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Abstract

Hierarchy is a major organizational principle of the cortex and underscores modern
computational theories of cortical function. Consideration of the role of the local microcircuit
in the amplification of inputs, leads to the argument that distance dependent changes in the
laminar profiles of connectivity constitute the structural signatures of hierarchy. Statistical
modeling of these signatures demonstrates that inputs from multiple hierarchical levels to
their target areas show remarkable consistency, allowing the construction of a cortical
hierarchy based on a principle of hierarchical distance. The statistical modeling that is applied
to structure can also be applied to laminar differences in the oscillatory coherence between
areas thereby determining a functional hierarchy of the cortex. Close examination of the
anatomy of inter-areal connectivity reveals a dual counterstream architecture with well-
defined distance-dependent feedback and feedforward pathways in both the supra- and
infragranular layers, suggesting a multiplicity of feedback pathways with well defined
functional properties. These findings are consistent with feedback connections providing a
generative network involved in a wide range of cognitive functions. A dynamical model

constrained by connectivity data shed insights into the experimentally observed signatures of
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frequency-dependent Granger causality for feedforward versus feedback signaling Exploring
the laminar basis of inter-areal interactions, we suggest, can be achieved with concerted

experiments capitalizing on recent technical advances in tract-tracing, high-resolution fMRI,

optogenetics and mathematical modeling thereby allowing a much improved understanding of
the computational properties of the cortex. However, because inter-areal interactions involve
cortical layers that have been the target of important evolutionary changes in the primate and
human lineage, their investigation will need to include interspecies comparisons.
Keywords
Non-human primate, human brain, electrophysiology, anatomy, modeling, connectivity
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1. Introduction

Hierarchy as an organizational feature of the brain has been a recurrent theme since
the evolutionary theory of neurological disorders of the neurologist John Hughlings Jackson
(1835-1911), following his observations of positive and negative symptoms in his patients
(York and Steinberg, 2011). The neurobiology of cortical hierarchy was explored by the
pioneering work of David Hubel and Torsten Weisel when they characterized the receptive
field properties of simple, complex and hypercomplex neurons across areas of the visual
cortex (Hubel and Wiesel, 1962). Following the work of Rockland and Pandya (1979) a
myriad of connectivity studies in the cortex found additional evidence of hierarchical
organization, allowing Felleman and Van Essen to propose the first hierarchical model of the
cortex (Felleman and Van Essen, 1991), thereby providing a framework for modern concepts
of feedforward (FF) and feedback (FB) processes. The notion of hierarchy has become
considerably generalized and for example can be considered to be the major concept linking
biological and artificial intelligence (Hawkins and Blakeslee, 2004). Convolutional deep
neural networks have a clear hierarchical organization, with convergent, FF connections
passing information from lower to higher layers, and divergent FB connections shaping
plasticity in the connections from lower layers (LeCun et al., 2015). But what exactly is the
significance of hierarchy in the brain? Hierarchy has been extensively studied in terms of
ranking of cortical areas with respect to a number of criteria including, gradients of structural
and functional features, as a progression of scales or as a topological sequence of projections
(Hilgetag and Goulas, 2020). Here we take a diametrically opposing view. Rather than simply
considering hierarchy as a ranking of cortical areas, we address what it means in terms of
monosynaptic inter-areal connectivity. In line with the tenet that the explanation of how the
brain works demands an account of what neurons do, and that functional interactions of
cortical areas is assured by neuronal activity relayed between areas by axons, we confine our
discussion of hierarchy to the description of the neuronal properties of inter-areal relations. A
critical aspect of these regularities concerns the spatial distances governing interactions
between cortical neurons, which we and others have shown obey metabolic constraints in
terms of wire minimization underlining the spatial embedding of the cortex (Markov et al.,
2013). We propose that the structural and functional markers of hierarchy define the
integration of long-range inputs into each local circuit. Future investigations of these markers
are expected to provide insight into the cellular mechanisms underlying hierarchical

processing.
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91 2. Hierarchy - signatures of inputs to local circuits.

92 In 1989 Douglas, Martin and Whitteridge published a landmark study that proposed a
93  canonical microcircuit for the neocortex (Douglas et al., 1989) (Figure 1 and 9b). A
94  common misconception of the canonical microcircuit is that it constitutes solely a description
95  of the inter-laminar wiring patterns of the cortex. In fact it is much more a theory that
96 attempts to explain the electrophysiological properties of the cortex in terms of local
97  connectivity particularly with respect to within-laminar connections. In an effort to nail down
98 the transformation of the thalamic input, in vivo intracellular recordings were made in area V1
99 in cat cortex. This showed that minute inputs from the LGN are amplified by recurrent
100  excitation in layer 4 neurons (Latawiec et al., 2000). Subsequent quantification of the
101  synaptic components of the local circuit showed that high levels of within-layer recurrent
102  excitation is a characteristic feature of the local circuit (Figure 1) (Binzegger et al., 2009).
103  These experiments showed that the role of inhibition was not to carve out the selectivity of
104  the neuron response but rather to exert a control over the amplitude of the response and
105 therefore to maximize the inhibitory potentials in the optimal receptive field response
106  (Douglas et al., 1995; Douglas et al., 1989). Subsequent work showed that there is a weak
107  orientation response in the input to the cortex, meaning that the primary role of the recurrent
108  excitation is the amplification of a signal and not its creation (Ferster et al., 1996).

109 For many years research on cortex was predominantly in carnivores and non-human
110  primates, leading to the notion of the cortical column as a fundamental component of
111  functional organization (Mountcastle, 1995). In these studies, electrophysiological recordings
112 from electrode penetrations made perpendicular to the cortex found a conserved function in
113  the width of the cortex in passing from pia to white matter (Hubel and Wiesel, 1962;
114  Mountcastle, 1957). In the visual system there were expectations that the columnar
115  organization of the cortex would be both functional and structural, since physiologically
116  demonstrated ocular-dominance columns seemed to co-localize with cortical territories
117  labeled by transynaptic labeling following tracer injections in the eye (Hubel and Wiesel,
118 1977). However, close examination revealed important discrepancies in such a
119  correspondence (reviewed (da Costa and Martin, 2010)), suggesting that the link between
120  cortical structure and function is to be found at a much finer scale. Thanks to work in the
121 mouse visual cortex using the molecular tools that are available in this species, it has been
122  confirmed that cortical responses to thalamic input are indeed the consequence of an
123 amplification (Harris and Mrsic-Flogel, 2013) (Lien and Scanziani, 2013) via the local
124  recurrent excitation (Cossell et al., 2015; Douglas et al., 1995; Ko et al., 2011). These studies
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125  built on earlier findings of highly nonrandom features of synaptic connectivity in local
126  cortical circuits, proposing that there is a skeleton of strong connections in a sea of weak
127  connections (Song et al., 2005). Later it was shown that the rare strong connections in the
128  lognormal distribution of synaptic weights are between neurons with similar receptive fields,
129  meaning that neurons in the visual cortex listen most closely to a subset of their synaptic
130 inputs (Cossell et al., 2015). These findings are most satisfying as they explain earlier
131  observations showing that ongoing activity of a neuron (so called spontaneous activity)
132 reflects the functional architecture (i.e. the backbone of strong connections) in which it is
133  embedded (Tsodyks et al., 1999). The emerging picture is that layers 4, 3 and 2 neurons are
134  organized into subnetworks so that the selectivity of the amplification is ensured by
135  constraints at the scale of dendritic spines (Lee et al., 2016).

136 The principal wiring property of the canonical circuit is the recurrent excitation that is
137  observed in all of the cortical layers including layer 4 (Binzegger et al., 2004). The relevance
138  of the canonical microcircuit theory for understanding inter-areal processing became apparent
139  when cortical connectivity was quantified. In fact, 80-90% of the connections of the cortex
140 are in the local circuit spanning 1-2mm in the visual cortex (Markov et al., 2011). Except for
141  the adjacent cortical area, the structural weight of the average input from a distant source area
142  to a target area is several orders of magnitude less than the thalamic input (Markov et al.,
143  2014a). These observations lead to the notion that amplification by local recurrent excitation
144 is a general phenomenon, that allows selection and recombination of relatively small afferent
145  signals (Douglas and Martin, 2007a, b). For instance, top-down signaling of selective
146  attention multiplicatively modulates sets of sensory neurons (McAdams and Maunsell, 1999;
147  Treue and Maunsell, 1996). In this manner, selective amplification by local circuit dynamics
148 leads to all-or-none task switching (Ardid and Wang, 2013).

149 Early anatomists, working principally in non-human primates, distinguished between
150  rostral directed connections that originate chiefly in the supragranular layers and terminate in
151  layer 4 (Cragg, 1969; Kennedy and Bullier, 1985; Lund et al., 1975; Martinez-Millan and
152  Hollander, 1975; Rockland and Pandya, 1979; Spatz et al., 1970; Van Essen and Zeki, 1978;
153  Wong-Riley, 1978) and caudal directed connections that mostly originate from infragranular
154  layers and terminate outside of layer 4 (Kaas and Lin, 1977; Kennedy and Bullier, 1985;
155  Kuypers et al., 1965; Tigges et al., 1973; Wong-Riley, 1978). In a landmark study, Rockland
156  and Pandya (Rockland and Pandya, 1979) were the first to formulate inter-areal connectivity
157 in terms of hierarchy and suggested that the laminar organization of cortical afferents and

158  their terminals indicates the sequence of information processing in cortex. These authors


https://doi.org/10.1101/2020.04.08.032706

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.032706; this version posted July 10, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

159  proposed that connections originating from supragranular layers and terminating in layer 4 by
160  analogy with the main thalamic input to cortex constitute the FF pathway channeling sensory
161 information to cortical areas carrying out higher-order analyses. By contrast connections
162  arising from the infragranular layers, by analogy with descending projections to subcortical
163  structures, correspond to FB connections and were postulated to enable higher order areas to
164  modulate the activity of lower level areas (Rockland and Pandya, 1979).

