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Abstract 21 

Hierarchy is a major organizational principle of the cortex and underscores modern 22 

computational theories of cortical function. The local microcircuit amplifies long-distance 23 

inter-areal input, which show distance-dependent changes in their laminar profiles. Statistical 24 

modeling of these changes in laminar profiles demonstrates that inputs from multiple 25 

hierarchical levels to their target areas show remarkable consistency, allowing the construction 26 

of a cortical hierarchy based on a principle of hierarchical distance. The statistical modeling 27 

that is applied to structure can also be applied to laminar differences in the oscillatory coherence 28 

between areas thereby determining a functional hierarchy of the cortex. Close examination of 29 

the anatomy of inter-areal connectivity reveals a dual counterstream architecture with well-30 

defined distance-dependent feedback and feedforward pathways in both the supra- and 31 

infragranular layers, suggesting a multiplicity of feedback pathways with well-defined 32 

functional properties. These findings are consistent with feedback connections providing a 33 

generative network involved in a wide range of cognitive functions. A dynamical model 34 
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constrained by connectivity data shed insights into the experimentally observed signatures of 35 

frequency-dependent Granger causality for feedforward versus feedback signaling. Concerted 36 

experiments capitalizing on recent technical advances and combining tract-tracing, high-37 

resolution fMRI, optogenetics and mathematical modeling hold the promise of a much 38 

improved understanding of lamina-constrained mechanisms of neural computation and 39 

cognition. However, because inter-areal interactions involve cortical layers that have been the 40 

target of important evolutionary changes in the primate lineage, these investigations will need 41 

to include human and non-human primates comparisons.  42 
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1. Introduction 58 

Hierarchy as an organizational feature of the brain has been a recurrent theme since the 59 

evolutionary theory of neurological disorders of John Hughlings Jackson (1835-1911), 60 

following his observations of positive and negative symptoms in his patients (York and 61 

Steinberg, 2011). The neurobiology of cortical hierarchy was explored by the pioneering work 62 

of David Hubel and Torsten Weisel when they characterized the receptive field properties of 63 

simple, complex and hypercomplex neurons across areas of the visual cortex (Hubel and 64 

Wiesel, 1962). Following the work of Rockland and Pandya (1979) a myriad of connectivity 65 

studies in the cortex found additional evidence of hierarchical organization, allowing Felleman 66 

and Van Essen to propose the first hierarchical model of the cortex (Felleman and Van Essen, 67 

1991), thereby providing a framework for modern concepts of feedforward (FF) and feedback 68 

(FB) processes. The notion of hierarchy has become considerably generalized and for example 69 

can be considered to be the major concept linking biological and artificial intelligence (Hawkins 70 

and Blakeslee, 2004). Convolutional deep neural networks have a clear hierarchical 71 

organization, with convergent, FF connections passing information from lower to higher layers, 72 

and divergent FB connections shaping plasticity in the connections from lower layers (LeCun 73 

et al., 2015). But what exactly is the significance of hierarchy in the brain? Hierarchy has been 74 

extensively studied in terms of ranking of cortical areas with respect to a number of criteria 75 

including, gradients of structural and functional features, as a progression of scales or as a 76 

topological sequence of projections (Hilgetag and Goulas, 2020). Here we take a diametrically 77 

opposing view. Rather than simply considering hierarchy as a ranking of cortical areas, we 78 

address what it means in terms of monosynaptic inter-areal connectivity. In line with the tenet 79 

that the explanation of how the brain works demands an account of what neurons do, and that 80 

functional interactions of cortical areas is assured by neuronal activity relayed between areas 81 

by axons, we confine our discussion of hierarchy to the description of the neuronal properties 82 

of inter-areal relations. We propose that the structural and functional markers of hierarchy 83 

define the integration of long-range inputs into each local circuit. Future investigation of these 84 

markers are expected to provide insight to the cellular mechanisms underlying hierarchical 85 

processing. A critical aspect of these regularities concerns the spatial distances governing 86 

interactions between cortical neurons, which we and others have shown obey metabolic 87 

constraints in terms of wire minimization underlining the spatial embedding of the cortex 88 

(Markov et al., 2013). We discuss the functional implications of the Dual Stream Architecture 89 

(Markov et al., 2014b) in terms of FF and FB processing and where future investigations are 90 

expected to provide insight into the cellular mechanisms underlying hierarchical processing. 91 
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Finally, we cast FF and FB relations in terms of predictive processing theory and evoke the 92 

importance of top down generative networks.   93 

 94 

2. Hierarchy – signatures of inputs to local circuits. 95 

In 1989 Douglas, Martin and Whitteridge published a landmark study that proposed a 96 

canonical microcircuit for the neocortex (Douglas et al., 1989) (Figure 1 and 10b).  A common 97 

misconception of the canonical microcircuit is that it constitutes solely a description of the inter-98 

laminar wiring patterns of the cortex. In fact, it is much more a theory that sets out to explain 99 

the electrophysiological properties of the cortex in terms of local connectivity, in particular 100 

with respect to within-laminar connections. In an effort to nail down the transformation of the 101 

thalamic input, in vivo intracellular recordings were made in area V1 in cat cortex. This showed 102 

that minute inputs from the LGN are amplified by recurrent excitation in layer 4 neurons 103 

(Latawiec et al., 2000).  Subsequent quantification of the synaptic components of the local 104 

circuit showed that high levels of within-layer recurrent excitation is a characteristic feature of 105 

the local circuit (Figure 1) (Binzegger et al., 2009). These experiments showed that the role of 106 

inhibition was not to carve out the selectivity of the neuron response but rather to exert a control 107 

over the amplitude of the response and therefore to maximize the inhibitory potentials in the 108 

optimal receptive field response (Douglas et al., 1995; Douglas et al., 1989). Subsequent work 109 

showed that there is a weak orientation response in the input to the cortex, meaning that the 110 

primary role of the recurrent excitation is the amplification of a signal and not its creation 111 

(Ferster et al., 1996).  112 

For many years research on cortex was predominantly in carnivores and non-human 113 

primates, leading to the notion of the cortical column as a fundamental component of functional 114 

organization (Mountcastle, 1995). In these studies, electrophysiological recordings from 115 

electrode penetrations made perpendicular to the cortex found a conserved function in the depth 116 

of the cortex in passing from pia to white matter (Hubel and Wiesel, 1962; Mountcastle, 1957).  117 

In the visual system there were expectations that the columnar organization of the cortex would 118 

be both functional and structural, since physiologically demonstrated ocular-dominance 119 

columns appeared to co-localize with cortical territories labeled by transynaptic labeling 120 

following tracer injections in the eye (Hubel and Wiesel, 1977). However, close examination 121 

revealed important discrepancies in such a correspondence (da Costa and Martin, 2010)), 122 

suggesting that the link between cortical structure and function is to be found at a much finer 123 

scale. Thanks to work in the mouse visual cortex using the molecular tools that are available in 124 

this species, it has been confirmed that cortical responses to thalamic input are indeed the 125 
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consequence of an amplification (Harris and Mrsic-Flogel, 2013) (Lien and Scanziani, 2013) 126 

via the local recurrent excitation (Cossell et al., 2015; Douglas et al., 1995; Ko et al., 2011). 127 

These studies built on earlier findings of highly nonrandom features of synaptic connectivity in 128 

local cortical circuits, proposing that there is a skeleton of strong connections in a sea of weak 129 

connections (Song et al., 2005). Later it was shown that the rare strong connections in the 130 

lognormal distribution of synaptic weights are between neurons with similar receptive fields, 131 

meaning that neurons in the visual cortex listen most closely to a subset of their synaptic inputs 132 

(Cossell et al., 2015).  These findings explain earlier observations showing that ongoing activity 133 

of a neuron (so called spontaneous activity) reflects the functional architecture (i.e. the 134 

backbone of strong connections) in which it is embedded (Tsodyks et al., 1999). The emerging 135 

picture is that layers 4, 3 and 2 neurons are organized into subnetworks so that the selectivity 136 

of the amplification is ensured by constraints at the scale of dendritic spines (Lee et al., 2016).  137 

The principal wiring property of the canonical circuit is the recurrent excitation that is 138 

observed in all of the cortical layers including layer 4 (Binzegger et al., 2004). The relevance 139 

of the canonical microcircuit theory for understanding inter-areal processing became apparent 140 

when cortical connectivity was quantified. In fact, 80-90% of the connections of the cortex are 141 

in the local circuit spanning 1-2mm in the visual cortex (Markov et al., 2011). Except for the 142 

adjacent cortical area, the structural weight of the average input from a distant source area to a 143 

target area is several orders of magnitude less than the thalamic input (Markov et al., 2014a). 144 

These observations lead to the notion that amplification by local recurrent excitation is a general 145 

phenomenon, that allows selection and recombination of relatively small afferent signals 146 

(Douglas and Martin, 2007a, b). For instance, top-down signaling of selective attention 147 

multiplicatively modulates sets of sensory neurons (McAdams and Maunsell, 1999; Treue and 148 

Maunsell, 1996). In this manner, selective amplification by local circuit dynamics leads to all-149 

or-none task switching (Ardid and Wang, 2013).  150 

Early anatomists, working principally in non-human primates, distinguished between 151 

rostral directed connections that originate chiefly in the supragranular layers and terminate in 152 

layer 4 (Cragg, 1969; Kennedy and Bullier, 1985; Lund et al., 1975; Martinez-Millan and 153 

Hollander, 1975; Rockland and Pandya, 1979; Spatz et al., 1970; Van Essen and Zeki, 1978; 154 

Wong-Riley, 1978) and caudal directed connections that mostly originate from infragranular 155 

layers and terminate outside of layer 4 (Kaas and Lin, 1977; Kennedy and Bullier, 1985; 156 

