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Abstract 
Summary: With the advance of next-generation sequencing (NGS) technologies and reductions in the costs of 
these techniques, bulked segregant analysis (BSA) has become not only a powerful tool for mapping quantitative 
trait loci (QTL) but also a useful way to identify causal gene mutations underlying phenotypes of interest. 
However, due to the presence of background mutations and errors in sequencing, genotyping, and reference 
assembly, it is often difficult to distinguish true causal mutations from background mutations. In this study, we 
developed the BSAseq workflow, which includes an automated bioinformatics analysis pipeline with a 
probabilistic model for estimating the segregation region and an interactive Shiny web application for visualizing 
the results. We deeply sequenced a male sterile parental line (ms8) to capture the majority of background 
mutations in our bulked F2 data. We applied the workflow to 11 bulked F2 populations and identified the true 
causal mutation in each population. The workflow is intuitive and straightforward, facilitating its adoption by 
users without bioinformatics analysis skills. We anticipate that BSAseq will be broadly applicable to the 
identification of causal mutations for many phenotypes of interest. 
Availability: BSAseq is freely available on https://www.sciapps.org/page/bsa 
Contact: liya.wang@cshl.edu, ware@cshl.edu, zhanguo.xin@ars.usda.gov  

1 Introduction  
Bulked segregant analysis (BSA) is a QTL mapping technique for 
identifying genetic markers associated with a mutant phenotype 
(Michelmore et al., 1991). For BSA, individuals are usually selected from 
the tails of the phenotypic distribution from a genetic cross to form two 
pools (bulks) of segregants. Then, both pools are genotyped to identify the 
genomic region containing the causal loci, for which allele frequency 
should differ between the two bulks.  

Ethyl methanesulfonate (EMS) mutagenesis has been widely used to 
introduce novel mutations into plants such as Arabidopsis to reveal the 
functions of many genes (Page and Grossniklaus, 2002). Coupling EMS 
mutagenesis with the NGS technique, MutMap (Abe et al., 2012) has been 
proposed as a means for identifying causal loci in rice by backcrossing an 
EMS mutant with a trait of interest to the wild-type parent and then 
sequencing the segregant F2 pools. The concept of MutMap is 
theoretically straightforward. Because the mutant phenotype is selected 
from an F2 segregation population, the allele frequency of the causal 
mutation should be 100%. In other words, the SNP ratio (the number of 
short reads with the mutation divided by the total short reads covering the 
site) should be 1. By contrast, the SNP ratio of mutations unlinked to the 
causal mutation should be around 0.5, and the SNP ratio of linked 

mutations should vary from around 0.5 to 1 depending on the genetic 
distance to the causal mutation. 

For functional validation of genes in sorghum, we generated 6400 
pedigreed M4 mutant pools (with 253 pools sequenced) from EMS-
mutagenized BTx623 seeds (Jiao et al., 2016). By coupling BSA with 
NGS, we identified the functions of several recessive sorghum genes using 
bulked F2 pools derived by backcrossing EMS mutants with a wild-type 
BTx623 founder line (BTx623¢). These genes include msd1 (Jiao, Lee, et 
al., 2018), bm40 (Jiao, Burow, et al., 2018), msd3 (Dampanaboina et al., 
2019), and ms9 (J. Chen et al., 2019). To filter out false-positive 
candidates, the causal genes were usually identified using more than one 
EMS mutant. Furthermore, for a mutation to be considered, an allele 
frequency of 1.0 was strictly required; this criterion made the detection of 
causal mutations sensitive to insufficient sequencing depth and errors in 
genome assembly, alignment of short reads, genotyping, or phenotyping. 