165

166 3. Models of Hierarchy.

167 The classification of pathways between areas as FF and FB helped motivate the
168  investigation of the role of the cortical network in terms of FF pathways shaping receptive
169 fields in their target areas (Hubel, 1995) and FB pathways relaying contextual information
170  (Gilbert and Li, 2013; Zipser et al., 1996). How the cortical network related to the mosaic of
171  cortical areas was given substance by Fellleman and Van Essen’s demonstration that the
172 layout of cortical areas corresponded to a distributed hierarchy (Felleman and Van Essen,
173 1991). In their seminal study these authors established a definition of FF and FB connections
174  largely employing the criteria of Rockland and Pandya (1979), and although principally based
175  on laminar patterns of anterograde labeling they were able to stipulate criteria so as to include
176  retrograde labeling therefore enabling them to define pathways with respect to findings
177  reported in a large number of publications (Figure 2A). Pairwise comparisons of the
178  connections linking areas using these criteria revealed a high regularity; connections that were
179  classified as FF were largely reciprocated by FB connections, allowing the authors to
180  establish a distributed hierarchy across multiple streams in the macaque visual cortex shown
181 in Figure 2B. Because of the many parallel pathways and given that hierarchical levels were
182  defined arbitrarily meant that the precise ordering of cortical areas was ill-defined.
183  Computational modeling showed that there were over 150,000 equally plausible solutions to
184  the Felleman and Van Essen Model (Figure 2C).

185 A solution to the indeterminacy of the Felleman and Van Essen model could be
186  overcome by an objective localization of hierarchical level. A suggestion that this might be
187  the case was the observation that injections of retrograde tracers in early visual areas
188  generated a progressive decrease in the numbers of labeled FB neurons in supragranular
189  layers with increasing physical rostral distance (Figures 3A) (Kennedy and Bullier, 1985).
190  Quantitative measures of interareal connectivity showed that patterns of retrograde labeling
191  were highly consistent across different brains, provided that labeled neurons are summed

192  across the full extent of a projection zone, defined as the region in a particular source area
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193  which contains projections to an injected target area (Figure 3BC). Subsequently injections in
194  cortical areas at higher hierarchical levels generated a progressive increase in the numbers of
195 labeled FB neurons in supragranular layers with increasing physical caudal distance. In this
196  manner FF and FB pathways exhibited opposing gradients of projection neurons (Barone et
197 al., 2000; Kennedy and Bullier, 1985; Markov et al., 2014b). These observations led to the
198  definition of an index of this gradient based on the proportion of Supragranular Labelled
199  Neurons or SLN (Barone et al., 2000; Vezoli et al., 2004). Because these changes are highly
200  consistent across brains, the smooth gradients of inputs from neurons in different layers and
201 areas to a target area lead to the derivation of a hierarchical distance rule (Figure 3B).

202 The transition from a binary model of hierarchy to one based on hierarchical distance
203  had important consequences. One way of thinking about connectivity gradients (Figure 3A)
204 s that they represent gradual changes in the composition of inputs to the local microcircuit of
205 a cortical area that is dependent on physical distance. If these changing inputs to the local
206  microcircuit represent the structural signature of hierarchy it is legitimate to wonder if they
207  have a functional correlate? If this is the case, then Pascal Fries and his team reasoned that
208  one can derive a functional hierarchy (Bastos et al., 2015b). The hierarchical distance rule is
209  Dbased on the fact that supragranular layers primarily send FF projections and infragrananular
210 layers FB projections. In the visual system, superficial and deep layers are characterized by
211  relatively strong gamma and alpha/beta oscillations, respectively (Buffalo et al., 2011).
212  Furthermore, whereas in early visual areas, gamma oscillations are relatively strong (Gray et
213  al., 1989), beta oscillations tend to be strong in higher areas like parietal cortex (Brovelli et
214  al., 2004; Scherberger et al., 2005). These observations would lead to the prediction that in
215 the visuo-parietal system interareal synchronization in the gamma frequency band mediates
216 FF and interareal synchronization in the alpha- and beta-frequency band mediate FB
217  influences. This turns out to be the case. Frequency-specific directed influences of rhythmic
218  synchronization are correlated with hierarchical distance, FF pathways are characterized by
219  synchronization in the theta (4 Hz) and gamma-band (60-80 Hz) and FB in the beta-band (14-
220 18 Hz) (Bastos et al., 2015b). These observations mean that the structural signatures to the
221  microcircuit are indeed paralleled by functional signatures (Bastos et al., 2015b). However,
222  whereas the structural hierarchy is fixed the activity patterns underlying functional hierarchy
223 exhibit task dependent dynamics.

224 Both structural and functional hierarchies show that the regularities stemming from

225  laminar distributions of connections and the signals they confer are remarkably consistent. In
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226  the following section we address the extent of this consistency in order to formalize how
227  hierarchy inputs to an area are shaped by distance.

228

229 4. Hierarchy — Input Consistency.

230 The notion of hierarchy implies order or rank, so that a prerequisite to determining if
231  there are hierarchical relations between cortical areas requires determining if order relations
232 can be defined between them. For example, the Felleman and Van Essen hierarchy was based
233 on the binary classification of FB/FF relations between areas defined by laminar origin and
234  termination of projections (Felleman and Van Essen, 1991). A FF projection from area A to B
235 implied that B was ordered after A. Similarly, a FB projection from B to A would also be
236  consistent with the above FF relation in assigning B after A. In a hierarchy, we would expect
237  the two criteria to agree but they need not do so. On a simple level, disagreement could be
238 taken to define equality of ordinal levels in the sense that equality is defined as those
239  numbers, A and B, that simultaneously satisfy A > B and A < B. Alternatively, distinct
240  hierarchical orders might arise: one on the basis of FF laminar projections, the other on the
241  Dasis of FB. This could become important when the data supporting multiple laminar FB/FF
242  pathways are analyzed.

243 The criteria for determining hierarchical rank described above is that they are based on
244  properties of projections, that define relations between areas. Alternatively, one can consider
245  properties that are intrinsic to an area, such as cortical thickness, neuron density, soma size,
246  spine count, spine density and dendritic tree size. These properties have been shown to
247  display a smooth variation across the cortex that allows ranking of areas in accordance with
248  the gradation principle of Sanides (Barbas, 2015; Sanides, 1972). Because these properties
249  vary across the cortex, then a hierarchical ranking can be established trivially by ordering the
250  areas according to the property. This distinction leads us to consider that criteria for building
251  cortical hierarchies can be divided into two broad classes that we shall refer to as node-based
252 and link-based (Figure 4A).

253 Here it is useful to draw an analogy with social networks. A hierarchy in a social
254  network implies that the actors show specific kinds of interactions with each other (link-
255 based). Hierarchy implies that those close to each other in a hierarchy show stronger
256  interactions with each other than actors that are distant in the hierarchy. More information can
257  Dbe gauged from the nature of the interactions: We expect that someone high in the hierarchy
258  (aboss) will show a more directive communication pattern to workers lower in the hierarchy.

259  The workers, in turn, will show a different ascending communication pattern, e.g. asking
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260  more questions. Thus, a hierarchy can be constructed by studying the way in which people
261 interact with each other, and knowing a hierarchy could in principal allow us to predict these
262 interactions. By analogy, the SLN can be seen as a measure that directly quantifies the nature
263  of the interactions between brain areas, based on the laminar projection patterns. Interestingly,
264  these laminar projection patterns also relate to certain functional interaction patterns (FF
265 gamma and FB alpha/beta influences). In addition, social hierarchy might also be gauged
266  from properties of the people in the hierarchy themselves. For instance, one expects the boss
267  of the company to have the largest office, whereas the workers at the bottom to share an office
268  and have smaller desks (node-based). In some sense, one could argue however, that the node-
269  Dbased view is based only on indirect markers and is ultimately grounded in the interaction
270  link-based view.

271 There are critically important differences for constructing hierarchies between node
272  and link-based information. By definition, node-based relations depend only on a value
273  intrinsic to the node, not the relations between nodes so they give no information on the
274  symmetry or otherwise of inter-areal relations. By contrast, ranks based on links are expected
275  to show reciprocity, so that if there is FF pattern from area A to area B, a FB pattern is
276  expected from area B to area A. Node based criteria are defined between any two areas
277  independently of whether or not a connection is actually present. Link-based criteria can
278  provide information on asymmetric relations, provided they are directional and are strictly
279  defined between areas only when there is a direct connection. Nevertheless, hierarchical
280  ordering between unconnected areas can be achieved through indirect connections.
281  Generally, links describe the connections that are carrying information between areas and
282  therefore the manner in which the connections and activity from source areas are integrated
283 into the local circuit of the target area.

