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Abstract:  
The role of histone modifications in transcription remains incompletely understood. Here we used 
experimental perturbations combined with sensitive machine learning tools that infer the 
distribution of histone marks using maps of nascent transcription. Transcription predicted the 
variation in active histone marks and complex chromatin states, like bivalent promoters, down to 
single-nucleosome resolution and at an accuracy that rivaled the correspondence between 
independent ChIP-seq experiments. Blocking transcription rapidly removed two punctate marks, 
H3K4me3 and H3K27ac, from chromatin indicating that transcription is required for active histone 
modifications. Transcription was also required for maintenance of H3K27me3 consistent with a 
role for RNA in recruiting PRC2. A subset of DNase-I hypersensitive sites were refractory to 
prediction, precluding models where transcription initiates pervasively at any open chromatin. Our 
results, in combination with past literature, support a model in which active histone modifications 
serve a supportive, rather than a regulatory, role in transcription. 
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Introduction 
The discovery that core histones are post-transcriptionally modified fueled nearly six 

decades of speculation about the role that histone modifications play in transcriptional regulation 
by RNA polymerase II (Pol II)1. Many of the best-studied histone modifications are deeply 
conserved within eukaryotes, indicating important functional roles2–4. Indeed numerous examples 
illustrate how the disruption of histone modifications, or their associated writer and eraser 
enzymes, lead to defects in transcription and cellular phenotypes5–8. Histone modifications are 
found in highly stereotyped patterns across functional elements, including promoters, enhancers, 
and over the body of transcribed genes and non-coding RNAs. Promoters and enhancers are 
associated with a pattern of chromatin organization consisting of a nucleosome depleted core 
flanked by +1 and -1 nucleosomes marked with specific histone modifications, including histone 
3 lysine 4 trimethylation (H3K4me3), lysine 27 acetylation (H3K27ac), and lysine 4 
monomethylation (H3K4me1)9–15. Actively transcribed gene bodies are marked by histone 3 lysine 
36 trimethylation (H3K36me3) and histone 4 lysine 20 monomethylation (H4K20me1)9,16. Finally, 
two modifications are enriched in transcriptionally depleted regions, including histone 3 lysine 27 
trimethylation (H3K27me3) and lysine 9 trimethylation (H3K9me3)16. 

The stereotyped pattern of histone modifications makes them useful in the annotation of 
functional elements in eukaryotic genomes. A collection of 11 histone modifications, used to 
broadly analyze different cell types by the ENCODE project, has been applied to identify functional 
elements in metazoans2,16–18. Numerous studies have used histone modifications to reveal the 
location of enhancers, lincRNAs, and other types of functional elements10,19–22. Histone 
modifications aid in interpreting phenotype-associated genetic variation23,24 and discovering 
molecular changes in disease25–30. Likewise, histone modifications have been proposed for 
applications in selecting individualized therapeutic strategies31. Applications such as these have 
led to genome annotation efforts in a myriad of mammals32, plants33–35, and other eukaryotic 
organisms36. New annotation efforts will be launched alongside ‘moonshot goals’ to sequence 
and annotate genomes across the tree of life37. However, despite extensive efforts to decrease 
cost and improve the throughput of experimental methods38–42, and to “impute” (or guess) the 
abundance of marks that were not directly observed43,44, genome annotation still requires 
concerted efforts of large, well-funded, interdisciplinary consortia.  

Despite the widespread use of histone modifications in genome annotation, the precise 
nature of the relationship between histone modifications and transcription remains unknown. 
Specific histone modifications are enriched in either transcriptionally active or quiescent 
regions9,45–48. However, the extent to which histone modifications have a direct role in 
transcriptional regulation or an indirect role as “cogs” in the transcription machinery, remains 
debated49. Certain combinations of histone modifications, most notably the bivalent chromatin 
signature consisting of H3K4me3 and H3K27me3, are speculated to mark specific genes for 
transcriptional activation in later developmental stages50. In another example, the  balance 
between H3K4me1 and H3K4me3, which has long been known to correlate with enhancer and 
promoter activity10, has been proposed to establish these two regulatory roles51. Another question 
that remains heavily debated is the extent to which distinct histone modifications mark DNA 
sequence elements that otherwise have similar functional activities. H3K27ac, H3K64ac, and 
H3K122ac are all reported to denote distinct sets of enhancers52. Finally, to what extent do histone 
modifications cause transcription? The nature of the quantitative relationship between 
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transcription and histone modification lies at the crux of this open question. Under one model, 
marks serve as a placeholder which might contribute to transcriptional regulation in a distinct 
cellular state, in which case we expect large amounts of histone modifications that are not 
explained by current transcription events. Alternatively, if histone modifications serve as “cogs” 
that have a critical role in transcription, but do not themselves have a regulatory role independent 
of transcription factors, we might expect that they are completely correlated with on-going 
transcription.  

Here we trained sensitive machine learning models that decompose maps of primary 
transcription into ChIP-seq profiles representing 9 distinct histone modifications. We show that 
transcription measured using precision run-on and sequencing (PRO-seq)45,53,54 can recover the 
pattern of active histone modifications at nucleosome resolution and with an accuracy that rivals 
the correlation between independent ChIP-seq experiments in holdout cell types. To define the 
nature of the causal relationship between transcription and histone modifications, we perturbed 
transcription and examined the genomic distribution of four active and one repressive histone 
modification: H3K4me1, H3K4me3, H3K27ac, H3K36me3, H3K27me3. Surprisingly, transcription 
was critical in the deposition of promoter associated histone modifications, H3K4me3 and 
H3K27ac. Although transcription accurately predicted nearly all histone modifications and also 
open chromatin structure, we found a subset of DNase-I hypersensitive sites that were refractory 
to prediction. Collectively, our results (1) support models in which histone modifications are “cogs” 
with a supportive role, rather than a direct regulatory role, in transcription, (2) preclude models in 
which transcription initiates pervasively as a consequence of open chromatin, and (3) provide a 
new strategy for genome annotation using a single functional assay that is tractable for an 
individual lab to perform.  

 
Results  
 
Accurate imputation of histone modifications at nucleosome resolution using 
nascent transcription 

To better understand the nature of the relationship between transcription and histone 
modifications, we trained discriminative histone imputation using transcription (dHIT). dHIT uses 
the distribution of RNA polymerase, measured using any of the related run-on and sequencing 
methodologies PRO-seq, GRO-seq, or ChRO-seq (henceforth referred to simply as PRO-seq), to 
impute the level of histone modifications genome-wide. dHIT passes transformed PRO-seq read 
counts in windows of various sizes to a support vector regression (SVR) (see Methods). Run-on 
assays provide a readout of the position and density of RNA polymerase with single nucleotide 
resolution, which the SVR uses to impute information about chromatin structure and marks. 
During a training phase, the SVR optimized a function that mapped PRO-seq signal to the quantity 
of ChIP-seq signal at each position of the genome (Fig. 1a; see Methods). Once a dHIT model 
was trained using existing ChIP-seq data, it can impute steady state histone modifications in any 
cell type, provided that the relationship between histone modification and transcription is 
preserved. We trained dHIT to impute the levels of 10 different histone modifications that are 
widely deployed to analyze chromatin state (Fig. 1a)16,17,55,56. To avoid overfitting to batch-specific 
features in a single run-on and sequencing dataset56, training was performed using seven 
datasets in K562 cells that exemplify the range of variation commonly observed between data in 
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library quality, sequencing depth, run-on strategy (PRO-seq or GRO-seq), and pausing index 
(Supplementary Table 1; Supplementary Table 3). 