In this study, we improved and integrated a BSAseq workflow into a 
cloud-based workflow platform, SciApps.org (Wang et al., 2018), which 
can be used by thousands of users through NSF-funded resources 
including the CyVerse Data Store (Goff et al., 2011) for storage, XSEDE 
resources (Towns et al., 2014) at the Texas Advanced Computing Center 
(TACC) for computing, and a federation system (Wang, et al., 2015) at 
the Cold Spring Harbor Laboratory (CSHL) for data management, 
visualization, and additional computing. The workflow supports the rapid 
identification of causal genes with an automated bioinformatics analysis 
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pipeline, a probabilistic model for quantitatively scoring segregation 
regions, and a Shiny web application for interactively visualizing analysis 
results directly on the SciApps platform. To validate the improved 
workflow, we demonstrated that all causal genes discovered in the studies 
cited above could be correctly identified with BSAseq using one or at most 
two F2 pools.  

2 Methods 

2.1 Overview 
Fig. 1 (A) depicts the process of using BSAseq to discover the causal 
genes for a trait of interest. We begin by backcrossing the mutant that has 
the desired phenotype with the wild type BTx623¢. The F1 plants should 
have the wild-type phenotype, and in F2 plants the segregation ratio 
between mutant and wild-type phenotypes should be approximately 1:3. 
The mutant-type F2 plants are pooled together for sequencing. Short reads 
are aligned to the reference BTx623 assembly using Bowtie2 (Langmead 
and Salzberg, 2012), and SNPs are called and filtered using Bcftools (Li, 
2011) to keep only EMS-induced mutations (G → A or C → T) with the 
desired coverage (e.g., 5–100). SnpEff (Cingolani et al., 2012) is used to 
annotate and select mutations with a large predicted effect (missense, 
nonsense, splice_site_acceptor, and splice_site_donor), and SIFT 4G 
(Vaser et al., 2016) is used to predict whether these mutations are 
deleterious or not. Each of the above analytical steps is integrated into 
SciApps as a modular application (app) and chained together as an 
automated pipeline; an automatically generated diagram is shown in Fig. 
1 (B). The first two apps are configured to run on the TACC resources, the 
other apps are executed on the CSHL federation system, and all results are 
archived in the CyVerse Data Store. 

As shown by the diagram, the final app of the pipeline, bsa_viewer, 
aggregates the results from the previous three steps to support interactive 
visualization. When users attempt to visualize the output of the app, the 
results will be copied from the CyVerse Data Store to the CSHL federation 
system (if they are not already stored there), and an interactive Shiny web 
application will be opened. As a demonstration, we sequenced an F2 pool 
from a cross between a male-sterile mutant isolated from the pedigreed 
line Mut574 and the wild type BTx623¢.  The causal gene (the red dot with 
the lowest P-value) falls in the segregated region on chromosome 2 (Fig. 
S1). The data can also be viewed by the SNP ratio. Most importantly, 
biological knowledge can be also applied to eliminate false-positive 
candidate genes (or genes with the candidate mutations). The detailed 
calculations of the segregation probability are described in the next 
section. The raw sequence data of Mut574 have been deposited into NCBI 
SRA (PRJNA580273). 

To run the workflow in sorghum or another organism, only a few 
modifications are needed: 1. Select the paired sequencing data through 
“Browse” in step 1; 2. Select the required reference genome in steps 1, 2, 
4, and 5; 3. Specify your own or select the background SNPs in step 3. 
Default settings can be used for all other parameters. A detailed tutorial is 
available: https://tinyurl.com/rgc5tjz. Data should be uploaded to the 
CyVerse Data Store via CyberDuck (https://cyberduck.io/) or iCommands 
(https://docs.irods.org/4.2.1/icommands/user/). A free CyVerse account is 
required to host sequencing data at CyVerse. After a user runs BSAseq, 
SciApps will archive the analysis results in their CyVerse account and 
chain the raw data and analysis results together as shareable automated 
workflows. 

2.2 Estimating the segregation probability 
As shown in Fig. 1 (A), the causal mutation for the trait of interest is 
expected to have an SNP ratio of 1 (or close to 1 if there are any errors in 
the data collection or from analysis tools). For mutations close to the 
causal loci, the SNP ratio should decrease from 1 with increasing genetic 
distance, whereas unlinked mutations are expected to have ratios around 
0.5. However, the SNP ratio plot can be noisy due to unfiltered 
background mutations, as shown in Fig. S2 and the inset figure of Fig. 1 
(C). To improve the signal-to-noise ratio, we used a weighted one-sample 
single-tailed t-test to estimate the significance of an EMS mutation falling 
within the segregated region.  