284 In order to define a hierarchical distance scale, i.e., that is not just ordinal, a distance
285  function, d has to be defined. This function d should transform whatever anatomical or
286  physiological measure one is using into a consistent measure of hierarchical distance across
287  cortical areas. For example, Figure 4B shows a hypothetical distance scale on which 4 areas,
288 A, B, C, D, are arranged. Suppose that hierarchical distances are estimated based on
289  measures derived from tracer injections in areas A and B. The injection in area A provides
290 information about hierarchical distances to areas B, C and D and the injection in B to areas A,
291 Cand D. A consistent measure of hierarchical distance, d, would generate the same estimate
292  of distance, dag, between areas A and B or, formally, we would expect that dca — dcg = dpa —

293  dpe. This is easily derived from the two equations in Figure 4B that show for two areas, C


https://doi.org/10.1101/2020.04.08.032706

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.032706; this version posted July 10, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

294  and D, the expected relation between the hierarchical distances of a common areato C or D to
295  two injection sites, A and B. For common projections X, plotting dxa against dxg should fall
296 along a line of unit slope with intercept das. The question is how to define the distance
297  function d.

298 In contrast to the binary measure of hierarchy in the Felleman and Van Essen model,
299  SLN is a continuous measure on the interval (0, 1), thus providing a measure of the degree of
300 feedforwardness/feedbackness. A binary description treats a projection as FF (FB) if its SLN
301 is greater (less) than 0.5. Using simply the SLN differences as a hierarchical distance
302 measure, the Barone et al., 2000 study was able to reproduce nearly all of the features of the
303  Felleman and Van Essen model based on the SLN values from injections in just two areas, V1
304 and V4. A notable exception is that the frontal eye field (FEF) that the Barone et al. 2000
305 study placed below the early visual area V4. The SLN value from FEF to V4 was above 0.7
306  which placed V4 at higher hierarchical levels. Subsequent physiological studies confirmed an
307 FEF role in early visual processing (Moore and Armstrong, 2003; Schall, 2015), thus
308 validating its relatively low hierarchical level. The unusual FF pattern for such a caudally
309 directed projection was further confirmed in other studies (Pouget et al., 2009) and pertains to
310 aspecific link-category on which we expand later.

311 While differences in SLN establish a determinate hierarchical distance measure
312  between areas, the measure is not necessarily consistent in the manner described in Figure
313  4B. Asthe measure is defined on the interval (0, 1), SLN differences for two areas projecting
314  to a third area could be quite different from those to another more distant area. An ideal
315 measure would project the interval (0, 1) to a scale where differences remain linear. This is
316  commonly accomplished in statistical models, such as generalized linear models (GLM), by
317 means of a logit or probit transformation (Figure 4C) that map the unit interval onto the real
318 line. As the figure demonstrates, with the proper scaling both of these transformations yield
319  rather similar mappings.

320 Figure 5 shows a set of scatter plots for SLN values of common projections for all
321 area pairs between each of 11 visual areas injected with retrograde tracer (Markov et al.,
322 2014b). The SLN values are plotted on probit transformed axes. For many of the area pairs,
323  the point distributions are reasonably well described by a line of unit slope (dashed blue in
324  each graph), as predicted by a consistent measure of distance, i.e., g(SLN;) = g(SLN;)+ c,
325 where c is a constant. Given the similarity of the transforms, it is not surprising that the logit

326 transformation yields virtually the same linear patterns between area pairs. Thus, this
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327 indicates that the ratio of supra- and infra-granular projections follows a gradient across the
328  cortical areas and constitutes a global signature of hierarchical distance among these areas.
329 Is this laminar pattern of connectivity specific to the visual system or is it a more
330 general principle of organization of FF and FB pathways in the brain? In support of the latter
331 hypothesis, Figure 6 shows paired scatter plots of SLN values for a set of 8 somatosensory
332 and motor areas in the same format as Figure 5. As in the visual system, the transformed
333  SLN values, here by the similar logit function, provide evidence of a consistent distance
334  measure in the hierarchical organization among these areas.

335 To quantify the consistency displayed in these pairs plots, we proposed a model to
336  estimate hierarchical distances based on SLN values, but as we argue below, the model is
337  quite general in its application. In short, we suppose that we can assign hierarchical levels, h;
338 and h;, to all area pairs i and j, based on a measure of differences between properties linking
339 the areas. For example, in the case of SLN, we suppose

340  g(SLN?) — g(SLN?) = h; — h;,

341  where g applies a logit or probit transformation to SLN values, from an injection into area p
342  that receives projections from areas i and j. This suggests a formalism similar to a GLM with
343  abinomial family. The SLN is taken as a binomial variable (neurons are found in the upper
344  or lower cortical layers) and the sum of neurons in both compartments is used as a weight.
345 The key feature of the model that relates the estimates of hierarchy to the biological
346  measure (i.e. the transformed SLN values) is the incidence matrix, X, of the cortical graph.
347  The incidence matrix of the graph is defined to have a column for each node and a row for
348 each link. In each row, all values are 0 except for the two nodes of the link, taking on values
349 of -1 and 1, respectively for source and target, if the link is directed. The product of the
350 incidence matrix and the vector of hierarchical values, h, maps the differences in hierarchical
351  value between two areas with the differences between the transformed SLN.

352 g(SLN?) = Xh

353  where the left side of the equation is the difference between transformed SLN values of the
354  source area i and the injection site p. The vector h contains the hierarchical coefficients to
355 estimate and its length is equal to the number of columns of the model matrix. The model as
356  defined is not identifiable because the sum of every row equals O, but by dropping one
357 column, for example, area V1 in the visual hierarchy, the hierarchical coefficients can be

358 estimated with the area corresponding to the dropped row fixed at a hierarchical level of 0.
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359 This resembles a logistic or probit regression problem. However, these models yield
360 standard errors for the estimated coefficients that are unrealistically small. Alternatively, we
361 have used a beta-binomial model; this arises naturally as a binomial model in which the
362  response, which in the current context is the expected SLN value, has variability greater than
363 that specified by the binomial distribution and its distribution is described by a beta
364  distribution (Lesnoff and Lancelot, 2012). For present purposes, the model can be
365 reparameterized to include a dispersion parameter that better models the overdispersion
366 typically observed in neural counts (see ((Markov et al., 2014a) for further details). Once the
367  statistical model is specified, the coefficients are estimated by maximum likelihood. Note
368 that because numbers of neurons are used in the model and not just the SLN proportions, this
369 method generates a weighted hierarchy.

370 The formalization is quite general. For example, if instead of SLN, a binary variable
371 is used simply specifying whether a connection is of a FF or FB type, then the model
372  corresponds to the original problem that Felleman and Van Essen solved. We have found that
373  fitting the model in this fashion leads to coefficients with much larger standard errors (Figure
374  7A), thus, providing an alternate demonstration of the indeterminacy or limited information
375  on hierarchy contained in purely binary relations. Thus, the use of a quantitative measure of
376  hierarchy leads to a more exact solution (Figure 7B).

377 To summarize our approach, a qualitative assessment of a hierarchical gradient is
378 initially evaluated visually by choosing a (possibly transformed) measure of the hierarchical
379 difference between area pairs and using pairs plots to assess the pairwise consistency of the
380 distance measure. If the evidence looks promising, the hierarchical values are obtained by
381 fitting a model that maps the hierarchical estimates to the biological measure of the gradient
382  via the network incidence matrix. If a suitable probability distribution can be assigned to the
383  biological measure, the solution can be obtained by maximum likelihood, but other methods,
384  for example introducing Bayesian priors, might be applied in appropriate circumstances.

385 The visual hierarchy estimated from our model is shown in Figure 8A and resembles
386  qualitatively the FVH. In contrast, the levels are continuously distributed. Here we have split
387 FEF into area 8L and 8M corresponding to regions involved in small and large saccades,
388  respectively. Area 8L occupies a low position in the hierarchy while 8M is several levels
389 higher. The goodness of fit of the model is indicated by plotting the empirical SLN values
390 against those predicted by the model (Figure 8B) and shows that the model accounts for a
391  high proportion of the variance in the data. The functional implications of this model have

392  Dbeen explored in several contexts (Bastos et al., 2015b; Chaudhuri et al., 2015; Magrou et al.,
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393 2018) and preliminary observations indicate that it is applicable to data from the mouse
394 (D'Souza et al., 2020).

395 The use of a transformation of SLN to estimate hierarchical distance imposes strong
396  constraints on inter-areal SLN relations. We demonstrate this in Figure 8C by using the logit
397  transform, which performs quantitatively nearly identically to the probit transform (Figure
398 4C), but allows expression of the hierarchical relations in terms of ratios of projection

399 strengths. The model defines hierarchical distance, h;;, between two areas, i and j, as the

ji
400 difference between the logit of SLN values for their projections to a target area, p, shown in
401 the top equation. For the logit, this distance is just the natural log of the ratio of ratios of
402  supra- to infragranular projection strengths from areas i and j to p (orange arrows in Figure
403  8C, left). If the hierarchical distance measure is consistent, we expect that ratio to be the
404  same for projections to any other area, g, (blue arrows in Figure 8C, left) as shown by the
405  equation below the diagram. A simple rearrangement of this identity demonstrates that the
406  ratio of projections from area i to areas p and g (orange arrows in Figure 8C, right) should be
407  the same for any other area j, projecting to areas p and g. Thus, the hierarchical model we
408  propose implies strong invariances in the ratio of FF to FB projection strengths from common
409 inputs and outputs across areas. We further hypothesize that these invariances impose
410  constraints on the exchange and stability of information flow across the cortical hierarchy.
411 One might suppose that when simultaneous retrograde tracer injections are made in
412  reciprocally connected areas that the pair of areas would display a reciprocal FF-FB relation.
413  That is to say, the origin of the majority of projections from one area would arise from upper
414 layers and the principal origin of the reciprocating projections from lower layers. This
415  arrangement would naturally lead to the hierarchical regularities that we observe. However,
416  this regularity is not imposed by our model, nor is it always found to occur. In effect, this is
417  what explains the surprising observation (noted above in the hierarchy derived in Figure 8A)
418 of a prefrontal area like 8L at the same hierarchical level as early visual areas V3 and V4. As
419  expected, the projections from several lower order visual areas, e.g., V4 and TEO, to area 8L
420  originate in upper layers signifying FF, projections. However, 8L projects back to these areas
421  through FF projections also originating in upper layers (Barone et al., 2000; Markov et al.,
422  2014b). We designate such FF-FF connections as strong loops (Crick and Koch, 1998). They
423  correspond to the situation described earlier in an order relation that when A > Band B > A,
424  then A = B.