We evaluated the accuracy of each dHIT imputation model on a holdout chromosome in 
one of the training datasets (chr22; Fig. 1b-c; Supplementary Fig. 1; Supplementary Fig. 2). 
Histone modification signal intensity imputed using dHIT was highly correlated with experimental 
data for a variety of marks with different genomic distributions, including marks with focused signal 
on promoter or enhancer regions (e.g., H3K4me1/2/3, H3K27ac, H3K9ac), marks spread across 
active gene bodies (H3K36me3, H4K20me1), and over large domains of PRC2-dependent 
repressive heterochromatin (H3K27me3). The most notable differences between imputed and 
experimental signals tended to be small differences in background regions with low intensity in 
both experimental and imputed signal, but which added up over large windows, reflecting 
technical sources of variation in ChIP-seq background signal that were not reflected in PRO-seq 
signal (Supplementary Fig. 1; Supplementary Note 1). We did not observe major differences 
in accuracy at different types of functional elements, including regions of high signal intensity in 
either experimental or imputed data, near gene promoters44,57, at distal enhancer elements, and 
at stable and unstable transcription start sites11 (Supplementary Fig. 2). In addition to well-
studied and commonly used histone marks, we also obtained a high degree of correspondence 
for less widely studied histone modifications. For instance, acetylation of lysine 122 (H3K122ac), 
a residue on the lateral surface of the H3 globular domain58, was reported to mark a distinct set 
of enhancers compared with H3K27ac52. Nevertheless, dHIT models trained to impute H3K122ac 
had a high correlation on the holdout chromosome (Fig. 1b). Of the marks for which we attempted 
to train models, only the repressive mark H3K9me3 did not perform well against either ENCODE 
data, or against higher-quality CUT&RUN data59 (Supplementary Fig. 3). 

In many cases, imputation captured the fine-scale distribution of histone mark signals near 
the transcription start site (TSS) of annotated genes or enhancers (Fig. 1c; Supplementary Fig. 
4; Supplementary Fig 5). To explore the limit of the resolution for histone mark imputation using 
transcription, we obtained new ChIP-seq data for four active marks whose distribution correlates 
with enhancers and promoters (H3K4me1, H3K4me2, H3K4me3, and H3K27ac) at nucleosome 
resolution by using MNase to fragment DNA. We also analyzed the gene body mark H3K36me3 
that is depleted near the TSS9. We trained new SVR models in K562 cells that take advantage of 
the higher-resolution MNase ChIP-seq data, excluding chromosome 22 as a holdout to confirm a 
high correlation (Supplementary Fig. 6). Examination of genome-browser traces near the TSS 
of genes on the holdout chromosome confirmed that dHIT could impute active marks with high 
resolution (Supplementary Fig. 7).  

Genome-wide, several aspects of chromatin organization were correlated with the precise 
location of TSSs and Pol II pause sites. These features are readily apparent when sorting by the 
distance between the strongest TSS on the plus and minus strand13–15 (Fig. 1d). First, when the 
distance between the maximal sense and divergent TSS was larger than ~300 bp, we observed 
a nucleosome between the divergent start sites that was marked predominantly with H3K4me3 
and H3K27ac but depleted for H3K4me1. Second, H3K4me3 and H3K27ac signals were highest 
on the +1 nucleosome, as well as the nucleosome found inside of the initiation domain. Third, 
H3K4me2 was highest on the -1 nucleosome. Fourth, the gene body mark, H3K36me3, was 
depleted at the promoter, and enriched in the body of transcribed genes (Supplementary Fig. 
8). Each of these correlations between TSSs and chromatin marks were also observed to varying 
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degrees in genome-wide imputation in K562 cells (Fig. 1d), and imputation data in a complete 
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holdout cell type, GM12878 (Supplementary Fig. 9). Thus, dHIT recovered the placement of 
nucleosomes constrained to ordered arrays whose position correlated with transcription initiation.  

 
Active histone modifications have a similar relationship to transcription across 
mammalian cells  

We asked whether the relationship between transcription and histone modifications is a 
general feature that is shared across mammalian cell types. We computed the correlation 
between imputed and experimental histone marks in five holdout datasets without retraining the 
model. Holdout datasets were selected to represent a range of cultured cells, primary cells, and 
tissues from multiple mammalian species (Supplementary Table 1). Holdout data also explored 
a range of technical variation in both run-on assays and ChIP-seq validation experiments, 
including data collected by different labs, different fragmentation methods, and, for the run-on 
experiment, using different variants of a run-on assay (Supplementary Table 1-2). 

Despite a variety of technical differences between ChIP-seq in holdout cell types and the 
ENCODE training dataset (Supplementary Table 2), active marks were recovered with a similar 
fidelity in holdout cell types as observed for K562 (Fig 1e, Supplementary Fig. 10a-c). At 1kb 
resolution, dHIT recovered active marks indicative of promoters, enhancers, and gene-bodies at 
a median Pearson correlation of 0.73 (Pearson’s R = 0.38-0.84), substantially higher than copying 
values from the training dataset (Supplementary Fig. 10d). Lower correlations were generally 
observed when the experimental ChIP-seq data (certain CD4+ T-cell datasets) or the PRO-seq 
data (e.g., HeLa) had fewer sequenced reads or lower values in other data quality metrics 
(Supplementary Table 3). For marks that were distributed across broad genomic regions 
(H3K36me3 and H3K27me3), dHIT imputation identified broad regions of high signal with 
reasonably high accuracy but smoothed over fine-scale variation (Fig. 1e; Supplementary Fig. 
1). Finally, cell-type specific signal differences were predicted with reasonably high accuracy 
(Pearson’s R = 0.44-0.70 for active marks; Supplementary Fig. 10f), providing additional 
confidence that dHIT was not simply learning the average signal intensity of histone 
modification60. Thus, dHIT accurately recovered the distribution of active histone marks in a way 
that generalized to all new cell types examined here. 

To place correlations observed between imputed and experimental data into context, we 
compared correlations between imputed and ChIP-seq data to those observed between different 
experimental datasets in K562 and GM12878, two cell lines for which multiple data exists for each 
mark. For active marks, and for H3K27me3, correlations between dHIT imputation and 
experimental data were often within the range observed between experimental datasets 
(Supplementary Fig. 11). In addition to signal intensity, imputation could also recover the location 
of ENCODE peak calls in GM12878 with an accuracy rivaling ChIP-seq experiments 
(Supplementary Fig. 2a-b). These data indicate that imputation achieved performance similar to 
ChIP-seq experimental replication for most marks, with the notable exception of H3K9me3. 

We examined specific loci in which imputed histone marks differed substantially from 
experimental data. Differences could reflect either cases in which histone modifications deviate 
from transcription for a specific mechanistic reason, or they may reflect biological differences 
between cell stocks reflecting genetic factors, growth conditions, handling, or other confounding 
factors. To distinguish between these possibilities, we repeated ChIP-seq for H3K27ac in K562 
cells that were closely matched with those used to prepare PRO-seq libraries. In nearly all cases, 
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our own ChIP-seq data resolved major discrepancies between imputed and ENCODE datasets 
(Supplementary Fig. 12). We therefore concluded that major discrepancies between imputed 
and experimental marks predominantly reflect intrinsic biological or experimental/technical 
differences, rather than divergence between transcription and histone modifications.  

