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Abstract

Cytometry analysis has seen a considerable expansion in recent years in the maximum number of

parameters that can be acquired in a single experiment.  In response to this technological advance

there has been an increased effort to develop new computational methodologies for handling high-

dimensional single cell data acquired by flow or mass cytometry.  Despite the success of numerous

algorithms  and  published  packages  to  replicate  and  outperform  traditional  manual  analysis,

widespread adoption of these techniques has yet to be realised in the field of immunology.  Here we

present CytoPy, a Python framework for automated analysis  of cytometry data that integrates a

document-based database for a data-centric and iterative analytical environment. In addition, our

algorithm agnostic  design provides  a  platform for  open-source  cytometry  bioinformatics  in  the

Python ecosystem.  We demonstrate the ability of CytoPy to phenotype T cell subsets in whole

blood samples even in the presence of significant batch effects due to technical and user variation.

The  complete  analytical  pipeline  was  then  used  to  immunophenotype  the  local  inflammatory

infiltrate  in  individuals  with and without  acute bacterial  infection.   CytoPy is  open-source and

licensed under the MIT license.  CytoPy is open source and available at https://github.com/burtonrj/

CytoPy,  with  notebooks  accompanying  this  manuscript

(https://github.com/burtonrj/CytoPyManuscript)  and  software  documentation  at

https://cytopy.readthedocs.io/. 
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1. Introduction

Cytometry data analysis has undergone a paradigm shift  in response to the growing number of

parameters that can be observed in any one experiment.  As the field evolves, the traditional method

of manual gating by sub-setting single cell data into populations and encircling data points in hand-

drawn  polygons  in  two-dimensional  space  is  proving  laborious,  subjective,  and  difficult  to

standardise.  In response to these shortcomings, a cross-disciplinary effort has given birth to a new

approach often termed ‘cytometry bioinformatics’, to leverage complex computer algorithms and

machine learning to automate analysis and improve the investigator’s ability to extract meaning

from high dimensional data. 

Where cytometry is used for data acquisition, the typical objective is to discern differences between

groups of subjects or experimental conditions, or to identify a phenotype that correlates with an

experimental or clinical endpoint.  To this end, a computational approach to analysis of cytometry

data can take one of two strategies: to group events based on similarity (e.g. cell populations),

which then form the variables (often descriptive statistics of the obtained groups) the investigator

uses  to  test  their  hypothesis,  or  directly  model  the  acquired  multi-dimension  distribution  with

respect  to  a  chosen endpoint.   Classification  strategies  can  be  further  subdivided:  autonomous

gating  replicates  traditional  gating  by  applying  algorithms  to  data  in  one  or  two  dimensions

(flowDensity [1], OpenCyto [2]); clustering in high-dimensional space to group events according to

their  individual  characteristics  (FlowSOM  [3],  Phenograph  [4],  Xshift  [5],  SPADE  [6]);  and

supervised or semi-supervised classification where manual annotations are used to train a model

capable  of  identifying  cell  populations  within  unlabelled  data  (FlowLearn  [7],  ACDC  [8],

DeepCyTof [9]).  Direct modelling strategies have been successfully adopted in applications such as

ACCENSE [10], CellCNN [11], CytoDX [12] and in the work described by Hu et al.  [13].  This

approach has the benefit of removing any subjectivity and can be considered as truly automated but

requires the pooling of sample data and is therefore sensitive to batch effects.
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In  addition,  various  pieces  of  software  and  pipelines  have  been  developed  for  data  handling,

transformation, normalisation and cleaning (e.g. flowCore, flowIO, flowUtils, flowTrans, reFlow,

flowAI), visualisation (e.g. ggCyto, t-SNE, UMAP, PHATE), and specific applications (e.g. Citrus,

MetaCyto,  flowType/RchyOptimyx)  [14].   However,  widespread  adoption  of  cytometry

bioinformatics has yet to be realised and a lack of consensus remains on how to implement such

technologies  across  the  scientific  community,  with  much  of  the  analysis  pipeline  left  to  the

individual investigator to establish.   This inconsistency continues to result  in projects  amassing

collections of custom scripts and data management that are not standardised or centralised, which

not only makes reproducing results difficult but also makes for a daunting landscape for newcomers

to the field.

We here introduce ‘CytoPy’, a novel analysis framework that aims to mend these issues whilst

granting access to state-of-the-art machine learning algorithms and techniques widely adopted in

cytometry bioinformatics.   CytoPy was developed in the Python programming language,  which

prides itself on readability and a beginner friendly syntax.  CytoPy introduces a central data source

for  all  single cell  data,  experimental  metadata,  and analysis  results,  and provides  a ‘low code’

interface that is both powerful and easy to maintain.  CytoPy incorporates popular data science and

machine learning libraries such as Pandas [15], Scikit-Learn [16] and Tensorflow [17], with an

application programming interface (API) designed to help expand cytometry bioinformatics in the

Python ecosystem.   In  addition,  CytoPy provides  convenient  access  to  popular  algorithms  and

techniques popular in cytometry data analysis such as PHATE [18], UMAP [19], Phenograph [4],

and FlowSOM [3]. 

A burgeoning challenge as cytometry data grows in size is batch effect. Nowhere is this issue more

pressing than in translational research where lengthy study designs and complex specimens make
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technical variation unavoidable.  CytoPy provides tools for visualising and quantifying batch effect

as well as methods to subvert and eliminate it.  To validate CytoPy we used in-house data obtained

from patients undergoing peritoneal dialysis and who presented with and without acute bacterial

infection.  Data had been collected over several years, therefore providing ample opportunity to

demonstrate the ability of CytoPy to navigate issues such as batch effects and inconsistent meta-

data.  We first introduce the capabilities of CytoPy by characterising T cells in blood and comparing

findings to manual gates.  Finally, we employ the entire pipeline to describe a known phenotype of

immune cells in the peritoneal effluent of dialysis patients that differentiates individuals with acute

peritonitis from stable controls. Accompanying Jupyter Notebooks demonstrating all necessary code

are  available  here  at  https://github.com/burtonrj/CytoPy_Peritonitis.   We  believe  that  CytoPy

provides a powerful and user-friendly framework to interrogate high dimensional data originating

from investigations using flow cytometry or mass cytometry as readout, and has the potential to

facilitate automated data analysis in a multitude of experimental and clinical contexts. 