425 In the Felleman and Van Essen model, FF (FB) projections connect upstream

426  (downstream) areas in a bottom-up (top-down) fashion placing hippocampus, anterior
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427  temporal and prefrontal areas at the top and occipital areas at the bottom of the visual
428  hierarchy. As such, this model described two main counterstreams involved in hierarchical
429  processing within the visual system: a rostro-caudal gradient of FB projections reciprocated
430 by a caudo-rostral gradient of FF projections. Interestingly, in the data base of visual areas on
431  which the Felleman and Van Essen model was based, only one pathway have been reported —
432  between FEF and CITd (dorsal part of inferior temporal cortex) that corresponds to a strong
433  loops. This led Crick and Koch (Crick and Koch, 1998) to speculate that such configurations
434  were forbidden in cortical organization. However, we have identified a significant number of
435  stong loops in our data base. Figure 8D shows how the logio FLN varies as a function of
436  distance estimated through the white matter from the source area to the target injection site,
437  referred to as white matter (WM) distance), replotted from Ercsey-Ravasz et al. (Ercsey-
438 Ravasz et al., 2013). The beige points correspond to those connections that participate in
439  strong-loops i.e. area pairs for which SLN is greater than 0.5 in both directions. For reference,
440 the saturation of these points indicates their SLN values with less saturated points indicating a
441  higher SLN, as shown by the inset color bar. As expected, most of the SLN values near 1
442  cluster to the right as more long distance connections. There is a fair amount of scatter among
443  the points but they do display a distance rule (blue regression line) just as the rest of the
444  connections do (black regression line). Interestingly, the strength of the strong loop
445  projections is on average greater than the rest of the projections. This suggests that they are
446 likely to play a unique role in cortical computation. What that role is currently remains a
447  mystery. However, some experimental evidence are in favor of an attentional role concerning
448  the strong-loop between FEF and V4. FEF projections can drive attentional response in V4
449  (Moore and Armstrong, 2003), through selective gating of V4 receptive-fields (Armstrong et
450 al., 2006). Further evidence points to the involvement of fast rhythmic synchronization during
451  FEF attentional modulation of V4 visual responses (Gregoriou et al., 2012; Gregoriou et al.,
452 2009), strongly suggesting a supragranular origin (Bastos et al., 2015a; Markov et al., 2014b).
453 The results reveal a high-degree of consistency of the structural regularities underlying
454  cortical hierarchy in the sensory cortex. But how generalizable are these findings across the
455  more anterior regions, particularly in frontal and prefrontal cortex (Badre and D'Esposito,
456  2009; Choi et al., 2018)? One of the few studies that has addressed the structural hierarchy
457  with tract tracing of the prefrontal cortex (Goulas et al., 2014) found little evidence of the rich
458  rostral to caudal hierarchical organization that has been reported in human imaging studies
459  (Badre and D'Esposito, 2007; Koechlin et al., 2003). The controversial issue of frontal cortex

460  and hierarchical control shows promise of resolution via a revision of the concept of a unitary
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461 model ensuring a unidimensional gradient. Recent reports favor distinct networks that are
462  proposed to interact thereby ensuring a global hierarchical structure (Schumacher et al.,
463  2019). Nevertheless, the mismatch between the multistage cascade architecture mediating a
464  temporal organization of cognitive control and inter-areal connectivity contrasts with the
465  situation in the visual cortex where there is a smooth increase in receptive field size ascending
466 the Felleman and Van Essen cortical hierarchy (Roelfsema and de Lange, 2016). The
467  mismatch reported in the prefrontal cortex is between the concept of a smooth and gradual
468  rostral-caudal organization found in the imaging studies and the connectivity as found in the
469  collated and binary data base. What about the relation of SLN across prefrontal areas? In
470  Figure 9A, the SLN pairs plots for the prefrontal cortex show an encouraging agreement with
471  that described in visual cortex. The hierarchical scale values estimated from the statistical
472  model described above (Figure 9B) seem to support a rostral-caudal organization with F1 at
473  the bottom and areas 10 and 24c (the most anterior limbic region) at the top. Note, analysis
474  based on more complete coverage of the frontal cortex might give significantly improved
475  results.

476

477 5. Dual stream Architecture.

478 In the preceding section we showed that the contributions of supra- and infragranular
479 layers in the projections across hierarchical levels were highly consistent. Here we explore
480 recent findings showing that there are distinct and separate FF and FB pathways in both the
481  upper and lower layers constituting a Dual Stream Architecture (Markov JCN 2013), which
482 leads to the hypothesis that FB signals in upper and lower layers have distinct roles in

483  information processing.

484 There are a number of reasons for expecting that supra- and infragranular layers might
485  house different FF and FB pathways. During corticogenesis the supragranular compartment is
486  generated by a primate-specific germinal zone (Smart et al., 2002), exhibiting uniquely
487  complex lineages (Betizeau et al., 2013; Dehay et al., 2015; Lukaszewicz et al., 2005),
488 findings that have consequently been amply confirmed in human corticogenesis (Geschwind
489 and Rakic, 2013). These specialized developmental origins of the supragranular layers are
490 linked to the observed expansion of these layers in primates culminating in human (Cahalane
491 et al.,, 2014; Sousa et al., 2017), and a diversification of cell-types, which we speculate
492  underlies the observed coding properties of these layers in the adult primate cortex (Tang et
493 al, 2018; Vinje and Gallant, 2000; Wang and Kennedy, 2016; Willmore et al., 2011). A
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494  number of studies have shown that supragranular layers exhibit sparse coding in which large
495  numbers of cells are characterized by low levels of activity and a sensory stimulus activates
496  only few neurons (Barth and Poulet, 2012; Crochet et al., 2011; Haider et al., 2013; Harris
497  and Mrsic-Flogel, 2013; Petersen and Crochet, 2013; Tang et al., 2018). In a sparse code
498 information is encoded at any instant by the spiking of a small number of neurons, as opposed
499  to adense code where overall activity is high and information is encoded by variation in firing
500 rate as observed in the infragranular layers (Sakata and Harris, 2009). A sparse code reduces
501 redundancy and is arguably more efficient. Studies indicating sparse coding in supragranular
502 layers find evidence of higher levels of recruitment of inhibitory drive in these layers via fast
503  spiking PV+ neurons (Hu et al., 2014), which supports the presence of distinct frequency
504  channels for FB and FF communication (Bastos et al., 2018; Bastos et al., 2015b; Michalareas
505 et al., 2016). In addition, sparse coding, supragranular neurons in V1 showed more complex

506  and specific selectivity than expected for primary visual cortex (Bonnefond et al., 2017).

507 A more detailed description of the laminar organization of inter-areal connectivity
508  suggests that variation of SLN with distance has complex origins concerning inter-areal
509 connectivity in sublayers of the cortex. Exhaustive examination of inter-areal connectivity
510  shows, that whereas canonical FB streams have been traditionally allocated to infragranular
511 layers, a robust supragranular FB stream is in addition found in layer 2 (L2) in all areas
512 examined in the extrastriate visual cortex of the macaque (Figure 10A) (Markov et al.,
513  2014b). In addition to the L2 FB, we found some evidence of a L5 FF stream. Hence, in both
514 upper and lower compartments there is a counter stream leading to the term dual
515  counterstream architecture. Interestingly, the two FB streams in the supra and infragranular
516 layers will impact differently the canonical microcircuit (Figure 10B) (Douglas et al., 1989).
517 The strict segregation of FF and FB streams was hypothesized by Ullman in his
518 counterstream model, which he proposed allows a bi-directional search for optimal matches
519  between descending and ascending pathways (Ullman, 1995, 2000).

520 Closer examination of the individual streams showed that each obeys a unique
521 distance rules. In all streams labeled cell counts decline with WM distance, however the rate
522  of decline is characteristic for a given stream. In this way, the classical FB stream in L6 of the
523 infragranular layers has the most gradual decline so that these FB connections span the
524  biggest distance in the cortex. This contrasts with the L2 FB, which shows a much shorter
525  space constant. Hence it is the combination of the space constants of the L2 and L6 FB

526  streams that leads to the observed SLN values going up stream from near to far-distant areas
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527  (See Figure 11). The classical FF stream in L3 is also long-distance stream, but significantly
528 less than the FB L6 stream, thus leading to the observation of the greater reach of FB
529  pathways compared to FF pathways (Markov et al., 2014b).