 
Two separate patterns of H3K27me3 reflect stem- and differentiated- cell states 

We identified one important exception on the extent to which histone imputation 
generalized between cell types. The repressive mark, H3K27me3, had a reasonable correlation 
with experimental data in K562, GM12878, and horse liver (median Pearson’s R = 0.31), 
consistent with the correlation expected from biological replication in K562. In these cell types, 
H3K27me3 was distributed across broad genomic intervals, which were identified with reasonable 
fidelity by dHIT imputation (Fig. 2A, top). However, we observed a much weaker correlation in 
mouse embryonic stem cells (mESCs, Pearson’s R = 0.06). Examination of signal tracks showed 
that the distribution of H3K27me3 differed dramatically from the K562 cell dataset. In mESCs, 
H3K27me3 was predominantly positioned in punctate peaks near weakly transcribed promoters 
(Fig. 2A, bottom). Although a handful of loci with critical developmental importance, notably all 
four HOX clusters, had a broad distribution in the mESC data, these did not show the pattern 
expected in the mark based on transcription (Supplemental Fig. 13). Analysis of H3K27me3 in 
86 high-quality samples showed that stem, germ, and certain progenitor cells usually had a 
punctate pattern, whereas most somatic cell types had the broadly distributed pattern 
(Supplemental Fig. 14B-C). Thus, although we cannot completely discount the possibility that 
technical factors contribute to this difference in H3K27me3 distribution61–63, both punctate and 
broad H3K27me3 distributions appear even when libraries were prepared by the same lab64 or 
consortium16,17. These observations suggest that H3K27me3 can occur in at least two distinct 
profiles, and that transcription is able to predict the broadly distributed profile found in somatic cell 
types with reasonable accuracy. 
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Imputation of bivalent promoters and other chromatin states 
We next asked whether dHIT could impute complex chromatin states consisting of multiple 

histone marks. The bivalent chromatin state in mESC is a perfect example where nucleosomes 
near gene promoters are marked with both H3K4me3 and H3K27me3, which are associated with 
gene activation and repression, respectively50. The bivalent chromatin state is best described in 
ESCs and germ cells, and tends to mark the promoter of genes with developmental 
importance50,65–67. We used dHIT models trained on ENCODE ChIP-seq data in K562 cells to 
impute H3K4me3 and H3K27me3 based on a GRO-seq dataset in mESCs68. Despite cell-type-
specific differences in the relationship between transcription and H3K27me3 between K562 and 
mESCs (noted above), we observed a strong tendency for bivalent promoters in mESCs to fall 
inside broad domains that dHIT predicted to have high H3K27me3. For example, the K562 model 
predicts that Prox1 resides inside of a broad H3K27me3 domain, based on low transcription levels 
from Prox1 and surrounding regions (Fig. 2A). Despite being far from highly transcribed genes, 
the Prox1 promoter is weakly transcribed, and the imputation correctly places a peak of 
H3K4me3. The general pattern where bivalent genes were transcribed within H3K27me3-high 
domains was consistent enough that nearly 80% of bivalent gene promoters could be separated 
from promoters associated with either mark alone, or neither mark, with a precision of 80%, using 
a random forest on holdout data (Fig. 2B). Notably, promoters that carry the H3K27me3 mark in 
mESCs were distinguished accurately from those carrying no mark, indicating that promoters 
carrying the H3K27me3 mark are generally not transcriptionally silent. Taken together, these 
results demonstrate that bivalent genes can be identified based on the distribution of active 
transcription alone.   

To generalize our observations on bivalent genes to other chromatin states, we asked 
whether chromatin marks imputed using transcription can infer chromatin states defined by 
chromHMM69. We used a previously reported chromHMM model that defined 18 distinct 
chromatin states using ChIP-seq data from six marks for which we trained imputation models 
(H3K4me3, H3K27ac, H3K4me1, H3K36me3, H3K9me3, and H3K27me3)17,70. Examination on 
the WashU epigenome browser revealed that chromatin states were highly similar, regardless of 
whether they were defined using experimental data from ENCODE or dHIT imputation (Fig. 2C). 
Patterns of chromHMM state enriched near the TSS of annotated genes were similar between 
experimental or dHIT imputed data as input (Fig 2D, Supplementary Fig. 15). To determine the 
concordance expected between chromatin states defined using independent collections of 
experimental data, we applied chromHMM to a distinct collection of ChIP-seq data in the same 
cell type (Supplementary Table 1). The Jaccard similarity index between imputed and 
experimental data were highly correlated with those observed between other ChIP-seq datasets 
(Pearson’s R = 0.92; Fig. 2E, Supplementary Fig. 16). Taken together, these results suggest 
that transcription alone is sufficient to infer complex chromatin states, especially active chromatin 
states.  

 
Genome annotation using a single functional assay 

Histone modifications are widely used to annotate mammalian genomes. We 
hypothesized that since dHIT can accurately predict chromatin marks, it provides a strategy for 
genome annotation in limited samples or new mammalian species using a single molecular tool. 
We analyzed chromatin states in 20 primary glioblastomas (GBMs) for which we recently 
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published ChRO-seq data54. ChromHMM analysis revealed both broad similarities and putative 
differences in chromatin states between different GBMs. For instance, a subset of samples was 
characterized by active transcription in ADM2 and MIOX (Fig. 3A). Analysis of histone 
modifications of this same set of samples would have taken 120 separate ChIP-seq experiments 
(Fig. 3B) and require sequencing of each experiment to a depth ~4 times greater than ChRO-seq 
using ENCODE guidelines. Thus, ChRO-seq and dHIT can resolve intricate patterns of chromatin 
organization using a single molecular assay. 
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Figure 3. Inference of chromatin states defined by chromHMM using transcription.
(A) ChromHMM states inferred using ChRO-seq data from 20 primary glioblastomas.
(B) The number of unique ChRO-seq or ChIP-seq libraries required to analyze chromatin states in 20 primary glioblastomas.
(C) The mean difference between predicted and experimental ChIP-seq data on a holdout chromosome (chr22) (Y-axis). SVR models were 
trained using the indicated experimental mark (left) or the indicated combination of histone marks (right).
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Another critical application is to efficiently annotate functional elements in diverse tissues 
from understudied species. We obtained ChRO-seq data from the liver of two horses that serve 
as the focus of the Functional Annotation of Animal Genomes (FAANG) project32,71,72. Using dHIT 
and models trained in K562 cells to impute histone modifications, we obtained patterns of 
H3K27ac, H3K4me3, H3K4me1, and H3K27me3 that were highly correlated with experimental 
data from the same tissues (Fig. 1E; Supplementary Fig. 17A). In addition to those histone 
marks measured by FAANG, dHIT also imputed patterns for five additional histone marks, 
providing new information about chromatin state that was not obtained by the FAANG consortium. 
Next, we prepared ChRO-seq libraries in eight murine tissues (Supplementary Fig. 17B; 
Supplementary Fig. 18). After accounting for biological replication in this experiment73 (7 
replicates x 8 tissues x 9 histone marks), it would have taken 504 ChIP-seq assays to prepare 
this same dataset. Thus, using dHIT to interpret ChRO-seq data provides individual labs access 
to consortium scale annotation of functional elements in mammalian genomes, and this 
information has potential applications in precision diagnostic medicine and genome annotation. 
 To further assess the relative power of PRO-seq and dHIT for predicting unobserved 
histone modifications, we asked whether PRO-seq more accurately predicted unobserved histone 
modifications than SVR models trained using a small number of observed histone modifications. 
To identify the best assay for this task, we trained SVR imputation models that use either PRO-
seq or ChIP-seq data for each of the 10 different histone marks to predict each of the other 
experimental ChIP-seq datasets. We evaluated performance using the L1 norm, defined as the 
average of the median centered distance between imputed and experimental marks in 10bp 
windows on a holdout chromosome (see Methods). PRO-seq achieved a lower median L1 norm 
than any other individual assay by a fairly wide margin (Fig. 3C, black). Examining imputation 
tracks led us to attribute the relative success of PRO-seq to two features. First, PRO-seq captured 
the boundaries and direction of gene bodies in a manner that could not be achieved by other 
marks (Supplementary Fig. 19A). Second, PRO-seq was the most accurate at recovering the 
relative distribution of signal intensities in focal marks near the TSS (Supplementary Fig. 19B). 
Thus, we conclude that PRO-seq improved the accuracy of histone mark imputation by encoding 
signals from multiple functional regions and by improving spatial resolution compared with ChIP-
seq data.  