2. Design and Implementation

2.1 Building a framework that is algorithm-agnostic and data-centric

Reliable data management is a cornerstone of successful analysis, improving reproducibility and

fostering collaboration.  A typical cytometry project consists of many Flow Cytometry Standard

(FCS) files, clinical or experimental metadata, and additional information generated throughout the

analysis (e.g.  gating,  clustering results,  cell  classification,  sample specific metadata).   A further

complication is that any analysis is not static but an iterative process.  We therefore deemed it

necessary  to  anchor  a  robust  database  at  the  centre  of  our  software.   In  CytoPy,  Projects are

instantiated and housed within this database, which serves as a single dynamic data repository that

is  then  accessed  continuously  throughout  the  subsequent  analysis.   For  the  architecture  of  this

database,  we  chose  a  document-orientated  database,  MongoDB [20],  where  data  are  stored  in

JavaScript Object Notation (JSON)-like documents in a tree structure.  Document-based databases
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carry many advantages, including simplified design, dynamic structure (i.e. database fields are not

‘fixed’ and therefore resistant to unforeseen future requirements) and easy to scale horizontally,

thereby improving integration into web applications and collaboration.   In this  respect,  CytoPy

depends upon MongoDB being deployed either locally or via a cloud service, and MongoEngine

[21], a Document-Object Mapper based on the PyMongo driver. 

2.2 Framework overview

An overview of the CytoPy framework is given in Figure 1 including a recommended pathway for

analysis, although individual elements of CytoPy can be used independently.  CytoPy follows an

object-orientated design with a document-object mapper for both commitment to, and collection

from, the underlying database.  The user interacts with the database using an interface of several

CytoPy classes, each designed for one or more tasks.  CytoPy is algorithm agnostic, meaning new

autonomous gating, supervised classification, clustering or dimensionality reduction algorithms can

be introduced to this infrastructure and applied to cytometric data using one of the appropriate

classes.  CytoPy makes extensive use of the Scikit-Learn and SciPy [22] ecosystems.  Throughout

an analysis, whenever single cell data are retrieved from the database, they are stored in memory as

Pandas DataFrames that are accessible for custom scripting at any stage.

Following  the  steps  in  Figure  1,  a  typical  analysis  in  CytoPy  would  be  performed as  follows

(functions show in italics and class names are shown in italics and title-case):

(1) Single cell data are generated and exported from the flow cytometer;  CytoPy supports FCS

(Flow Cytometry Standard) files version 2.0, 3.0 and 3.1, but additionally supports the introduction

of data using a Pandas DataFrame object, therefore supporting wider formats, although this requires

that the end user generates this object with suitable formatting.  Experimental and clinical metadata
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are collected in tabular format either as Microsoft Excel document or Comma Separated Values

(CSV) files, with the only requirement being that metadata be in ‘tidy’ format.

(2) A Project is defined and populated with the single cell data and accompanying metadata.  A

Project contains one or more  Experiment documents, each defining a set of staining conditions.

Each subject (e.g. a patient, a cell line, or an animal) has a Subject document containing metadata

that are dynamic and have no restriction on the data stored within, and that are associated to one or

several  FCSGroup documents.   Each  FCSGroup document contains  one or more FCS files  (or

DataFrames) associated to a single biological sample collected from the subject.  This document

contains all  single cell  data,  ‘gated’ populations,  clusters and meta-information that attains to a

single  ‘sample’,  which  also  includes  any  isotype  or  Fluorescence-Minus-One  (FMO)  staining

controls.  Compensation is applied to single cell data at the point of entry using either an embedded

spillover matrix or a provided CSV file.  It should be noted that data are stored on a linear scale

with a variety of transformations available during subsequent analysis; this provides flexibility in

analysis as the user can compare the effects of different transformations, including the commonly

used biexponential and hyperbolic arcsine transformations (compensation and transformations are

implemented with the FlowUtils package [23]).

(3) Any cytometry analysis will require that single cell data be cleaned of debris and artefacts.  We

recommend FlowAI [24] be used independently of CytoPy prior to analysis to improve the quality

of data.  Within CytoPy, manual or autonomous gates can be employed to identify cell populations

in  two-dimensional  space,  replicating  traditional  manual  analysis  conducted  with  tools  such as

FlowJo.  We recommend autonomous gates be used for eliminating doublets, dead cells, and debris,

and to select a starting population for analysis; for instance, in a mixture of immune cells this could

be the T cell population (CD3+ live single lymphocytes).  Autonomous gates are applied with the

GatingStrategy module  and cell  populations  are  then  stored  within  the  database  as  Population
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documents embedded within a FileGroup.  These Population documents record the index of events

belonging to a population, detail how they were identified, and the conditions in which they were

identified such as transformations applied to linear space, e.g. biexponential transformation of axis.

(4) Batch effects are common and must always be addressed prior to analysis.  If the batch effect is

minimal the investigator can consider pooling data and modelling the distribution of single cell data

directly.  If batch effects are considerable, the investigator should include methods to alleviate this

prior  to  further  analysis.   The  Variance module  of  CytoPy  provides  methods  to  visualise  and

quantify batch effect.  Autonomous gates provide methods to address batch effect through landmark

registration, but technical variation can be addressed at a global level using the Harmony algorithm

[25], implemented in CytoPy using the harmonypy package [26].

(5) Multiple strategies can be employed to classify cells based on a common phenotype.  Strategies

such as autonomous gating and supervised classification are biased by the training data provided

(and  the  gating  strategy  used  to  label  those  data)  whereas  high-dimensional  clustering  is  an

unsupervised method that groups cell populations according to their phenotype.  CytoPy offers both

supervised classification through the  CellClassifier class and high dimensional clustering through

the Clustering class, so that variables can be generated from either or both strategies.  These classes

provide  objects  that  are  algorithm agnostic,  allowing for  the introduction of  any function  with

specific  signatures,  whilst  also  providing  much  convenient  functionality  for  visualising  and

critiquing results; this includes but is not limited to, cross-validation, learning curves, heatmaps,

plotting with dimension reduction, and common metrics.  Importantly, the results of either strategy

generate common Population documents that are committed to the database and can then be used as

input to any additional analysis or visualisations.
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(6) Once cells have been classified, the user can test their hypothesis.  The single cell data are

summarised  into  a  ‘feature  space’,  summary statistics  that  describe  the  cell  populations.   This

generates a large number of variables, many of which will be either uninformative or redundant.