The null hypothesis is that the weighted mean of the SNP ratios around 
the mutation (+/-W) is equal to 0.5 (no segregation); W is the window size. 
The weighted mean and standard deviation are defined by equations (1) 
and (2), with the weight wi defined by equation (3), a tricube kernel 
function. Di is the standardized distance, with value 0 at the focal position 
and value 1 at the edge of the window. N is the number of EMS mutations 
in the window, M is the number of nonzero weights, and xi is the SNP 
ratio. 
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The logarithm of the P-values is plotted along each chromosome by the 

Shiny web application, as shown in Fig. S1, to easily visualize the 
segregated region as well as the true-positive candidate genes, which 
should fall into the segregated region. 

2.3 The Shiny web application 
The weights defined by the tricube kernel function (equation (3)) are more 
critical when a larger window size is needed, e.g., when the segregated 
region is broad due to a low rate of recombination. We created a Shiny 
web application to support interactive the window size; toggling of the 
view between SNP ratio and segregation probability; aggregation of 
homologous gene annotation (A. thaliana and O. sativa japonica), SnpEff 
annotations, and SIFT score predictions; and querying of previously 
identified EMS mutations (Jiao et al., 2016) (Fig. 1 (C)).  

After completing the BSAseq analysis pipeline, users can open the 
Shiny web application by visualizing the bsa_viewer output. In the 
beginning, segregation probability plots along all chromosomes are 
displayed (Fig. S1). Users can choose different window sizes to improve 
the estimation of the segregated region. Once a chromosome with a 
segregated region is determined, users can zoom into the chromosome to 
more closely examine the candidate genes (Fig. 1 (C)). SNPs are 
automatically annotated in the workflow, allowing users to determine the 
causal mutation based on biological knowledge. The interactive Shiny 
web application can toggle from the statistic graph to the traditional SNP 
ratio graph for confirmation of the causal SNP, which should have a ratio 
of nearly 1 and should lie within a region devoid of unlinked genetic 
mutations (e.g., the peak on chromosome 2 in the inset figure of Fig. 1(C)). 

Once a candidate gene is identified, the user can click the gene id to get 
the EMS mutant that has a significant mutation on the same gene by 
querying the EMS mutation database. The database is built with the 
previously sequenced 253 EMS mutant pools (Jiao et al., 2016) to help 
identify the independent allele of the causal mutation for confirmation of 
predicted candidate genes. We are in the process of sequencing an 
additional 1000 mutant pools to cover the majority of sorghum genes.  

2.4 Deep sequencing of the sorghum ms8 mutant line for 
capturing the background mutations 

As shown in Fig. S2, many SNPs far away from the causal loci have a 
SNP ratio near 1, e.g., the two false-positive SNPs (red dots) on 
chromosome 5. The reasons why these SNPs have ratios close to 1 include 
low sequencing coverage around the mutations, local segregation 
distortion, and most importantly, differences between the reference 
BTx623 and the founder BTx623¢ line used to create the EMS mutants; 
these mutations will have SNP ratios of 1 because they are present in both 
parents. In Fig. 1 (A), a heterozygous SNP in the founder line is used as 
an example to show that false-positive candidate genes can be generated 
by insufficient sequencing or sampling. 

Additionally, sorghum is primarily self-pollinated, meaning that an 
individual sorghum plant will accept pollen from its own flowers. To 
ensure that we are backcrossing the EMS mutant with BTx623¢, we used 
the ms8 mutant (Xin et al., 2017), which was a male sterile mutant isolated 
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from the sorghum mutant library and has been backcrossed to the parent 
BTx623¢ for six generations, as the wild-type parent for creating F2 BSA 
mapping populations. Because ms8 is completely male-sterile, all seeds 
derived from the crosses of mutants to ms8 are truly F1 seeds. We deeply 
sequenced ms8 to 60X coverage and discovered 12,675 EMS-type (GC → 
AT) mutations. After subtracting these background mutations, candidate 
mutations were located in one chromosome region, greatly simplifying the 
calling of the causal mutations. The raw sequencing data of ms8 were 
deposited into NCBI SRA (PRJNA606537).   

