 𝑘 = 0.1 ∗ 𝑛 (𝑛 is the number 272 

of cells) as default in small datasets with less than 5000 cells and 𝑘 = 100 in other larger 273 

datasets. The other two parameters 𝜆 and 𝛾 in augmented Lagrangian (we use 1/𝜆 and 1 𝛾⁄  274 

in the coding implementation) are proportionally set as 275 

                              1 𝛾⁄ = 𝜌 𝜆⁄ ,  𝜌 =  𝑚𝑖𝑛𝑗 {𝑚𝑎𝑥𝑖{𝑚𝑖𝑗}}                                                (9)          276 

where 𝑚𝑖𝑗  is the element of matrix 𝑀 = 𝑋𝑇𝑋  and it is equivalent to the cosine similarity 277 

between cells 𝑥𝑖 and 𝑥𝑗, which is the same as previous work [18]. In our experiments, 𝜌 𝜆⁄  278 

is set to a constant. So, for given dataset, the larger value of 𝜌 will lead to the larger value of 279 

𝜆, which will result in the sparser matrix C. It means that the value of 𝜌 can control the sparsity 280 

of matrix C adaptively in different datasets. Moreover, to validate the effect of penalty 281 
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coefficient 𝜆  in clustering results, we test our model with 𝜌 𝜆⁄   from 2 to 30 with the 282 

increment of 2 on all real datasets. As shown in Figure 2, the corresponding ARI and NMI 283 

indicate that the performance of SSRE is basically stable when 𝜌 𝜆⁄  is in the interval of 6 and 284 

20 (the resting results are shown in Supplementary Figure S1). In our study, we set 𝜌 𝜆⁄  to 10 285 

and 1 𝜆⁄ = 𝜌 𝜆⁄  as default for all datasets. 286 

 287 

Figure 2  Analysis of parameter setting in SSRE  288 

A. NMI values of SSRE on the Goolam, Engel, Haber, Vento datasets with different 𝜌 𝜆⁄ . B. 289 

ARI values of SSRE on the Goolam, Engel, Haber, Vento datasets with different 𝜌 𝜆⁄ . 290 

 291 

Visualization 292 

One of the most valuable aims in single cell analysis is to identify new cell types or subtypes 293 

[6]. Visualization is an effective tool to give an intuitive display of the subgroups in all cells. 294 

The t-distributed stochastic neighbor embedding (t-SNE) [48] is one of the most popular 295 

visualization methods and has been proved powerful in scRNA-seq data. In this section, we 296 

perform a modified t-SNE on learned similarities to project high dimensional data into two-297 

dimensional space. We focus on two datasets Goolam and Yan and select the native t-SNE, 298 

SIMLR, MPSSC, Corr based t-SNE for comparison. In Goolam [35], cells are derived from 299 

mouse embryos in five differentiation stages: 2-cell, 4-cell, 8-cell, 16-cell and 32-cell. Taking 300 

learned similarities of Goolam as input, the visualization results are shown in Figure 3 (A, B, 301 

C, D, E, F). SSRE places cells with the same type together and distinguishes cells with different 302 

types clearly. The groups in SIMLR are clearly distinguished from each other but some cells 303 

with the same type are separated. The second dataset Yan [33] is obtained from human pre-304 

implantation embryos and involves seven primary stages of preimplantation development: 305 
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metaphase II oocyte, zygote, 2-cell, 4-cell, 8-cell, morula and late blastocyst. Figure 3 (G, H, 306 

I, J, K, L) shows the results of Yan dataset. We can see that Corr, SIMLR, and SSRE have a 307 

better overall performance than other methods. However, the four cell types, i.e., oocyte, zygote, 308 

2-cell, and 4-cell, are mixed totally in Corr and partially in SIMLR. Moreover, SIMLR also 309 

divides the cells with the same type into distinct groups which are usually far away from each 310 

other. SSRE groups cells more accurately, according to oocyte, 2-cell, and other cells than the 311 

competing methods. 312 

 313 

Figure 3  Visualization of cells by different methods  314 

The 2D visualization of the cells in Goolam dataset by using t-SNE (A), Corr (B), SIMLR (C), 315 