Filter and wrapper methods are available through the feature_selection module finding only those

variables that  are  important  for predicting a biological or experimental  endpoint.   This module

deploys methods from the discipline of interpretable machine learning, from simple L1-regularised

linear  models  and decision  trees,  to  complex modelling and interpretation  through permutation

feature importance and SHapley Additive exPlanations (SHAP) [27]

3. Results

3.1 Identifying significant batch effect in blood T cell subsets

To validate and exhibit the individual elements of CytoPy we decided to use the framework to

identify T cells subsets in PBMCs isolated from whole blood.  14 individuals were chosen (based on

availability  of  data)  from a  local  study of  patients  undergoing  peritoneal  dialysis,  4  of  whom

presented with symptoms of acute peritonitis whereas the remainder were stable and asymptomatic

(see supplementary methods).  The objective was to identify T cells (single live CD3+ cells) in the

first instance and then subsequently identify CD4+ T helper cells, CD8+ cytotoxic T cells, Vα7.2+

CD161+ mucosal-associated invariant T (MAIT) and Vδ2+ γδ T cell subsets.  These populations

were chosen to test a range of functionality: the ability to identify large and easy to distinguish cell

types (CD4+ and CD8+ T cells), and more complex cell populations that can be rare in some patients

and  difficult  to  identify  reliably  in  two-dimensional  space  (Vδ2+ γδ  T cells  and  MAIT cells).

Performance was compared to manual gates decided by user expertise.

The chosen study obtained patient material over 24 months resulting in significant batch effect.

Supplementary Figure S1 shows the variation between individual fluorochromes, exhibiting ‘drift’

in  the  fluorescent  intensity  of  multiple  channels.   Figure  2  shows  UMAP plots  of  data  from
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individual  patients  compared  to  a  reference  patient  (blue);  to  choose  a  reference  the  pairwise

Euclidean distance of a set of covariance matrices for each sample was computed and the sample

with the smallest average distance to every other sample was chosen [9].  The UMAP plots revealed

common structures shared between patients but a lack of alignment, suggesting the infiltration of

noise from technical variation.  

3.2 Autonomous gates reliably identify T cell subsets despite batch effect

CytoPy replicates traditional manual gating using autonomous gates building on previous examples

in  the  literature  [1],  [2].   The  Gate  object  is  used  to  implement  a  single  algorithm  for  the

identification of one or more cell populations in one or two dimensions.  Gate objects can then be

‘stacked’ within a GatingStrategy, saved to the database and applied in sequence to subsequent data.

Each Gate is defined using some example data and an algorithm chosen that best encapsulates the

population of interest. The example data that a Gate is defined on acts as a reference to the expected

populations  in  subsequent  data.   On exposure  to  new data,  the  algorithm is  reapplied  and the

resulting  populations  matched  the  expected  populations  from  the  example  data.   Multiple

algorithms are available for autonomous gates and are discussed in detail  in the supplementary

methods.

A challenge when defining autonomous gates is the choice of hyperparameters that will generalise

beyond the chosen example data; this is further exacerbated by batch effects.  CytoPy employs two

techniques  to  overcome  this  issue:  hyperparameter  search  and  landmark  registration.

Hyperparameter search allows the user to specify a range of hyperparameters to use when a  Gate is

applied  to  new  data.   An  exhaustive  search  is  performed  across  all  permutations  of  chosen

hyperparameters resulting in a set of populations.  For populations defined by a polygon gate, the

convex  hull  of  each  population  is  computed  and  the  population  with  the  minimum Hausdorff

distance  to  the  population  in  the  example  data  is  chosen.   For  populations  defined  by  a
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positive/negative  threshold  in  one  or  two dimensions,  the  median  fluorescent  intensity  of  each

population is computed and the population with the minimum Euclidean distance to the original

example population is chosen.  This is repeated for each population captured by a Gate.

Additionally, a user can apply landmark registration at the point of application of a  Gate.  First

described in the context of cytometry data by Hahne  et al. [28], landmark registration is used to

align data to a reference by finding a warping function that aligns landmarks in their estimated

probability density functions (Supplementary Figure S2).  Landmarks are identified as points of

maximum density and grouped by a K means algorithm [28].  In CytoPy we follow the method

described by Finak et al. [29] and perform local normalisation when a Gate is applied.

Whilst  accounting  for  batch  effect  with  hyperparameter  search  and  landmark  registration,  we

applied  autonomous  gates  to  identifying  T cell  subsets  in  PBMCs (Supplementary  Figure  S3).

Figure 3 shows a comparison of the number of events identified by autonomous gates (x-axis)

compared to the same population identified by manual gates (y-axis), where each data point is an

individual patient.  Autonomous gates showed good conformity with manual gates, even for small

and difficult to distinguish Vδ2+ γδ T cells and MAIT cells.

3.3 Batch effect can be addressed ‘globally’ using the Harmony algorithm

Despite the success of autonomous gates for the identification of T cell  subsets in the wake of

significant batch effect, they are heavily biased by the choice of example data when defining Gate

objects  and  by  the  choice  of  reference  for  landmark  registration.   An  alternative  approach  to

addressing  batch  effect  is  to  try  to  align  cell  populations  between  individual  subjects  in  high

dimensional space prior to analysis.  There have been several methods proposed with this objective

[30], most prominently applied to single cell RNA sequencing data, although some examples such

as SAUCIE [31] demonstrate application to cytometry data.
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We decided to implement the Harmony algorithm [25] given its ability to scale to large data and its

transparent  hyperparameters.   Harmony  was  originally  described  as  being  applied  to  low-

dimensional embeddings.  This is necessary for RNA sequence data where the number of available

features can be in the thousands or tens of thousands but is not necessary for cytometry data with

only  a  dozen  or  more  parameters.   Therefore,  we  exposed  the  original  data  to  the  Harmony

algorithm, after removal of debris, doublets, and dead cells. Biexponential transformation followed

by scaling of each parameter to unit variance (by subtracting the mean and dividing by standard

deviation) was performed prior to batch effect correction.