Kuypers et al., 1965; Tigges et al., 1973; Wong-Riley, 1978). In a landmark study, Rockland 157 

and Pandya (Rockland and Pandya, 1979) were the first to formulate inter-areal connectivity in 158 

terms of hierarchy and suggested that the laminar organization of cortical afferents and their 159 
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terminals indicates the sequence of information processing in cortex. These authors proposed 160 

that connections originating from supragranular layers and terminating in layer 4 by analogy 161 

with the main thalamic input to cortex constitute the FF pathway channeling sensory 162 

information to cortical areas carrying out higher-order analyses. By contrast connections arising 163 

from the infragranular layers, by analogy with descending projections to subcortical structures, 164 

correspond to FB connections and were postulated to enable higher order areas to be able to 165 

modulate the activity of lower level areas (Rockland and Pandya, 1979).  166 

 167 

3. Models of Hierarchy.  168 

The classification of pathways between areas as FF and FB helped motivate the 169 

investigation of the role of the cortical network in terms of FF pathways shaping receptive fields 170 

in their target areas (Hubel, 1995) and FB pathways relaying contextual information (Gilbert 171 

and Li, 2013; Zipser et al., 1996). How the cortical network related to the mosaic of cortical 172 

areas was given substance by Felleman and Van Essen’s demonstration that the layout of 173 

cortical areas corresponded to a distributed hierarchy (Felleman and Van Essen, 1991). In their 174 

seminal study these authors established a definition of FF and FB connections largely 175 

employing the criteria of Rockland and Pandya (1979), and although principally based on 176 

laminar patterns of anterograde labeling they were able to stipulate criteria so as to include 177 

retrograde labeling therefore enabling them to define pathways with respect to findings reported 178 

in a large number of publications (Figure 2A). Pairwise comparisons of the connections linking 179 

areas using these criteria revealed a high regularity; connections that were classified as FF were 180 

largely reciprocated by FB connections, allowing the authors to establish a distributed hierarchy 181 

across multiple streams in the macaque visual cortex shown in Figure 2B. Because of the many 182 

parallel pathways and given that hierarchical levels were defined arbitrarily, it meant that the 183 

precise ordering of cortical areas was ill-defined. Computational modeling showed that there 184 

were over 150,000 equally plausible solutions to the Felleman and Van Essen Model (Hilgetag 185 

et al., 1996) (Figure 2C).  186 

A solution to the indeterminacy of the Felleman and Van Essen model could be 187 

overcome by an objective localization of hierarchical level. A suggestion that this might be the 188 

case was the observation that injections of retrograde tracers in a target area in one of the early 189 

visual areas generated a progressive decrease in the numbers of labeled FB neurons in 190 

supragranular layers in source areas with increasing physical rostral distance (Figures 3A) 191 

(Kennedy and Bullier, 1985). Quantitative measures of interareal connectivity showed that 192 

patterns of retrograde labeling were highly consistent across different brains, provided that 193 
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labeled neurons are summed across the full extent of a projection zone, defined as the region in 194 

a particular source area which contains projections to an injected target area (Figure 3B,C). 195 

Subsequently injections in cortical areas at higher hierarchical levels generated a progressive 196 

increase in the numbers of labeled FB neurons in supragranular layers with increasing physical 197 

caudal distance. In this manner FF and FB pathways exhibited opposing gradients of projection 198 

neurons (Barone et al., 2000; Kennedy and Bullier, 1985; Markov et al., 2014b). These 199 

observations led to the definition of an index of this gradient based on the proportion of 200 

Supragranular Labelled Neurons or SLN (Barone et al., 2000; Vezoli et al., 2004). Because 201 

these changes are highly consistent across brains, the smooth gradients of inputs from neurons 202 

in different layers and areas to a target area lead to the derivation of a hierarchical distance rule 203 

(Figure 3B).  204 

The transition from a binary model of hierarchy to one based on hierarchical distance 205 

had important consequences. One way of thinking about these connectivity gradients (Figure 206 

3A) is that they represent gradual changes in the composition of inputs to the local microcircuit 207 

of a cortical area that is dependent on physical distance. Elsewhere we have shown that input 208 

strength to cortical areas declines exponential with distance (Ercsey-Ravasz et al., 2013). In 209 

terms of hierarchy, the strong nearby connections are near-lateral and with increasing distance 210 

connections are progressively more FB or FF in nature.  211 

If these changing inputs to the local microcircuit represent the structural signature of 212 

hierarchy it is legitimate to wonder if they have a functional correlate? If this is the case, then 213 

Pascal Fries and his team reasoned that one can derive a functional hierarchy (Bastos et al., 214 

2015b). The hierarchical distance rule is based on the fact that supragranular layers primarily 215 

send FF projections and infragrananular layers FB projections. In the visual system, superficial 216 

and deep layers are characterized by relatively strong gamma and alpha/beta oscillations, 217 

respectively (Buffalo et al., 2011). Furthermore, whereas in early visual areas, gamma 218 

oscillations are relatively strong (Gray et al., 1989), beta oscillations tend to be strong in higher 219 

areas like those in parietal cortex (Brovelli et al., 2004; Scherberger et al., 2005). These 220 

observations lead to the prediction that in the visuo-parietal system interareal synchronization 221 

in the gamma frequency band mediates FF and interareal synchronization in the alpha- and 222 

beta-frequency band mediate FB influences. Granger-causality was used to quantify functional 223 

FF and FB interactions, thereby allowing the strength of these interactions to be quantified for 224 

individual frequency bands. Neuronal populations show spontaneous fluctuations over time that 225 

are driven by brain rhythms in different frequency bands, such as theta (3-8Hz), alpha (8-12Hz), 226 

beta (12-30Hz) and gamma (30-80Hz). Note, neocortical rhythms do not comprise band-limited 227 
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sinusoidal oscillation but typically describes noisy oscillations with energy in a wide frequency 228 

range (Burns et al., 2011; Spyropoulos et al., 2020). Frequency-specific directed influences of 229 

rhythmic synchronization are correlated with hierarchical distance, FF pathways are 230 

characterized by synchronization in the theta (4 Hz) and gamma-band (60-80 Hz) and FB in the 231 

beta-band (14-18 Hz) (Bastos et al., 2015b). These observations mean that the structural 232 

signatures to the microcircuit are indeed paralleled by functional signatures (Bastos et al., 233 

2015b). However, whereas the structural hierarchy is fixed theses authors were able to show 234 

that activity patterns underlying functional hierarchy exhibit task dependent dynamics.  235 

Using empirical connectivity data as a structural substrate, Mejias et al. (Mejias et al., 236 

2016) built a dynamical model of multi-regional macaque monkey cortex endowed with a 237 

laminar structure. The model captures stochastic fast oscillations in the gamma frequency range 238 

in the superficial layers, and lower-frequency (alpha) oscillations in the deep layers. 239 

Importantly, in contrast to regular oscillators, such network rhythms are quite irregular and 240 

noisy, compatible with the notion of sparsely synchronous brain rhythms (Wang, 2010), which 241 

provides a unifying framework for explaining both population oscillations and Poisson-like 242 

highly variable spike trains of single neurons. The model accounts for the distinct signatures of 243 

frequency-dependent Granger causality that reflect FF versus FB signaling, and reproduces the 244 

experimentally deduced neural population dynamics that are consistent with the anatomically 245 

defined hierarchy. Therefore, this model provides a computational platform for theoretical 246 

investigations of the interplay between feedforward and feedback processes. 247 

Both structural and functional hierarchies show that the regularities stemming from 248 

laminar distributions of connections and the signals they confer are remarkably consistent. In 249 

the following section, we address the extent of this consistency in order to formalize how 250 

hierarchy inputs to an area are shaped by distance. 251 

 252 

4. Hierarchy – Input Consistency.  253 

The notion of hierarchy implies order or rank, so that a prerequisite to determining if 254 

there are hierarchical relations between cortical areas requires determining if order relations 255 

can be defined between them.  For example, the Felleman and Van Essen hierarchy was based 256 

on the binary classification of FB/FF relations between areas defined by laminar origin and 257 

termination of projections (Felleman and Van Essen, 1991). A FF projection from area A to B 258 

implied that B was ordered after A.  Similarly, a FB projection from B to A would also be 259 

consistent with the above FF relation in assigning B after A.  While in a hierarchy we would 260 

expect the two criteria to agree that might not in fact be the case.  On a simple level, 261 
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disagreement could be taken to define equality of ordinal levels in the sense that equality is 262 

defined as those numbers, A and B, that simultaneously satisfy 𝐴 ≥ 𝐵 and 𝐴 ≤ 𝐵 .  263 

Alternatively, distinct hierarchical orders might arise: one on the basis of FF laminar 264 

projections, the other on the basis of FB.  These observations become important when the data 265 

supporting multiple laminar FB/FF pathways are analyzed. 266 

The criteria for determining hierarchical rank described above are based on the 267 

properties of projections that define relations between areas. Alternatively, one can consider 268 

properties that are intrinsic to an area, such as cortical thickness, neuron density, soma size, 269 

spine count, spine density and dendritic tree size. These properties have been shown to display 270 

a smooth variation across the cortex that allows ranking of areas in accordance with the 271 

gradation principle of Sanides (Barbas, 2015; Sanides, 1972). Because these properties vary 272 

across the cortex, a hierarchical ranking can be established simply by ordering the areas 273 

according to the property.  This distinction leads us to consider that criteria for building cortical 274 

hierarchies can be divided into two broad classes that we shall refer to as node-based and link-275 

based (Figure 4A). 276 

Here it is useful to draw an analogy with social networks. A hierarchy in a social 277 

network implies that the actors show specific kinds of interactions with each other (link-based).  278 

Hierarchy implies that those close to each other in a hierarchy show stronger interactions with 279 

each other than actors that are distant in the hierarchy. More information can be gauged from 280 

the nature of the interactions: We expect that someone high in the hierarchy (a boss) will show 281 

a more directive communication pattern to workers lower in the hierarchy. The workers, in turn, 282 

will show a different ascending communication pattern, e.g. asking more questions. Thus, a 283 

hierarchy can be constructed by studying the way in which people interact with each other, and 284 

knowing a hierarchy could in principal allow us to predict these interactions. By analogy, the 285 

SLN can be seen as a measure that directly quantifies the nature of the interactions between 286 

brain areas, based on the laminar projection patterns. Interestingly and as we described above, 287 

these laminar projection patterns also relate to certain functional interaction patterns (FF 288 

gamma and FB alpha/beta influences). In addition, social hierarchy might also be gauged from 289 

properties of the people in the hierarchy themselves. For instance, one expects the boss of the 290 

company to have the largest office, whereas the workers at the bottom to share an office and 291 

have smaller desks (node-based). In some sense, one could argue however, that the node-based 292 

view is based only on indirect markers and is ultimately grounded in the interaction link-based 293 

view.  294 
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There are critically important differences for constructing hierarchies between node and 295 

link-based information. By definition, node-based relations depend only on a value intrinsic to 296 

the node, not the relations between nodes so they give no information on the symmetry or 297 

otherwise of inter-areal relations. By contrast, ranks based on links are expected to show 298 

reciprocity, so that if there is FF pattern from area A to area B, a FB pattern is expected from 299 

area B to area A. Node based criteria are defined between any two areas independently of 300 

whether or not a connection is actually present.  Link-based criteria can provide information on 301 

asymmetric relations, provided they are directional and are strictly defined between areas only 302 

when there is a direct connection. Nevertheless, hierarchical ordering between unconnected 303 

areas can be achieved through indirect connections.  Generally, link-based hierarchy describes 304 

the connections that are carrying information between areas and therefore the manner in which 305 

the connections and activity from source areas are integrated into the local circuit of the target 306 

area. 307 

In order to define a hierarchical distance scale, i.e., that is not just ordinal, a distance 308 

function, d has to be defined. This function d should transform whatever anatomical or 309 

physiological measure one is using into a consistent measure of hierarchical distance across 310 

cortical areas. For example, Figure 4B shows a hypothetical distance scale on which 4 areas, 311 

