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Abstract 

 

Cytometry analysis has grown in recent years with the expansion in the maximum number of 

parameters that can be acquired in a single experiment. In response to this there has been an 

increased effort to develop computational methodologies for handling high-dimensional single cell 

data acquired by flow or mass cytometry. Despite the success of numerous algorithms and 

published packages to replicate and outperform traditional manual analysis, widespread adoption of 

these techniques has yet to be realised in the field of cytometry. Here we present CytoPy, a Python 

framework for automated analysis of high dimensional cytometry data that integrates a document-

based database for a data-centric and iterative analytical environment. The capability of supervised 

classification algorithms in CytoPy to identify cell subsets was successfully confirmed by using the 

FlowCAP-I competition data. The applicability of the complete analytical pipeline to real world 

datasets was validated by immunophenotyping the local inflammatory infiltrate in individuals with 

and without acute bacterial infection. CytoPy is open-source and licensed under the MIT license. 

Source code is available online at the https://github.com/burtonrj/CytoPy, and software 

documentation can be found at https://cytopy.readthedocs.io/. 
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1. Introduction 

 

Cytometry data analysis has undergone a paradigm shift in response to the growing number of 

parameters that can be observed in any one experiment.  As the field evolves, the traditional method 

of manual gating by sub-setting single cell data into populations and encircling data points in hand-

drawn polygons in two-dimensional space has proven laborious, subjective, and difficult to 

standardise.  In response to these shortcomings, a cross-disciplinary effort has given birth to a new 

approach often termed „cytometry bioinformatics‟, to leverage complex computer algorithms and 

machine learning to automate analysis and improve the investigator‟s ability to extract meaning 

from high dimensional data. 

 

Where cytometry is used for data acquisition, the typical objective is to discern differences between 

groups of subjects or experimental conditions, or to identify a phenotype that correlates with an 

experimental or clinical endpoint.  To this end, a computational approach to analysis of cytometry 

data can take one of two strategies: to separate single cell data into groups or classifications, which 

then form the variables (often descriptive statistics of the obtained groups) the investigator uses to 

test their hypothesis, or directly model the acquired distribution of single cell data with respect to a 

chosen endpoint.  Classification strategies can be further subdivided: autonomous gating replicates 

traditional gating through the use of algorithms such as clustering analysis (flowDensity (1), 

OpenCyto (2)); high-dimensional clustering groups cells according to their individual phenotypes 

(FlowSOM (3), PhenoGraph (4), Xshift (5), SPADE (6)); and supervised classification where 

training on an example of manually gated data produces a classifier capable of distinguishing cell 

populations (FlowLearn (7) and DeepCyTof (8)).  Modelling strategies have been successfully 

adopted in applications such as ACCENSE (9), CellCNN (10), and CytoDX (11) despite the fact 

that this approach requires pooling of sample data and is therefore sensitive to batch effects. 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.08.031898doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.08.031898
http://creativecommons.org/licenses/by/4.0/


In addition, various pieces of software have been developed for data handling, transformation, 

normalisation and cleaning (e.g. flowCore, flowIO, flowUtils, flowTrans, reFlow, flowAI), 

visualisation (e.g. ggCyto, t-SNE, UMAP, PHATE), and pipelines for specific applications (e.g. 

Citrus, MetaCyto, flowType/RchyOptimyx).  To date, there are over 30 different contributions to 

automated analysis (12; 13; 14; 15).  However, there is no widespread adoption of these methods as 

yet, nor is there a consensus on how to adopt such techniques, with much of the analysis pipeline 

left to the individual investigator to establish.  This inconsistency results in projects amassing 

collections of custom scripts and data management that are not standardised or centralised, which 

not only makes reproducing results difficult but also makes for a daunting landscape for newcomers 

to the field. 

 

We here introduce „CytoPy‟, a novel analysis framework that aims to mend these issues whilst 

granting access to state-of-the-art machine learning algorithms and techniques widely adopted in 

cytometry bioinformatics.  CytoPy is developed and maintained in the Python programming 

language, which prides itself on readability and is becoming the language of choice amongst the 

open source data science community (16).  CytoPy introduces a central data source for all single 

cell data, clinical/experimental metadata, and analysis results, and provides a „low code‟ interface 

that is both powerful and beginner friendly.  

 

We demonstrate the performance of the supervised classification techniques housed within CytoPy 

on the Flow Cytometry: Critical Assessment of Population Identification Methods (FlowCAP) data 

set (17), which has been created for comparing the performance of automated analytical techniques 

for flow cytometry data.  As the FlowCAP data underwent extensive pre-processing prior to their 

publication and hence do not reflect the challenges encountered with primary data generated by 

individual users, an in-house dataset of local immune cells in samples collected from patients 

undergoing peritoneal dialysis and who presented with and without acute bacterial infection was 
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generated to demonstrate the applicability of CytoPy as a complete analytical pipeline for complex 

and unprocessed data.  We believe that CytoPy provides a powerful and user-friendly framework to 

interrogate high dimensional data originating from investigations using flow cytometry or mass 

cytometry as readout, and has the potential to facilitate automated data analysis in a multitude of 

experimental and clinical contexts. 

 

2. Design and Implementation 

 

2.1. Building a framework that is data-centric 

 

Reliable data management is a cornerstone of successful analysis, by improving reproducibility and 

collaboration.  A typical cytometry project consists of many Flow Cytometry Standard (FCS) files, 

clinical or experimental metadata, and additional information generated throughout the analysis (e.g. 

gating, clustering results, cell classification, sample specific metadata).  A further complication is 

that any analysis is not static but an iterative process.  We therefore deemed it necessary to anchor a 

robust database at the centre of our software.  In CytoPy, projects are instantiated and housed within 

this database, which serves as a single dynamic data repository that is then accessed continuously 

throughout the subsequent analysis.  For the architecture of this database we chose a document-

orientated database, MongoDB (18), where data are stored in JSON-like documents in a tree 

structure.  Document-based databases carry many advantages, including simplified design, dynamic 

structure (i.e. database fields are not ‟fixed‟ and therefore resistant to unforeseen future 

requirements) and easy to scale horizontally, thereby improving integration into web applications 

and collaboration.  In this respect, CytoPy depends upon MongoDB being deployed either locally or 

via a cloud service, and MongoEngine, a Document-Object Mapper based on the PyMongo driver 

(19). 

 

2.2. Framework overview 

An overview of the CytoPy framework is given in Figure 1 including a recommended pathway for 

analysis, although individual elements of CytoPy can be used independently.  CytoPy follows an 
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object-orientated design with a document-object mapper for both commitment to, and collection 

from, the underlying database.  The user interacts with the database using an interface of several 

CytoPy classes, each designed for one or more tasks.  CytoPy is algorithm agnostic, meaning new 

autonomous gating, supervised classification, clustering or dimensionality reduction algorithms can 

be introduced to this infrastructure and applied to cytometric data using one of the appropriate 

classes.  CytoPy makes extensive use of the Scikit-learn (20) and SciPy (21) ecosystems.  

Throughout an analysis, whenever single cell data are retrieved from the database, they are stored in 

memory as Pandas DataFrames that are accessible for custom scripting at any stage. 

 

Following the steps in Figure 1, a typical analysis in CytoPy would be performed as follows 

(functions are shown in italics and class names are shown in italics and title-case). 

(1) Single cell data are generated and exported from the flow cytometer in FCS 2.0 or 3.0 format.  

Experimental and clinical metadata are collected in tabular format either as Microsoft Excel 

document or csv file, with the only requirement being that metadata be in ‟tidy‟ format (22). 

(2) A Project is defined and populated with the single cell data and accompanying metadata.  Each 

subject (e.g. a patient, a cell line, or an animal) has a Subject document containing metadata that are 

dynamic and has no restriction on the data stored within, and are associated to one or several 

FCSGroup documents.  Each FCSGroup document contains one or more FCS files associated to a 

single biological sample collected from the subject.  This document contains all single cell data, 

„gated‟ populations, clusters and meta-information that attains to a single „sample‟.  This also 

includes any isotype or Fluorescence-Minus-One (FMO) controls.  Compensation is applied to 

single cell data at the point of entry using either an embedded spillover matrix or a provided csv file.  