The performance of Harmony when applied to our T cell population (as identified by autonomous

gates) from PBMCs is shown in Figure 4. Harmony has a range of hyperparameters that influence

its behaviour. We found that default values for more of these parameters provide good performance

but σ should be varied to improve performance on cytometry data; this hyperparameter influences

the entropy regularisation term of the soft-clustering step of the algorithm and as it approaches zero,

clustering is more alike to hard K means clustering. We chose an optimal value of 0.2 for σ whilst

limiting the number of iterations to 5. The quality of batch correction is assessed by observing the

distribution of the local inverse Simpson’s Index (LISI) and a UMAP embedding of single cell data

before and after running Harmony (Figure 4A); LISI is effectively the number of batches in a cell’s

local  neighbourhood  [25].  The  objective  here  was  to  redistribute  LISI  such  that  the  local

neighbourhood around a cell contains a greater representation of different batches, without over-

correcting and distilling biological variation that differentiates groups of subjects. 

The UMAP plots in Figure 4A show that prior to applying Harmony large communities of cells

consist of single batches whereas after application these communities are diffused yet maintain a

topology of separate cell populations.  The concern with batch correction is over-correction that
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disrupts the biological meaning of the single cell data, but Figure 4B and 4C demonstrates that

biological  meaning is  conserved,  with distinct  cell  populations  identified by their  structure and

lineage markers.

3.4 Supervised methods can replicate the performance of autonomous gates

Considering hundreds of thousands of data points can be obtained for each subject, cytometry data

lends itself well to a supervised classification approach for identifying cell populations.  Supervised

classification  of  cell  populations  is  exposed  in  CytoPy  through  the  SklearnCellClassifier and

KerasCellClassifier classes, which inherit from the  CellClassifier class.  Objects of this class can

accept any  classifier that conforms to/supports the Scikit-Learn API (such as XGBoost) or a Keras

[17] model.  Many convenient methods are pre-built into these objects and predictions can be saved

as Population objects, providing compatibility with all other tools in the CytoPy framework.

To benchmark this  supervised approach,  we compared four native classifiers  from Scikit-Learn

(logistic regression, linear discriminate analysis, support vector machine with radial kernel, and K-

nearest neighbours), XGBoost [32], and a deep feed-forward neural network built with Keras to

classifiers  reported  from the  Flow Cytometry:  Critical  Assessment  of  Population  Identification

Methods competition (FlowCAP) [33]. Algorithms were chosen from a range of classifier families

based on their popularity in the literature.   Supplementary Table S1 reports the weighted F1 score

for each classifier across the five example datasets from FlowCAP.  A deep neural network, with the

architecture  described by Huamin  et  al. [9],  showed good performance as  previously  reported.

XGBoost additionally showed exceptional performance, which again highlights the ability of this

classifier to generalise to a wide range of use-cases. 

The FlowCAP competition provides example data that have been heavily pre-processed and is not

representative of data encountered in large clinical studies.  We therefore decided to test the utility
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of XGBoost on the classification of T cell subsets.  Since batch effect has been accounted for using

Harmony, we pooled data from all available samples to generate training data that were manually

labelled using the gating infrastructure within CytoPy.  Tools for assessing the performance of a

classifier such as cross-validation, learning curves, and confusion matrices are provided in CytoPy

as convenient methods in  CellClassifier (Supplementary Figure S4).  As illustrated in Figure 5,

XGBoost is capable of identifying T cell subsets and is comparable to manual gating.  Since batch

effect  correction  with Harmony involves  a  down-sampling  step,  comparisons  are  shown as  the

percentage of T cells as observed by manual gates vs populations identified by XGBoost.

3.5 FlowSOM and Phenograph clustering for identifying T cell subsets after removal of batch

effects

Autonomous gates and supervised classification are capable of identifying known populations of

interest  but  are  biased  by  the  investigator’s  understanding  and  expectations  of  the  immune

landscape.  To diminish this bias, CytoPy encourages the use of unsupervised techniques alongside

directed analysis. 

Unsupervised clustering is  a popular approach to identifying structures in single cell  data,  with

techniques such as FlowSOM and Phenograph growing in popularity in the field of cytometry data

analysis.  Both algorithms are available in CytoPy, along with clustering algorithms from the Scikit-

Learn ecosystem and consensus clustering.   Any clustering algorithm can be applied within the

framework to generate Population objects using the Clustering class and a function with a common

signature and expected output.   This  design was chosen to future-proof  CytoPy against  further

developments in the field so that new techniques will be easy to integrate using a simple wrapper

function.
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Clustering  of  the  batch  effect  corrected  T  cells  was  performed  using  both  FlowSOM  and

Phenograph by directing the  Experiment  towards a  Clustering object and supplying the relevant

functions.  Each sample within an Experiment  was clustered independently and then inter-sample

comparisons were made through meta-clustering, as originally described by Levine et al. [4].  The

results of meta-clustering are displayed in Figure 6 and demonstrate the ability of these algorithms

to discern individual cell populations.  The UMAP plots show each individual cluster as obtained

from individual subjects  but plotted in  the same two-dimensional space and coloured by meta-

cluster  membership;  the  size  of  the  data  point  corresponds  to  the  proportion  of  events  as  a

percentage of T cells in each individual.  Most clusters are represented by a mixture of all subjects

in an  Experiment (Supplementary Figure S5) yet  rare  cell  populations  are  under-represented in

FlowSOM clustering; for instance, five patients had MAIT cells absent in clustering results despite

being identified by manual gates (Figure 7).  A comparison of the proportion of cells obtained by

FlowSOM  and  Phenograph  to  the  same  cell  type  identified  by  manual  gates  showed  that

Phenograph gives preferable performance over FlowSOM.  Despite this, Phenograph overestimated

the proportion of Vδ2+ γδ T cells in a number of patients.  This highlights the importance of using

multiple  techniques  of  both  supervised  and  unsupervised  classification  when  investigating

cytometry data, and CytoPy simplifies this process.

3.6 Implementing the CytoPy framework to identify an immune signature that differentiates

patients with acute peritonitis from stable controls

To demonstrate the application of the entire CytoPy framework to an immunophenotyping project,

we investigated the peritoneal effluent of patients undergoing peritoneal dialysis, some of whom

presented with symptoms of acute peritonitis, with the objective to distinguish patients with acute

peritonitis from stable controls based on their peritoneal immune signatures.  This was chosen based

on our long-standing expertise and published findings demonstrating the significance of the local
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immune response in recognising pathogen-specific patterns of infection [34] and the correlation

between changes in myeloid populations and treatment failure [35].