3 Results 
A male-sterile mutant isolated from the mutant line Mut574 was mapped 
to chromosome 2 based on the statistical model (Fig. S1), The peak 
contained two mutations predicted to be deleterious (red dots) and three 
mutations with tolerable effects (blue circles). Flipping of the graph to the 
SNP ratio (Fig. S2) revealed that these mutations are located on the tip of 
a region devoid of unlinked genetic mutations. Examination of the SNP 
effect of the mutations revealed that one deleterious mutation was a splice-
site mutation in the gene Sobic.002G221000, a homolog of Arabidopsis 
male sterile 1 (ms1). This mutant happened to be allelic to the recently 
published ms9 gene (J. Chen et al., 2019).  

We applied the workflow to 11 published MutMap populations 
identified through conventional BSA analysis of NGS sequencing data of 
bulked F2 populations. This led to the identification of the correct causal 
mutations in each case, as shown in Fig. S3 (ms9 (J. Chen et al., 2019)), 
S4 (msd1 (Jiao, Lee, et al., 2018)), S5 (bm40 (Jiao, Burow, et al., 2018)), 
and S6 (msd3 (Dampanaboina et al., 2019)). The results are summarized 
in Table 1. 
 
Table 1. Benchmark results for published sorghum genes  

Mutant Causal 
gene 

#FPms8
a #FPBSA

b #Candidates 
(with TP)c 

TP detected w/o 
filtering ms8d  

Mut574 ms9 1 3 2 (Y) Y 
BC1F2  ms9 1 3 3 (Y) Y 
p9  msd1 0 0 2 (Y) Y 
p12 msd1 1 1 3 (Y) Y 
bm40-1 bm40 0 2 2 (Y) Y 
bm40-2 bm40 2 1 4 (Y) Y 
p6A msd3 1 1 2 (Y) Y 
p6B msd3 1 1 2 (Y) N 
p14 msd3 0 0 2 (N)e N 
p21A msd3 2 2 3 (Y) Y 
p21B msd3 1 2 3 (Y) N 
p24 msd3 1 2 3 (Y) Y 

(a) Number of false-positive genes introduced by ms8 background mutations. (b) 
Number of false-positive genes that can be filtered out by BSAseq (including those 
in ms8). (c) Number of candidate genes identified by BSAseq (Y/N: including the 
true causal gene (Y) or not (N)). (d) Detection of the causal gene (true-positive) (Y) 
or not (N) without filtering out ms8 background mutations. (e) The causal mutation 
was filtered out due to a median info value of 3.28 (> 3.25) although its SIFT score 
was 0 and it is within the predicted segregation region, as shown in Fig. S6 (C). 

Table 1 shows that BSAseq can filter out about 50% of the false-
positive candidate genes, but more than one candidate gene was left for 
each F2 mutant pool due to linkage to the causal gene. Fortunately, the 
EMS mutation sites are mostly randomly distributed, so the causal gene 
can be identified using another EMS mutant with an independent 
significant allele in the same gene. As an example, the only candidate gene 
shared by Mut574 and BC1F2 of ms9 is Sobic.002G221000. Our results 
also showed that msd1, bm40, and msd3 could all be identified with at 
most two F2 pools. The confounding issue for identification of msd3 was 
a background mutation from ms8 that is present in five of the six F2 pools. 

BSAseq failed to detect the causal gene for p14 due to a slightly larger 
median info value predicted by SIFT4G, although the causal mutation did 
fall into the predicted segregation region. Therefore, users need to pay 
attention to false-negative candidate mutations if they are in the 

segregation region but just fail to meet the SIFT criteria for being 
considered as significant mutations. The ms8 parental line not only 
introduces false-positive candidate genes (though all of them are outside 
the predicted segregation region for the BSA data listed in Table 1, and 
can therefore be filtered out by BSAseq) but also decreases the signal-to-
noise ratio, enabling BSAseq failed to predict the segregation region for 
p6B and p21B (plots not shown). 