The FCSGroup is associated to an FCSExperiment, containing all samples collected under one 

particular set of staining conditions.  There must always be a Panel document associated to a 

FCSExperiment.  For this, the investigator must provide a „panel design‟ in the form of a simple 

Excel document (see CytoPy documentation https://cytopy.readthedocs.io/).  CytoPy then uses 
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regular expression to match FCS metadata such as channel names to the expected panel and offers 

error handling for when discrepancies arise. 

(3) Any cytometry analysis will require that single cell data be cleaned of debris and artefacts.  

Semi-autonomous gating is employed to select what is known as a „root‟ population.  This is a 

ground truth for every subject and where analysis will start from; for instance in a mixture of 

immune cells this could be the T cell population (CD3
+
 live single lymphocytes). 

(4) Batch effects are common and must always be evaluated prior to analysis, as they can influence 

subsequent steps.  If the batch effect is minimal the investigator can consider pooling data and 

modelling the distribution of single cell data directly.  If batch effects are considerable, the 

investigator should choose their training data accordingly and take caution when interpreting 

clustering results.  CytoPy offers a class called EvaluateBatchEffects with methods for generating 

univariate and multivariate comparisons of the single cell feature space. 

(5) Multiple strategies can be employed to classify cells based on a common phenotype.  Strategies 

such as autonomous gating and supervised classification are biased by the training data provided 

(and the gating strategy used to label those data) whereas high-dimensional clustering is an 

unsupervised method that groups cell populations according to their phenotype.  CytoPy offers both 

supervised classification through the CellClassifier class and high dimensional clustering through 

the Clustering class, so that variables can be generated from either or both strategies.  Importantly, 

the results of either strategy can be committed to the database and then visually interpreted using a 

class called Explorer.  The Explorer class also facilitates exploratory data analysis with interactive 

plots of embedded space using multiple dimensionality reduction techniques. 

(6) Once cells have been classified, we can test our hypothesis.  The single cell data are summarised 

into a „feature space‟, summary statistics that describe the cell populations.  This generates a large 

number of variables, many of which will be either uninformative or redundant.  Filter and wrapper 

methods are applied to perform feature selection, finding only those variables important for 
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predicting a clinical/experimental endpoint.  In addition, there are multiple methods available for 

visualising extracted features, allowing the investigator to quickly determine whether certain 

patterns exist in the dataset. 

 

3. Results 

 

3.1. CytoPy provides accurate cell classification using supervised machine learning algorithms 

 

The nature of cytometry data lends itself well to supervised classification, given that a typical 

biological sample yields hundreds of thousands of events but we are limited in measuring up to 40 

variables for each cell, resulting in an abundance of observations.  CytoPy offers the CellClassifier 

class as a blueprint for supervised classification in a cytometry framework.  One of the most 

popular libraries for implementing machine learning techniques in Python is Scikit-Learn (20).  

Scikit-Learn has been used in over 95,000 applications and provides a robust infrastructure of 

objects that handle pre-processing, training methodology, and interpretation of machine learning 

algorithms.  The CellClassifier class follows the conventions of Scikit-Learn by providing a 

familiar application programming interface (API) and the apparatus for any classification algorithm 

to be integrated into the CytoPy framework.  In CytoPy version 0.0.1, the following algorithms 

have been implemented: XGBoost, Feed-Forward Neural Network, Linear Discriminant Analysis, 

Support Vector Machines and K-Nearest Neighbours.  The choice of algorithms to include at this 

stage were based on prior experience with classification tasks (23), examples in the literature of 

supervised classifiers in this domain (8; 17; 23), and the relevance of including classifiers from 

multiple families (24). In order to test the performance of each algorithm, we utilised the FlowCAP-

I classification challenge (see Supplementary Methods).  As shown in Table 1, XGBoost gave the 

best performance as judged from the weighted F1 scores for each algorithm, and was therefore 

deemed the method of choice for the remainder of this study. 

 

3.2. Semi-autonomous gating can standardise the cleaning of single cell data for rapid analysis 
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The pre-processed FlowCAP data are helpful for critically assessing the performance of supervised 

classification algorithms but do not reflect the challenges associated with a real world cytometry 

project generating complex, primary data.  As validation of its performance we here applied CytoPy 

to the characterisation of immune cells in peritoneal drain fluid and whole blood of peritoneal 

dialysis (PD) patients with and without acute bacterial infection.  We chose this dataset based on a 

wealth of previous experience in the field (25; 26; 27), the clinical relevance of acute peritonitis in 

those patients (28), and because of the technical challenges presented by the sample type.  Samples 

were stained with a comprehensive panel of monoclonal antibodies to identify T lymphocytes, 

monocytes, dendritic cells, eosinophils and neutrophils as the major constituents of peritoneal 

immune cells, together with activation and differentiation markers on those populations 

(Supplementary Tables S2 and S3).  

 

Cytometry data are highly variable and surface marker expression must often be identified amongst 

a backdrop of cellular debris and staining artefacts.  This is particularly relevant when studying 

complex samples such as local specimen taken from the site of acute infection.  In the case of 

individuals receiving PD, bacterial infection leads to the influx of billions of inflammatory cells, 

predominantly neutrophils, into the peritoneal cavity within a few hours (27).  Considerable pre-

processing is required to uncover biological material, and traditionally this task would be performed 

by laborious and time consuming manual gating.  CytoPy replicates and expands upon autonomous 

gating algorithms to provide a semi-autonomous approach that standardises and improves the 

efficiency of pre-processing.  Gates (polygons in two-dimensional space that encapsulate a 

population of interest) are associated to a sample using the Gating class.  The Gating class is central 

to CytoPy as it is the means by which gates and populations are created, edited, and visualised 

throughout the analysis.  

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.08.031898doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.08.031898
http://creativecommons.org/licenses/by/4.0/


In CytoPy, the investigator decides upon a „root‟ population; a ground truth present in every sample 

and the point at which fully automated analysis will begin.  Semi-autonomous gates are then applied 

in sequence to extract the root population for each biological sample.  This is exemplified in Figure 

2, showing the identification of T lymphocytes from local immune cells in the peritoneal effluent of 

PD patients.  This example utilises density-driven threshold gates, where a threshold is determined 

based on properties of the Probability Density Function as estimated using Gaussian Kernel Density 

Estimation, and mixture models shown as elliptical gates in Figure 2.  Multiple methodologies for 

autonomous gating are available to choose from (see CytoPy documentation for a detailed 

description https://cytopy.readthedocs.io/en/latest/gating.html).  The ‟low code‟ interface and object 

orientated design of CytoPy makes the generation of gates simple.  Establishing an effective gating 

strategy is achieved using the Template class, which inherits from the Gating class.  Once a gating 

strategy has been determined and the autonomous gates chosen, the Template class allows to 

commit this strategy to the database so that it can be applied to subsequent data, replicating analysis 

(see Supplementary Data S1 Appendix). 

 

3.3. CytoPy provides visual and quantitative tools for evaluating batch effect 

 

Batch effect is an unavoidable obstacle in any cytometry experiment.  CytoPy is thus designed to 

provide methods for the evaluation of batch effect as an important step in the analysis.  For 

comparison, a reference sample can be identified using the calculate_ref_sample function.  

Following the method presented by Li et al. (8), CytoPy performs a pairwise computation of the 

Euclidean norm of each sample‟s covariance matrix, and selects the sample with the smallest 

average distance as reference.  This reference sample can then be used for univariate comparison of 

each channel or multivariate comparison using a dimensionality reduction technique such as 

Principle Component Analysis (PCA).  This is achieved using the EvaluateBatchEffects class that 

offers a low-code interface to produce the aforementioned plots (see Supplementary Data S2 

Appendix). 
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In Figure 3, the reference sample is shown in blue and compared to randomly selected samples 

shown in red; ten such samples are depicted to ease visual interpretation but there is no limit to the 

number of comparisons that can be made in a single plot.  While Figure 3A shows the degree of 

inter-sample variance for individual fluorochromes and highlights abnormalities in a single channel, 

Figure 3B shows the same ten randomly selected samples, individually plotted to overlay the 

reference sample, thus illustrating the multivariate drift of a sample compared to the chosen 

reference.  This allows for identification of samples that are explicit outliers and gives a general 

sense of the inter-sample variance in the complete immunological landscape measured. 

