Abstract
Single-cell RNA-Seq (scRNA-Seq) data analysis requires expertise in command-line tools, programming languages and scaling on compute infrastructure. As scRNA-Seq becomes widespread, computational pipelines need to be more accessible, simpler and scalable. We introduce an interactive analysis environment for scRNA-Seq, based on Galaxy, with ~70 functions from major single-cell analysis tools, which can be run on compute clusters, cloud providers or single machines, to bring compute to the data in scRNA-Seq.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
Copyright
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.