We next trained SVRs using combinations of multiple histone marks to determine whether 
training on multiple experimental datasets improved imputation performance. Because the space 
of potential histone mark combinations was extremely large and training was time consuming, we 
manually selected combinations of histone marks that provide orthogonal information to each 
other. We first selected H3K4me2 and H3K36me3, which combined a mark denoting promoter/ 
enhancer regions with one denoting gene bodies9,74. The pair of experimental datasets together 
slightly improved the imputation of most ChIP-seq marks relative to the best performing individual 
mark, for instance H3K4me1 and H3K9me3 (Fig. 3). However, the median L1 norm was still worse 
than PRO-seq. We tested combinations where larger numbers of marks were observed by adding 
H3K27ac, H3K27me3, and H3K9me3, and evaluating the accuracy with which imputation could 
recover experimental marks. In most cases using additional marks made only a minor difference 
in performance (Fig. 3). Although we observed a decrease in the median accuracy using multiple 
marks (Fig. 3 black), this was explained largely by replacing the worst performing marks with 
experimental data. Our results therefore suggest that capturing information about the relative 
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position of TSSs and gene bodies was enough to saturate performance using our current 
framework. Thus, PRO-seq data predicted ChIP-seq signals of unobserved active histone marks 
at least as well as ChIP-seq data for five different histone marks.  
 
Transcription is required for promoter-associated histone modification 

The strong correlation observed between Pol II and histone modifications fit a model in 
which there is a casual relationship between the histone marks and transcriptional activity. 
However, correlations do not provide insight into which direction causality might run. To assess 
whether Pol II activity is necessary, and thus causal, for histone modifications, we rapidly blocked 
transcription initiation using the small molecule Trp and observed the immediate effects on both 
transcription (using PRO-seq) and histone modifications (using MNase-ChIP-seq) (Fig. 4A)75,76. 
After spike-in normalization, PRO-seq revealed the expected pattern of changes in Pol II 
throughout the time-course68: a large loss in Pol II near active transcription start sites by 1h of 
treatment, followed by an almost complete loss in signal across the entire genome by 4h (Fig. 
4C, right; Supplementary Fig. 20). As Trp does not affect engaged RNA polymerase, we 
observed a clearing wave of Pol II ~100kb from the TSSs on long genes at 1h (Fig. 4C, left), 
consistent with reported elongation rates of ~1-3kb per minute68,77. 

In parallel with PRO-seq we also performed MNase-ChIP-seq (ChIP-seq) for four active 
histone marks: H3K4me1, H3K4me3, H3K27ac, H3K36me3, and one repressive mark: 
H3K27me3. To normalize libraries for systematic variation in MNase cutting and 
immunoprecipitation efficiency, we added D.iulia butterfly cells to each immunoprecipitation as a 
spike-in control and normalized data using a modified version of the Spike Adjustment Procedure 
(SAP) normalization strategy78 (see Methods). Collectively, our data collection and analysis 
strategy resulted in ChIP-seq experiments that were highly correlated with each other and with 
public ENCODE datasets (Supplementary Fig. 20D-E, G).  

Analysis of MNase-ChIP-seq data revealed that histone modifications have a broad range 
of dependence on Pol II. Trp had no effect on either H3K36me3 or H3K4me1 (Fig. 4D-E; 
Supplementary Fig. 21A-B). Although H3K36me3 is deposited co-transcriptionally79–81, it has a 
long half-life on chromatin82, which the 4 hour time point used in our study is not likely to have 
captured. Surprisingly, two punctate marks, H3K27ac and H3K4me3, were rapidly lost by 1h of 
Trp and remained low after 4h of Trp (Fig. 4F-I, top). Western blotting for chromatin bound 
modified histones confirmed the global loss in H3K27ac and H3K4me3 signal observed by ChIP-
seq, as well as the muted effects on H3K36me3 and H3K4me1 (Fig. 4J, bottom; Supplementary 
Fig. 22). Taken together, these results indicate a surprising and rapid dependence of punctate 
histone marks on on-going transcriptional activity. 

The loss of active histone modifications from chromatin may be caused by either rapid 
enzymatic deacetylation or demethylation of histone tails or increased nucleosome turnover at 
TSSs. To differentiate between these hypotheses, we focused on H3K27ac. We performed 
additional Western blots in cells treated with a combination of triptolide and the pan-deacetylase 
inhibitor, Trichostatin A (TSA). In the presence of Trichostatin A, H3K27ac was retained on 
chromatin (Supplementary Fig. 23). Moreover, triptolide and TSA did not have a major impact 
on cell viability at the time points used in our present study, indicating that effects on chromatin 
were unlikely to be explained by an impact on cell viability (Supplementary Fig. 24). Collectively 
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our results suggest that rapid deacylation of H3K27 is responsible for the loss observed after 
blocking transcription. 
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Figure 4. ChIP-seq measures changes in histone modifications following transcription inhibition by Trp.
(A) Model of Trp action on transcription pre-initiation complex.
(B) Metaplots of PRO-seq signal after Trp treatment. Pol II density is depicted on a linear scale in a 300bp window centered on maximum TSS (left),
or on a natural log scale (right).
(C) Depiction of ChIP-seq experimental design where D. iulia chromatin was used as spike-in normalization control. See also STAR Methods.
(D-I) Meta plots and quantification of H3K27ac (D-E), H3K4me3 (F-G), and H3K4me1 (H-I) signals at enhancers and gene promoters. A paired,
two-sided, Wilcoxon test was performed to estimate statistical significance in signal changes, where (***) denote p-value < 2.2e-16 and (n.s.) p-val-
ue =1.
(J) Western blots show global changes in histone marks after Trp treatment. Each blot depicts chromatin associated histone marks and Pol II after
the indicated Trp incubation time. See also Supplementary Fig. 20.
(K) MA plots display the loss in H3K4me3 and H3K27ac between 0h and 1h of Trp treatment. Log2 fold changes and mean normalized signals
between time points were computed with DEseq2. A gray bar marks log2 fold change at 0.
(L) Violin plots quantify the levels of H3K4me3 and H3K27ac as a function of GC-richness of promoter sequences. Statistical significance was
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Next we examined a small number of sites (<5%) at which H3K4me3 or H3K27ac did not 
appear to change dramatically following Trp treatment. Retention of signals on this small set of 
sites could be explained in part by Pol II independent histone mark deposition acting at loci with 
low levels of Pol II prior to Trp treatment. Indeed, all of the sites with little or no loss in signal had 
low levels of Pol II in untreated cells (Fig. 4K; Supplementary Fig. 25A-B). We explored one 
possible mechanism for depositing histone modifications in the absence of Pol II: the CxxC zinc 
finger protein 1 (CFP1) binds unmethylated CpG dinucleotides and recruits SET1, the main 
H3K4me3 methyltransferase83. Sites which retained H3K4me3 had significantly higher density of 
CpG dinucleotides (Fig. 4L). Moreover, this enrichment was not found for sites that retained 
H3K27ac (Fig. 4L), illustrating that retention near CpG dinucleotides was specific to H3K4me3. 
Thus, at least for H3K4me3, a reasonable model is that the bulk of histone modification is 
deposited in a manner that is dependent on Pol II. Small amounts of H3K4me3 can be deposited 
in a manner that depends on other factors, but Pol II is critical to achieve high levels at most loci. 
These findings highlight a critical role for Pol II in maintaining H3K4me3 and H3K27ac on 
chromatin.   