A, B, C, D, are arranged.  Suppose that hierarchical distances are estimated based on measures 312 

derived from tracer injections in areas A and B.  The injection in area A provides information 313 

about hierarchical distances to areas B, C and D and the injection in B to areas A, C and D.  A 314 

consistent measure of hierarchical distance, d, would generate the same estimate of distance, 315 

dAB, between areas A and B or, formally, we would expect that dCA – dCB = dDA – dDB.  This is 316 

easily derived from the two equations in Figure 4B that show for two areas, C and D, the 317 

expected relation between the hierarchical distances of a common area to C or D to two areas 318 

sites, A and B.  For common projections X, plotting dXA against dXB should fall along a line of 319 

unit slope with intercept dAB.  The question is how to define the distance function d. 320 

In contrast to the binary measure of hierarchy in the Felleman and Van Essen model, 321 

SLN is a continuous measure on the interval (0, 1), thus providing a measure of the degree of 322 

feedforwardness/feedbackness. A binary description treats a projection as FF (FB) if its SLN is 323 

greater (less) than 0.5.  Using simply the SLN differences as a hierarchical distance measure, 324 

the Barone et al., 2000 study was able to reproduce nearly all of the features of the Felleman 325 

and Van Essen model based on the SLN values from injections in just two areas, V1 and V4.  326 

A notable exception is that the Barone et al. 2000 study placed the frontal eye field (FEF), this 327 

prefrontal area, below the early extrastriate visual area V4. The SLN value from FEF to V4 was 328 
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above 0.7 which placed V4 at higher hierarchical levels. Subsequent physiological studies 329 

confirmed an FEF role in early visual processing (Moore and Armstrong, 2003; Schall, 2015), 330 

thus justifying its relatively low hierarchical level. The unusual FF pattern for such a caudally 331 

directed projection was further confirmed in other studies (Pouget et al., 2009) and pertains to 332 

a specific link-category on which we expand later. 333 

While differences in SLN establish a determinate hierarchical distance measure between 334 

areas, the measure is not necessarily consistent in the manner described in Figure 4B.  As the 335 

measure is defined on the interval (0, 1), SLN differences for two areas projecting to a third 336 

area could be quite different from those to another more distant area.  An ideal measure would 337 

project the interval (0, 1) to a scale where differences remain linear.  This is commonly 338 

accomplished in statistical models, such as generalized linear models (GLM), by means of a 339 

logit or probit transformation (Figure 4C) that map the unit interval onto the real line.  As the 340 

figure demonstrates, with the proper scaling both of these transformations yield rather similar 341 

mappings. 342 

 Figure 5 shows a set of scatter plots for SLN values of common projections for all area 343 

pairs between each of 11 visual areas injected with retrograde tracer (Markov et al., 2014b).  344 

The SLN values are plotted on probit transformed axes.  For many of the area pairs, the point 345 

distributions are reasonably well described by a line of unit slope (dashed blue in each graph), 346 

as predicted by a consistent measure of distance, i.e., g(SLNj) = g(SLNi)+ c, where c is a 347 

constant.  Given the similarity of the transforms, it is not surprising that the logit transformation 348 

yields virtually the same linear patterns between area pairs. Thus, this indicates that the ratio of 349 

supra- and infra-granular projections follows a gradient across the cortical areas and constitutes 350 

a global signature of hierarchical distance among these areas.   351 

Is this laminar pattern of connectivity specific to the visual system or is it a more general 352 

principle of organization of FF and FB pathways in the brain?  In support of the latter 353 

hypothesis, Figure 6 shows paired scatter plots of SLN values for a set of 8 somatosensory and 354 

motor areas in the same format as Figure 5.  As in the visual system, the transformed SLN 355 

values, here by the similar logit function, provide evidence of a consistent distance measure in 356 

the hierarchical organization among these areas. 357 

To quantify the consistency displayed in these pairs plots, we proposed a model to 358 

estimate hierarchical distances based on SLN values, but as we argue below, the model is quite 359 

general in its application.  In short, we suppose that we can assign hierarchical levels, hi and hj, 360 

to all area pairs i and j, based on a measure of differences between properties linking the areas. 361 

For example, in the case of SLN, we suppose  362 
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𝑔(SLN𝑖
𝑝

) − 𝑔(SLN𝑗
𝑝

) = ℎ𝑖 − ℎ𝑗 , 363 

where g applies a logit or probit transformation to SLN values, from an injection into area p 364 

that receives projections from areas i and j.  This suggests a formalism similar to a GLM with 365 

a binomial family.  The SLN is taken as a binomial variable (neurons are found in the upper or 366 

lower cortical layers) and the sum of neurons in both compartments is used as a weight. 367 

The key feature of the model that relates the estimates of hierarchy to the biological 368 

measure (i.e. the transformed SLN values) is the incidence matrix, X, of the cortical graph.  The 369 

incidence matrix of the graph is defined to have a column for each node and a row for each 370 

link.  In each row, all values are 0 except for the two nodes of the link, taking on values of -1 371 

and 1, respectively for source and target, if the link is directed.  The product of the incidence 372 

matrix and the vector of hierarchical values, h, maps the differences in hierarchical value 373 

between two areas with the differences between the transformed SLN, such that: 374 

𝑔(SLN𝑖
𝑝

) = 𝑿𝒉 375 

where the left side of the equation is the difference between transformed SLN values of the 376 

source area i and the injection site p.  The vector ℎ contains the hierarchical coefficients to 377 

estimate and its length is equal to the number of columns of the model matrix.  The model as 378 

defined is not identifiable because the sum of every row equals 0, but by dropping one column, 379 

for example, area V1 in the visual hierarchy, the hierarchical coefficients can be estimated with 380 

the area corresponding to the dropped row fixed at a hierarchical level of 0.  381 

This resembles a logistic or probit regression problem.  However, these models yield 382 

standard errors for the estimated coefficients that are unrealistically small.  Alternatively, we 383 

have used a beta-binomial model; this arises naturally as a binomial model in which the 384 

response, which in the current context is the expected SLN value, has variability greater than 385 

that specified by the binomial distribution and its distribution is described by a beta distribution 386 

(Lesnoff and Lancelot, 2012).  For present purposes, the model can be reparameterized to 387 

include a dispersion parameter that better models the overdispersion typically observed in 388 

neural counts (see (Markov et al., 2014a) for further details). Once the statistical model is 389 

specified, the coefficients are estimated by maximum likelihood.  Note that because numbers 390 

of neurons are used in the model and not just the SLN proportions, this method generates a 391 

weighted hierarchy. 392 

The formalization is quite general.  For example, if instead of SLN, a binary variable is 393 

used simply specifying whether a connection is of a FF or FB type, then the model corresponds 394 

to the original problem that Felleman and Van Essen solved.  We have found that fitting the 395 
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model in this fashion leads to coefficients with much larger standard errors (Figure 7A), thus, 396 

providing an alternate demonstration of the indeterminacy or more limited information on 397 

hierarchy contained in purely binary relations.  Thus, the use of a quantitative measure of 398 

hierarchy leads to a more exact solution (Figure 7B). 399 

To summarize, a qualitative assessment of a hierarchical gradient is initially evaluated 400 

visually by choosing a (possibly transformed) measure of the hierarchical difference between 401 

area pairs and using pairs plots to assess the pairwise consistency of the distance measure.  If 402 

the evidence looks promising, the hierarchical values are obtained by fitting a model that maps 403 

the hierarchical estimates to the biological measure of the gradient via the network incidence 404 

matrix.  If a suitable probability distribution can be assigned to the biological measure, the 405 

solution can be obtained by maximum likelihood, but other methods, for example introducing 406 

Bayesian priors, might be applied in appropriate circumstances. 407 

The visual hierarchy estimated from our model is shown in Figure 8A and resembles 408 

qualitatively the Felleman and Van Essen model (Felleman and Van Essen, 1991).  In contrast, 409 

the levels are continuously distributed.  Here we have split FEF into area 8L and 8M 410 

corresponding to regions involved in small and large saccades, respectively.  Area 8L occupies 411 

a low position in the hierarchy while 8M is several levels higher.  The goodness of fit of the 412 

model is indicated by plotting the empirical SLN values against those predicted by the model 413 

(Figure 8B) and shows that the model accounts for a high proportion of the variance in the 414 

data.  The functional implications of this model have been explored in several contexts (Bastos 415 

et al., 2015b; Chaudhuri et al., 2015; Magrou et al., 2018) and observations indicate that it is 416 

applicable to anterograde tracing data from the mouse (D’Souza et al., 2020). 417 

The use of a transformation of SLN to estimate hierarchical distance imposes strong 418 

constraints on inter-areal SLN relations.  We demonstrate this in Figure 8C by using the logit 419 

transform, which performs quantitatively nearly identically to the probit transform (Figure 4C), 420 

but allows expression of the hierarchical relations in terms of ratios of projection strengths.  The 421 

model defines hierarchical distance, ℎ𝑖𝑗, between two areas, i and j, as the difference between 422 

the logit of SLN values for their projections to a target area, p, shown in the top equation.  For 423 

the logit, this distance is just the natural log of the ratio of ratios of supra- to infragranular 424 

projection strengths from areas i and j to p (orange arrows in Figure 8C, left).  If the hierarchical 425 

distance measure is consistent, we expect that ratio to be the same for projections to any other 426 

area, q, (blue arrows in Figure 8C, left) as shown by the equation below the diagram.  A simple 427 

rearrangement of this identity demonstrates that the ratio of projections from area i to areas p 428 

and q (orange arrows in Figure 8C, right) should be the same for any other area j, projecting to 429 
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areas p and q.  Thus, the hierarchical model we propose implies strong invariances in the ratio 430 

of FF to FB projection strengths from common inputs and outputs across areas.  We further 431 

hypothesize that these invariances impose constraints on the exchange and stability of 432 

information flow across the cortical hierarchy. 433 

One might suppose that when simultaneous retrograde tracer injections are made in 434 

reciprocally connected areas that the pair of areas would display a reciprocal FF-FB relation.  435 