530 Hence, the dual counterstream architecture shows that the relative rate of decline in
531 individual streams determines the way that SLN is modulated by WM distance. In section 3
532  (Hierarchy —input consistency) we showed that the agreement between SLN values across
533 hierarchical levels is relatively constant across the extrastriate macaque cortex, but less so for
534  the prefrontal cortex. These differences between frontal and posterior regions could be driven
535 by two sets of factors. Firstly, quite simply the space constant can change in individual layers
536  so that the two regions sample supra- and infragranular layers over different WM distances.
537  For example, if the difference in space constants of L2 and L6 FB streams are reduced then so
538 are the SLN differences and there will be a reduction of the hierarchical distance as such
539  between a group of areas with a common target. A second factor could be the identity of cells
540 in the two streams. Comparison of the gene expression across species has revealed that some
541 genes in rodents that are exclusively expressed in deep layers are expressed in the
542  supragranular layers of primates (Zeng et al., 2012). Such changes in the laminar phenotype
543  could perhaps occur across regions meaning that the L2 FB pathway in the prefrontal cortex
544  may not correspond to the same identities as the FB pathway in extrastriate cortex.

545

546 6. Functional characteristics of FF and FB pathways.

547 In the present review we propose that cortical hierarchy can be gauged from the nature
548  of the interactions between different brain areas, in the same manner that hierarchies in social
549 networks reflect the nature of interactions between people. Crucially, our measure of
550 hierarchical distance shows that SLN values of area pairs are highly consistent across multiple
551 hierarchical levels. This consistency in conjunction with the known differences in oscillatory
552  properties of laminar compartments of the cortex suggests that FF and FB interactions are not
553  only anatomically distinct, but (i) use specific frequencies for communication and (ii) play
554  specialized roles in cortical computation. Here we address how these functional properties
555 relate to the detailed anatomical properties of FF and FB pathways.

556 As described above functional interactions between brain areas are distance dependent
557  (Bastos et al., 2015b; Michalareas et al., 2016; Richter et al., 2018; van Kerkoerle et al.,
558 2014). Granger-causality was used to quantify functional FF and FB interactions, thereby

559 allowing the strength of these interactions to be quantified for individual frequency bands.
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560  Neuronal populations show spontaneous fluctuations over time that are driven by brain
561 rhythms in different frequency bands, such as theta (3-8Hz), alpha (8-12Hz), beta (12-30Hz)
562 and gamma (30-80Hz). Note, neocortical rhythms do not comprise band-limited sinusoidal
563  oscillation but typically describes noisy oscillations with energy in a wide frequency range
564  (Burns et al., 2011; Spyropoulos et al., 2019). FF Granger-causality is particularly strong in
565  the gamma-frequency band, while FB Granger is strong in the alpha and beta-frequency band
566  (Bastos et al., 2015b; Michalareas et al., 2016; Richter et al., 2018; van Kerkoerle et al.,
567 2014).

568 Exploiting empirical connectivity data Mejias et al. (Mejias et al., 2016) built a
569  dynamical model of multi-regional macaque monkey cortex endowed with a laminar
570  structure. The model captures stochastic fast oscillations in the gamma frequency range in the
571  superficial layers, and lower-frequency (alpha) oscillations in the deep layers. Importantly, in
572  contrast to regular oscillators, such network rhythms are quite irregular and noisy, compatible
573  with the notion of sparsely synchronous brain rhythms (Wang 2010), which provides a
574  unifying framework for accounting both population oscillations and Poisson-like highly
575 variable spike trains of single neurons. The model accounts for the distinct signatures of
576  frequency-dependent Granger causality that reflect FF versus FB signaling, and reproduces
577  the experimentally deduced neural population dynamics that are consistent with the
578 anatomically defined hierarchy. Therefore, this model offers a computational platform for
579 investigating interactions between bottom-up and top-down processes including predictive
580 coding.

581 The finding that Granger-causality in the FF (FB) direction is strong in gamma
582  (alpha/beta) frequencies is partially dictated by the cellular targets of inter-areal pathways. FF
583  inputs target both excitatory and GABAergic interneurons (Figure 12). Importantly, the FF
584  projections to GABAergic interneurons target almost uniquely parvalbumin — PV
585 interneurons, which are associated with gamma-frequency rhythms and respond to excitatory
586  inputs with high temporal fidelity (Buzsaki and Wang, 2012; Cardin et al., 2009; Jouhanneau
587 et al.,, 2018; Wang, 2010), and exhibit supra-threshold resonance at gamma-frequencies
588 (Hasenstaub et al., 2005; Pike et al., 2000). Moreover FF projections skip the infragranular
589 layers that are canonically associated with alpha and beta rhythms (Bollimunta et al., 2008;
590 Buffalo et al., 2011; van Kerkoerle et al., 2014). By contrast, FB projections target multiple
591 classes of GABAergic interneurons. Of these, somatostatin — SSt interneurons are associated

592  with the generation of slower brain rhythms (Moore et al., 2010), and can directly influence
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593 activity of neurons in infragranular compartments, which are associated with alpha/beta
594  rhythms.

595 Frequency-specific information transmission can also be predicted by the properties of
596 the sending and receiving areas, so that the global distribution of brain rhythms across areas
597 and layers contribute to the nature of functional interactions in the FF and FB directions.
598  Gamma-rhythms are particularly strong in early visual areas and superficial layers (Bastos et
599 al., 2015a; Buffalo et al., 2011; van Kerkoerle et al., 2014; Vinck and Bosman, 2016),
600 whereas beta rhythms are most prominent in fronto-parietal areas and infragranular
601 compartments (Bastos et al., 2015a; Buffalo et al., 2011). Consequently, one expects Granger-
602  causal FF influences from early visual areas to parietal areas to be dominated by gamma
603  frequencies, whereas FB influences to visual areas to be dominated by beta frequencies, in
604  agreement with the fact that major long-range FF projections originate nearly exclusively
605  from superficial layers, and FB from infragranular layers. Further, we note that gamma
606  frequencies are generally associated with cortical activation, e.g. a visual stimulus or
607  optogenetic activation, whereas alpha and beta frequencies are not clearly associated with a
608  FF stimulus drive, consistent with the suggestion that FF provide the major driving influence
609  (Covic and Sherman, 2011; De Pasquale and Sherman, 2011).

610 Above we hypothesized that these frequency specific channels constitute functional
611 analogues of the SLN projections that we have quantified, leading to the expectation that they
612  exhibit similar hierarchical properties. Bastos et al. (2015) defined the multiple Directed-
613 influence Asymmetry Index (mDAI) based on the difference of gamma and theta vs beta
614  frequency Granger-causality, obtained from ECog recordings in macaque. mDAI enabled
615 these authors to reconstruct hierarchies that closely resembled the structural hierarchy derived
616 from SLN values. The feasibility of accounting for their data with the model that we
617  presented above is demonstrated by the strong tendency of mDAI values corresponding to
618 common projections to lie along lines of unit slope (Figure 13). The mDAI index is already
619 on a scale that appears to show the consistency necessary to apply the model, so the
620 hierarchical values could be estimated from the incidence matrix in a global fashion rather
621 than by the averaging method used by Bastos et al. (2015).

622 Future work will need to specifically address the nature of layer-specific functional
623 interactions for individual FF and FB projections. The dual counterstream architecture
624  postulates that a prominent short-range FB projection originates from L2 in the higher area.
625  Consequently, we predict that FB from L2 is particularly strong at gamma-frequencies.

626  Likewise, L5 is postulated to have a short-range FF projection, and to exhibit strong
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627  oscillations at alpha/beta frequencies. Hence, based on the dual counterstream architecture we
628  predict a greater diversity of functional interactions than suggested by previous work, the
629 elucidation of which will require multi-layer high-density recording across multiple cortical
630  areas.

631

632 7. Diversity of FB pathways and their function in neural computation

633 In this section, we consider the possible functions of cortical FB and hierarchical
634  organization in information processing. A large body of physiological studies has shown that
635 FF pathways ascending the hierarchy generate increasingly complex representations of the
636 world in higher areas, leading to the large range of receptive field properties observed at
637  different levels of the hierarchy. Thus, at its core, convergent FF projections carry information
638 from the outside world, and allow this information to be gradually transformed to low-
639 dimensional representations that can be exploited for behavior. In this respect, it is
640  worthwhile noting that the recent success of deep neural network architectures in solving
641 complex tasks similarly demonstrates the power of FF transformations in computation
642  (LeCunetal., 2015; Richards et al., 2019).

643 In contrast to FF-pathways, the neurobiology of the significantly more numerous FB
644 pathways (Markov et al., 2014a) remains elusive, forming a major impediment to
645 understanding the brain. A clearly defined role of FB connections is in attention, but FB
646  pathways are likely critical in a host of complex operations including: the comparison of
647 internally generated predictions of sensory input with actual inputs; imagining sensory inputs
648  associated with a concept; carrying out mental simulations and finally gating synaptic
649  plasticity.

650 An early conceptualization of hierarchical processing in the cortex conceived of FF
651  pathways driving target areas, and in contrast FB pathways merely exerting a modulatory
652 influence (Klink et al., 2017), however, some researchers hold a more nuanced view (Bastos
653 etal., 2012). Indeed, the simple dichotomy of the roles of FF and FB pathways is difficult to
654  reconcile with the multiple physiological effects that are imputed to FB control. For example,
655 in the case of imagination, FB is conceived to enhance neural activity; by contrast in the case
656  of filtering out self-generated sensory inputs, FB activity is expected to suppress neural
657  activity. These forms of enhancement and suppression represent essentially distinct
658 computational operations: a central concept is that of gain modulation, where an existing
659  sensory representation is preserved, but in essence multiplied or divided, as in attentional

660  mechanisms (McAdams and Maunsell, 1999). However, in the case of imagery, one expects
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661 FB to “write-in” a pattern of neural activity, i.e. operate a driving process, or alternatively
662  selectively modulate the activity of specific spontaneously active cell assemblies. In the case
663  of cancelling out self-generated sensory inputs through FB (as in self-tickling), FB activity is
664  thought to be subtractive (Bastos et al., 2012). Finally, FB activity has been conceived to
665 mediate error signals, playing a key role in shaping perceptual learning and synaptic
666 plasticity. The notion of FB as a “swiss-army-knife” contrasts with FF processing which is
667  essentially homogeneous and driving, as captured by the architecture of deep neural networks.
668  These considerations underline the diversity of FB processes, which could be mediated by
669 distinct neural circuits. In particular, we hypothesize that laminar and distance-determined
670  diversity of FB pathways will exhibit anatomo-functional properties that characterize the
671 cortical circuits underlying the diverse global influences engaged in different cognitive
672  functions. Given the diversity of FB pathways, and the many functions in which FB is
673  implicated, it is a daunting task to develop a unified theory of the function of cortical FB. Yet,
674  our understanding of the brain depends crucially on the development of precise theories of
675  cortical FB.