T  cells  from  PBMCs  and  the  CD45+ fraction  of  cells  from  total  effluent  were  obtained  by

autonomous gates prior to batch correction with Harmony (Supplementary Figure S6).  XGBoost

classification  identified  cell  subsets  using  manual  gates  as  training  data  displaying  significant

differences in the proportion of neutrophils and monocytes between patients with acute peritonitis

compared to controls (Figure 8B). This was clarified in Phenograph and FlowSOM clustering and is

exemplified in meta clustering UMAP plots (Figure 8B). The proportion of T cell subsets was not

significantly  different  between  stable  controls  and  those  presenting  with  acute  peritonitis

(Supplementary Figure S7).

The ratio of cell populations observed by XGBoost classification and Phenograph, and FlowSOM

clustering, conformed with one another (Figure 8). The average live CD45+ fraction (for T cells, B

cells, monocytes, neutrophils, eosinophils) and average live T cell fraction (for CD4+, CD8+, Vδ2+

γδ  T  cells,  and  MAIT  cells)  across  the  three  classification  methods  were  pooled  using  the

feature_selection module to generate a feature space representative of the local immune profile of

the  peritoneum.  Age  and  gender  were  included  in  this  feature  space  as  potential  confounding

variables.  High  collinearity  was  observed  between  the  fraction  of  CD4+ and  CD8+ T  cells,

monocytes and DCs, and T cells and B cells (Figure 9A). CD8+ T cells, DCs and B cells showed

low variability and were therefore removed from analysis. With the remaining features principal

component analysis (PCA) was performed showing that patients with acute peritonitis were highly

discernible from stable controls along the axis of the first principal component (Figure 9B). The

absolute value of the coefficients for this component showed that neutrophils contributed the most

to the observed variation. To confirm these findings, we generated a linear support vector machine

with an L1 regularisation term using the  L1Selection class. The regularisation parameter,  C, was
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varied and the coefficient of each feature plotted; as the value of  C decreases a sparse model is

encouraged, eliminating features that do not contribute to the prediction. Figure 9C demonstrates

that  the  fraction  of  neutrophils  is  the  only  feature  to  persist  in  a  constrained model.  CytoPy’s

feature_selection module contains interpretable models for classification and regression problems,

and its  DecisionTree  class can be used to demonstrate how the fraction of neutrophils alone can

classify acute peritonitis (Figure 9D).

4. Availability and Future Directions

CytoPy represents a framework for the analysis of cytometry data that facilitates automated analysis

whilst introducing robust data management and an iterative analytical environment.  The present

study shows the  ability  of  CytoPy to characterise  cell  populations  with high precision and the

validation of the entire framework in identifying a known immune phenotype that distinguishes

patients with acute peritonitis.  This dataset was chosen based on our extensive experience with this

sample type for over more than a decade.  Initially acquiring such samples on a four colour BD

FACSCalibur flow cytometer with two lasers and simple FSC/SSC settings [36], we later utilised an

eight colour BD FACSCanto with three lasers and FSC/SSC area/height channels [37], and now in

the present study took advantage of a 16 colour BD LSR Fortessa with four lasers and FSC/SSC

area, height, width, and time [34], thus illustrating the technological advance in the field but also the

increasing complexity of the data acquired.

CytoPy exposes multiple techniques for the classification of cell populations in cytometry data with

a simplistic design and a low-code interface.  Autonomous gates provide a familiar interface with

cytometry  data  whilst  reducing  the  labour  cost  of  analysis,  despite  this  they’re  biased  by  the

investigator’s  expectations  of the data  and computationally  expensive.   It  is  recommended that

autonomous  gates  be  employed  for  pre-processing  and  generating  training  data  for  supervised

classifiers.   Supervised  classification  offers  a  more  efficient  method  for  guided  analysis,  with
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training data  provided in  the form of  a  gated example.   In contrast,  unsupervised clustering is

unbiased and offers exploratory analysis that can allude to the discovery of uncharacteristic cell

populations or features that correlate with disease or experimental endpoints.  In this  study, we

demonstrate  that  clustering  algorithms  such  as  FlowSOM  and  Phenograph  were  incapable  of

identifying rare cell populations for a small fraction of our cohort.  This highlights the importance

of not relying on a single method when engineering features from cytometry data.  A cornerstone of

CytoPy’s design is to expose multiple methodologies with minimal friction and provide consistent

data structures to pool results.  This strategy was employed for immune phenotyping peritoneal

effluent and confirmed a striking increase in total neutrophils at the site of infection and a parallel

decrease in the proportion of monocytes/macrophages, dendritic cells and T cells, in agreement with

previous findings [34], [37], thereby validating the utility of CytoPy.

We have chosen to develop and maintain CytoPy in Python, a programming language with growing

popularity in the bioscience domain.  To date, Python has been lacking a framework for generalised

cytometry data analysis offered by counterparts in R.  CytoPy extends cytometry bioinformatics

into  the  Python  ecosystem  by  presenting  an  object-orientated  infrastructure  that  is  algorithm-

agnostic and ready for deployment in the cloud.  Compared to current solutions in R [2], [38], [39],

CytoPy boasts a low-code interface and a data-centric design that enables rapid prototyping and

comparison  of  analytical  techniques,  with  seamless  integration  of  metadata.   Another  popular

solution for cytometry data analysis is CytoBank, which whilst supporting many popular algorithms

and  an  accessible  graphical  user  interface,  is  a  propriety  product  that  could  limit  uptake.   In

contrast,  CytoPy  is  open-source  and  whilst  offering  popular  algorithms,  is  also  designed  for

expansion by the open-source community;  new algorithms can be introduced with very simple

wrapper functions to match existing signatures and expected data types.
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The current version of CytoPy offers the most popular aspects of automated analysis of cytometry

data,  with  autonomous  gating,  high-dimensional  clustering  and supervised  learning,  whilst  also

implementing Harmony [25] for batch effect correction.  Future versions of CytoPy will expand on

this to include algorithms such as SAUCIE [31] and BBKNN [40].  Another paradigm of immune

phenotyping for predictive modelling is multiple-instance learning, whereby the single cell data

from multiple patients are exposed to a model as a single matrix, with instances labelled by the kind

of patient they originate from.  This was successfully demonstrated by Hu et al. [13] to identify a

signature predictive of latent cytomegalovirus (CMV) infection and by CellCNN [11] to identify

paracrine signalling, AIDS onset, and rare CMV infection-associated cell subsets.  It is our ambition

to extend the capabilities of CytoPy to support this design.