Transcription required for H3K27me3 near PRC2 binding sites, but not for 
H3K27me3 spread 

We also analyzed the PRC2 dependent repressive mark, H3K27me3, after Trp treatment. 
H3K27me3 is deposited in large domains by the Polycomb repressive complexes 1 and 2 
(PRC1/2)84,85. H3K27me3 intensity was decreased following Trp treatment near focal binding sites 
of Enhancer of zeste homolog 2 (EZH2), a component of the PRC2 complex (Supplementary 
Fig. 21C), consistent with a requirement for RNA in recruiting PRC2 and depositing H3K27me386. 
A small number of EZH2 binding sites contained divergent transcription, detectable even at low 
PRO-seq sequencing depth, that was lost coincidently with H3K27me3 (Supplementary Fig. 
21D). However, 1-4h of Trp did not cause large changes in H3K27me3 accumulation over broad 
regions away from PRC2 (Supplementary Fig. 21C), and we found no evidence for global 
changes in H3K27me3 by Western blotting (Fig. 4J). Likewise, although the deletion of the Ephx1 
TSSs led to an accumulation of H3K27me3 over gene bodies over long time-scales87, acute and 
genome-wide inhibition of transcription by Trp did not increase H3K27me3 signal on gene bodies 
in general (Supplementary Fig. 21E). Thus, while transcription may prevent H3K27me3 spread 
over extended timescales, inhibiting transcription acutely (1-4h) did not change the level of 
H3K27me3 that is broadly distributed away from PRC2 regions. These findings suggest that 
H3K27me3 is consistently renewed near PRC2 binding sites in a transcription-dependent manner, 
but that H3K27me3 levels across heterochromatin are reasonably stable.  

Chromatin accessibility is not sufficient for transcription initiation 
In classical models, gene regulation in eukaryotes primarily involves removing 

nucleosomes from the promoter of active genes, at which point Pol II initiates in an indiscriminate 
manner88. More recent studies support such accessibility models by observations that Pol II 
initiates at nearly all DNase-I hypersensitive chromatin89,90. However, these recent studies are 
controversial, and at odds with other literature showing only a subset of DNase-I hypersensitivity 
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sites have evidence of active transcription11,38,91,92. Central to this controversy are a number of 
various arbitrary choices used in each study to identify DNase-I hypersensitive sites that putatively 
are (or are not) transcribed. To more rigorously detect transcription at DNase-I accessible regions, 
we trained an SVR to impute smoothed DNase-I-seq data using PRO-seq in the same manner 
as we used for histone modifications. The best model predicted a holdout chromosome (chr22) 
with an accuracy of 0.61 or 0.77 (R2) at resolutions of 100 and 1,000 bp (Fig. 5A-C), consistent 
with a strong correlation between chromatin accessibility and transcription initiation13,89. 
Nevertheless, a substantial number of DNase-I hypersensitive sites had predicted values near 
zero, indicating a subset of sites that were refractory to prediction based on PRO-seq transcription 
data (Fig. 5A, red arrow). Intersecting experimental and imputed DNase-I-seq intensities (100 
bp windows) with ChIP-seq data revealed that poorly performing windows were enriched for 
binding of CTCF (Fig. 5C), or to a lesser extent for transcriptional repressors and co-repressors 
such as REST, RFX5, or HDAC2 (Supplementary Fig. 26). In contrast H3K27ac peaks were 
depleted for 100 bp windows with poor matches between experimental and imputed DNase-I-seq 
data (Fig. 5B).  

To confirm the absence of transcription and further investigate the chromatin environment 
at each of these sites, we divided 100 bp windows into those in which DNase-I-seq was predicted 
well by PRO-seq, and those for which it was predicted poorly (Fig. 5B-C, red boxes). Windows 
in which DNase-I-seq was predicted well by dHIT for both CTCF and H3K27ac had a high signal 
for transcription initiation in GRO-cap data, which measures transcription initiation, and active 
histone modifications (H3K27ac, H3K4me3, and H3K4me1) (Fig. 5D-E). Windows in which 
DNase-I-seq was predicted poorly had a high CTCF signal, but virtually no evidence of 
transcription initiation based on GRO-cap, and weak signal for active histone modifications (Fig. 
5F). Yet, despite substantial differences in histone marks, the quantity of DNase-I-seq signal was 
similar in these regions (Fig. 5D-G, l). Thus, a substantial portion of DNase-I accessible regions 
show no evidence of transcription initiation. Our analysis supports a model in which both 
chromatin accessibility and other aspects of the local chromatin environment, including 
transcription factors, pre-initiation complex machinery, chromatin remodelers, and other 
transcription related proteins, are all necessary to facilitate transcription initiation by Pol II.  
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accessibility is not sufficient 
for transcription initiation.

(A-C) Scatterplots show 
experimental DNase-I 
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function of predicted DNase-I 
hypersensitivity (y-axis) in 
100bp windows intersected with 
DNase-I hypersensitive sites 
(A), H3K27ac (B), or CTCF 
peaks (C) on a holdout 
chromosome (chr22).
(D-G) Meta plots show GRO-
cap, histone modifications, 
CTCF binding, and DNase-I 
hypersensitivity signal near 
H3K27ac peaks in which 
DNase-I hypersensitivity signal 
was accurately predicted by 
transcription (left), near CTCF 
peaks in which DNase-I
hypersensitivity signal was 
accurately predicted by 
transcription (middle), and near 
CTCF peaks in which DNase-I 
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(H-I) Meta plots show ATAC-
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signal (I) at regions in D-G. 
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Chromatin accessibility at transcription start sites does not depend on 
transcription 

Paused Pol II is necessary for proper nucleosome positioning93, although it may not be 
required to establish sufficient levels of chromatin accessibility for other biological functions to 
take place, such as transcription factor recognition. To test the hypothesis that chromatin 
accessibility requires paused Pol II, we treated K562 cells with Trp to prevent transcription 
initiation. Unexpectedly, a time-course of Trp treatment resulted in a small but significant increase 
in Tn5 accessibility, measured using ATAC-seq (Fig. 5H, 6A). To more precisely examine the 
position of nucleosomes, we performed CUT&RUN for histone H340. We observed a loss in H3 
signal inside of the nucleosome depleted region and adjacent +1/ -1 nucleosomes (Fig. 6B). 
Changes in ATAC-seq and CUT&RUN were specific to DNase-I hypersensitive sites that had 
robust evidence of transcription initiation (Fig. 5H-I). Notably, changes in both H3 and ATAC-seq 
signals were observed exclusively in transcription initiation regions, and did not appear in CTCF-
bound and untranscribed control regions (Fig. 5H-I, 6K-L). Thus, we conclude that events prior 
to transcription initiation are primarily responsible for nuclease accessibility.  