 

The approach illustrated in Figure 3 defines methods that are helpful for visually critiquing the 

quality of the dataset and that can identify anomalies that should be addressed by changing 

technical procedures in data acquisition.  To proceed with classifying cells into known phenotypical 

subsets we must take into account this technical variation.  This is achieved in traditional manual 

gating by laboriously adjusting gates on a per-sample basis, with considerable variation depending 

on the investigator.  For automated classification by supervised methods, we instead choose our 

training data in such a way that inter-sample variation is accounted for.  CytoPy provides the 

similarity_matrix function and the output is shown for each sample type in Figure 4.  Unlike the 

visualisation techniques depicted in Figure 3, the similarity_matrix function quantifies the inter-

sample variation by computing a pairwise statistical distance for each possible combination of 

samples.  The statistical distance shown in Figure 4 is the square root of the Jenson-Shannon 

divergence (the default choice for this function), given by: 

√
‖ ‖

 

Where m is the pointwise mean of the left probability vector p (PDF of the first sample) and the 

right probability vector q (PDF of the second sample).  KL is the Kullback-Leibler divergence.  The 
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Jenson-Shannon distance returns a value between 0 and 1, where 1 indicates that the distributions p 

and q are equivalent, and 0 that they are highly dissimilar (29; 30).  Any statistical distance (a 

function taking two probability vectors and outputting a metric distance) can be used, but by default 

the Jenson-Shannon distance is applied, chosen for its properties of symmetry and finite output (30; 

31).  The similarity_matrix function outputs a heatmap where the colour of each cell corresponds to 

the Jenson-Shannon distance of the x, y axis pair that overlaps on the given cell.  The axes of the 

heatmap are clustered using single linkage clustering.  Clustering on the pairwise Jenson-Shannon 

distance reveals groups of samples that are similar in the distribution of their single cell subsets in 

high dimensional space.  Classification of cell populations in these groups can be performed 

independently per group but with the same objective of identifying phenotypically distinct cell 

populations.  For each group the investigator chooses a reference sample (e.g. a uniform sample of 

cells from each member of the group) and manually labels this reference for the cell phenotypes of 

interest (e.g. for T lymphocytes this might be CD4
+
 and CD8

+
 T cell subsets), then trains a classifier 

using the labelled reference and subsequently predicts the cell populations for the remaining 

members of the group.  This approach accounts for the inter-sample variation, and therefore 

improves the classifiers‟ ability to generalise. 

 

3.4. Supervised classification algorithms can reliably identify cell subsets in complex sample 

types whilst providing tools to inspect and diagnose anomalies 

In Figure 4, biological samples were clustered on pairwise Jenson-Shannon distances to reveal 

groups of samples of relatively high similarity; clustering results are shown as a dendrogram on the 

axis of each two-dimensional heatmap matrix.  Groups are derived by cutting the dendrogram at a 

level that was heuristically chosen through visual inspection of the dendrogram.  This process was 

repeated for each sample type and set of staining conditions to generate the groups shown in Figure 

5A where each group was treated independently during supervised classification.  
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Figure 5A shows the performance of XGBoost classification of all leukocyte subsets in peritoneal 

drain fluid and more detailed subsets of the T cell compartment in peritoneal drain fluid and in 

PBMCs from whole blood.  Performance is given as the weighted F1 score, a metric that captures 

the harmonic mean between precision and sensitivity, and is weighted by class support (the number 

of true instances for each label), which provides a value between 0 and 1, where 1 is the best 

possible score.  This metric was captured by monitoring the performance of XGBoost on five 

randomly chosen validation samples from each classification group of each experimental condition 

and/or sample type.  The validation samples were labelled by manual gating.  Performance was best 

for PBMCs from whole blood where the weighted F1 score on average was above 0.95.  

Performance was worst for identifying leukocyte subsets in peritoneal effluent, which reflects the 

complex nature of the sample type and the diversity of cell subsets we intend to describe.  The 

situation for T cell subsets classified from drain fluid was more complicated.  For groups 2 and 3 

performance was optimal (average weighted F1 score ≥ 0.95) yet for group 1 there was one 

significant outlier; one validation sample gave a weighted F1 score of 0.6, outside the interquartile 

range for this group.  Of note, CytoPy provides functionality to easily visualise and explore the 

results of CellClassifier objects.  For the particular outlier mentioned, Figure 5B and 5C show 

detailed results of the classification of T cell subsets.  Figure 5B is a heatmap representation of a 

confusion matrix, provided if the user provides a value of True to the argument print_report_card, 

in the manual_validation method of CellClassifier.  The confusion matrix in Figure 5B shows 

„predicted labels‟ versus the „true label‟; the ground truth being the results of manual gates.  The 

values shown in the confusion matrix were normalised across each row (true label) meaning the 

values on the diagonal were equivalent to the accuracy for each class.  The confusion matrix 

revealed that although this sample scored poorly in terms of Weighted F1 score, the classification 

accuracy was greater than 95% for all but two classes: γδ T cells and unclassified cells, i.e. those 

that would not fall into any „gate‟.  52% of cells that had been classed as γδ T cells by the manual 

gate in this particular sample were instead left unclassified and a large majority of unclassified cells 
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from manual gating were classified into other categories by the XGBoost algorithm.  The inclusion 

of unclassified cells into one or more other subsets was least concerning as it likely reflected the 

subjective nature of manual gating; the close fit of a gate to its chosen population being one 

common subjective property of manual gates.  The classification of γδ T cells was of greater 

concern, as this is a T cell subset that is relatively rare in many individuals and hence challenging to 

assess yet of significant importance especially in Gram negative infections (32). 

 

The CellClassifier of CytoPy converts its classification results to population data that can be 

handled and visualised using the Gating class.  This makes comparison of supervised classification 

to the results of manual gating, semi-autonomous gating or clustering analysis straight-forward.  In 

addition, the back_gating method allows the investigator to plot the results of multiple methods on 

familiar bi-axial plots for comparison.  As illustration, Figure 5c shows the interrogation of data 

likely to represent an outlier in the analysis.  Overlaid is the result of the XGBoost classification for 

Vδ2
+
 γδ T lymphocytes (red points) and the manual gate for the same subset (yellow line).  Vδ2

+
 γδ 

T cells were unusually sparse in this particular patient sample, which explains the poor 

classification performance in this instance.  Of note, upon visual inspection the XGBoost algorithm 

was equally suited at identifying rare cell types compared to manual gating; and classification of γδ 

T cells was performed correctly by the XGBoost algorithm in all other samples (data not shown). 

 

3.5. Unbiased cell classification by high dimensional clustering 

Although supervised classification provides us with one methodology for identifying cell subsets, it 

is biased by the gating strategy used in labelling training data.  In recent years, numerous clustering 

algorithms have been proposed for high-dimensional clustering of single cell data.  Two popular 

solutions are PhenoGraph (4) and FlowSOM (3; 33), both of which are available in CytoPy through 

the Clustering class.  As with the CellClassifier class, Clustering is agnostic to the clustering 

algorithm of choice.  Semi-automated gating, XGBoost classification, and PhenoGraph clustering 
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are comparable in their identification of major cells subsets (Supplementary Figure S1) but using 

unison of methods (i.e. XGBoost classification and PhenoGraph clusters) provides many benefits 

and is encouraged in the CytoPy framework; high dimensional clustering offers the opportunity for 

exploratory data analysis, and obtained clusters can be contrasted with populations identified from 

supervised classification to improve the confidence of reported results. 

 

Exploratory data analysis in CytoPy is facilitated by the Explore class, which encapsulates the 

single cell data of one or multiple patients after clustering and supervised classification has been 

performed, and houses the data within a Pandas DataFrame.  Operations can be performed on the 

DataFrame independently allowing custom scripting, but the Explore class carries many utility 

functions that are designed for exploratory data analysis.  Examples include methods for associating 

metadata to clusters (e.g. the patient phenotype), dimensionality reduction techniques, and 

interactive plotting tools. 

 

Clustering is performed on a per-sample basis but to explore the immune landscape of the entire 

cohort, a consensus must be found such that similar clusters between patients can be grouped.  This 

consensus gives rise to comparisons in cell abundance and phenotype between clinical phenotypes.  

To achieve this, CytoPy uses meta-clustering.  In brief, each subject is independently min-max 

normalised, and the centroid of each cluster calculated.  The centroids of clusters for each subject 

are then merged to form a dataframe that describes the clustering results of all subjects.  Finally, a 

clustering algorithm of choice is applied to this dataframe (see Supplementary Methods).  As 

example for the successful utilisation of PhenoGraph, Figure 6A shows the results of meta-

clustering for total leukocytes in the peritoneal drain fluid of individuals receiving PD.  The 

Uniform Manifold Approximation and Projection (UMAP) (34) plot shows all clusters (solid filled 

circles) from all patients displayed in two-dimensional space.  The colour of a cluster corresponds 

to the associated meta-cluster while the size cluster represents the proportion of cells within the 
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cluster (relative to the total CD45
+
 single immune cells in each individual patient).  The nature of 

the UMAP plot is such that clusters of similar phenotype are arranged closer to one another.  