As high-dimensional cytometry analysis continues to grow in popularity there is increasing demand

for an analytical framework that is friendly for those who are new to programming, provides a

database that directly relates experimental metadata to single cell data, and scales in a fashion that

encourages collaboration and expansion.  CytoPy meets all these criteria whilst remaining open-

source  and  freely  available  on  GitHub  (https://github.com/burtonrj/CytoPy).   Those  wishing  to

collaborate with us or extend our software capabilities are invited to consult the documentation

(https://cytopy.readthedocs.io/) and make a pull request on our GitHub repository. 
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5. Supplementary Methods

5.1 FlowCAP

Supervised  classifiers  in  CytoPy  were  compared  using  data  provided  in  the  Flow  Cytometry:

Critical  Assessment of Population Identification Methods (FlowCAP) challenge [33],  where the

challenge is to accurately separate cells into subsets based on single cell phenotype.  The FlowCAP-

I  data  consist  of  four  human studies  (graft-versus-host  disease,  diffuse large  B-cell  lymphoma,

symptomatic West Nile virus infection, and healthy donors) and one mouse study (hematopoietic

stem cell transplant).  Data were labelled and pre-processing performed (removal of debris, dead

material, and with fluorescence compensation applied) at source by the laboratory responsible for

acquiring  the  original  data.  Here,  classifiers  were  trained  on  25%  of  data  and  classification

performance tested on the remaining 75%.  Performance was reported as the average of weighted

F1 scores across all five datasets, where the F1 score for data with |C| set of possible classes is

given as:  

weightedF 1 score=
2

|C|
∑
c ∈C

precisionc ⋅recall c

precisionc+recallc

Six  supervised  machine  learning  algorithms,  housed  within  CytoPy,  were  compared  without

hyperparameter tuning: 

1.  Logistic regression with balanced class-weights; implemented in Scikit-Learn version 0.24

2. Linear discriminant  analysis  without  any shrinkage and number of components equal  to

either  the  number  of  classes  or  number  of  features,  depending  on  which  is  minimum;

implemented in Scikit-Learn version 0.24

3. Support vector machine with a radial basis function kernel without regularisation and γ as 
1
n

where n is the number of available features; implemented in Scikit-Learn version 0.24

4. K nearest neighbours classifier with k equal to 30; implemented in Scikit-Learn version 0.24

5. XGBoost using default parameters; implemented in xgboost version 1.2
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6. Feed-forward neural network with three hidden layers of size 12, 6, and 3 nodes, L2 penalty

of 1×10−4, softplus activation function on the hidden layers, softmax activation function of

the outer most  layer,  and categorical cross-entropy as the loss function;  implemented in

Tensorflow Keras version 2.4

5.2 Patients

The  study  cohort  comprised  21  adult  individuals  receiving  peritoneal  dialysis  (PD)  who  were

admitted between October 2016 and October 2018 to the University Hospital of Wales, Cardiff, on

day 1 of acute peritonitis, before commencing antibiotic treatment (47.6% female; median age 53.0

years, range 30.0-86.0 years).  30 age and gender-matched individuals receiving PD and with no

previous infections for at least 3 months served as stable, non-infected controls (53.3% female;

median age 59.7 years, range 39.7-84.3 years).  Subjects known to be positive for HIV or hepatitis

C  virus  were  excluded.   Clinical  diagnosis  of  acute  peritonitis  was  based  on  the  presence  of

abdominal pain and cloudy peritoneal effluent with >100 white blood cells/mm3.  According to the

microbiological  analysis  of  the  effluent  by  the  routine  Microbiology Laboratory,  Public  Health

Wales, episodes of peritonitis were defined as infections caused by Gram-positive or Gram-negative

organisms.  Cases of fungal infection and negative or unclear culture results were excluded from

this analysis.  A summary of the bacterial culture results for patients with peritonitis are shown in

Supplementary Table S2.  All methods were carried out in accordance with relevant guidelines and

regulations,  and written  informed consent  was obtained from all  subjects.   Recruitment  of  PD

patients was approved by the South East Wales Local Ethics Committee under reference number

04WSE04/27, and conducted according to the principles expressed in the Declaration of Helsinki.

The study was registered on the UK Clinical Research Network Study Portfolio under reference

numbers #11838 "Patient immune responses to infection in Peritoneal Dialysis" (PERIT-PD).   

5.3 Flow cytometry
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Peritoneal leukocytes were harvested from overnight dwell effluents and processed as described

previously [34], [37]; samples were treated with DNase (Sigma; 1:2,500 dilution) when excessive

debris  was  visually  apparent.   Leukocyte  populations  in  total  effluent  were  stained  using

monoclonal antibodies against CD1c, CD3, CD14, CD15, CD16, CD19, CD45, CD116, HLA-DR

and Siglec-8 (Supplementary Table S3) and identified as CD45+ immune cells, CD3+ T cells, CD19+

B cells, CD15−CD14+ monocytes/macrophages, CD15+ neutrophils, CD15−CD14+/−CD1c+ dendritic

cells,  and CD15−SIGLEC-8+ eosinophils.   T cell  subsets  in  peripheral  blood mononuclear  cells

(PBMCs) and in peritoneal effluent were stained after Ficoll (Ficoll-Paque PLUS; Fisher Scientific)

separation of blood and peritoneal leukocytes, respectively, using monoclonal antibodies against

CD3,  CD4,  CD8,  CD161,  TCR-Vα7.2,  TCR-Vδ2,  TCR-pan-γδ,  CD45RA,  CCR7  and  CD27

(Supplementary Table S4).  Cell acquisition by flow cytometry was performed using a 16 colour

BD LSR Fortessa cell analyser (BD Biosciences).  Live single cells were gated based on side and

forward scatter area/height and live/dead staining (fixable Aqua; Invitrogen). 

5.3 Autonomous gating

Autonomous gates inherit from the parent class Gate (providing access to common utilities such as

data transformations) but are divided into the following classes to facilitate gating geometries:

1. The  ThresholdGate divides  data  in  one  or  two-dimensional  space  using  a  threshold  of

positivity (a straight line that divides data into positive and negative regions).  Thresholds

are found as regions of minimal density in the estimated probability density function of the

observed data; estimated with a fast convolution-based kernel density estimation algorithm

[41] with a Gaussian kernel and bandwidth estimated using the Silverman method.