Interestingly, when the p9 data were aligned to v3, the SNP ratio for the 
causal gene, msd1, was 0.96 (vs. 1 when aligned to v2). This suggests that 
the causal gene could not be detected if we continue to exclude SNPs with 
a SNP ratio less than 1.  

4 Discussion 
BSA analysis of bulked NGS data often requires a comprehensive 
understanding of bioinformatic tools, impeding the wide application of 
this technology for causal gene identification. By contrast, the simplicity 
of our workflow allows users who lack training in bioinformatics to run 
analyses. With this workflow, it is possible to identify the causal mutation 
with 15x coverage of the genome. In sorghum (genome size ~700 Mb), 10 
Gb of clean data, which now costs less than $200 including library 
construction, is sufficient to identify the causal mutations as long as the 
phenotype is accurate. Additionally, the workflow was developed to 
identify causal mutations for recessive nuclear mutations. For dominant 
mutations, both heterozygous and homozygous mutants yield the same 
mutant phenotype; consequently, the segregated region will have an 
average SNP ratio of 0.75. Our workflow correctly predicts the 
segregation region and identifies the true causal gene, e.g., for the red root 
mutant (results not shown; patent and publication are pending). 

Genome editing technologies promise to transform breeding in both 
plants (K. Chen et al., 2019) and animals (Tait-Burkard et al., 2018). To 
effectively apply genome-editing tools, however, it is essential to know 
the target gene to be edited, or ideally the causal mutations. As sequencing 
technologies continue to be developed and sequencing costs continue to 
drop, BSAseq will increasingly become an affordable means to discover 
targets for genome editing when a high-quality mutant library is available. 
Induced mutant populations often have a high density of background 
mutations, which impedes the immediate utility of traits identified from 
mutant libraries in breeding. Although recurrent backcrosses can be used 
to remove unlinked background mutations, it will take several generations 
to remove 90% of them. Furthermore, no effective method currently exists 
for removing the linked mutations by backcrossing. On the other hand, 
genome editing can introduce precise mutations with few or no offsite 
mutations, allowing the rapid introduction of superior traits into elite 
germplasm for breeding.  The combination of affordable and fast target 
gene discovery using BSAseq with precise genome editing has the 
potential to revolutionize breeding.  

5 Conclusion 
We demonstrated the utility of a web-based BSAseq workflow in the 
identification of causal mutations underlying phenotypes of interest. We 
showed that false-positive candidate genes can be effectively eliminated 
if they are outside the predicted segregation region, which can be 
estimated with adjustable window sizes via the interactive Shiny web 
application. The BSAseq workflow is species-agnostic, and could readily 
be applied to identifying causal genes in other plant species. We expect 
that the BSAseq workflow will be a useful tool for large-scale 
identification of causal mutations in sorghum and other organisms. 
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Fig. 1. The BSAseq workflow. (A) Overview. (B) Diagram of the analysis pipeline chaining files (open button) and applications (filled buttons). (C) 
Segregation probability plots with a window size of 2 Mb along the chromosome 2 for the ms9 F2 pool data. Blue circles indicate nonsynonymous 
SNPs. Filled red circles indicate significant mutations (stop_gained, splice_site_acceptor, splice_site_donor, start_lost, or missense mutations with SIFT 
score < 0.05 and median_info < 3.25).  The blue horizontal line indicates the 10-5 significance threshold. The first row of the table (below the plot) is 
selected by clicking, which highlights the row in blue and the matching mutation on the plot with a blue square (pointed by a red arrow). Note that 
clicking on any circles on the plot will also highlight the matching genes in the table. Clicking on the candidate gene id will query the EMS mutation 
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database and return the mutation line with independent significant mutation(s) in the same gene. The inset figure is the SNP ratio plot of chromosome 2 
where each gray dot represents a SNP and the solid line is the result of LOWESS (LOcally WEighted Scatter-plot Smoother) regression. 
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