However, CytoPy allows to utilise any dimensionality reduction technique (e.g. PCA, Isomap, 

PHATE (35) etc), depending on the preference of the investigator and the specific question to be 

addressed.  Meta-clusters are manually labelled according to their phenotype, as displayed in the 

heatmap of Figure 6A.  Clusters can be colour-coded using any desired metadata.  For instance, 

given an instance of Explore named explorer, one could associate the clinical phenotype of a patient 

to their clusters using the following single line of code: 

explorer.load_meta(variable=’peritonitis’) 

 

For each patient in this example, the database is queried for the variable named „peritonitis‟ (as in 

“does this patient have acute peritonitis?”) and populates the Pandas DataFrame stored in the 

explorer object.  The UMAP plot is then repeated by colour-coding according to the metadata, as 

shown in Figure 6B.  The distribution of clusters of different clinical phenotypes in the UMAP plot 

reveals changes in the immunological response.  Subsets of cell compartments (e.g. „Monocytes_0‟, 

„Monocytes_1‟ etc.) can be consolidated and the proportion of cells within these consolidated 

groups (as percentage of all CD45
+
 immune cells) is shown in the boxplots of Figure 6B.  Applying 

this cluster analysis to a cohort of PD patients, CytoPy found that acute bacterial peritonitis resulted 

in a dramatic shift in the composition of local immune cells, with a significant increase in the 

proportion of neutrophils and a parallel drop in the relative proportion of monocytes/macrophages, 

dendritic cells (DCs), B cells and T cells .  These findings corresponded well with previous studies 

showing a significant influx of inflammatory cells into the peritoneal cavity on the first day of 

presenting with acute symptoms, compared to stable individuals in the absence of peritoneal 

inflammation (25; 26; 27; 36)  

  

Figure 7 shows the same set of analytical techniques applied to the local T cell populations in 

individuals receiving PD.  Figure 7A shows a UMAP plot of clusters, coloured according to their 
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associated meta-cluster and revealing clean separation not only of CD4
+
 and CD8

+
 T cells as the 

major T cell populations but also of unconventional T cell populations such as Vα7.2
+
 CD161

+
 

mucosal-associated invariant T (MAIT) cells and Vδ2
+
 γδ T cells.  Figure 7B shows the same 

clusters as in Figure 7A but now colour-coded by the metadata regarding the presence or absence of 

bacterial infection.  The differences in T cell subsets between stable controls and those with acute 

peritonitis were subtle and, due to the small size of this cohort, not statistically significant.  Of note, 

CytoPy allows to explore the composition of the T cell compartment in even more detail, as 

illustrated for the CD8
+
 T cell subset (Figure 7C).  Here, PhenoGraph was capable of discerning 

distinct memory and effector subsets based on the expression of the surface markers CD45RA, 

CD27 and CCR7 (Figure 7C) further validating CytoPy as a reliable method for exploring changes 

in immune response in large flow cytometry data. 

 

3.6. Feature extraction and feature selection reveal variables that differentiate the immune 

response during acute peritonitis compared to stable controls 

Following cell classification by both biased and unbiased methodology, the immunological 

landscape of the observed subjects can be summarised in CytoPy into a „feature matrix‟.  This 

includes the relative abundance of populations as identified by supervised classification and clusters 

produced by techniques such as PhenoGraph.  There will be significant overlap here, and therefore 

the user may choose to specify to generate a consensus between the results of supervised 

classification and clustering by way of an average of the two methods.  Supervised classification is 

more robust towards underlying batch effects but biased by the gating strategy imposed upon the 

training data, whereas clustering is unbiased but not stable to batch effects.  By combining both 

methods the investigator can overcome the limitations that they present individually. 

 

The methods described are implemented in the feature_extraction module of CytoPy.  Once a 

feature matrix has been generated dimensionality reduction techniques can be employed to reveal 

immediately if subjects separate in accordance to the experimental or clinical endpoint of interest.  
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Figure 8A shows a PCA plot where peritonitis patients and stable controls clearly separated across 

two components, as expected from earlier studies by us (25; 27) and from the analysis shown in 

Figure 6.  

 

Filtering techniques can be employed within CytoPy to remove variables of low variance or identify 

high multi-colinearity (Supplementary Figure 2).  This is often necessary to remove redundant 

variables.  The immunological pattern that differentiates a clinical state or experimental end-point 

can then be visualised in a radial plot as shown in Figure 8B.  In this example, cell populations are 

marked on the axis and the internal value is the proportion of cells relative to their respected parent, 

after consolidating the results of both PhenoGraph clustering and XGBoost classification.  Figure 

8B confirms the observations made in the exploratory data analysis of clustering results (Figures 6 

and 7): although subtle differences exist in the T cell compartments, it is the stark differences in the 

proportion of myeloid cells that differentiates those with peritonitis compared to stable controls.  

Where further feature selection is necessary, CytoPy offers embedded methods in the form of L1-

regularised linear models, where variables can be selected according to whether their coefficient 

remains non-zero as the regularisation parameter decreases. (Supplementary Figure S2). 

 

4. Availability and Future Directions 

CytoPy represents a framework for the analysis of cytometry data that facilitates automated analysis 

whilst introducing robust data management and an iterative analytical environment.  The present 

study shows the ability of CytoPy to characterise the FlowCAP-I dataset with high precision and 

identified XGBoost as optimal classification algorithm for gating with supervised methods.  To 

demonstrate the capabilities of CytoPy on real-world data, we chose to analyse samples from 

patients with and without acute peritonitis, taking advantage of our extensive experience with this 

type of samples over more than a decade.  Initially acquiring such samples on a four colour BD 

FACSCalibur flow cytometer with two lasers and simple FSC/SSC settings (37), we later utilised an 

eight colour BD FACSCanto with three lasers and FSC/SSC area/height channels (24; 34; 35), and 
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now in the present study took advantage of a 16 colour BD LSR Fortessa with four lasers and 

FSC/SSC area, height, width, and time, thus illustrating the technological advance in the field but 

also the increasing complexity of the data acquired.  The exquisite and elegant performance of 

CytoPy confirmed a striking increase in total neutrophils at the site of infection and a parallel 

decrease in the proportion of monocytes/macrophages, dendritic cells and T cells, in agreement with 

previous findings (26; 27), thereby validating the utility of CytoPy. 

 

We have chosen to develop and maintain CytoPy in Python, a programming language with growing 

popularity in the bioscience domain.  The application of the popular Python deep learning 

frameworks such as Tensorflow (38) and Keras (39) offer potential for the autonomous analysis of 

cytometry data (8; 10; 38).  Despite their successful application the cited methods do not provide 

the robust data management and exploratory analytical tools that CytoPy offers.  It is our intention 

to incorporate these methodologies in a future release.  The agnostic object orientated design of 

CytoPy facilitates such additional implementations in a straight-forward manner.  It is this agnostic 

design and the introduction of a document-based database as central repository for cytometry 

analysis that sets CytoPy apart from alternative solutions.  

 

In addition to providing a new data-centric framework for applying existing methods of single cell 

classification and clustering, CytoPy offers novel tools to aid the analytical pipeline.  In this study 

we highlight the difficulties presented in complex cytometry data and demonstrate autonomous 

methods that improve the efficiency of pre-processing.  We show how CytoPy can visualise and 

quantify the inter-sample variation resulting from batch-effects.  Prior attempts to mitigate or 

remove batch-effects have either been tied to the application of gates in two-dimensional space (40; 

41), involve manipulation of the input space in such a way that biological signals could be lost or 

distorted (42; 43), or requires some technical intervention during data acquisition (44).  Here we 

introduce an alternative strategy, instead of removing batch-effect by transforming or aligning the 
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data, we propose a statistical measure be used to group data and supervised classification performed 

on each group individually.  However, we appreciate the impact that a reliable method for 

mitigating or removing batch effect prior to analysis might have and are open to the integration of 

data normalisation or transformation methodologies that would achieve this and would see that it 

fits the data-centric design of CytoPy. 