That is to say, the origin of the majority of projections from one area would arise from upper 436 

layers and the principal origin of the reciprocating projections from lower layers.  This 437 

arrangement would naturally lead to the hierarchical regularities that we observe.  However, 438 

this regularity is not imposed by our model, nor is it always found to occur. In effect, this is 439 

what explains the surprising observation (noted above in the hierarchy derived in Figure 8A) 440 

of a prefrontal area like 8L at the same hierarchical level as early visual areas V3 and V4.  As 441 

expected, the projections from several lower order visual areas, e.g., V4 and TEO, to area 8L 442 

originate in upper layers signifying FF, projections.  However, 8L projects back to these areas 443 

through FF projections also originating in upper layers (Barone et al., 2000; Markov et al., 444 

2014b). We designate such FF-FF connections as strong loops (Crick and Koch, 1998). They 445 

correspond to the situation described earlier in an order relation that when 𝐴 ≥ 𝐵 and 𝐵 ≥ 𝐴, 446 

then 𝐴 = 𝐵.   447 

In the Felleman and Van Essen model, FF (FB) projections connect upstream 448 

(downstream) areas in a bottom-up (top-down) fashion placing hippocampus, anterior temporal 449 

and prefrontal areas at the top and occipital areas at the bottom of the visual hierarchy. As such, 450 

this model described two main counterstreams involved in hierarchical processing within the 451 

visual system: a rostro-caudal gradient of FB projections reciprocated by a caudo-rostral 452 

gradient of FF projections.  Interestingly, in the data base of visual areas on which the Felleman 453 

and Van Essen model was based, only one pathway was reported – between FEF and CITd 454 

(dorsal part of inferior temporal cortex) that corresponds to a strong loop.  This led Crick and 455 

Koch (Crick and Koch, 1998) to speculate that such configurations were forbidden in cortical 456 

organization. However, we have identified a significant number of strong loops in our data 457 

base.  Figure 8D shows how the log10 FLN varies as a function of distance estimated through 458 

the white matter from the source area to the target injection site, referred to as white matter 459 

(WM) distance), replotted from Ercsey-Ravasz et al. (Ercsey-Ravasz et al., 2013).  The beige 460 

points correspond to those connections that participate in strong-loops i.e. area pairs for which 461 

SLN is greater than 0.5 in both directions. For reference, the saturation of these points indicates 462 

their SLN values with less saturated points indicating a higher SLN, as shown by the inset color 463 
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bar.  As expected, most of the SLN values near 1 cluster to the right as more long distance 464 

connections. There is a fair amount of scatter among the points but they do display a distance 465 

rule (blue regression line) just as the rest of the connections do (black regression line).  466 

Interestingly, the strength of the strong loop projections is on average greater than the rest of 467 

the projections.  This suggests that they are likely to play a unique role in cortical computation. 468 

What that role is currently remains a mystery. However, there is experimental evidence in favor 469 

of an attentional role concerning the strong-loop between FEF and V4. FEF projections can 470 

drive attentional response in V4 (Moore and Armstrong, 2003), through selective gating of V4 471 

receptive-fields (Armstrong et al., 2006). Further evidence points to the involvement of fast 472 

rhythmic synchronization during FEF attentional modulation of V4 visual responses (Gregoriou 473 

et al., 2012; Gregoriou et al., 2009), strongly suggesting a supragranular origin (Bastos et al., 474 

2015a; Markov et al., 2014b).  475 

The results reveal a high-degree of consistency of the structural regularities underlying 476 

cortical hierarchy in the sensory cortex. But how generalizable are these findings across the 477 

more anterior regions, particularly in frontal and prefrontal cortex (Badre and D'Esposito, 2009; 478 

Choi et al., 2018)? One of the few studies that has addressed the structural hierarchy with tract 479 

tracing of the prefrontal cortex (Goulas et al., 2014) found little evidence of the rich rostral to 480 

caudal hierarchical organization that has been reported in human imaging studies (Badre and 481 

D'Esposito, 2007; Koechlin et al., 2003). The controversial issue of frontal cortex and 482 

hierarchical control shows promise of resolution via a revision of the concept of a unitary model 483 

ensuring a unidimensional gradient. Recent reports favor distinct networks that are proposed to 484 

interact thereby ensuring a global hierarchical structure (Schumacher et al., 2019). 485 

Nevertheless, the mismatch between the multistage cascade architecture mediating a temporal 486 

organization of cognitive control and inter-areal connectivity contrasts with the situation in the 487 

visual cortex where there is a smooth increase in receptive field size ascending the Felleman 488 

and Van Essen cortical hierarchy (Roelfsema and de Lange, 2016). The mismatch reported in 489 

the prefrontal cortex is between the concept of a smooth and gradual rostral-caudal organization 490 

found in the imaging studies and the connectivity as found in the collated and binary data base. 491 

What about the relation of SLN across prefrontal areas? In Figure 9A, the SLN pairs plots for 492 

the prefrontal cortex show an encouraging agreement with that described in visual cortex.  The 493 

hierarchical scale values estimated from the statistical model described above (Figure 9B) seem 494 

to support a rostral-caudal organization with F1 at the bottom and areas 10 and 24c (the most 495 

anterior limbic region) at the top. Note, analysis based on more complete coverage of the frontal 496 

cortex might give significantly improved results.  497 
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 498 

5. Dual stream Architecture and its functional significance. 499 

In the preceding section we showed that the contributions of supra- and infragranular 500 

layers in the projections across hierarchical levels were highly consistent. The consistency of 501 

our measure of hierarchical distance, in conjunction with the known differences in oscillatory 502 

properties of laminar compartments of the cortex, suggests that FF and FB interactions are not 503 

only anatomically distinct, but (i) use specific frequencies for communication and (ii) play 504 

specialized roles in cortical computation. Here we address how these functional properties 505 

relate to the detailed anatomical properties of FF and FB pathways. In the light of recent 506 

findings showing FF and FB constitute distinct pathways in both the upper and lower layers 507 

constituting a Dual Stream Architecture (Markov et al., 2014b), leads to the hypothesis that FB 508 

signals in upper and lower layers have distinct roles in information processing. 509 

There are a number of reasons for expecting that supra- and infragranular layers might 510 

house different FF and FB pathways. During corticogenesis the supragranular compartment is 511 

generated by a primate-specific germinal zone (Smart et al., 2002), exhibiting uniquely complex 512 

lineages (Betizeau et al., 2013; Dehay et al., 2015; Lukaszewicz et al., 2005), findings that have 513 

consequently been amply confirmed in human corticogenesis (Geschwind and Rakic, 2013). 514 

These specialized developmental origins of the supragranular layers are linked to the observed 515 

expansion of these layers in primates culminating in human (Cahalane et al., 2014; Sousa et al., 516 

2017), and a diversification of cell-types, which we speculate underlies the observed coding 517 

properties of these layers in the adult primate cortex (Tang et al., 2018; Vinje and Gallant, 2000; 518 

Wang and Kennedy, 2016; Willmore et al., 2011). A number of studies have shown that 519 

supragranular layers exhibit sparse coding in which large numbers of cells are characterized by 520 

low levels of activity and a sensory stimulus activates only few neurons (Barth and Poulet, 521 

2012; Crochet et al., 2011; Haider et al., 2013; Harris and Mrsic-Flogel, 2013; Petersen and 522 

Crochet, 2013; Tang et al., 2018). In a sparse code information is encoded at any instant by the 523 

spiking of a small number of neurons, as opposed to a dense code where overall activity is high 524 

and information is encoded by variation in firing rate as observed in the infragranular layers 525 

(Sakata and Harris, 2009). A sparse code reduces redundancy and is arguably more efficient. 526 

Studies indicating sparse coding in supragranular layers find evidence of higher levels of 527 

recruitment of inhibitory drive in these layers via fast spiking PV+ neurons (Hu et al., 2014), 528 

which supports the presence of distinct frequency channels for FB and FF communication 529 

(Bastos et al., 2018; Bastos et al., 2015b; Michalareas et al., 2016). In addition, sparse coding, 530 
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supragranular neurons in area V1 showed more complex and specific selectivity than expected 531 

for primary visual cortex (Bonnefond et al., 2017). 532 

A more detailed description of the laminar organization of inter-areal connectivity 533 

suggests that variation of SLN with distance has complex origins concerning inter-areal 534 

connectivity in sublayers of the cortex. Exhaustive examination of inter-areal connectivity 535 

shows, that whereas canonical FB streams have been traditionally allocated to infragranular 536 

layers, a robust supragranular FB stream is in addition found in layer 2 in all areas examined in 537 

the extrastriate visual cortex of the macaque (Figure 10A) (Markov et al., 2014b). In addition 538 

to the layer 2 FB, we found some evidence of a layer 5 FF stream. Hence, in both upper and 539 

lower compartments there is a counter stream leading to the term dual counterstream 540 

architecture. Interestingly, the two FB streams in the supra and infragranular layers will impact 541 

differently the canonical microcircuit (Figure 10B) (Douglas et al., 1989).  The strict 542 

segregation of FF and FB streams was hypothesized by Ullman in his counterstream model, 543 

which he proposed allows a bi-directional search for optimal matches between descending and 544 

ascending pathways (Ullman, 1995, 2000). 545 

 Closer examination of the individual streams showed that each obeys a unique distance 546 

rule. In all streams labeled cell counts decline with WM distance, however the rate of decline 547 

is characteristic for a given stream. In this way, the classical FB stream in layer 6 of the 548 

infragranular layers has the most gradual decline so that these FB connections span the biggest 549 

distance in the cortex. This contrasts with the layer 2 FB, which shows a much shorter space 550 

constant. Hence it is the combination of the space constants of the layers 2 and 6 FB streams 551 

that leads to the observed SLN values going up stream from near to far-distant areas (See Figure 552 

11). The classical FF stream in L3 is also long-distance stream, but significantly less than the 553 

FB layer 6 stream, thus leading to the observation of the greater reach of FB pathways compared 554 

to FF pathways (Markov et al., 2014b).  555 

 Hence, the dual counterstream architecture shows that the relative rate of decline in 556 

individual streams determines the way that SLN is modulated by WM distance. In the previous 557 

section (Hierarchy –input consistency) we showed that the agreement between SLN values 558 

across hierarchical levels is relatively constant across the extrastriate macaque cortex, but less 559 

so for the prefrontal cortex. These differences between frontal and posterior regions could be 560 

driven by two sets of factors. Firstly, quite simply the space constant can change in individual 561 

layers so that the two regions sample supra- and infragranular layers over different WM 562 

distances. For example, if the difference in space constants of layer 2 and 6 FB streams are 563 
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reduced then so are the SLN differences and there will be a reduction of the hierarchical distance 564 

as such between a group of areas with a common target. A second factor could be the identity 565 

of cells in the two streams. Comparison of the gene expression across species has revealed that 566 

some genes in rodents that are exclusively expressed in deep layers are expressed in the 567 

supragranular layers of primates (Zeng et al., 2012). Such changes in the laminar phenotype 568 

could perhaps occur across regions meaning that the layer 2 FB pathway in the prefrontal cortex 569 

may not correspond to the same identities as the FB pathway in extrastriate cortex.  570 