Two mechanistic models could explain the loss of nucleosomes near transcription initiation 
regions upon Trp inhibition of transcription. First, Trp inhibition of TFIIH activity could increase the 
time that Pol II spends in the PIC or initiation mode, thereby keeping nucleosomes at bay. Second, 
pioneer factors, which bind and cooperate with SWI/SNF chromatin remodelers to open 
chromatin94,95, could be locked in a histone evicting mode by the failure of Pol II to properly pass 
through initiation. To distinguish between these models, we performed CUT&RUN for TATA-
binding protein (TBP), which showed increased TBP occupancy following 30 min of Trp 
(Supplementary Fig. 26G-H). This result supports the idea that the residence time of the pre-
initiation complex plays some role in establishing chromatin accessibility following Trp treatment. 
Notably, our results mirror observations of chromatin accessibility during mitosis96, a cellular 
context during which Pol II is depleted from chromatin, but accessibility to Tn5 and the signal for 
TBP are increased. Thus, although paused Pol II may help to establish the position of +1 and -1 
nucleosomes near open chromatin regions93, chromatin accessibility can be established by 
multiple factors and does not necessarily require Pol II initiation or pausing.  
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Discussion 
We have conducted an extensive analysis of the relationship between transcription, 

histone modifications and open chromatin. Our work leverages novel machine learning methods 
trained to infer the genomic distribution of 9 widely studied histone modifications using nascent 
transcription as input. We complemented new analytical tools with experiments perturbing both 
transcription and histone modifications. Our work provides new insight into the role of histone 
modifications in regulating transcription by Pol II. Collectively, our results support models in which 
active histone modifications are “cogs” with a supportive role, rather than a direct regulatory role, 
in transcription. Finally, we provide a new strategy for genome annotation using a single functional 
assay that is tractable for a single lab to perform.  

 
Active histone modifications as essential cogs, rather than causes, of transcription  

Our incomplete knowledge about the role that histone modifications play in transcription 
results in part from a lack of information about the precise strength of correspondence between 
histone modifications and transcription. We demonstrate that the correlation between histone 
modifications and transcription is nearly as strong as the correlation between biological replicates 
of experimental histone modification ChIP-seq data. Moreover, we likely underestimate the actual 
correlation between transcription and histone modifications, due to technical factors including 
imperfections in the model fit, low resolution experimental procedures, and biological differences 
between cells cultured in different labs. The strong correspondence between histone modification 
and transcription that we have observed here addresses several open questions about the 
biological role of histone modifications. For instance, do histone modifications serve in part to 
“bookmark” critical functional elements for later activation by developmental or environmental 
processes? The strong correspondence that we observe is not compatible with models where 
histone modifications routinely “bookmark” future transcription events. Rather, our work indicates 
that histone modifications reflect the transcription patterns active in the current cell state. Do 
different “chromatin states” comprised of distinct histone modifications (e.g., H3K122ac and 
H3K27ac) interchangeably produce similar transcriptional outcomes in distinct parts of the 
genome? Our results indicate that histone modifications serve as critical pieces of a uniform 
molecular machinery (i.e., cogs or gears), which are highly interconnected with Pol II and play a 
supportive role in transcription. 

A cog model implies that the genomic distribution of histone modifications and Pol II are 
highly interdependent on one another. In support of this, blocking Pol II transcription initiation for 
short durations (1-4 h) had rapid and large-scale effects on the genomic distribution of three 
histone modifications: H3K4me3, H3K27ac, and H3K27me3. Surprisingly, punctate focal marks, 
H3K4me3 and H3K27ac, were almost entirely dependent on active transcription to remain on 
chromatin. For lysine acetylation, this result mirrors elegant complementary experiments focused 
on histone acetylation in yeast97. Loss in punctate histone modifications coincides with a rapid 
loss in histone H3 associated with regulatory regions, indicating that nucleosome turnover may 
play some role in punctate mark depletion from promoters after Trp. However, several lines of 
evidence indicate that, at least for H3K27ac, mark removal by deacetylases plays a role as well. 
First, the loss in H3 does not appear large enough near the +1 or -1 nucleosome to explain the 
substantial depletion in punctate histone mark (although we note that CUT&RUN and ChIP-seq 
are substantially different assays, precluding a quantitative comparison of changes). Second, we 
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also found that depletion of H3K27ac after blocking transcription was prevented by HDAC 
inhibitors, indicating that active transcription affects the intricate balance between the addition 
and removal of histone acetylation. Although two additional marks, H3K4me1 and H3K36me3, do 
not undergo major changes during the 4h after blocking transcription initiation, this is likely 
explained by the known longer half-life of these particular methylation marks on chromatin82.  

Despite an extremely large loss in H3K4me3 at over 90% of loci as a result of transcription 
inhibition, a small number of focal modifications remain on chromatin. Loci retaining H3K4me3 
tend to be highly CpG-rich, potentially consistent with CFP1 binding unmethylated CpG 
dinucleotides and recruiting SET1 to deposit H3K4me383,98. These unaffected promoters have 
both low transcription and low H3K4me3 prior to the time-course. Taken together, these results 
suggest two modes of H3K4me3 deposition: a transcription-dependent mode, which appears to 
be required for the vast majority of H3K4me3, and a minor component which is dependent on 
recruitment of transcription activators in response to DNA sequence features. Our model of CFP1 
is compatible with the broad notion that transcription factors drive patterns of both histone 
modifications and Pol II transcription. Our work is also compatible with many histone modifications 
being unstable due to a constitutive interplay between enzymatic erasers of the marks in dynamic 
competition with writers99,100. Additionally, recent studies depleting histone modifications widely 
believed to be critical for transcription have found surprisingly limited effects on gene 
expression101–103. These studies support a model in which most active histone modifications work 
to fine-tune aspects of transcriptional regulation, rather than regulating gene expression on their 
own. 

 
Facultative heterochromatin responds to perturbations in transcription 

A great example of the interconnected loop between transcription and histone modification 
is H3K27me3. H3K27me3 is a maker of facultative heterochromatin and has long been 
hypothesized to serve a role in transcriptional repression. Blocking transcription initiation led to a 
decrease in H3K27me3 near PRC2 binding sites, consistent with recent work86. Our study 
supports the model in which transcription initiation produces short RNAs that recruit PRC2 to 
deposit H3K27me3, as observed at the Xist locus104. Nevertheless, less differentiated cell types 
appear to just have punctate patterns of H3K27me3 near PRC2 binding sites, without the broad 
H3K27me3 spread across a domain. As an example, when comparing more differentiated cell 
types such as primary or adult tissue with multipotent or pluripotent cell stages, H3K27me3 shifts 
its pattern from large domains to narrow, punctate regions. These less differentiated cell types 
may have a tightly regulated balance between mark addition and removal that prevents 
H3K27me3 from spreading. 
 
Chromatin accessibility: Necessary, but not sufficient, for transcription 

Our results also have implications for the debate about whether transcription initiates 
pervasively at open chromatin regions. Classical models of gene regulation developed during the 
1970s held that histones were general suppressor proteins that passively silenced gene 
expression88. Genome-wide analyses uncovered distinct classes of DNase-I accessible regions 
that either do or do not have evidence of transcription initiation11,91,92. Nevertheless,  these recent 
results remain actively debated by papers arguing that all nucleosome depleted regions initiate 
transcription with some frequency, regardless of whether they show histone modifications or 
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regulatory activity89. We show that there were a substantial number of DNase-I accessible open 
chromatin regions that were not identified by dHIT imputation. Unlike previous work, which relied 
on arbitrary heuristics to select sites with or without evidence for transcription, dHIT allowed us to 
directly identify candidate DNase-I accessible regions with atypically large imbalance between 
experimental and predicted transcription. These DNase-I accessible regions had no evidence of 
either transcription or histone modifications but were enriched for other chromatin binding proteins 
like CTCF. Likewise, blocking transcription had a small impact on chromatin accessibility uniquely 
at transcribed DNase-I hypersensitive sites that were accurately predicted by dHIT. Our findings 
indicate chromatin accessibility is not sufficient for transcription initiation, ruling out the hypothesis 
that Pol II is so promiscuous that it simply uses any accessible DNA to initiate89,90. Rather, Pol II 
requires specific features of core promoters105–107 or local protein-DNA environment, such as 
transcriptional activators, to initiate transcription.  

 
dHIT: A powerful tool for genome annotation 

Currently genome annotation requires conducting assays for multiple independent histone 
modifications to identify functional elements. Since functional elements are known to be highly 
tissue specific and their activity is dependent on environmental conditions, assays must be 
performed in numerous tissues and conditions to exhaustively identify functional elements. As a 
result, genome annotation efforts still benefit greatly from the coordinated efforts of large 
consortia. However, consortium efforts are not tractable to apply in all species and tissues, 
especially as major efforts to sequence eukaryotic organisms begin to produce large numbers of 
high-quality reference genomes37. This creates a great need for individual communities to 
annotate functional elements using the most efficient molecular and computational tools. We 
show here that nascent transcription measured using PRO-seq provides at least as much 
information about chromatin state as the combination of multiple ChIP-seq datasets.  