 

As high-dimensional cytometry analysis continues to grow in popularity there will be increasing 

demand for an analytical framework that is friendly for those who are new to programming, 

provides a database that directly relates metadata to single cell data, and scales in a fashion that 

encourages collaboration and expansion.  CytoPy meets all these criteria whilst remaining open-

source and freely available on GitHub (https://github.com/burtonrj/CytoPy).  Those wishing to 

collaborate with us or extend our software capabilities should consult the documentation 

(https://cytopy.readthedocs.io/) and make a pull request on our GitHub repository. 
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5. Supplementary Methods 

5.1. FlowCAP 

To assess the ability of CytoPy to classify cells we used the datasets provided in the Flow 

Cytometry: Critical Assessment of Population Identification Methods (FlowCAP) challenge [21], 

where the challenge is to accurately separate cells into subsets based on single cell phenotype.  The 

FlowCAP-I data consist of four human studies (graft-versus-host disease, diffuse large B-cell 

lymphoma, symptomatic West Nile virus infection, and normal donors) and one mouse study 

(hematopoietic stem cell transplant).  Data were labelled and pre-processing performed (removal of 

debris, dead material, and with fluorescence compensation applied) at source by the laboratory 

responsible for acquiring the original data. Here, classifiers were trained on 25% of data and 

classification performance tested on the remaining 75%.  Performance was reported as the average 

of weighted F1 scores across all five datasets, where the F1 score for data with | | set of possible 

classes is given as:  

| |
∑  

 

Run time was determined as the number of seconds elapsed for training and classification, as an 

average across every sample classified.  Five supervised machine learning algorithms, housed 

within CytoPy, were compared without hyperparameter tuning: 

1. Feed-forward neural network with three layers of size 12, 6 and 3 nodes, L2 penalty of 

1×10
−4

, ReLU activation function on the hidden layers, softmax activation function on the 

outer most layer, and categorical cross-entropy as the loss function; implemented in Keras 

v2.3. 

2.  XGBoost  withdefault hyperparameters; implemented in XGBoost v0.9. 
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3. Linear Discriminant Analysis with singular value decomposition with no shrinkage and 

number of components equal to min(n classes – n features); implemented in Scikit-Learn 

v0.22. 

4. K-Nearest Neighbours with number of neighbours used in constructing tree equalling 5 and 

„ball tree‟ algorithm to compute nearest neighbour for classification; implemented in Scikit-

Learn v0.22. 

5. Support Vector Machine with radial basis function kernel; implemented in Scikit-Learn 

v0.22. 

In each instance, data were standardised by removing the mean and scaling to unit variance; 

standard scores for each sample is given as  where u is the mean and s the standard 

deviation.  

5.2. Patients  

The study cohort comprised 37 adult individuals receiving peritoneal dialysis (PD) who were 

admitted between October 2016 and October 2018 to the University Hospital of Wales, Cardiff, on 

day 1 of acute peritonitis, before commencing antibiotic treatment (34.6% female; median age 68 

years, range 22-91 years).  20 age and gender-matched individuals receiving PD and with no 

previous infections for at least 3 months served as stable, non-infected controls (35.0% female; 

median age 69.5 years, range 28-93 years).  Subjects known to be positive for HIV or hepatitis C 

virus were excluded.  Clinical diagnosis of acute peritonitis was based on the presence of abdominal 

pain and cloudy peritoneal effluent with >100 white blood cells/mm
3
.  According to the 

microbiological analysis of the effluent by the routine Microbiology Laboratory, Public Health 

Wales, episodes of peritonitis were defined as infections caused by Gram-positive or Gram-negative 

organisms.  Cases of fungal infection and negative or unclear culture results were excluded from 

this analysis.  Basic patient demographics can be found in the Supplementary Methods and a 

summary of the bacterial culture results for patients with peritonitis are shown in Supplementary 
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Table S1.  All methods were carried out in accordance with relevant guidelines and regulations, and 

written informed consent was obtained from all subjects.  Recruitment of PD patients was approved 

by the South East Wales Local Ethics Committee under reference number 04WSE04/27, and 

conducted according to the principles expressed in the Declaration of Helsinki.  The study was 

registered on the UK Clinical Research Network Study Portfolio under reference numbers #11838 

"Patient immune responses to infection in Peritoneal Dialysis" (PERIT-PD).   

5.3 Flow cytometry   

Peritoneal leukocytes were harvested from overnight dwell effluents and processed as described 

previously (27; 36); samples were treated with DNase (Sigma; 1:2,500 dilution) when excessive 

debris was visually apparent.  Leukocyte populations in total effluent were stained using 

monoclonal antibodies against CD1c, CD3, CD14, CD15, CD16, CD19, CD45, CD116, HLA-DR 

and Siglec-8 (Supplementary Table S2) and identified as CD45
+
 immune cells, CD3

+
 T cells, 

CD19
+
 B cells, CD15

−
CD14

+
 monocytes/macrophages, CD15

+
 neutrophils, CD15

−
CD14

+/−
CD1c

+
 

dendritic cells, and CD15
−
SIGLEC-8

+
 eosinophils.  T cell subsets in peripheral blood mononuclear 

cells (PBMCs) and in peritoneal effluent were stained after Ficoll (Ficoll-Paque PLUS; Fisher 

Scientific) separation of blood and peritoneal leukocytes, respectively, using monoclonal antibodies 

against CD3, CD4, CD8, CD161, TCR-Vα7.2, TCR-Vδ2, TCR-pan-γδ, CD45RA, CCR7 and CD27 

(Supplementary Table S3).  Cell acquisition by flow cytometry was performed using a 16 colour 

BD LSR Fortessa cell analyser (BD Biosciences).  Live single cells were gated based on side and 

forward scatter area/height and live/dead staining (fixable Aqua; Invitrogen). 

5.4 Meta-clustering 

Meta-clustering was performed to find a consensus amongst the individual clustering results of 

many individual samples.  Each sample was independently normalized; that is, each feature was 

scaled: 
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( )
 

Where x is the original value for a given feature and xnorm is its values scaled between zero and one.  

Once each sample was individually normalized, the clusters from each sample were extracted and 

their centroid calculated; by default this was given as the median of their feature vector but other 

definitions of center can be used (e.g. mean, geometric mean etc).  Cluster centroids were annotated 

as to which sample they originated from and their original cluster ID and then concatenated  into a 

single dataframe.  This dataframe was then used as the input to a clustering algorithm of the user‟s 

choosing. 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.08.031898doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.08.031898
http://creativecommons.org/licenses/by/4.0/


6. References 
 

 

1. flowDensity: reproducing manual gating of flow cytometry data by automated density-based cell 

population identification. Malek, Mehrnoush, et al., et al. 10 2014, Bioinformatics, Vol. 31, pp. 

606-607. ISSN: 1367-4803. 

2. OpenCyto: An Open Source Infrastructure for Scalable, Robust, Reproducible, and Automated, 

End-to-End Flow Cytometry Data Analysis. Finak, Greg, et al., et al. s.l. : Public Library of 

Science, 8 2014, PLOS Computational Biology, Vol. 10, pp. 1-12. 

3. FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data. 

Van Gassen, Sofie, et al., et al. 2015, Cytometry Part A, Vol. 87, pp. 636-645. 

4. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with 

Prognosis. Levine, Jacob H., et al., et al. 2015, Cell, Vol. 162, pp. 184-197. ISSN: 0092-8674. 

5. Automated mapping of phenotype space with single-cell data. Samusik, Nikolay, et al., et al. 

2016, Nature Methods, Vol. 13, pp. 493-496. ISSN: 1548-7105. 

6. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Qiu, Peng, et 

al., et al. 2011, Nature Biotechnology, Vol. 29, pp. 886-891. ISSN: 1546-1696. 

7. flowLearn: fast and precise identification and quality checking of cell populations in flow 

cytometry. Lux, Markus, et al., et al. 2 2018, Bioinformatics, Vol. 34, pp. 2245-2253. ISSN: 1367-

4803. 

8. Gating mass cytometry data by deep learning. Li, Huamin, et al., et al. 7 2017, Bioinformatics, 

Vol. 33, pp. 3423-3430. ISSN: 1367-4803. 

9. Automatic Classification of Cellular Expression by Nonlinear Stochastic Embedding (ACCENSE). 

Shekhar, Karthik, et al., et al. s.l. : National Academy of Sciences, 2014, Proceedings of the 

National Academy of Sciences, Vol. 111, pp. 202–207. ISSN: 0027-8424. 