676 The core feature of FB that distinguishes it from FF is that its projections are
677  divergent; i.e. they project from few to many neurons. Interestingly, divergent projections are
678  a core feature of the most popular kind of artificial neural network architectures, which are
679  also rapidly becoming a mainstream model of sensory processing in the brain (LeCun et al.,
680  2015; Richards et al., 2019). In FF (deep) neural networks, divergent error signals lead to an
681 adjustment of synaptic weights of FF projections (“backprop”). In other words, in FF (deep)
682  neural networks, the exclusive role of FB is to improve the data transformations implemented
683 by the FF projections. For biological organism, error signals could be provided for instance
684 by multi-sensory signals or reward signals. However, it is an open question how FB would be
685 able to adjust synaptic weights of FF projections (Whittington and Bogacz, 2019). A
686  candidate pathway is the multiple FB projections converging onto L1 where they impact the
687  distal dendrites of pyramidal neurons, activating non-linear NMDA-R-dependent dendritic
688 integration mechanisms and voltage-gated calcium channels. Indeed, a recent study provides
689  evidence that top-down FB to L1 might indeed be involved in perceptual learning in a
690 primary sensory area: With reward reinforcement, mice rapidly learn a behavioral task in
691  which their response is contingent on electric-current stimulation of S1. However, when L1
692  projections from perirhinal cortex to S1 are inhibited, mice fail to learn the same task,
693  suggesting that top-down FB is instructive for learning (Doron et al.,, 2019). Another
694  candidate pathway to modulate plasticity is the FB projection to VIP+ and SOM+
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695 interneurons, given that SOM+ neurons can gate plasticity on the dendrites of pyramidal
696  neurons (Batista-Brito et al., 2018).

697 There are major challenges at a conceptual level with the notion that FB signals
698  transmit errors. In particular, the above mentioned learning experiment is in essence a
699  supervised learning model, in the sense that FF networks are trained to make specific sensory
700  decisions (e.g. recognizing a red apple as a red apple) based on some supervised FB (e.g.
701  multisensory: someone telling you it is a red apple; or reward: learning that red apples are
702  delicious). However, it is not clear whether this kind of FB would be sufficient for sensory
703  learning. In the next section, we consider an alternative view on FB connections, namely that
704  of a top-down generative network, in which divergent FB connections generate high-
705  dimensional sensory representations starting from low-dimensional representations in higher
706  brain areas.

707

708 8. Top down pathways constitute multiple generative networks?

709 In recent years the idea has emerged that top-down connections may have a generative
710  function that can play an important role in generating sensory representations (Bastos et al.,
711  2012; Hinton, 2007; Kosslyn, 1994; Mumford, 1992; Senden et al., 2019). In FF visual
712  processing, high-dimensional sensory representations such as an image are sequentially
713  transformed into low-dimensional representations such as object categories, represented at
714  higher hierarchical levels. Conceivably FB pathways invert this process by generating high-
715  dimensional representations starting from low-dimensional variables (Hinton, 2007). We refer
716 to such pathways as top-down generative networks. Whereas the FF projections in
717  convolutional networks create a convergence of information from many to few, in generative
718  networks information is relayed by divergent projections from few to many. For instance, the
719  perception of a red apple depends on a transformation of the image of a red apple (represented
720 by many neurons) into high-level representations in the temporal lobe (represented by few
721  neurons). However, if we imagine a red apple, processing should start from high-level
722  representations (few neurons) and generate a low level neural representation of the image of a
723  red apple (represented by many neurons).

724 Links between visual processing in deep artificial neural networks and the brain have
725  been extended in recent years to cover putative roles of FB connections, and have started to
726  involve generative neural network models (Bashivan et al., 2019; Hahn et al., 2019;
727  Kietzmann et al., 2019; Nayebi et al., 2018). FB may enable approximate, probabilistic

728  simulations to make robust and fast inferences in complex natural scenes where crucial
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729  information is unobserved (Battaglia et al., 2013). Analogues of mental simulation and
730 imagery play an important role in model-based reinforcement learning (Hamrick, 2019).
731  Moreover, the most powerful generative neural networks in machine learning such as GANs
732  (generative adversarial network) and VAEs (variational autoencoder) have evolved
733  substantially away from older and less efficient models for generative neural networks,
734  raising the question as to what generative networks the brain uses.

735 An influential model of brain function that incorporates the notion of generative
736  networks is the predictive coding framework. Predictive coding proposes that FB pathways
737  transmit precise top-down reconstructions of sensory inputs and FF pathways signal
738  reconstruction errors (Bastos et al., 2012; Mumford, 1992; Rao and Ballard, 1999). As
739  discussed above in Section 5, in FF neural networks, error signals are thought to flow along
740  FB pathways from high to low hierarchical levels. By contrast, predictive coding postulates
741  that error signals do not flow down, but instead up the hierarchy. Error signals are postulated
742  to be generated by the comparison (e.g. through subtraction) of FF inputs and FB predictions.
743  The function of these error signals is to update information stored at high levels in the
744  hierarchy, leading to the formation of improved latent, generative models of the world,
745  embedding a self-supervised learning scheme that minimizes surprise. Many studies have
746  shown that cortical activity is indeed modulated by sensory predictions or expectation, with
747  enhanced activity for surprising stimuli (Bastos et al., 2012; de Lange et al., 2018), although
748  factors such as adaptation and bottom-up attention or salience (Li, 2002) could provide
749  alternative interpretations for experimental findings. Hence, it remains unknown whether FF
750  projections do in fact carry error signals resulting from a comparison between FF and FB
751  predictions (from the previous upper area) that can be understood as a precise mathematical
752  operation (e.g. subtraction).

753 Most of the research in the framework of predictive coding has focused on the
754  modulation of activity in lower areas by expectations or predictions induced by some
755  behavioral task or stimulus repetition (Bastos et al., 2012; de Lange et al., 2018), however,
756 little research has focused on testing whether FB connections in the brain are the substrate of
757  atop-down generative network. The dual stream counterstream architecture suggests several
758  features that are congruent with the hypothesis of top-down generative networks: (1) the
759  convergence of cortical FF connections in the sensory stream is mirrored by the divergence of
760  FB connections; (2) source populations of FF and FB pathways are completely separate,
761  which has been recognized as a key requirement enabling distinct functionalities of generative
762  top-down networks (Friston, 2018; Markov and Kennedy, 2013; Markov et al., 2014b; Shipp,
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763  2016) (3) on average throughout the cortex there are twice as many FB pathways than FF
764  projections to a given area. Studies in which human subjects are cued to generate a sensory
765  percept also provide evidence for top-down generative networks in the cortex (Emmerling et
766  al., 2016; Naselaris et al., 2015; Senden et al., 2019; Slotnick et al., 2005; Thirion et al.,
767  2006).

768 While predictive coding assigns a relatively restricted role to top-down generative
769  networks in terms of transmitting sensory predictions, they may play distinct functional roles
770  in specific cognitive tasks such as mental simulation, imagery or feature attention. An
771  attractive idea of the generative top-down network hypothesis is that all of these functions are
772  subserved by a relatively small number of anatomical FB pathways implementing a function-
773  specific generative network. This network would then interact with distinct cellular
774  components in individual target areas in order to interact in different ways with ongoing
775  ascending FF activity. As an example, we can take the processes of imagination, predictive
776  processing and attention. In the case of imagination (e.g. thinking of a red apple), generative
777  networks are expected to drive activity in lower areas based on the activation of neurons in
778  higher areas; this effect can occur in the absence of any sensory stimulation. In the case of
779  predictive processing (e.g. walking to the kitchen and expecting to see a red apple in the fruit
780  basket, but not in the sink), generative networks may cause a reduction of neural activity in
781  case a predicted stimulus occurs, whereas non-predicted stimuli would not be suppressed by
782  top-down predictions. Finally, in the case of attention (e.g. searching for a red apple in the
783  kitchen), generative networks may lead to an amplification of sensory activity when we find
784  the stimulus that we were seeking.

785 Examining the dual counterstream suggests a possible division of labor between L2
786 and L6 FB projections: L2 FB and L3 FF projections exhibit common features that
787  distinguish them from L6 FB. L2 FB and L3 FF are short distance, topographically organized
788  and exhibit low rates of bifurcation; contrasting with L6 FB which are long-distance, diffuse
789  and have high rates of bifurcation. Thus, the L2 FB system may mirror the L3 FF system and
790 implement a generative top-down network in which high-dimensional sensory representations
791 can be generated through sequential stages, starting from higher brain areas. The L6 FB
792  pathway, on the other hand, may determine the way in which the L2 generative network
793 interacts with the local microcircuit, sending contextual signals that reflect behavioral goals
794  and reward signals. Based on this hypothesis, we predict that L6 FB has more modulatory
795  effects that it exerts, for example, via targeting the apical L1 dendrites as well as GABAergic

796  interneurons such as SOM+ and VIP+ interneurons that modulate the activity of local
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pyramidal neurons (Batista-Brito et al., 2018). Testing this hypothesis will require parallel
anatomical and physiological investigations. Optogenetic techniques in non-human primates
could allow the injection of precise spatiotemporal activation patterns into specific laminar
compartments of higher brain areas, combined with physiological measurements of activity in
lower brain areas.