Why is dHIT so effective at predicting most active histone modifications? Our success in 
training dHIT was possible because PRO-seq data is an uncharacteristically rich source of 
information about genome function. PRO-seq provides the density of RNA polymerase across the 
genome at single nucleotide resolution and in a manner that is not confounded or restricted by 
RNA processing or RNA stability. PRO-seq directly measures polymerase densities on all 
transcription units (which is highly correlated with mRNA108) and it also provides signatures of 
active regulatory activity at both promoters and enhancers. It picks out promoter and enhancer 
pause peak positions where Pol II accumulates to high density as part of a checkpoint or 
regulatory mechanism. And, for many histone marks that are intimately connected to transcription 
and/or transcription states, like H3K36me3, H3K4me3, H3K27ac, the predictions made by dHIT 
are especially strong.  

dHIT complements existing algorithms that predict transcription units and transcriptional 
regulatory elements. Tools such as NRSA109 and Tfit110,111 leverage similar information, such as 
the shape or density distribution of nascent transcription, to annotate functional elements in 
eukaryotic genomes. dHIT builds on these approaches by training accurate machine learning 
models to transfer transcription “shape” features into chromatin states. Chromatin state 
annotations made using PRO-seq data could provide an efficient path to genome annotation, 
especially when complemented by experimental data for which dHIT provides incomplete or 
inaccurate information (e.g., H3K9me3, H3K27me3, and open chromatin). Our view is that, 
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depending on the problem at hand, dHIT/ PRO-seq would be complemented best by the addition 
of experimental H3K9me3 (which we are not able to predict at all), followed by ATAC-seq (which 
adds the position of candidate insulators) and H3K27me3.   

Even using just PRO-seq data alone, the development of dHIT maximizes information 
obtained about genome function from a single experiment. In addition to chromatin state, nascent 
transcription is also known to provide direct information about gene expression108, transcription 
factor binding110, the location of transcription start sites, and the grammar of transcription initiation 
domains11,15,56,91. Moreover, the  introduction of new biochemical tools that allow the application 
of PRO-seq techniques with greater ease in solid tissues and other samples that have proven 
challenging to measure using conventional genomic techniques has the potential to further 
democratize these technologies54,112. Thus, using dHIT to decompose PRO-seq data into 
separate information about active chromatin modifications is a supremely efficient strategy to gain 
information about functional elements using a single molecular assay for each tissue and 
condition.  
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Methods 
 
Experimental methods 
 
Cell culture: K562 cells (ATCC, CCL-243) were cultured at 37oC, 5% CO2  at a density between 
0.3-1 x 106cells/mL in RPMI medium (VWR 45000-396) topped up with 10% Fetal Bovine Serum 
(Genesee Scientific, cat: #25-514).  Cells were split at a consistent interval of 3 days, when the 
cells reached 106 cells/mL. 
 
Cell culture for Triptolide and Trichostatin A time course: 24h prior to drug treatments, K562 cells 
were resuspended in fresh (RPMI) medium at a density of 0.6 x 106 cells/mL. On the day of the 
experiment, cells were recounted, aliquoted in equal cell numbers to T-25 or T-100 ThermoFisher 
Tissue Culture Flasks (each flask corresponding to one time point) and treated with Triptolide 
(Sigma-Aldrich, T3652-1MG) or Trichostatin A (Sigma-Aldrich, T8552-1MG). Final concentrations 
used in our experiments were: 500 nM Triptolide, and 250nM Trichostatin A. All drug treatments 
were performed for 0 min, 1h, and respectively 4h. 
 
Cells cross-linking for ChIP: After Triptolide treatment, K562 cells were cross-linked in 1% CH2O 
freshly prepared  in 1x PBS on the day of the experiment to reach the final concentration of 0.1% 
CH2O in the media. Following a 5 min incubation at room temperature on a rocking platform, the 
cross-linker was quenched with 1M Glycine to reach a final concentration of 0.135 M Glycine. 
Lastly, cells were washed twice in 1x PBS, then harvested and snap frozen on dry ice. 
 
MNase ChIP-seq - chromatin extraction: We prepared MNase ChIP-seq data for six histone marks 
in K562 cells, including H3K4me1 (ab8895, lot: GR3206285-1), H3K4me2 (ab7766, lot: 
GR102810-4), H3K4me3 (ab8580, lot: GR3197347-1), H3K27ac (ab4729, lot: GR3231937-1), 
H3K36me3 (ab9050, lot: GR3257952-2), and H3K27me3 (ab6002, lot: GR3228496-2). All buffers 
and solutions used were provided by Cell Signaling Technology (91820S Simple ChIP kit). Cross-
linked K562 cells were thawed on ice and resuspended in 1 mL cold Buffer A,  mixed well, and 
centrifuged at 2000x g for 5 min at 4oC. The pellet was then mixed in 0.5 mL cold Buffer B, 
centrifuged at 2000x g for 5 min at 4oC andresspended again in Buffer B. While still in Buffer B, 
chromatin was digested with 0.5 uL MNase for 13 min at 37oC. Tubes were inverted every 2 min 
during the incubation time. Finally, the reaction was stopped by the addition of 40 uL 0.5 M EDTA, 
and the tubes were moved to 4oC. The cell suspension got topped up with 1.5 mL cold ChIP 
Buffer, transferred to a 7 mL glass dounce homogenizer, and dounced ~30 times with a tight 
pestle to release the chromatin. The chromatin was further diluted with 1 mL cold ChIP Buffer and 
aliquoted to 1.5 mL Eppendorf tubes to be centrifuged at 12000x g for 10 min at 4oC. The 
supernatant was collected and total chromatin quantified before each immunoprecipitation.  
 
MNase ChIP-seq - Immunoprecipitation: Total digested chromatin was diluted to a total volume 
of 1 mL in cold ChIP Buffer. ChIP samples were incubated with 3ug anti-histone antibody at 4oC 
overnight rotating, then incubated for an extra 2h at 4oC with 20 ug magnetic beads (50% protein 
A, 50% protein G). After incubation, samples were placed on a magnetic rack and washed three 
times with 1 mL Low Salt Wash Buffer for 5 min at 4oC, and three times with High Salt Wash 
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Buffer for 5 min at 4oC. Lastly, the beads were resuspended in 150 uL Elution Buffer and incubated 
on a shaking Thermomixer for 1.5 h at 65oC. The eluted fractions were saved, treated with 2 uL 
5M NaCl and 10 uL Proteinase K, and incubated overnight at 65oC to reverse the cross-linker. 
Samples were cleaned up, the DNA quantified with Qubit, and library prep was performed using 
the NEBNext Ultra II DNA Library Prep Kit for Illumina (E7645S). The barcodes used were 
purchased from NEB:NEBNext Multiplex Oligos for Illumina (E6440S). Before Bioanalyzer and 
Illumina sequencing, all libraries were size-selected by being run on a 6% Native PAGE. The 
fragments corresponding to 200-700 bp were cut out of the gel and the DNA extracted from the 
polyacrylamide using 3 volumes of a DNA extraction buffer (10mM Trip pH=8, 300mM NaAc, 
20mM MgCl2, 1mM EDTA, 0.1% SDS) per gram gel slice. The tubes were closed, covered with 
parafilm, and incubated overnight at 50oC shaking, on a Thermomixer. The following day, Spin-X 
columns (CLS8160, Millipore Sigma) were used to remove gel bits from the eluate which got 
Phenol/Chloroform precipitated. The precipitated DNA was resuspended in a 15 uL nuclease-free 
H2O and the library quantified using Qubit.         
 