10. Sensitive detection of rare disease-associated cell subsets via representation learning. Arvaniti, 

Eirini and Claassen, Manfred. 2017, Nature Communications, Vol. 8, p. 14825. ISSN: 2041-1723. 

11. Robust prediction of clinical outcomes using cytometry data. Hu, Zicheng, Glicksberg, 

Benjamin S. and Butte, Atul J. 8 2018, Bioinformatics, Vol. 35, pp. 1197-1203. ISSN: 1367-4803. 

12. Automated analysis of flow cytometry data comes of age. Brinkman, Ryan R., et al., et al. 

2016, Cytometry Part A, Vol. 89, pp. 13-15. 

13. Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry 

data. Weber, Lukas M. and Robinson, Mark D. 2016, Cytometry Part A, Vol. 89, pp. 1084-1096. 

14. Computational flow cytometry: helping to make sense of high-dimensional immunology data. 

Saeys, Yvan, Van Gassen, Sofie and Lambrecht, Bart N. 2016, Nature Reviews Immunology, Vol. 

16, pp. 449-462. ISSN: 1474-1741. 

15. The end of gating? An introduction to automated analysis of high dimensional cytometry data. 

Mair, Florian, et al., et al. 2016, European Journal of Immunology, Vol. 46, pp. 34-43. 

16. StackOverflow. Stack Overflow Developer Survey. Stack Overflow. [Online] 2019. 

https://insights.stackoverflow.com/survey/2019. 

17. Critical assessment of automated flow cytometry data analysis techniques. Aghaeepour, Nima, 

et al., et al. 2013, Nature Methods, Vol. 10, pp. 228-238. ISSN: 1548-7105. 

18. Inc, MongoDB. MongoDB. [Online] MongoDB Inc. [Cited: March 28, 2020.] 

https://www.mongodb.com/. 

19. Mongoengine organisation. github/monogengine. github. [Online] [Cited: April 3, 2020.] 

https://github.com/mongoengine. 

20. Scikit-learn: Machine Learning in Python. Pedregosa, F., et al., et al. 2011, Journal of Machine 

Learning Research, Vol. 12, pp. 2825–2830. 

21. SciPy 1.0: fundamental algorithms for scientific computing in Python. Virtanen, Pauli, et al., et 

al. 2020, Nature Methods, Vol. 17, pp. 261-272. ISSN: 1548-7105. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.08.031898doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.08.031898
http://creativecommons.org/licenses/by/4.0/


22. Tidy data. Wickham, Hadley. 10, 2014, The Journal of Statistical Software, Vol. 59. 

23. Using artificial intelligence to reduce diagnostic workload without compromising detection of 

urinary tract infections. Ross J. Burton, Mahableshwar Albur, Matthias Eberl, Simone M. Cuff. 

s.l. : BMC Medical Informatics and Decision Making, 2019, Vol. 19: 171. 10.1186/s12911-019-

0878-9. 

24. Do we Need Hundreds of Classifiers to Solve Real World Classification Problems? Manuel 

Fern´andez-Delgado, Eva Cernadas, Sen´en Barro, Dinani Amorim. s.l. : Journal of Machine 

Learning Research, 2014, Vols. 15: 3133-3181. 10.5555/2627435.2697065. 

25. Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal 

dialysis patients with bacterial infections. Jingjing Zhang, et al. 1, s.l. : Kidney International, 2017, 

Vol. 92. 10.1016/j.kint.2017.01.017. 

26. Peritoneal macrophage heterogeneity is associated with different peritoneal dialysis outcomes. 

Liao, Chia-Te, et al., et al. s.l. : Elsevier, 5 01, 2017, Kidney International, Vol. 91, pp. 1088-1103. 

ISSN: 0085-2538. 

27. Pathogen-Specific Local Immune Fingerprints Diagnose Bacterial Infection in Peritoneal 

Dialysis Patients. Lin, Chan-Yu, et al., et al. s.l. : American Society of Nephrology, 2013, Journal 

of the American Society of Nephrology, Vol. 24, pp. 2002–2009. ISSN: 1046-6673. 

28. Measurement of innate immune response biomarkers in peritoneal dialysis effluent using a 

rapid diagnostic point-of-care device as a diagnostic indicator of peritonitis. Catriona Goodlad, 

Sophiamma George, Shella Sandoval, Stephen Mepham, Gita Parekh, Matthias Eberl, 

Nicholas Topley, Andrew Davenport, et al. s.l. : Kidney International, 2020. 

10.1016/j.kint.2020.01.044. 

29. SciPy. scipy.spatial.distance.jensenshannon. scipy.github.io. [Online] [Cited: March 28, 2020.] 

https://scipy.github.io/devdocs/generated/scipy.spatial.distance.jensenshannon.html. 

30. LAVENDER: latent axes discovery from multiple cytometry samples with non-parametric 

divergence estimation and multidimensional scaling reconstruction. Naotoshi Nakamura, Daigo 

Okada, Kazuya Setoh, Takahisa Kawaguchi, Koichiro, Yasuharu Tabara, Fumihiko Matsuda, 

Ryo Yamada. s.l. : BioRxiv, 2019, Vol. 673434. https://doi.org/10.1101/673434. 

31. Jensen-Shannon Divergence and Hilbert space embedding. Bent Fuglede, Flemming Topsøe. 

s.l. : International Symposium on Information Theory, 2004. 10.1109/ISIT.2004.1365067. 

32. Pathogen-Specific Immune Fingerprints during Acute Infection: The Diagnostic Potential of 

Human γδ T-Cells. Matthias Eberl, Ida M. Friberg, Anna Rita Liuzzi, Matt P. Morgan, 

Nicholas Topley. s.l. : Frontiers in Immunology, 2014, Vol. 5: 572. 10.3389/fimmu.2014.00572. 

33. Shen, Sangyu. FlowSOM. GitHub. [Online] May 13, 2019. [Cited: March 28, 2020.] 

https://github.com/Hatchin/FlowSOM. 

34. Dimensionality reduction for visualizing single-cell data using UMAP. Becht, E., McInnes, L., 

Healy, J. et al. s.l. : Nature Biotechnology, 2019, Vols. 37: 38-44. https://doi.org/10.1038/nbt.4314. 

35. Visualizing structure and transitions in high-dimensional biological data. Moon, K.R., van 

Dijk, D., Wang, Z. et al. s.l. : Nature Biotechnology, 2019, Vols. 37: 1482-1492. 

https://doi.org/10.1038/s41587-019-0336-3. 

36. Control of neutrophil influx during peritonitis by transcriptional cross‐regulation of chemokine 

CXCL1 by IL‐17 and IFN‐γ. Catar, R.A., Chen, L., Cuff, S.M., Kift‐Morgan, A., Eberl, M., 

Kettritz, R., Kamhieh‐Milz, J., Moll, G., Li, Q., Zhao, H., Kawka, E., Zickler, D., Parekh, G., 

Davis, P., Fraser, D.J., Dragun, D., Eckardt, K.‐U., Jörres, A. and Witowski, J. s.l. : Journal of 

Pathology, 2020. https://doi.org/10.1002/path.5438. 

37. A Rapid Crosstalk of Human γδ T Cells and Monocytes Drives the Acute Inflammation in 

Bacterial Infections. Matthias Eberl, Gareth W. Roberts,Simone Meuter,John D. 

Williams,Nicholas Topley,Bernhard Moser. s.l. : PLOS Pathogens, 2009. 

10.1371/journal.ppat.1000308. 

38. TensorFlow: A system for large-scale machine learning. Abadi, Martin, et al., et al. 2016. 12th 

USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). pp. 265–283. 

39. Chollet, François and others. Keras. Keras. 2015. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.08.031898doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.08.031898
http://creativecommons.org/licenses/by/4.0/


40. Hahne F, Khodabakhshi AH, Bashashati A, et al. Per-channel basis normalization methods for 

flow cytometry data. Cytometry A. 2010;77(2):121–131. doi:10.1002/cyto.a.20823. Hahne, F., 

Khodabakhshi, A. H., Bashashati, A., Wong, C. J., Gascoyne, R. D., Weng, A. P., Seyfert-

Margolis, V., Bourcier, K., Asare, A., Lumley, T., Gentleman, R, Brinkman, R. R. s.l. : 

Cytometry A, 2010, Vols. 77(2): 121-131. 10.1002/cyto.a.20823. 