Box 1

Experimental Exploration of the Dual Counterstream Architecture.

Dual counterstream features Functional and structural correlates

(1) Source populations of FF and FB Molecular characterization of FF and FB
pathways are completely separate, which neurons is very much on the agenda. This

has been recognized as a key requirement would lead to the development of markers
enabling distinct functionalities of of these two projection types and hold the
generative top-down networks (Friston, promise of the development of genetic tools
2018). A core feature of the dual for independent manipulation of different

counterstream architecture is that despite the | FB pathways.
ubiquity of bifurcation (Kennedy and
Bullier, 1985), in no layer do individual
neurons in FF and FB pathways possess
both up and downstream collaterals (Markov
et al., 2014b). Similar findings hold for
mouse (Berezovskii et al., 2011). This
indicates that FF and FB cells indeed
constitute distinct populations.

(2) Large variability in the laminar The multiplicity of the FB pathways in
configuration of FB pathways. FF terms of laminar origins and targets over
connections are highly stereotypical, while | different distances suggest that compared to
FB projections show a large variability in the singularity of FF pathways, individual
their laminar origins and targets. Retrograde | FB pathways come in different flavors and
tracer in a midlevel target area labels up- fulfill different functions. These different
and downstream areas with different FB pathways need to be investigated in
proportions of supragranular neurons human and NHP in high-field, laminar
according to their hierarchical distance resolution fMRI and in parallel using
(Figure 10C). These laminar distributions invasive electrophysiology in NHP. These
of FF and FB neurons constitute their functional investigations are of particular
signatures that allow areas to be ranked in relevance to the supragranular

the Felleman and Van Essen hierarchy. counterstream given the unique features of
Importantly, the different signatures of the Primate supragranular layers which are
hierarchical distance reflect the changing generated by a primate-specific germinal
laminar composition of the long-distance zone (OSVZ) (Smart et al., 2002), that
inputs to an area, meaning that “hierarchy” | exhibits complex cell lineages (Lukaszewicz
refers to the distance-dependent laminar- et al., 2005) that we have hypothesized

constrained integration of FF and FB inputs | generate unique cell features in primates
(Barone et al., 2000; Markov et al., 2014b) (Dehay et al., 2015) (Harris and Shepherd,
and signals (Bastos et al., 2015b; 2015). These considerations support the
Michalareas et al., 2016) into the canonical | notion that the two FB pathways (one in the
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microcircuit.

supra- and one in infragranular layers) will
have distinct functional roles in generative
networks.

(3) FB and FF are not serially organized.
Computational modeling studies e.g. (Bastos
et al., 2012) invariably assume a serial
hierarchical organization (Figure 10C)
whereas in fact most areas receive and
project to most other areas (Markov et al.,
2014Db).

The non-serial nature of inter-areal
connectivity raises difficulty for ongoing
attempts at large-scale computational
modeling that needs to be given further
attention.

(5) Lamination The dual counterstream
architecture explicitly links pathways to
layers, which is in-line with the increasing
importance attached to cortical lamination
and connectivity (Senzai, 2019). (I): effects
on topography of FB. In addition to the low
divergence-convergence values of
supragranular layers (L2 FB and L3FF), and
the high divergence-convergence values of
infragranular layers (L5 FF and L6FB),
high-rates of bifurcation by L6/L5 ensures
innervation of multiple areas contrasting
with and low levels of bifurcation by L2/L3
neurons (Kennedy and Bullier, 1985).

There are two interrelated issues here.
Present understating of inter-areal
connectivity in NHP, crucially lacks insight
into the laminar restricted connectivity of
these pathways. This requires using viral
tracers in order to obtain precise information
on the connectivity of individual pathways
over different distances.

(6) Differences of FB and FF targets. The
L3 FF projections primarily target upstream
interneurons in L4. Presently we do not
know the cellular targets of L2 FB
projections although there is some
suggestion that they could principally target
L2 FB neurons in downstream areas, leading
to long inter-areal FB chains. In parallel
with differences in FF and FB cellular
targets, do the cell targets change (and how)
as a function of connection distance,
possibly bringing a solution to addressing
the problem raised in point (3)?

Laminar restricted connectivity to different
cell types needs to be investigated in rodents
and primates using next generation of viral
tracers.

(7) FB show distinct development strategies.
Differences in functionality are expected to
require different developmental programs,
which is indeed the case for FF and FB
pathways. FF pathways develop
precociously and exhibit directed-growth;
FB pathway formation is delayed well into
the postnatal period and exhibits diffuse
growth followed by pruning (Barone et al.,
1995; Barone et al., 1996; Kennedy et al.,
1989).

These observations invite the investigation
of inter-areal processing in NHP at different
developmental periods and suggest that
high-field, laminar resolution fMRI in
infants and adults could reveal important
developmental processes.
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808 9. Conclusion.

809 We have shown that cortical hierarchy can be defined by connectivity gradients and
810 the functional correlates of these gradients. In other words, inputs to a cortical area sample the
811 cortical sheet in a principled manner defined by the differential space constants of the distance
812  rules governing the individual cortical layers. This approach to understanding hierarchy is
813  anchored in the recognition that it is the activity and connectivity linking neurons across the
814  cortex that will ultimately reveal the process underlying the dynamics of cortical function.
815  Link based investigation is complemented by characterization of the nodes. Helen Barbas
816  pioneered the structural model, which shows that laminar differentiation allows hierarchical
817 ranking of cortical areas that correlates well with connectivity patterns (Barbas, 2015).
818  Exploitation of the structural model has proved to be particularly rich because it allows
819 ranking of cortical areas via gradual variations of cytoarchitecture and myeloarchitecture
820  (Sanides, 1972). This has opened the interpretation of large-scale models of the cortex to
821 investigation with non-invasive imaging techniques that can be applied to the human brain
822  (Burtetal., 2018; Margulies et al., 2016; Paquola et al., 2019).

823 The central argument of this review is that cortical hierarchy can be usefully thought
824  of as the gradual changes in the cortical input requirements of the local cortical circuit that in
825  terms of synaptic mass constitutes the powerhouse of the cortex. Understanding the cellular
826  mechanisms underlying hierarchical processing require investigations of hierarchy in terms of
827  the laminar restricted connectivity and physiology that we have advocated in this review and
828  described in Box 1. It is nearly 15 years since Jean Bullier posed the question “What is fed
829  back?” (Bullier, 2006). The multiplicity of FB pathways and the complexity of their proposed
830  functions were deep issues that he felt needed to be addressed. In the last 15 years there has
831  been a spectacular development of three classes of techniques that now allow us to address
832  Jean Bullier’s question. Firstly, optogenetics holographic stimulation makes it possible to
833  address causation (Carrillo-Reid et al., 2019; Marshel et al., 2019), thereby addressing how
834  activation of a given FB pathway influences a particular cognitive task. Secondly, viral
835 tracing allows cell-type and laminar-constrained connectivity (EI-Shamayleh et al., 2016;
836  Nassi et al., 2015) making it possible to resolve the dual counterstream architecture. Thirdly,
837  high-resolution fMRI allows single-layer resolution in the human brain (Kemper et al., 2018).
838  The key feature will be to examine FB modulation of cognitive tasks in animal models that
839 can, in parallel, be applied in humans where perceptual consequences can be reported (Kok et

840 al., 2016; Schneider et al., 2019). These combined approaches will address the complexity of
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841 the interaction of descending generative networks with the local microcircuit (Haeusler and
842  Maass, 2007) allowing computational modeling of top-down information flow.