 571 

6. Functional characteristics of FF and FB pathways. 572 

 In the present review we propose that cortical hierarchy can be gauged from the nature 573 

of the interactions between different brain areas, in the same manner that hierarchies in social 574 

networks reflect the nature of interactions between people. Crucially, our measure of 575 

hierarchical distance shows that SLN values of area pairs are highly consistent across multiple 576 

hierarchical levels. This consistency in conjunction with the known differences in oscillatory 577 

properties of laminar compartments of the cortex suggests that FF and FB interactions are not 578 

only anatomically distinct, but (i) use specific frequencies for communication and (ii) play 579 

specialized roles in cortical computation. Here we address how these functional properties 580 

relate to the detailed anatomical properties of FF and FB pathways.   581 

As described above functional interactions between brain areas are distance dependent 582 

(Bastos et al., 2015b; D'Souza et al., 2016; Michalareas et al., 2016; Richter et al., 2018; van 583 

Kerkoerle et al., 2014). Granger-causality was used to quantify functional FF and FB 584 

interactions, thereby allowing the strength of these interactions to be quantified for individual 585 

frequency bands. Neuronal populations show spontaneous fluctuations over time that are driven 586 

by brain rhythms in different frequency bands, such as theta (3-8Hz), alpha (8-12Hz), beta (12-587 

30Hz) and gamma (30-80Hz). As already noted above, neocortical rhythms do not comprise 588 

band-limited sinusoidal oscillation but typically describe noisy oscillations with energy in a 589 

wide frequency range (Burns et al., 2011; Spyropoulos et al., 2020). FF Granger-causality is 590 

particularly strong in the gamma-frequency band, while FB Granger is strong in the alpha and 591 

beta-frequency band (Bastos et al., 2015b; Michalareas et al., 2016; Richter et al., 2018; van 592 

Kerkoerle et al., 2014).  593 

The finding that Granger-causality in the FF (FB) direction is strong in gamma 594 

(alpha/beta) frequencies is partially dictated by the cellular targets of inter-areal pathways. FF 595 

inputs target both excitatory and GABAergic interneurons (Figure 12). Importantly, the FF 596 
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projections to GABAergic interneurons target almost uniquely parvalbumin – PV interneurons, 597 

which are associated with gamma-frequency rhythms and respond to excitatory inputs with 598 

high temporal fidelity (Buzsaki and Wang, 2012; Cardin et al., 2009; Jouhanneau et al., 2018; 599 

Wang, 2010), and exhibit supra-threshold resonance at gamma-frequencies (Hasenstaub et al., 600 

2005; Pike et al., 2000). Moreover FF projections skip the infragranular layers that are 601 

canonically associated with alpha and beta rhythms (Bollimunta et al., 2008; Buffalo et al., 602 

2011; van Kerkoerle et al., 2014). By contrast, FB projections target multiple classes of 603 

GABAergic interneurons. Of these, somatostatin – SSt interneurons are associated with the 604 

generation of slower brain rhythms (Moore et al., 2010), and can directly influence activity of 605 

neurons in infragranular compartments, which are associated with alpha/beta rhythms.  606 

Frequency-specific information transmission can also be predicted by the properties of 607 

the sending and receiving areas, so that the global distribution of brain rhythms across areas 608 

and layers contribute to the nature of functional interactions in the FF and FB directions. 609 

Gamma-rhythms are particularly strong in early visual areas and superficial layers (Bastos et 610 

al., 2015a; Buffalo et al., 2011; van Kerkoerle et al., 2014; Vinck and Bosman, 2016), whereas 611 

beta rhythms are most prominent in fronto-parietal areas and infragranular compartments 612 

(Bastos et al., 2015a; Buffalo et al., 2011). Consequently, one expects Granger-causal FF 613 

influences from early visual areas to parietal areas to be dominated by gamma frequencies, 614 

whereas FB influences to visual areas to be dominated by beta frequencies, in agreement with 615 

the fact that major long-range FF projections originate nearly exclusively from superficial 616 

layers, and FB from infragranular layers. Further, we note that gamma frequencies are generally 617 

associated with cortical activation, e.g. a visual stimulus or optogenetic activation, whereas 618 

alpha and beta frequencies are not clearly associated with a FF stimulus drive, consistent with 619 

the suggestion that FF provide the major driving influence (Covic and Sherman, 2011; De 620 

Pasquale and Sherman, 2011). 621 

Above we hypothesized that these frequency specific channels constitute functional 622 

analogues of the SLN projections that we have quantified, leading to the expectation that they 623 

exhibit similar hierarchical properties. Bastos et al. (2015) defined the multiple Directed-624 

influence Asymmetry Index (mDAI) based on the difference of gamma and theta vs beta 625 

frequency Granger-causality, obtained from ECog recordings in macaque. mDAI enabled these 626 

authors to reconstruct hierarchies that closely resembled the structural hierarchy derived from 627 

SLN values.  The feasibility of accounting for their data with the model that we presented above 628 

is demonstrated by the strong tendency of mDAI values corresponding to common projections 629 

to lie along lines of unit slope (Figure 13).  The mDAI index is already on a scale that appears 630 
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to show the consistency necessary to apply the model, so the hierarchical values could be 631 

estimated from the incidence matrix in a global fashion, as described above, rather than by the 632 

averaging method used by Bastos et al. (2015).  633 

Future work will need to specifically address the nature of layer-specific functional 634 

interactions for individual FF and FB projections. The dual counterstream architecture 635 

postulates that a prominent short-range FB projection originates from L2 in the higher area. 636 

Consequently, we predict that FB from L2 is particularly strong at gamma-frequencies. 637 

Likewise, L5 is postulated to have a short-range FF projection, and to exhibit strong oscillations 638 

at alpha/beta frequencies. Hence, based on the dual counterstream architecture we predict a 639 

greater diversity of functional interactions than suggested by previous work, the elucidation of 640 

which will require multi-layer high-density recording across multiple cortical areas.  641 

 642 

7. The predictive brain and the importance of topdown generative networks.  643 

A large body of physiological studies has shown that FF pathways ascending the 644 

hierarchy generate increasingly complex representations of the world in higher areas, leading 645 

to the large range of receptive field properties observed at different levels of the hierarchy. 646 

Thus, at its core, convergent FF projections carry information from the outside world, and allow 647 

this information to be gradually transformed to low-dimensional representations that can be 648 

exploited for behavior. In this respect, it is worthwhile noting that the recent success of deep 649 

neural network architectures in solving complex tasks similarly demonstrates the power of FF 650 

transformations in computation (LeCun et al., 2015; Richards et al., 2019) e.g. by forming 651 

increasingly complex representations along the feedforward hierarchy in convolutional 652 

networks (Yamins and DiCarlo, 2016). 653 

In contrast to FF-pathways, the neurobiology of the twice as numerous FB pathways 654 

(Markov et al., 2014a) remains elusive, forming a major impediment to understanding the brain. 655 

A clearly defined role of FB connections is proposed for attentional modulation, but FB 656 

pathways are likely critical in a host of complex operations including: the comparison of 657 

internally generated predictions of sensory input with actual inputs; imagining sensory-like 658 

representations from concepts of e.g. visual objects;  carrying out mental simulations and finally 659 

gating synaptic plasticity. An early conceptualization of hierarchical processing in the cortex 660 

conceived of FF pathways as driving target areas, whereas FB pathways would merely exert a 661 

modulatory influence (Klink et al., 2017); some researchers, however, proposed a more 662 

nuanced view (Bastos et al., 2012). Indeed, the simple dichotomy of the roles of FF and FB 663 

pathways is difficult to reconcile with the multiple physiological effects that are imputed to FB 664 
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control. For example, in the case of perceptual completion (e.g. in illusory figures) or visual 665 

imagination, FB is usually conceived to enhance neural activity; by contrast in the case of 666 

filtering out self-generated sensory inputs, FB activity is expected to suppress neural activity. 667 

These forms of enhancement and suppression represent essentially distinct computational 668 

operations: a central concept is that of gain modulation, where an existing sensory 669 

representation is preserved, but in essence multiplied or divided, as in attentional mechanisms 670 

(McAdams and Maunsell, 1999). However, in the case of imagery, one expects FB to “write-671 

in” a pattern of neural activity, i.e. operate a driving process, or alternatively selectively 672 

modulate the activity of specific spontaneously active cell assemblies. In the case of cancelling 673 

out self-generated sensory inputs through FB (as in self-tickling), FB activity is thought to be 674 

subtractive (Bastos et al., 2012). Finally, FB activity has been conceived to mediate error 675 

signals, playing a key role in shaping perceptual learning and synaptic plasticity. The notion of 676 

FB as a “swiss-army-knife” contrasts with FF processing which is essentially homogeneous 677 

and driving, as captured by the architecture of deep neural networks. These considerations 678 

underline the diversity of FB processes, which could be mediated by distinct neural circuits. In 679 

particular, we hypothesize that laminar and distance-determined diversity of FB pathways will 680 

exhibit anatomo-functional properties that characterize the cortical circuits underlying the 681 

diverse global influences engaged in different cognitive functions.  Given the diversity of FB 682 

pathways, and the many functions in which FB is implicated, it is a daunting task to develop a 683 

unified theory of the function of cortical FB. Yet, our understanding of the brain depends 684 

crucially on the development of precise theories of cortical FB.   685 

The core feature of FB that distinguishes them from FF is that their projections are more 686 

divergent; i.e. they project from few to many neurons. Interestingly, divergent projections are 687 

a core feature of the most popular kind of artificial neural network architectures, which are also 688 

rapidly becoming a mainstream model of sensory processing in the brain (LeCun et al., 2015; 689 

Richards et al., 2019). In FF (deep) neural networks, divergent error signals lead to an 690 

adjustment of synaptic weights of FF projections (“backprop”). In other words, in FF (deep) 691 

neural networks, the exclusive role of FB is to improve the data transformations implemented 692 

by the FF projections. For a biological organism, error signals could be provided for instance 693 

by multi-sensory signals or reward signals. However, it is an open question as to how FB would 694 

be able to adjust synaptic weights of FF projections (Whittington and Bogacz, 2019). A 695 

candidate pathway is the multiple FB projections converging onto layer 1 (Cauller, 1995). Here 696 