2. The  PolygonGate allows the user to apply any Scikit-Learn clustering algorithm to two-

dimensional  data;  including the  popular  HDBSCAN algorithm [42].   Polygon gates  are

generated from the resulting clusters by computing their convex hull, the contents of this

polygon are used to construct Population objects.
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3. The EllipseGate allows the user to apply the probabilistic mixture model algorithms of the

Scikit-Learn library to generate elliptical gates.  For each component of the mixture model

the  covariance  matrix  is  used  to  generate  a  confidence  ellipse,  surrounding  data  and

emulating a gate.  The ellipse is centred on the mean of the chosen component and oriented

in  the  direction  of  the  first  eigenvector  of  the  covariance  matrix.   The  approximate

likelihood of a data point falling within the bounds of the ellipse can be estimated using the

chi-squared  distribution.   A hyperparameter,  ‘conf’,  is  provided  (default  is  0.95)  as  the

percentile  of  the  chi-squared distribution  to  generate  an ellipse where  the  length of  the

primary axis (the longest axis) is such that the chosen percentage of data attributed to this

component is contained within the ellipse.   This elliptical gate is then committed to the

database as a polygon object.

5.4 Manual gating

T cells from whole blood were manually gated in FlowJo v10.7 (TreeStar) by two independent

experts. The total number of events for each gate of interest were exported as a CSV file. The

average  number  of  events  between  the  two  independent  analysts  was  used  for  comparison  of

automated methods to manual gating.
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7. Figures

Figure 1.  Overview of the CytoPy framework.  Single cell data and experiment/clinical metadata
(1) are used to populate a project within the CytoPy database (2).  The CytoPy database models
analytical data in MonogDB documents (cylinder), and an interface of CytoPy classes retrieves and
commits data to this database (dotted rounded rectangle).  Utility modules perform regular tasks
such as data transformations and sampling throughout the framework.  The components of this
interface can be used independently, but the recommended workflow is as follows: (3) autonomous
gates  identify  a  ‘clean’ population  of  interest  from where  to  start  analysis,  (4)  batch  effect  is
visualised, quantified, and corrected using the Harmony algorithm, (5) supervised and unsupervised
algorithms classify cells into groups of similar phenotype, and finally (6) a feature space of cell
population descriptive statistics is generated and feature extraction/selection methods deployed to
identify a predictive signature that characterises an endpoint of interest.
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Figure 2.  UMAP plots revealing batch effect in T cell staining of whole blood.  A reference sample
(blue) is chosen as the ‘average’ sample in Euclidean space.  A low dimension embedding of this
sample is made using UMAP (other algorithms are available in CytoPy, e.g. PCA, PHATE, tSNE)
and samples for comparison are projected into this same space (red), demonstrating ‘drift’ in cell
populations  between  patient  samples.   Each  plot  depicts  results  obtained  with  cells  from  an
individual patient; numbers shown are unique patient sample identifiers.
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Figure 3. Number of events captured by autonomous gates for blood T cell subsets compared to the
same subsets as defined by manual expert gates.  Each symbol depicts results obtained with cells
from an individual patient.
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Figure 4. Batch correction using the Harmony algorithm. (A) Single cell UMAP plots are coloured
by cell origin, where each colour represents a unique patient. Shift in batch membership in the local
neighbourhood of cells is shown by the change in the UMAP plot after Harmony is applied and by
the shift in LISI distribution. (B) Cell population structure is conserved after correction as shown by
the shape of latent variables UMAP1 and UMAP2, and the distribution of the cell surface markers
CD4, CD8, the linear combination of Panγδ and Vδ2 (to identify Vδ2+ γδ T cells), and the linear
combination of CD161 and Vɑ7.2 (to identify MAIT cells).
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Figure 5. Percentage  of  blood T cell  subsets  as  identified by XGBoost  compared to  the  same
subsets as identified by expert manual gates.  Each symbol depicts results obtained with cells from
an individual patient.
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Figure 6.  Meta-clustering results for FlowSOM (top) and Phenograph (bottom) when applied to
blood  T  cells  after  batch  effect  correction  with  Harmony.   Heatmaps  show  the  normalised
expression of cell surface markers for meta-clusters (clustered centroids of individually clustered
patient samples).  In the neighbouring UMAP plots, clusters from all patients are shown in the same
embedded space  and coloured  by their  meta-cluster  membership.   The size  of  each data  point
corresponds to the percentage of T cells this cluster represents in the patient it was derived from.
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Figure 7. Percentage of T cell subsets as identified by FlowSOM (top) and Phenograph clustering
(bottom), compared to the same subsets as identified by expert manual gates.  Each symbol depicts
results obtained with cells from an individual patient.
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Figure 8.  Leukocyte subsets as a fraction of CD45+ cells as identified by an XGBoost classifier
(top),  Phenograph clustering (centre)  and FlowSOM clustering (bottom).  Mann-Whitney U test
were applied for comparisons between patients with acute peritonitis and stable controls, and p-
values are reported after correction for multiple comparisons using Holm’s method (significance
level was set as 0.05).
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Figure  9.   Feature  selection  process  to  reduce  variables  for  predicting  acute  peritonitis.  (A)
Multicollinearity was addressed before generating linear models with redundant features removed
prior to further analysis. (B) Principal component analysis shows that patients with acute peritonitis
are  discernible  from  stable  controls.  (C)  L1  restricted  modelling  with  a  linear  support  vector
machine reveals that neutrophils are the most predictive feature. (D) A simple neutrophils cut-off is
predictive of acute peritonitis in this cohort and is demonstrated by a simple decision tree.
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Supplementary material

Supplementary Figure S1.  Individual fluorochrome inter-sample variation amongst PBMCs from
14  patient  samples.  Reference  patient  is  shown  in  blue  with  subsequent  patients  overlaid  as
individual red lines.
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Supplementary Figure S2.  Example of landmark registration to align ‘peaks’ of high density in
the probability density function (PDF) of CD4 expression on blood T cells for a target distribution
and  chosen  reference.   Left,  target  (orange)  PDF  compared  to  the  reference  (blue)  prior  to
alignment.   Centre,  warping  function  defined  between  landmarks  by  taking  a  monotone  cubic
interpolation.  Right, registered curve with aligned peaks obtained using function composition.
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Supplementary Figure S3.   Autonomous  gating  strategy for  identifying  blood T cell  subsets.
Threshold  (straight  red  line)  gates  are  obtained  using  density-based  algorithms  as  the
ThresholdGate class, elliptical gates are obtained using the EllipseGate class and Gaussian mixture
models with a varying number of components.  Hyperparameter search and landmark registration
was applied to all gates. 
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Supplementary Figure S4.  Example of a learning curve (A) for training XGBoost for identifying
T cells subsets, and confusion matrix (B) for the same algorithm when exposed to validation data.