MPSSC (D), SSR (E), SSRE (F), and in Yan dataset by using the same six methods, t-SNE (G), 316 

Corr (H), SIMLR (I), MPSSC (J), SSR (K), and SSRE (L). 317 

  318 

Identification of differentially expressed genes 319 

The predicted clusters may potentially enable enhanced downstream scRNA-seq data analysis 320 

in biological sights. As a demonstration, here we aim to detect significantly differentially 321 

expressed genes based on the clustering results. Specifically, we apply the Kruskal-Wallis test 322 

[49] to the gene expression profiles with the inferred labels. The Kruskal-Wallis test, a non-323 

parametric method, is often used for testing if two or more groups are from the same distribution. 324 

We use the R function kruskal.test to perform the Kruskal-Wallis test and calculate differential 325 

expression according to the P-value. The significant P-value (P < 0.01) of a gene indicates that 326 
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the gene’s expression in at least one group stochastically dominates one other group. We use 327 

the Yan [33] dataset as an example to analyze the differential expressed genes. The details of 328 

Yan have been introduced above. Supplementary Figure S2 shows the heat map of gene 329 

expression of the detected 50 most significantly differentially expressed genes. Notice that 330 

genes NLRP11, NLRP4, CLEC10A, H1FOO, GDF9, OTX2, ACCSL, TUBB8, and TUBB4Q 331 

have been reported in previous studies [33,50] and are also identified by SSRE. Genes 332 

CLEC10A, H1FOO, and ACCSL are reported as the markers of 1-cell stage cells (Zygote) of 333 

human early embryos while NLRP11 and TUBB4Q are the markers of 4-cell [51]. Genes GDF9 334 

and OTX2 are the markers of germ cell and primitive endoderm cell, respectively [52,53]. Genes 335 

H1FOO and GDF9 are marked as the potential stage-specific genes in the oocyte and the 336 

blastomere of 4-cell stage embryos [54]. Certain PRAMEF family genes are reported as ones 337 

with transiently enhanced transcription activity in 8-cell stage. MBD3L family genes are 338 

identified as 8-cell-genes during the human embryo development in the previous studies [55,56]. 339 

All these are part of the most 50 significantly differentially expressed genes detected by SSRE. 340 

 341 

Conclusion 342 

Identifying cell types from single cell transcriptome data is a meaningful but challengeable 343 

work because of the high-level noise and high dimension. The ideal identification of cell types 344 

enables more reliable characterizations of a biological process or phenomenon, otherwise 345 

introducing even more biases. Many approaches from different perspectives have been 346 

proposed recently, but the accuracy of cell type identification is still far from expectation. In 347 

this paper, we proposed SSRE, a computational framework focused on similarity learning, for 348 

cell type identification and visualization of scRNA-seq data. Besides three classical pairwise 349 

similarities, SSRE computes the sparse representation similarity of cells based on the subspace 350 

theory. Moreover, we designed a gene selection process and an enhancement strategy based on 351 

the characteristics of different similarities to learn more reliable similarities. We expect that by 352 

appropriately combining multiple similarity measures and adopting the embedding of sparse 353 

structure, SSRE can further improve the clustering performance. With systematic performance 354 

evaluation on multiple scRNA-seq datasets, it shows that SSRE achieves superior performance 355 

among all competing methods. Furthermore, the further downstream analyses demonstrate that 356 

the learned similarity and inferred clusters can potentially be applied on more exploratory 357 

analysis, such as identifying gene markers, detecting new cell subtypes and so on. In addition, 358 

for a more flexible usage, in our implementation code, users can choose one or two of three 359 
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correlation similarities mentioned in this study to perform gene selection and similarity 360 

enhancement procedure, and the default is all three correlation similarities. Nonetheless, the 361 

proposed computational framework allows some future improvements. For instance, selecting 362 

gene sets and combining similarities by considering multiple factors simultaneously [57,58], 363 

integrating multi-omics data [59,60] for similarity learning, and using parallel computing in 364 

clustering [61] to reduce time consume. 365 

 366 
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