FB projections  impact the distal dendrites of pyramidal neurons, activating non-linear NMDA-697 

R-dependent dendritic integration mechanisms and voltage-gated calcium channels. A recent 698 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.04.08.032706doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.08.032706


 22 

study provides evidence that top-down FB to layer 1 might indeed be involved in perceptual 699 

learning in a primary sensory area: With reward reinforcement, mice rapidly learn a behavioral 700 

task in which their response is contingent on electric-current stimulation of S1. However, when 701 

layer 1 projections from perirhinal cortex to S1 are inhibited, mice fail to learn the same task, 702 

suggesting that top-down FB is instructive for learning (Doron et al., 2019). Another candidate 703 

pathway to modulate plasticity is the FB projection to VIP+ and SOM+ interneurons, given that 704 

SOM+ neurons can gate plasticity on the dendrites of pyramidal neurons (Batista-Brito et al., 705 

2018).  706 

Until very recently the dominant theory of brain function was that sensory information 707 

progressing up the cortical hierarchy undergoes successive abstractions generating increasingly 708 

complex receptive fields. In this feedforward processing model of cortex function, the 709 

characterization of the receptive fields at different levels of the hierarchy has been a 710 

neuroscience success story over the past 60 years (Hubel and Wiesel, 1962). The bottom up 711 

sensory processing driving receptive field elaboration leads to the notion of the importance of 712 

single neurons coding for perceptually significant features. According to this feature detection 713 

view the cortical hierarchy will house neurons ranging from edge detectors to the proverbial 714 

grandmother neurons (Martin, 1994). However, in recent years there has been a paradigm shift 715 

in cognitive neuroscience that takes account of the inherent uncertainty of the nature of the 716 

sensory input to the brain. In this view which goes back to Helmholtz and was later championed 717 

by Richard Gregory, making sense of input from the sensorium requires knowledge of the 718 

world, which allows the brain to develop hypotheses of the world that are tested against sensory 719 

evidence (Friston, 2010; Gregory, 1997). These hypotheses can be formalized as Bayesian 720 

inferences on the causes of our sensation and how these inferences induce perception and 721 

behavior (Dayan et al., 1995; Lee and Mumford, 2003). The implementation of inference in the 722 

cortex has more recently been recast in terms of the circuits underlying the hierarchical 723 

processing that formulate generative statistical models as predictive processing (Clark, 2013; 724 

de Lange et al., 2018; Friston, 2010; Keller and Mrsic-Flogel, 2018; Rao and Ballard, 1999). 725 

According to the predictive processing model the brain possesses a model of the world 726 

that it seeks to optimize using sensory inputs.  Predictive processing postulates that the prior 727 

information that resides at the different levels of the cortical hierarchy generate descending 728 

predictions that cascade down the cortical hierarchy, allowing interaction with bottom up 729 

information ascending the hierarchy. At each level of the hierarchy the interaction between the 730 

top-down predictions and the ascending input from the sensorium is such that only the residual, 731 

unexplained sensory information (or prediction error) proceeds to the next level. The overall 732 
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outcome of the hierarchical process is prediction error minimization. Predictive processing 733 

constitutes an inversion of the classical feedforward model by proposing that descending 734 

feedback pathways provide representations of the external world, which modifies the ascending 735 

signal that now indicates aspects of the world that are unexpected. Given its radical nature 736 

impacting every aspect of cortical function, predictive processing has attracted considerable 737 

attention from experimentalists which have gone some way to providing empirical support 738 

(Bastos et al., 2012; Clark, 2013; de Lange et al., 2018; Keller and Mrsic-Flogel, 2018; Walsh 739 

et al., 2020).  740 

Much of the complexity of predictive coding concerns the circuitry underlying the 741 

interaction of FF and FB streams and this area of research is still hotly debated (Keller and 742 

Mrsic-Flogel, 2018).  However, little research has focused on testing how FB connections in 743 

the brain could serve as the substrate of a top-down generative network (Bastos et al., 2012; 744 

Hinton, 2007; Kosslyn, 1994; Mumford, 1992; Senden et al., 2019). In FF visual processing, 745 

high-dimensional sensory representations such as an image are sequentially transformed into 746 

low-dimensional representations such as object categories, represented at higher hierarchical 747 

levels. Conceivably FB pathways invert this process by generating high-dimensional 748 

representations starting from low-dimensional variables (Hinton, 2007). We refer to such 749 

pathways as top-down generative networks. Whereas the FF projections in convolutional 750 

networks create a convergence of information from many to few, in generative networks 751 

information is relayed by divergent projections from few to many. For instance, the perception 752 

of a red apple depends on a transformation of the image of a red apple (represented by many 753 

neurons) into high-level representations in the temporal lobe (represented by few neurons). 754 

However, if we imagine a red apple, processing should start from high-level representations 755 

(few neurons) and generate a low level neural representation of the image of a red apple 756 

(represented by many neurons).  757 

Top-down generative networks may play distinct functional roles in several cognitive 758 

processes such as predictive processing, mental simulation, imagery or selective attention. An 759 

attractive aspect of the generative top-down network hypothesis is that all of these functions 760 

are subserved by a relatively small number of anatomical FB pathways implementing a 761 

function-specific generative network. This network would then interact with distinct cellular 762 

components in individual target areas, thereby differentially impacting ongoing ascending FF 763 

activity in distinct pathways. As an example, we can take the processes of imagination, 764 

expectancy and attention. In the case of expectancy (e.g. walking to the kitchen and expecting 765 

to see a red apple in the fruit basket, but not in the sink), generative networks may cause a 766 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.04.08.032706doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.08.032706


 24 

reduction of neural response to an expected stimulus, whereas that to surprising stimuli would 767 

not be suppressed by top-down predictions. In the case of attention (e.g. searching for a red 768 

apple in the kitchen), generative networks may lead to an amplification of sensory activity when 769 

we find the stimulus that we were seeking. In the case of imagination (e.g. thinking of a red 770 

apple), generative networks would drive activity in lower areas based on the activation of 771 

neurons in higher areas in the absence of any sensory stimulation. Since high-level brain areas 772 

contain abstract representations of objects, how do the feedback pathways of the brain achieve 773 

the remarkable feat of generating concrete sensory representations in the mind's eye during 774 

mental imagery? An apple is an abstract concept, yet we can generate concrete instantiations of 775 

apples by imagining for example, a Pink Lady or a green Granny Smith apple on a real or an 776 

imagined table in front of us. Remarkably, we are also not limited to imagining objects as we 777 

usually see them –it is equally possible for us to imagine a red apple that is as big as a football! 778 

Remarkably, we can generate sensory experiences in environments of which we have no 779 

experience, such as standing on Mars staring out through our space helmet at the red colored 780 

landscape in front of us. These examples illustrate a cornerstone of our hypothesis: that 781 

generative networks are competent to transform abstract concepts into concrete sensory-like 782 

representations in our mind's eye. 783 

Strong experimental support for top-down generative networks comes from findings in 784 

human imaging experiments showing that imagined objects lead to corresponding spatial 785 

temporal activation of area V1 (Emmerling et al., 2016; Naselaris et al., 2015; Senden et al., 786 

2019; Thirion et al., 2006).  The activation of the top-down pathway is coherent with predictive 787 

processing theory where FB pathways shape the FF pathway but not the inverse. These findings 788 

of top-down generative networks creating a sensory-like representation in early visual areas 789 

could be a particularity of the human brain, thereby providing the substrate for enhanced visual 790 

imagery supporting simulation and imagination. However, this appears not to be the case; a 791 

recent breakthrough publication from the Roelfsema lab revealed spiking activity in area V1 of 792 

a macaque with respect to an object held in working memory (van Kerkoerle et al., 2017), 793 

suggesting that the fMRI activation patterns reported in human experiments could correspond 794 

to spiking activity generated by visual imagery of imagined objects (Emmerling et al., 2016; 795 

Hinton, 2007; Naselaris et al., 2015; Senden et al., 2019; Thirion et al., 2006).  796 

The dual counterstream architecture (see Section 5) suggests several features that are 797 

congruent with the hypothesis of top-down generative networks: (1) the convergence of cortical 798 

FF connections in the sensory stream is mirrored by the divergence of FB connections; (2) 799 

source populations of FF and FB pathways are completely separate, which has been recognized 800 
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as a key requirement enabling distinct functionalities of generative top-down networks (Friston, 801 

2018; Markov and Kennedy, 2013; Markov et al., 2014b; Shipp, 2016) (3) on average 802 

throughout the cortex there are twice as many FB pathways than FF projections to a given area. 803 

Studies in which human subjects are cued to generate a sensory percept also provide evidence 804 

for top-down generative networks in the cortex (Emmerling et al., 2016; Naselaris et al., 2015; 805 

Senden et al., 2019; Slotnick et al., 2005; Thirion et al., 2006).  806 

Examining the dual counterstream suggests a possible division of labor between layer 2 807 

and 6 FB projections:  Layer 2 FB and layer 3 FF projections exhibit common features that 808 

distinguish them from layer 6 FB. Layer 2 FB and layer 3 FF are short distance, topographically 809 

organized and exhibit low rates of bifurcation; contrasting with layer 6 FB which are long-810 

distance, diffuse and have high rates of bifurcation. Thus, the layer 2 FB system may mirror the 811 

layer 3 FF system and implement a generative top-down network in which high-dimensional 812 

sensory representations can be generated through sequential stages, starting from higher brain 813 

areas. The layer 6 FB pathway, on the other hand, may determine the way in which the layer 2 814 

generative network interacts with the local microcircuit, sending contextual signals that reflect 815 

behavioral goals and reward signals. Based on this reasoning, we hypothesize that layer 6 FB 816 

has more modulatory effects that it exerts, for example, via targeting the apical layer 1 dendrites 817 

as well as GABAergic interneurons such as SOM+ and VIP+ interneurons that modulate the 818 

activity of local pyramidal neurons (Batista-Brito et al., 2018). Testing this hypothesis will 819 

require parallel anatomical and physiological investigations. Optogenetic techniques in non-820 

human primates could allow the injection of precise spatiotemporal activation patterns into 821 

specific laminar compartments of higher brain areas, combined with physiological 822 

measurements of activity in lower brain areas.  823 

 824 

Box 1 825 

Experimental Exploration of the Dual Counterstream Architecture.  826 

Dual counterstream features   Functional and structural correlates  827 

(1) Source populations of FF and FB 

pathways are completely separate, which 

has been recognized as a key requirement 

enabling distinct functionalities of 

generative top-down networks (Friston, 

2018). A core feature of the dual 

counterstream architecture is that despite the 

ubiquity of bifurcation (Kennedy and 

Bullier, 1985), in no layer do individual 

neurons in FF and FB pathways possess 

Molecular characterization of FF and FB 

neurons is very much on the agenda. This 

would lead to the development of markers 

of these two projection types and hold the 

promise of the development of genetic tools 

for independent manipulation of different 

FB pathways. 
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both up and downstream collaterals (Markov 

et al., 2014b). Similar findings hold for 

mouse (Berezovskii et al., 2011). This 

indicates that FF and FB cells indeed 

constitute distinct populations.   