843 The interactions of generative networks with ascending pathways will be largely in
844  supragranular cortical layers, which have been shown to be a major target for human
845  evolutionary adaptation (Heide et al., 2020; Won et al., 2019). The evolutionary expansion of
846  the supragranular layers is accompanied by an increase in heterogeneity of glutamergic cell-
847  types in terms of morphology, electrophysiology and gene expression going from rodent to
848 human (Berg et al., 2020) in turn supporting a complexification of the circuits in these layers
849 (Hodge et al, 2019). The amplification and diversification of supragranular
850 intratelencephalic-projecting neurons in primates suggest that the investigation of the biology
851  of the generative networks advocated here may well exploit reductionist approaches in the
852  rodent model, but will need nonetheless to be studied with a particular emphasis on human
853  and non-human primates.
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Figure 1. Quantitative map of excitatory synapses between excitatory neurons of the
local microcircuit in visual cortex (area 17) of the cat. Numbers indicate proportions of
excitatory synapses, note the dominance of within layer recurrent connectivity with 21.6 peak
values in Layers 2/3. The FF loop starts in layer 4, the major thalamic recipient layer and then
extends to layers 2/3, 5 and 6 with recurrent inputs back to layer 4. This FF loop corresponds
to a little less than half of synapses involved in self-innervation of individual cortical layers.
X/Y refers to the component cells of the lateral geniculate nucleus, the major thalamic relay.
The original canonical microcircuit is shown in Figure 9B. L refers to layer. From (Binzegger
et al., 2004) with permission.
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Figure 2 The Felleman and Van Essen binary model of cortical hierarchy. A) Criteria for
classifying connections between areas as FF (top), lateral (middle) and FB (bottom) row.
Termination patterns are depicted in the central column, preferentially in layer 4 (F pattern)
FF, across all layers (C pattern) lateral, in upper and lower layers avoiding layer 4 (M pattern)
FB. Laminar origin from a single layer (left column), is either supragranular (S) and therefore
FF, or infragranular (1) and therefore FB. Bilaminar (B) origins (right column) either
terminate in the middle layers (F pattern) and are therefore FF, terminate in all layers (lateral)
or terminate predominantly in upper supra- and infragranular layers (M pattern) and therefore
FB. B) The binary hierarchical model. C: Area frequency distributions for 150,000 optimal
hierarchical orderings (Hilgetag et al., 1996).
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1339  Figure 3. Quantitative parameters characterizing the hierarchy. A) The laminar
1340  distribution of parent neurons in each pathway, referred to as SLN (fraction of supragranular
1341  neurons) is determined by high frequency sampling and quantitative analysis of labeling.
1342  Supra- and infragranular layer neurons contribute to both FF and FB pathways, and their
1343  relative proportion is characteristic for each type of pathway. For a given injection there is a
1344  gradient of SLN of the labeled areas, between purely FF (SLN = 100%, all the parent neurons
1345 are in the supragranular layers) to purely FB (SLN = 0%, all the parent neurons in the
1346 infragranular layers) and a spectrum of intermediate proportions; B) All labeled areas can
1347  then be ordered by decreasing SLN values and this order is consistent with hierarchical order
1348  according to Felleman and Van Essen. SLN is thus used as an indicator of hierarchical
1349  distance between areas from the same injection; C) Reliable estimation of SLN crucially
1350  requires sampling labeling throughout the full extent of the projection zone in each area.
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Figure 4. Properties of nodes and links. Nodes have fixed properties, a, b, ¢ which in turn
fixes their order and any distance measure, d, calculated from these properties. b. Link
properties depend on the relations between node pairs, ab, bc, ac. The distance measures, §,
for ab, and bc do not necessarily fix that for ac. The above graphs are unidirectional, but in bi-
directional graphs the distances between nodes need not by symmetric. B) Hierarchical
scales. Suppose a hierarchical scale between areas A, B, C, D, with the ordering and distances
as illustrated on the bottom line. We expect measures of distance to be consistent measured

between any pairs of areas. For example, injections in areas A and B lead to distances defined
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with respect to each of these areas, i.e., distances AB (double headed grey arrow), AC and
AD (black arrows) for injection in area A, and BA (double headed grey arrow), BC and BD
(orange arrows) for injection in area B. Consistency would imply, for example, that for a
distance measure, d, the estimate of das = dsa would be the same for both injections, i.e., dca
— dce = dpa — dpe. C) SLN Transformation. Comparison of logit (solid) and probit (dashed)
transformations of SLN values on the interval (0, 1). The logit SLN is defined as In(SLN/(1 —
SLN)). The probit is defined as the inverse of the Gaussian cumulative distribution function
and is often notated by ®~1. The scale factor of the logit curve has been adjusted by a factor

of 0.588 to match it to the probit curve.
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Figure 5. Probit transformation. Scatter plots of probit transformed SLN values of common
source areas from pairs of 11 visual areas, obtained from retrograde tracer injections. The
absicssa of each graph corresponds to the transformed SLN values of area i, indicated on the
diagonal at the top of the column and the ordinate values are the transformed SLN values of
area j indicated on the diagonal at the right of the row. The dashed blue line in each plot is the
best fit line of unit slope (replotted from (Markov et al., 2014b)).
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Figure 6. Logit transformation. Scatter plots of logit transformed SLN values of common
source areas from pairs of 8 somatosensory and motor areas, obtained from retrograde tracer
injections. The plots follow the same format as in Figure 6 except that the SLN values from
each axis are transformed by the logit function. The dashed blue line in each plot is the best
fit line of unit slope.
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Figure 7. Precision of estimated hierarchy based on hierarchical index. A. Estimated

hierarchy obtained using logit transformed SLN values as a measure of hierarchical distance.

The counts of supra- and infragranular neurons are used as weights. The error bars are 95%

confidence intervals estimated from the covariance matrix of the fitted model.

B. Estimated

hierarchy using a binary variable as an indicator of the hierarchical relation between area

pairs.

A logit link was also used in this case.

The larger 95% confidence intervals

demonstrate the loss of precision in estimating the hierarchical distance when using only

binary information about connectivity.
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Figure 8. Hierarchical organization of visual areas (A) estimated from the beta-binomial
model. The model only provides the vertical level of the areas with respect to the lowest
level. For clarity of presentation, we have separated them laterally into ventral and dorsal
stream areas. The estimated values are only unique up to adding a constant and multiplying
by a coefficient. Here, we have the areas to span the range 1-10. B) The scatter plot shows
the empirical SLN values plotted against those predicted by the model. The solid line is the
unit slope line through the origin and the dashed line is the best fit linear regression. C)
Hierarchical distance. The hierarchical distance, h;;, between common projections from
areas i and j to area p, defined as the difference of logits of their SLN values, is equivalent to
the log of the ratio of their supra- to infra-granular projection strengths to area p. a. This
definition implies that the ratio between the laminar ratios of areas i and j to area p (orange

arrows) is the same as that for any other target area g receiving projections from the same
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1414  source areas (blue arrows), as formalized in the equation below the diagram. This is because
1415  the hierarchical distance from i to j should be the same for injections in both areas p and g. b.
1416 A rearrangement of the equation (below) implies, also, that the ratio between the laminar
1417  ratios of projections from a common source area, i, to areas p and ¢, will be the same for any
1418  other common source area, j, to the same target areas. D) Cortical-cortical strong loops. The
1419  strength-distance relation of 1615 projections from 91 to 29 cortical areas obtained from
1420  retrograde tracer injections. The transparent black points indicate all of the projections except
1421 those that participate in strong-loops in beige. The color gradient on these symbols
1422  corresponds to SLN strength as indicated by the inset color bar. The black line is the best fit
1423  linear regression to the transparent black points and the blue line is the best fit to the strong-
1424 loops. The F-statistic indicates the result of a nested likelihood test indicating the probability
1425  of a difference in strength between the two sets of points as large as that obtained under the
1426  null hypothesis that the true difference is zero, when physical distance via the WM is taken

1427  into account.
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1431  Figure 9. A) Scatter plots of logit transformed SLN values of common source areas from
1432  pairs of 9 frontal and pre-frontal areas, obtained from retrograde tracer injections. The plots
1433  follow the same format as previous in Figures 6 and 7. The dashed blue line in each plot is the
1434  best fit line of unit slope. B) Hierarchical scale values estimated for the 9 areas based on the

1435  proposed statistical model. Area F1 was assigned a value of 0 for model identifiability.
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Figure 10. Dual counterstream architecture of inter-areal pathways. A) Parent neurons at
L3 and L5 have FF projections (red) to higher order areas reciprocated by FB projections
(blue) in L2 and the L6. Simultaneous tracer injections in high and low areas show that the
upper layer counterstream has near 100% segregation, i.e. the FF (FB) neurons do not send
axon collaterals to lower (higher) order areas. However the evidence that the FF and FB
pathways form continuous streams, as depicted here is indirect; what crucially remains to be
elucidated are the laminar details on the connectivity and the cellular targets. B) the canonical
microcircuit showing the two FB pathways targeting L2 and L6. Modified from (Douglas and
Martin, 1991); C) the incorrectly assumed serial processing (lower) between areas that is not
observed in the cortex, where instead each areas project to all upper and lower stream areas
(all to all). (panel A from (Markov et al., 2014b));
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Figure 11. Distance effects of labeling in individual layers. This figure how FB projecting
neurons are differentially distributed in L2 and 6 and FF in L3 and 5. The characteristic SLN
gradient found in up- and down stream areas shown in figure 2 is due to different distance
rules operating in individual layers. Hence the short-distance spread of labeled neurons in L2
coupled with the long-distance spread in L6 leads to the observed decrease in SLN with
increasing FB hierarchical distances. Likewise the long-distance spread of labeled neurons in
L3 coupled with the short-distance spread in L5 leads to the observed increase in SLN with

increasing FF hierarchical distances.
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Figure 12. Schematic circuit for the interplay between bottom-up and top-down
signaling characterized by differential frequency-band synchrony. In a reciprocally
connected loop between a sensory-type area and a cognitive-type area, neural circuits in the
superficial layers are endowed with strong intrinsic synaptic connections and generate
stochastic oscillations in the gamma frequency range, whereas the deep layers have a
propensity to display slower oscillations in the lower beta or alpha frequency range. Top-
down projections originate in the deep layers and innervate pyramidal cells (brown), as well
as dendrite-targeting (purple) and perisoma-targeting (blue) inhibitory interneurons. In this
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scenario, low beta/alpha oscillations are directly involved in top-down signaling, which
interacts with locally generated gamma oscillations. Adopted with permission from Wang
(Wang, 2010).
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Figure 13. Scatter plots of a hierarchical measure of cortical distance (mDAI) derived by
Bastos et al., 2015 of common source areas for pairs of 8 visual areas obtained from
contrasting Granger Causality measures in gamma, theta and beta bands. The abscissa of each
graph corresponds to the value calculated for the area at the top of the column and the
ordinate to the area at the right of the row. Dashed blue line in each plot is the best fit line of

unit slope.
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