41. High-throughput flow cytometry data normalization for clinical trials. Finak G, Jiang W, 

Krouse K, Wei C, Sanz I, Phippard D, Asare A, De Rosa SC, Self S, Gottardo R. s.l. : 

Cytometry A, 2014, Vols. 85(3): 277-286. 10.1002/cyto.a.22433. 

42. Robust prediction of clinical outcomes using cytometry data. Zicheng Hu, Benjamin S 

Glicksberg, Atul J Butte. s.l. : Bioinformatics, 2019, Vols. 35(7): 1197-1203. 

10.1093/bioinformatics/bty768. 

43. Removal of Batch Effects using Distribution-Matching Residual Networks. Shaham U, Stanton 

KP, Zhao J, Li H, Raddassi K, Montgomery R, Kluger Y. s.l. : Bioinformatics, 2017, Vols. 

33(16): 2539-2546. 10.1093/bioinformatics/btx196. 

44. CytoNorm: A Normalization Algorithm for Cytometry Data. Sofie Van Gassen, Brice 

Gaudilliere, Martin S. Angst, Yvan Saeys, Nima Aghaeepour. s.l. : Cytometry Part A, 2019, Vols. 

97 (3): 268-279. doi.org/10.1002/cyto.a.23904. 

45. Flow cytometry data analysis: Recent tools and algorithms. Montante, Sebastiano and 

Brinkman, Ryan R. 2019, International Journal of Laboratory Hematology, Vol. 41, pp. 56-62. 

46. A robust and interpretable, end-to-end deep learning model for cytometry data. Hu, Zicheng, et 

al., et al. s.l. : Cold Spring Harbor Laboratory, 2020, bioRxiv. 

47. Human Neutrophil Clearance of Bacterial Pathogens Triggers Anti-Microbial γδ T Cell 

Responses in Early Infection. Martin S. Davey, Chan-Yu Lin ,Gareth W. Roberts,Sinéad 

Heuston,Amanda C. Brown,James A. Chess,Mark A. Toleman,Cormac G. M. Gahan,Colin 

Hill,Tanya Parish,John D. Williams,Simon J. Davies,David W. Johnson,Nicholas 

Topley,Bernhard Moser,Matthias Eberl. s.l. : PLOS Pathogens, 2011. 

10.1371/journal.ppat.1002040. 

48. Unconventional Human T Cells Accumulate at the Site of Infection in Response to Microbial 

Ligands and Induce Local Tissue Remodeling. Anna Rita Liuzzi, et al. s.l. : The Journal of 

Immunology, 2016, Vol. 1600990. 10.4049/jimmunol.1600990. 

49. Predicting Cell Populations in Single Cell Mass Cytometry Data. Tamim Abdelaal, Vincent 

van Unen, Thomas Höllt, Frits Koning, Marcel J.T. Reinders, Ahmed Mahfouz. s.l. : 

Cytometry Part A, 2019. 10.1002/cyto.a.23738. 

 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.08.031898doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.08.031898
http://creativecommons.org/licenses/by/4.0/


 

7. Tables 

Model Weighted F1 score (mean [95% CI]) Runtime (seconds) 

Feed-Forward Neural Network (4 layers) 0.966 [0.956 – 0.975] 9.62 

K-Nearest Neighbours 0.917 [0.884 – 0.948] 0.93 

Linear Discriminant Analysis 0.918 [0.892 – 0.943] 0.61 

Support Vector Machine (Radial Kernel) 0.964 [0.955 – 0.972] 8.68 

XGBoost 0.980 [0.976 – 0.984] 18.6 

 Table 1. Performance of 5 different supervised classifiers on FlowCAP-I data. 
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8. Figures 

Figure 1: Overview of the CytoPy framework and list of primary dependencies. Single cell data 

and experiments/clinical metadata (1) are used to populate a project within the CytoPy database (2). 

The CytoPy database models analytical data in MongoDB documents (cylinder) and an interface of 

CytoPy classes retrieves and commits data to this database (dotted rounded rectangle). The 

components of this interface are used to complete the following tasks. (3) Semi-autonomous gating 

identifies a clean ‟root‟ population for analysis. (4) Inter-sample variation is visualised to assess the 

degree of batch effect and samples are grouped according to their similarity in high-dimensional 

space. (5) Cells are classified by supervised and unsupervised methodologies and visualised for 

exploratory data analysis. (6) Finally, single cell data can be summarised and feature selection 

techniques employed to find variables of interest. 

 

Figure 2: Examples of using semi-autonomous gates for identification of immune cells in a 

biological sample, as exemplified by the identification of T lymphocytes in peritoneal drain fluid 

from a patient with acute peritonitis. Algorithm-driven gates are applied on each two-dimensional 

plot in accession according to a user defined gating template and population hierarchy. The first 

gate (A) in the sequence filters out the majority of debris using a static rectangular boundary applied 

to forward scattered light area (FSC-A) and sideward scattered light area (SSC-A). Those events 

positive for the pan-T cell marker CD3 are identified with a density-dependent autonomous gate (B) 

that finds a threshold at the point of minimal density using properties of a probability density 

function. (C) Density-dependent autonomous gating then identifies live cells within the CD3
+
 cell 

population; those below the threshold found for live/dead stain. Live single CD3
+
 cells are further 

discriminated from other events by applying Gaussian mixture models to create an elliptical gate (D) 

using FSC-A and forward scattered height (FSC-H), and a density-dependent gate (E) using 

sideward scattered light width (SSC-W). Finally, the T cell population is identified using FSC-A 

and SSC-A and encapsulated by an elliptical gate generated by a Gaussian mixture model. 

 

Figure 3: Variance in cell marker abundance as measured by flow cytometry for T cells in 

peritoneal drain fluid (CD3
+
 lymphocytes). A reference subject (325-01) is shown in blue and 9 

other randomly selected subjects are overlaid for comparison in red. (A) Variation in individual 

parameters can be shown by kernel density estimation as shown here for 6 common parameters of 

interest in T cell biology, identifying all T cells (CD3) or the helper T cells (CD4) and cytotoxic T 

cells (CD8) populations, as well as surface markers associated with specific effector and memory 

subsets within these populations (CD45RA, CD27, CCR7). (B) Multi-variant drift can be visualised 

using dimensionality reduction techniques such as PCA. The same reference subject 325-01 as 

shown in (A) is given in blue and in each plot a different subject in red is overlaid. 

 

Figure 4: Heatmap display of pairwise Jenson-Shannon Distances for all leukocyte subsets present 

in peritoneal drain fluid and subsets within the T cell compartment present in peritoneal drain fluid 

and whole blood. Jenson-Shannon distance is given as √JSD(p, q) where p and q are the PDFs of 

each given pair as estimated using a Gaussian kernel and JSD is a function for Jenson-Shannon 

divergence. Single linkage clustering is applied to each matrix to reveal groups of broad similarity. 

 

Figure 5: Performance of XGBoost for cell classification of CD45
+
 leukocytes from peritoneal 

drain fluid and T cells from peritoneal drain fluid and whole blood. Groups are generated from all 

patients (infected and non-infected) as described in Figure 4. XGBoost performance was assessed 

by weighted F1 score on 5 randomly chosen validation samples within each independent group (A); 

where groups represent samples clustered on pairwise JSD and an independent classifier is trained 

for each group. (B) Classification performance of individual classes for an obvious outlier in T 

lymphocytes from drain fluid, group 1 (weighted F1 score equal to 0.6) is shown visually as a 

confusion matrix. The values in each row are normalised according to class support (the number of 
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events in a given class). The diagonal of the confusion matrix is equivalent to the accuracy of 

classification for a particular class. (C) Back-gating functionality allows for close inspection of 

supervised classification results and comparison to manual gates, semi-autonomous gates, or 

clustering results. The classification of γδ T cells in this example is compared to a manual gate. 

 

Figure 6: PhenoGraph meta-clustering results for CD45
+
 leukocytes present in peritoneal drain 

fluid from all available patient samples. (A) The heatmap shows the phenotype of meta-clusters. 