(2) Large variability in the laminar 

configuration of FB pathways. FF 

connections are highly stereotypical, while 

FB projections show a large variability in 

their laminar origins and targets. Retrograde 

tracer in a midlevel target area labels up- 

and downstream areas with different 

proportions of supragranular neurons 

according to their hierarchical distance 

(Figure 10C). These laminar distributions 

of FF and FB neurons constitute their 

signatures that allow areas to be ranked in 

the Felleman and Van Essen hierarchy. 

Importantly, the different signatures of 

hierarchical distance reflect the changing 

laminar composition of the long-distance 

inputs to an area, meaning that “hierarchy” 

refers to the distance-dependent laminar-

constrained integration of FF and FB inputs 

(Barone et al., 2000; Markov et al., 2014b) 

and signals (Bastos et al., 2015b; 

Michalareas et al., 2016) into the canonical 

microcircuit. 

The multiplicity of the FB pathways in 

terms of laminar origins and targets over 

different distances suggest that compared to 

the singularity of FF pathways, individual 

FB pathways come in different flavors and 

fulfill different functions. These different 

FB pathways need to be investigated in 

human and non-human primates (NHP) in 

high-field, laminar resolution fMRI and in 

parallel using invasive electrophysiology in 

NHP. These functional investigations are of 

particular relevance to the supragranular 

counterstream given the unique features of 

the Primate supragranular layers which are 

generated by a primate-specific germinal 

zone (OSVZ) (Smart et al., 2002), that 

exhibits complex cell lineages (Lukaszewicz 

et al., 2005) that we have hypothesized 

generate unique cell features in primates 

(Dehay et al., 2015; Harris and Shepherd, 

2015). These considerations support the 

notion that the two FB pathways (one in the 

supra- and one in infragranular layers) will 

have distinct functional roles in generative 

networks. 

(3) FB and FF are not serially organized. 

Computational modeling studies e.g. (Bastos 

et al., 2012) invariably assume a serial 

hierarchical organization (Figure 10C) 

whereas in fact most areas receive and project 

to most other areas (Markov et al., 2014b).  

The non-serial nature of inter-areal 

connectivity raises difficulty for ongoing 

attempts at large-scale computational 

modeling that needs to be given further 

attention.  

(5) Lamination The dual counterstream 

architecture explicitly links pathways to 

layers, which is in-line with the increasing 

importance attached to cortical lamination 

and connectivity (Senzai et al., 2019). (l): 

effects on topography of FB. In addition to 

the low divergence-convergence values of 

supragranular layers (L2 FB and L3FF), and 

the high divergence-convergence values of 

infragranular layers (L5 FF and L6FB), high-

rates of bifurcation by L6/L5 ensures 

innervation of multiple areas contrasting with 

and low levels of bifurcation by L2/L3 

neurons (Kennedy and Bullier, 1985).  

There are two interrelated issues here. 

Present understating of inter-areal 

connectivity in NHP, crucially lacks insight 

into the laminar restricted connectivity of 

these pathways. This requires using viral 

tracers in order to obtain precise information 

on the connectivity of individual pathways 

over different distances. 
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(6) Differences of FB and FF targets. The L3 

FF projections primarily target upstream 

interneurons in L4. Presently we do not know 

the cellular targets of L2 FB projections 

although there is some suggestion that they 

could principally target L2 FB neurons in 

downstream areas, leading to long inter-areal 

FB chains.  In parallel with differences in FF 

and FB cellular targets, do the cell targets 

change (and how) as a function of connection 

distance, possibly bringing a solution to 

addressing the problem raised in point (3)?    

Laminar restricted connectivity to different 

cell types needs to be investigated in rodents 

and primates using next generation of viral 

tracers.  

(7) FB show distinct development strategies. 

Differences in functionality are expected to 

require different developmental programs, 

which is indeed the case for FF and FB 

pathways. FF pathways develop precociously 

and exhibit directed-growth; FB pathway 

formation is delayed well into the postnatal 

period and exhibits diffuse growth followed 

by pruning (Barone et al., 1995; Barone et al., 

1996; Kennedy et al., 1989). 

These observations invite the investigation 

of inter-areal processing in NHP at different 

developmental periods and suggest that 

high-field, laminar resolution fMRI in 

infants and adults could reveal important 

developmental processes.  

 828 

9. Conclusion and speculations. 829 

 We have shown that cortical hierarchy can be defined by connectivity gradients and the 830 

functional correlates of these gradients. In other words, inputs to a cortical area sample the 831 

cortical sheet in a principled manner defined by the differential space constants of the distance 832 

rules governing the individual cortical layers. This approach to understanding hierarchy is 833 

anchored in the recognition that it is the activity and connectivity linking neurons across the 834 

cortex that will ultimately reveal the process underlying the dynamics of cortical function. Link 835 

based investigation is complemented by characterization of the nodes.  Helen Barbas has 836 

championed the structural model, which shows that laminar differentiation allows hierarchical 837 

ranking of cortical areas that correlates well with connectivity patterns (Barbas, 2015).  The 838 

structural model is of particular interest because it allows ranking of cortical areas via gradual 839 

variations of cytoarchitecture and myeloarchitecture (Sanides, 1972), and has opened the 840 

interpretation of large-scale models of the cortex to investigation with non-invasive imaging 841 

techniques that can be applied to the human brain (Burt et al., 2018; Margulies et al., 2016; 842 

Paquola et al., 2019).  843 

The central argument of this review is that cortical hierarchy can be usefully thought of 844 

as the gradual changes in the cortical input requirements of the local cortical circuit that in terms 845 

of synaptic mass constitutes the powerhouse of the cortex. Understanding the cellular 846 
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mechanisms underlying hierarchical processing require investigations of hierarchy in terms of 847 

the laminar restricted connectivity and physiology that we have advocated in this review and 848 

described in Box 1.  It is nearly 15 years since Jean Bullier posed the question “What is fed 849 

back?” (Bullier, 2006). The multiplicity of FB pathways and the complexity of their proposed 850 

functions were deep issues that he felt needed to be addressed. In the last 14 years there has 851 

been a spectacular development of three classes of techniques that now allow us to address Jean 852 

Bullier’s question. Firstly, optogenetics holographic stimulation makes it possible to address 853 

causation (Carrillo-Reid et al., 2019; Marshel et al., 2019), thereby addressing how activation 854 

of a given FB pathway influences a particular cognitive task. Secondly, viral tracing allows 855 

cell-type and laminar-constrained connectivity (El-Shamayleh et al., 2016; Nassi et al., 2015; 856 

Siu et al., 2020) making it possible to resolve the dual counterstream architecture. Thirdly, high-857 

resolution fMRI allows laminar and columnar resolution imaging in the human brain e.g. 858 

(Kemper et al., 2018); furthermore, recent advances in MR  methods and data analysis enable 859 

investigation of directional laminar connectivity in hierarchical brain networks (Huber et al., 860 

2020). The key feature of future investigation will be to examine FB modulation of cognitive 861 

tasks in animal models that can, in parallel, be applied in humans where perceptual 862 

consequences can be reported (Kok et al., 2016; Schneider et al., 2019). These combined 863 

approaches will address the complexity of the interaction of descending generative networks 864 

with the local microcircuit. Interpreting the data coming out of these experiment in terms of 865 

cortical dynamics will require computational modeling of the interactions of these top-down 866 

effects with the canonical microcircuit using approaches developed by Maass (Haeusler and 867 

Maass, 2007).  868 

The interactions of descending with ascending pathways required by predictive 869 

processing theory will be largely in supragranular cortical layers, which have been shown to be 870 

a major target for human evolutionary adaptation (Heide et al., 2020; Won et al., 2019). The 871 

evolutionary expansion of the supragranular layers is accompanied by an increase in 872 

heterogeneity of glutamergic cell-types in terms of morphology, electrophysiology and gene 873 

expression going from rodent to human (Berg et al., 2020) in turn supporting a complexification 874 

of the circuits in these layers (Hodge et al., 2019). The amplification and diversification of 875 

supragranular intratelencephalic-projecting neurons in primates suggest that the investigation 876 

of the biology of the generative networks advocated here may well exploit reductionist 877 

approaches in the rodent model, but will need nonetheless to be studied with a particular 878 

emphasis on human and non-human primates.  879 
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Finally, the observation that top-down networks generate sensory-like activity in low 880 

levels of the cortical hierarchy in the absence of sensory input raises interesting issues of 881 

representation in the brain. According to predictive coding theory, sensory perception requires 882 

predicting the present. These top-down generative networks can be important for predicting or 883 

simulating the future (Grezes and Decety, 2001), in interplay with the hippocampus (Buckner, 884 

2010; Kay et al., 2020), as well as revisiting the past allowing for instance the minds eye to 885 

scrutinize detail in visual images (Kosslyn, 1994). In this way the top-down generative 886 

networks could have much to do with what we call thinking. In addition these networks would 887 

support an integral aspect of human consciousness, namely the seamless and continuous 888 

navigation of the mental narrative of self across past, present and future (Jaynes, 1976; 889 

Nørretranders, 1991). Importantly, the observation that these networks are active in the NHP 890 

(van Kerkoerle et al., 2017), indicates that we can now plan experimental investigation of their 891 

integrative neurobiology at the cellular level. 892 
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Figure & Legends 1375 

 1376 

Figure 1. Quantitative map of excitatory synapses between excitatory neurons of the local 1377 

microcircuit in visual cortex (area 17) of the cat. Numbers indicate proportions of excitatory 1378 

synapses, note the dominance of within layer recurrent connectivity with 21.6 peak values in 1379 

Layers 2/3. The FF loop starts in layer 4, the major thalamic recipient layer and then extends to 1380 

layers 2/3, 5 and 6 with recurrent inputs back to layer 4. This FF loop corresponds to a little 1381 

less than half of synapses involved in self-innervation of individual cortical layers. X/Y refers 1382 

to the component cells of the lateral geniculate nucleus, the major thalamic relay. The original 1383 

canonical microcircuit is shown in Figure 9B. L refers to layer. From (Binzegger et al., 2004) 1384 

with permission.  1385 
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 1386 