Supplementary Figure S5.  UMAP plots showing all clusters as obtained by FlowSOM (left) and
Phenograph (right) and coloured according to patient origin.  The size of the data points correspond
to the % of T cells the given cluster represents from the respective patient.  Subject numbers shown
are unique patient sample identifiers.
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Supplementary Figure S6.  Batch effect correction with Harmony for peritoneal effluent stained
for T cell subsets (top) and leukocyte subsets (bottom). Single cell UMAP plots are coloured to
show the origin of cells where each colour is a unique patient. UMAP plots following correction
and LISI distribution show the effectiveness of Harmony to correct for technical variation.
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Supplementary Figure S7.   T cell  subsets  as a  fraction of T cells,  identified by an XGBoost
classifier (top), Phenograph clustering (centre) and FlowSOM clustering (bottom). Mann-Whitney
U tests were applied for comparisons between patients with acute peritonitis and stable controls and
p-values are reported after correction for multiple comparisons using Holm’s method (significance
level was set as 0.05).
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Classifier GvHD DLBCL HSCT WNV ND Mean
RadialSVM* 0.89 (0.83, 0.95) 0.84 (0.80, 0.87)0.98 (0.96, 0.99) 0.96 (0.94, 0.97)0.93 (0.92, 0.94) 0.92
flowClust/Merge* 0.92 (0.88, 0.95) 0.92 (0.89, 0.94)0.95 (0.92, 0.97) 0.84 (0.82, 0.86)0.89 (0.88, 0.90) 0.90
randomForests* 0.85 (0.78, 0.91) 0.78 (0.74, 0.83)0.81 (0.79, 0.83) 0.87 (0.84, 0.90)0.94 (0.92, 0.95) 0.85
FLOCK* 0.82 (0.77, 0.87) 0.91 (0.89, 0.93)0.86 (0.76, 0.93) 0.86 (0.82, 0.89)0.86 (0.77, 0.92) 0.86
CDP* 0.78 (0.68, 0.87) 0.95 (0.93, 0.97)0.75 (0.71, 0.78) 0.86 (0.84, 0.88)0.83 (0.80, 0.86) 0.80
Ensemble 
clustering*

0.91 0.94 0.95 0.92 0.94 0.93

Logistic 
regression

0.93 (0.92, 0.95) 0.94 (0.93, 0.95)0.97 (0.96, 0.97) 0.91 (0.90, 0.92)0.82 (0.81, 0.83) 0.91

Linear 
discriminant 
analysis

0.94 (0.92, 0.97) 0.98 (0.97, 0.98)0.95 (0.93, 0.97) 0.92 (0.9, 0.94)0.81 (0.80, 0.82) 0.92

Radial SVM 0.97 (0.96, 0.98) 0.98 (0.97, 0.98)0.97 (0.96, 0.97) 0.97 (0.96, 0.970.91 (0.90, 0.91) 0.96
K nearest 
neighbours

0.95 (0.93, 0.97) 0.97 (0.96, 0.98)0.94 (0.93, 0.96) 0.95 (0.94, 0.95)0.89 (0.89, 0.90) 0.94

XGBoost 0.99 (0.98, 0.99) 0.98 (0.97, 0.98)0.99 (0.99, 0.99) 0.99 (0.98, 0.99)0.99 (0.98, 0.99) 0.99
Feed-forward 
deep neural net

0.96 (0.93, 0.97) 0.93 (0.91, 0.95)0.97 (0.96, 0.98) 0.98 (0.98, 0.99)0.92 (0.92, 0.93) 0.95

Supplementary Table S1. Performance of supervised classification algorithms for identifying cell 
populations from the FlowCAP competition data. *Performance from the original competition as 
reported by Aghaeepour N et al. [33]; all other algorithms are implemented through CytoPy.
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Culture result n

Coagulase-negative Staphylococcus 6

Alpha-haemolytic Streptococcus 3

Staphylococcus aureus 1

Escherichia coli 1

Streptococcus agalactiae 1

Corynebacterium amycolatum 1

Pseudomonas aeruginosa 1

Yeast 1

Mixed growth 2

No growth/unknown 4

Supplementary Table S2. Summary of microbiological culture results for peritoneal dialysis 
patients with acute peritonitis

Marker Fluorochrome Manufacturer (Clone)

CD3 APC/Fire BioLegend (UCHT1)
CD4 PE-Cy5.5 BioLegend (OKT4)
CD8 Brilliant Violet 711 BioLegend (RPA-T8)
CD161 APC Miltenyi Biotec (191B8)
Vα7.2 Brilliant Violet 605 Biolegend (3C10)
TCR-pan-γδ PE-Cy5 Beckman Coulter (IM2662)
Vδ2 PE BD Biosciences (B6 RUO)
CCR7 Brilliant Violet 421 BioLegend (G043H7)
CD27 PE-Cy7 BioLegend (M-T271)
CD45RA PE Dazzle BioLegend (HI100)

Supplementary Table S3. Staining panel for T cells

Marker/Cytokine Fluorochrome Manufacturer (Clone)

CD45 Alexa Fluor 700 BioLegend (2D1)
CD14 FITC BioLegend (63D3)
CD16 Per-CP Cy5.5 BioLegend (3G8)
CD3 APC/Fire BioLegend (UCHT1)
SIGLEC-8 APC BioLegend (7C9)
CD1c Brilliant Violet 421 BioLegend (L161)
CD15 Brilliant Violet 605 BioLegend (SSEA-1)
HLA-DR Brilliant Violet 711 BioLegend (L243)
CD116 PE BioLegend (4H1)
CD19 PE-Cy7 BioLegend (HIB19)
Supplementary Table S4. Staining panel for leukocytes
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