Individual clusters from all patients are shown in a UMAP plot where each colour filled circle is a 

unique cluster from an individual subject. Its colour corresponds to its meta-cluster enrolment and 

its size the proportion of cells relative to the number of CD45
+
 leukocytes. (B) Patient phenotype 

(stable control or acute peritonitis) is categorised by colour in a UMAP plot, showing individual 

clusters from all patients, and box plots show the difference in the proportion of cells as a 

percentage of CD45
+
 leukocytes; the difference in distribution of population proportions was tested 

by Mann-Witney U test; **** p ≤ 0.001 

 

Figure 7: PhenoGraph meta-clustering results for T cells in peritoneal  drain fluid from all available 

patient samples. (A)  The heatmap shows the phenotype of meta-clusters. Individual clusters from 

all subjects are shown in a UMAP plot where each colour filled circle is a unique cluster from an 

individual subject. Its colour corresponds to its meta-cluster enrolment, and its size the proportion 

of cells relative to the number of T cells. (B) Meta-cluster results can be coloured by patient 

phenotype to reveal regions that distinguish clinical endpoints. Patient phenotype is contrasted by 

colour in clusters on a UMAP plot and in box plots of major T cell subsets as a percentage of total T 

cells. (C) Close inspection of CD8
+
 T cells shows that functionally distinct effector/memory subsets 

can be identified by PhenoGraph clustering. 

 

Figure 8: (A) Principle component analysis of all identified cell populations shows separation of 

patients with acute peritonitis from stable controls. (B) Radial plot of major cell subsets given as the 

proportion of their derived parent population (MAIT cells, γδ T cell, CD8 T cells, CD4 T cells: 

proportion of total T cells; all others: proportion of CD45
+
 immune cells). Values shown are the 

consensus of XGBoost classification and PhenoGraph clustering.  
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9. Supplementary data 

Supplementary Figure S1: PHATE plots showing the classification of T lymphocyte subsets in 

whole blood by (A) semi-autonomous gating, (B) XGBoost classification, and (C) PhenoGraph 

clustering. 

 

Supplementary Figure S2: Visualisation of feature selection techniques.  (A) Variance of 

population proportions for all classified populations and clusters for cells isolated from peritoneal 

drain fluid (local) and whole blood (PBMCs).  (B) Cell populations and clusters are summarised 

into common compartments and variation in proportion relative to parent population shown.  (C) 

Support Vector Machine with a linear kernel was used to classify patient phenotype.  The coefficient 

(y-axis) associated with each variable included in the feature space of this classifier is shown as the 

L1 regularisation parameter (x-axis) decreases.  Variables of increasing importance to accurate 

classification of patient phenotype will take longer to converge to 0 as the regularisation parameter 

decreases. 
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Culture result n 

Coagulase negative Staphylococcus 4 

Staphylococcus aureus 2 

Streptococcus agalactiae 1 

Streptococcus mitis 1 

Alpha haemolytic Streptococcus 1 

Corynebacterium amycolatum 1 

Escherichia coli 1 

Pseudomonas aeruginosa 1 

Yeast 1 

No growth 4 

Supplementary Table S1. Summary of microbiological culture results for peritoneal dialysis 

patients with acute peritonitis 
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Marker/Cytokine Fluorochrome Manufacturer (Clone) 

CD45 Alexa Fluor 700 BioLegend (2D1) 

CD14 FITC BioLegend (63D3) 

CD16 Per-CP Cy5.5 BioLegend (3G8) 

CD3 APC/Fire BioLegend (UCHT1) 

SIGLEC-8 APC BioLegend (7C9) 

CD1c Brilliant Violet 421 BioLegend (L161) 

CD15 Brilliant Violet 605 BioLegend (SSEA-1) 

HLA-DR Brilliant Violet 711 BioLegend (L243) 

CD116 PE BioLegend (4H1) 

CD19 PE-Cy7 BioLegend (HIB19) 

  Supplementary Table S2. Staining panel for leukocytes 

 

Marker Fluorochrome Manufacturer (Clone) 

CD3 APC/Fire BioLegend (UCHT1) 

CD4 PE-Cy5.5 BioLegend (OKT4) 

CD8 Brilliant Violet 711 BioLegend (RPA-T8) 

CD161 APC Miltenyi Biotec (191B8) 

Vα7.2 Brilliant Violet 605 Biolegend (3C10) 

TCR-pan-γδ PE-Cy5 Beckman Coulter (IM2662) 

Vδ2 PE BD Biosciences (B6 RUO) 

CCR7 Brilliant Violet 421 BioLegend (G043H7) 

CD27 PE-Cy7 BioLegend (M-T271) 

CD45RA PE Dazzle BioLegend (HI100) 

  Supplementary Table S3. Staining panel for T lymphocytes 
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S1 Appendix. Example Python code for generating semi-autonomous gating templates and 

applying to multiple samples. 

 
from cytopy.data.project import Project 

from cytopy.flow.gating.actions import Template 

from cytopy.flow.gating.defaults import ChildPopulationCollection 

 

# Load the project and an experiment 

pd = Project.objects(project_id=’Peritonitis’).get() 

exp = pd.load_experiment(experiment_id=’PD_T_PBMCs’) 

 

# Create a new template 

t = Template(experiment_id=exp, sample_id=’330-01_pbmc_t’) 

 

# Define the child populations generated from a gate 

children = ChildPopulationCollection(’geom’) 

children.add_population(’T Lymphocytes’, definition=’+’) 

children.add_population(’other cells’, definition=’-’) 

 

# Define the keyword arguments for the gating method 

# this example is a Mixture Model gate, so arguments include 

# the number of expected populations (k), the size of the 

# confidence interval (conf) and an estimate location of the 

# target population (target) 

kwargs = dict(x=’FSC-A’, y=’SSC-A’, target=(80000, 150000), 

k=2, conf=0.95, transform_x=None, transform_y=None) 

 

# Create the gate and associate it to our template 

t.create_gate(gate_name=’tcell_gate’, 

parent=’single_live_cd3+’, 

class_=’MixtureModel’, 

method=’gate’, 

child_populations=children, 

kwargs=kwargs) 

 

# Apply a single gate by name 

t.apply(’tcell_gate’) 

 

# Save gating template to database 

t.save_new_template(’preprocessing’) 

 

# Load gates to apply to a new sample 

t = Template(experiment_id=exp, sample_id=’349-01_pbmc_t’) 

t.load_template(’preprocessing’) 

 

# Apply all gates in template to the new sample 

t.apply_many(apply_all=True, plot_outcome=True) 
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S2 Appendix. Example code for generating plots that visualise univariate and multi-variate inter-

sample variation, and generating a „similarity matrix‟ using Jenson-Shannon distance. The 

similarity_matrix function outputs a „linkage matrix‟, sample IDs in an order that corresponds to the 

linkage matrix, and the similarity matrix plot. The linkage matrix and sample IDs can be given to 

the function generate_groups along with a desired number of groups (heuristically chosen using the 

plotted dendogram; see Figure 4), producing a Pandas DataFrame of sample IDs and corresponding 

group ID.  

 
# Load the peritonitis project and the experiment for T cells isolated from 

# peritoneal effluent (’PD_T_PDMCs’) 

 

project = Project.objects(project_id=’Peritonitis’).get() 

exp = project.load_experiment(’PD_T_PDMCs’) 

 

# Generate a batch effects object, selecting the T cell population and sampling  

# 5000 cells from each sample 

 

batch_effects = EvaluateBatchEffects(experiment=exp,  

  root_population=’T cells’,  

  sample_n=5000) 

 

# Calculate a reference sample; this function returns the sample ID for the 

# ‘average’ sample 

 

ref = calculate_ref_sample_fast(exp) 

 

# Plot KDE for several markers to compare univariate distribution compared to 

# the reference sample ‘ref’. Specify which samples to compare to ‘ref’ by   

# passing sample IDs into the argument ‘comparisons’ 

 

comparisons = [‘332-01_pdmc_t’, ‘341-01_pdmc_t’, ‘327-01_pdmc_t’] 

markers = ['CD3', 'CD8', 'CD4', 'CD45RA', 'CD27', 'CCR7']) 

batch_effects.marker_variance(reference_id=ref,  

comparison_samples=comparisons, 

                              markers=markers) 

 

# Generate a dimensionality reduction plot to visualise the multi-variate  

# ‘shift’ of samples compared to some given reference 

 

batch_effects.dim_reduction_grid(reference_id=ref,  

   comparisons=comparisons, 

   method=’PCA’) 

 

 

# Plot similarity matrix and generate three groups  

linkage_matrix, sample_ids, g = 

batch_effects.similarity_matrix(distance_metric='jsd') 

groups = generate_groups(linkage_matrix=linkage_matrix,  

       sample_ids=sample_ids, 

       n_groups=3) 
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