Figure 2 The Felleman and Van Essen binary model of cortical hierarchy. A) Criteria for 1387 

classifying connections between areas as FF (top), lateral (middle) and FB (bottom) row.  1388 

Termination patterns are depicted in the central column, preferentially in layer 4 (F pattern) FF, 1389 

across all layers (C pattern) lateral, in upper and lower layers avoiding layer 4 (M pattern) FB. 1390 

Laminar origin from a single layer (left column), is either supragranular (S) and therefore FF, 1391 

or infragranular (I) and therefore FB. Bilaminar (B) origins (right column) either terminate in 1392 

the middle layers (F pattern) and are therefore FF, terminate in all layers (lateral) or terminate 1393 

predominantly in upper supra- and infragranular layers (M pattern) and therefore FB. B) The 1394 

binary hierarchical model. C: Area frequency distributions for 150,000 optimal hierarchical 1395 

orderings (Hilgetag et al., 1996). 1396 
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 1397 

Figure 3. Quantitative parameters characterizing the hierarchy. A) The laminar 1398 

distribution of parent neurons in each pathway, referred to as SLN (fraction of supragranular 1399 

neurons) is determined by high frequency sampling and quantitative analysis of labeling. Supra- 1400 

and infragranular layer neurons contribute to both FF and FB pathways, and their relative 1401 

proportion is characteristic for each type of pathway. For a given injection there is a gradient 1402 

of SLN of the labeled areas, between purely FF (SLN = 100%, all the parent neurons are in the 1403 

supragranular layers) to purely FB (SLN = 0%, all the parent neurons in the infragranular 1404 

layers) and a spectrum of intermediate proportions; B) All labeled areas can then be ordered by 1405 

decreasing SLN values and this order is consistent with hierarchical order according to 1406 

Felleman and Van Essen. SLN is thus used as an indicator of hierarchical distance between 1407 

areas from the same injection; C) Reliable estimation of SLN crucially requires sampling 1408 

labeling throughout the full extent of the projection zone in each area. 1409 
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 1410 

Figure 4. Properties of nodes and links. Nodes have fixed properties, a, b, c which in turn 1411 

fixes their order and any distance measure, d, calculated from these properties.  b. Link 1412 

properties depend on the relations between node pairs, ab, bc, ac. The distance measures, δ, for 1413 

ab, and bc do not necessarily fix that for ac. The above graphs are unidirectional, but in bi-1414 

directional graphs the distances between nodes need not by symmetric. B) Hierarchical scales. 1415 

Suppose a hierarchical scale between areas A, B, C, D, with the ordering and distances as 1416 

illustrated on the bottom line.  We expect measures of distance to be consistent measured 1417 
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between any pairs of areas. For example, injections in areas A and B lead to distances defined 1418 

with respect to each of these areas, i.e., distances AB (double headed grey arrow), AC and AD 1419 

(black arrows) for injection in area A, and BA (double headed grey arrow), BC and BD (orange 1420 

arrows) for injection in area B.  Consistency would imply, for example, that for a distance 1421 

measure, d, the estimate of dAB = dBA would be the same for both injections, i.e., dCA – dCB = 1422 

dDA – dDB. C) SLN Transformation. Comparison of logit (solid) and probit (dashed) 1423 

transformations of SLN values on the interval (0, 1).  The logit SLN is defined as ln(SLN/(1 – 1424 

SLN)).  The probit is defined as the inverse of the Gaussian cumulative distribution function 1425 

and is often notated by Φ−1.  The scale factor of the logit curve has been adjusted by a factor 1426 

of 0.588 to match it to the probit curve. 1427 

 1428 

Figure 5. Probit transformation. Scatter plots of probit transformed SLN values of common 1429 

source areas from pairs of 11 visual areas, obtained from retrograde tracer injections. The 1430 

absicssa of each graph corresponds to the transformed SLN values of area i, indicated on the 1431 

diagonal at the top of the column and the ordinate values are the transformed SLN values of 1432 
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area j indicated on the diagonal at the right of the row. The dashed blue line in each plot is the 1433 

best fit line of unit slope (replotted from (Markov et al., 2014b)). 1434 

 1435 

Figure 6. Logit transformation. Scatter plots of logit transformed SLN values of common 1436 

source areas from pairs of 8 somatosensory and motor areas, obtained from retrograde tracer 1437 

injections. The plots follow the same format as in Figure 6 except that the SLN values from 1438 

each axis are transformed by the logit function.  The dashed blue line in each plot is the best fit 1439 

line of unit slope. 1440 
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 1441 

Figure 7. Precision of estimated hierarchy based on hierarchical index. A. Estimated 1442 

hierarchy obtained using logit transformed SLN values as a measure of hierarchical distance.  1443 

The counts of supra- and infragranular neurons are used as weights.  The error bars are 95% 1444 

confidence intervals estimated from the covariance matrix of the fitted model.  B. Estimated 1445 

hierarchy using a binary variable as an indicator of the hierarchical relation between area pairs.  1446 

A logit link was also used in this case.  The larger 95% confidence intervals demonstrate the 1447 

loss of precision in estimating the hierarchical distance when using only binary information 1448 

about connectivity. 1449 
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 1450 

Figure 8. Hierarchical organization of visual areas (A) estimated from the beta-binomial 1451 

model. The model only provides the vertical level of the areas with respect to the lowest level.  1452 

For clarity of presentation, we have separated them laterally into ventral and dorsal stream 1453 

areas. The estimated values are only unique up to adding a constant and multiplying by a 1454 

coefficient.  Here, we have the areas to span the range 1-10. B)  The scatter plot shows the 1455 

empirical SLN values plotted against those predicted by the model.  The solid line is the unit 1456 

slope line through the origin and the dashed line is the best fit linear regression. C) Hierarchical 1457 

distance. The hierarchical distance, hij, between common projections from areas i and j to area 1458 

p, defined as the difference of logits of their SLN values, is equivalent to the log of the ratio of 1459 

their supra- to infra-granular projection strengths to area p.  a. This definition implies that the 1460 

ratio between the laminar ratios of areas i and j to area p (orange arrows) is the same as that for 1461 

any other target area q receiving projections from the same source areas (blue arrows), as 1462 

formalized in the equation below the diagram. This is because the hierarchical distance from i 1463 
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to j should be the same for injections in both areas p and q.  b. A rearrangement of the equation 1464 

(below) implies, also, that the ratio between the laminar ratios of projections from a common 1465 

source area, i, to areas p and q, will be the same for any other common source area, j, to the 1466 

same target areas. D) Cortical-cortical strong loops. The strength-distance relation of 1615 1467 

projections from 91 to 29 cortical areas obtained from retrograde tracer injections. The 1468 

transparent black points indicate all of the projections except those that participate in strong-1469 

loops in beige. The color gradient on these symbols corresponds to SLN strength as indicated 1470 

by the inset color bar. The black line is the best fit linear regression to the transparent black 1471 

points and the blue line is the best fit to the strong-loops.  The F-statistic indicates the result of 1472 

a nested likelihood test indicating the probability of a difference in strength between the two 1473 

sets of points as large as that obtained under the null hypothesis that the true difference is zero, 1474 

when physical distance via the WM is taken into account. 1475 

 1476 

Figure 9. A) Scatter plots of logit transformed SLN values of common source areas from pairs 1477 

of 9 frontal and pre-frontal areas, obtained from retrograde tracer injections. The plots follow 1478 

the same format as previous in Figures 6 and 7. The dashed blue line in each plot is the best fit 1479 

line of unit slope. B) Hierarchical scale values estimated for the 9 areas based on the proposed 1480 

statistical model. Area F1 was assigned a value of 0 for model identifiability.  1481 
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 1482 

Figure 10. Dual counterstream architecture of inter-areal pathways. A) Parent neurons at 1483 

L3 and L5 have FF projections (red) to higher order areas reciprocated by FB projections (blue) 1484 

in L2 and the L6. Simultaneous tracer injections in high and low areas show that the upper layer 1485 

counterstream has near 100% segregation, i.e. the FF (FB) neurons do not send axon collaterals 1486 

to lower (higher) order areas. However the evidence that the FF and FB pathways form 1487 

continuous streams, as depicted here is indirect; what crucially remains to be elucidated are the 1488 

laminar details on the connectivity and the cellular targets. B) the canonical microcircuit 1489 

showing the two FB pathways targeting L2 and L6. Modified from (Douglas and Martin, 1991); 1490 

C) the incorrectly assumed serial processing (lower) between areas that is not observed in the 1491 

cortex, where instead each areas project to all upper and lower stream areas (all to all). (panel 1492 

A from (Markov et al., 2014b)); 1493 
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 1494 

Figure 11. Distance effects of labeling in individual layers.  This figure how FB projecting 1495 

neurons are differentially distributed in L2 and 6 and FF in L3 and 5. The characteristic SLN 1496 

gradient found in up- and down stream areas shown in figure 2 is due to different distance rules 1497 

operating in individual layers. Hence the short-distance spread of labeled neurons in L2 coupled 1498 

with the long-distance spread in L6 leads to the observed decrease in SLN with increasing FB 1499 

hierarchical distances. Likewise the long-distance spread of labeled neurons in L3 coupled with 1500 

the short-distance spread in L5 leads to the observed increase in SLN with increasing FF 1501 

hierarchical distances.  1502 
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 1503 

Figure 12. Schematic circuit for the interplay between bottom-up and top-down signaling 1504 

characterized by differential frequency-band synchrony. In a reciprocally connected loop 1505 
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between a sensory-type area and a cognitive-type area, neural circuits in the superficial layers 1506 

are endowed with strong intrinsic synaptic connections and generate stochastic oscillations in 1507 

the gamma frequency range, whereas the deep layers have a propensity to display slower 1508 

oscillations in the lower beta or alpha frequency range. Top-down projections originate in the 1509 

deep layers and innervate pyramidal cells (brown), as well as dendrite-targeting (purple) and 1510 

perisoma-targeting (blue) inhibitory interneurons. In this scenario, low beta/alpha oscillations 1511 

are directly involved in top-down signaling, which interacts with locally generated gamma 1512 

oscillations. Adopted with permission from Wang (Wang, 2010). 1513 

 1514 

Figure 13. Scatter plots of a hierarchical measure of cortical distance (mDAI) derived by Bastos 1515 

et al., 2015 of common source areas for pairs of 8 visual areas obtained from contrasting 1516 

Granger Causality measures in gamma, theta and beta bands. The abscissa of each graph 1517 

corresponds to the value calculated for the area at the top of the column and the ordinate to the 1518 

area at the right of the row.  Dashed blue line in each plot is the best fit line of unit slope. 1519 

 1520 
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