Measuring chromatin-associated proteins by Western blotting: For the Triptolide experiment, we 
used matched cells with the ones in the ChIP-Seq experiments. The Trichostatin A Western blots 
were performed on cells of a different passage number. For each reaction, 500,000 K562 
Triptolide treated-cells were thawed on ice, spun down at room temperature in a swing bucket 
centrifuge for 5 min, then washed twice in 5mL Permeabilization buffer (10mM Tris-HCl pH 7.5, 
10mM KCl, 250mM Sucrose, 5mM MgCl2, 1mM EGTA, 0.05% Tween-20, 0.5 mM DTT, 40 
units/10mM AM2694 SUPERaseIn Thermo Scientific, 0.2% NP-40, A32963 EDTA-free PIERCE 
Protease Inhibitors). Cells were incubated on ice with Permeabilization Buffer 5min each eashing 
time. Isolated nuclei were verified by Trypan Blue staining. Chromatin-bound proteins were 
isolated by centrifugation at 12,500xg for 30min, at 4C. After centrifugation each cell pellet was 
dissolved in 2xSDS loading dye and syndicated on high setting for 5 min (30s ON: 30s OFF). 
Samples were boiled at 95C for 5min and loaded on a 15% SDS-PAGE gel. The same antibodies 
used for ChIPseq were used for western blotting. Cell Signaling Technology 9715 anti-H3 
antibody and abcam 8WG16 anti-Pol II were also used.  
 
Measuring cytotoxicity of Triptolide and Trichostatin A: Cells were grown in a 96-well plate 
following the “Cell culture for Triptolide and Trichostatin A time course” protocol. On the day of 
the experiment, cells were treated with either Triptolide alone or a Triptolide + Trichostatin A dual 
treatment, then incubated with almarBlue (BIORAD, BUF012A) following the BIORAD protocol. 
Absorbance of cells incubated with almarBlue was measured at 590 nm. The experiment was 
performed in two biological replicates and compared with a DMSO kill curve as positive control, 
and cells untreated with any drugs as positive controls.   
 
CUT&RUN: We measured histone H3 (Cell Signaling Technology 9715) and TBP (ab818) levels 
on chromatin following a time-course of Trp treatment using the High Ca2+ / Low Salt CUT&RUN 
protocol (https://dx.doi.org/10.17504/protocols.io.zcpf2vn). Each experiment was performed with 
250,000 K562 cells.  
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ATACseq: K562 cells were treated with Triptolide and a total of 500,000 cells per condition were 
used for ATACseq. After Triptolide treatment, cells were washed in 1xPBS, then lysed in 1mL 
cold Lysis Buffer (10mM Tris-HCl pH 7.4, 10mM NaCl, 5 mM MgCl2, 0.2% NP-40) while incubating 
for 3min on ice. The lysis buffer was removed by 10min centrifugation at 600xg, 4C, and cell 
pellets were resuspended in 48.5uL Transposition Buffer (10mM Tris-HCl pH 7.4, 10% DMF, 5 
mM MgCl2). 1.5uL in-house purified Tn5 (stock concentration 3.5 ug/uL) was used per reaction. 
The transposition took place for 30min at 37C while shaking. Phenol/Chloroform was used to 
extract transposed DNA which was further PCR amplified to add NExtera sequencing adapters.  
 
PRO-seq library prep: New PRO-seq or ChRO-seq libraries were prepared from cultured K562 
cells, and from equine liver tissue samples. We prepared PRO-seq libraries in K562 cells, 
matched to the MNase ChIP-seq. D.melanogaster, S2 cells, were used as heterogeneous spike-
ins and added to each sample before the run-on in a ratio of 1:10,000 = S2:K562 chromatin.  
 
Data processing for newly collected MNase ChIP-seq, CUT&RUN, ATAC-seq, and PRO-seq 
 
We used hg19 as the primary genome assembly in our data analyses to facilitate comparisons 
with ENCODE data (which primarily used hte hg19 assembly at the time these analyses were 
conducted). Data from each experiment was aligned to genome assemblies as following: 

- MNase ChIP-seq reads were aligned to hg19 merged to D.iulia assembly113,114. All 
positions with sequence similarity between the two genomes were masked using bedtools 
maskfasta; 

- ChRO-seq data was aligned to hg19 merged to the D.melanogaster dm3 genome 
assembly. All positions with sequence similarity between the two genomes were masked 
using bedtools maskfasta; 

- CUT&RUN was aligned to hg19 merged to S.cerevisiae SacCer1; 
- ATAC-seq was only aligned to hg19.  

 
Masking hg19 was performed with BedTools maskfasta 115. All sequencing data was aligned using 
bowtie2 version 2.3.5.1 116 with parameters: --no-discordant --no-dovetail --no-unal --no-mixed. 
Reads mapping multiple times were removed with samtools view 117, parameter: -F 256. The 
remaining reads were converted to paired-end BigWig files using BedTools and visualized in the 
WashU genome browser version 46.2 118,119. 
 
ChIP-seq normalization strategy (for MNase-seq triptolide time course): In our experiments, both 
the human and spike-in samples were mixed and treated with MNase together, before the 
antibody incubation. To correct IP signals for biases in MNase cutting efficiency, handling, and 
other errors, we used the spike adjusted procedure (SAP) method 78. We assume that ChIP-seq 
data reflects a linear combination of three factors: signal from the mark of interest, background 
which may be partially correlated with the mark, and random noise. SAP assumes that the 
background signals should be the same in treated and untreated samples and enforces this 
assumption by subtracting the expected background read count observed in the input. Because 
the data is noisy and we cannot assume input samples are sequenced deeply enough to estimate 
the background directly, SAP subtracts the expected background estimated using a linear 
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regression fit in background regions. To define background regions, we selected a set of 
coordinates in the human genome with the following properties:  

- They are untranscribed. The number of reads aligning within these sites should not 
change during the Trp time course. We first masked human coordinates for all annotated 
gencode transcripts, then removed regions near PRO-seq reads aligned to hg19; 

- They are found outside MACS2-called ChIP-seq peaks 120. The number of reads aligning 
within these sites should not be affected by differences in IP efficiencies; 

- They are located in accessible chromatin and have a broad range of MNase sensitivities 
that cover the range observed in loci of interest. 
 

To satisfy all these requirements we found a set of ENCODE CTCF peaks in K562 that were 
located at least 40kb away from any annotated transcription initiation region (TIRs). All TIRs were 
identified using dREG 91,121. In the case of punctate histone modifications (H3K27ac, H3K4me1, 
H3K4me3), we counted the input and IP reads in each 500bp bin over a 5.5kb region centered 
on the CTCF peak. To capture the variation in MNase accessibility for marks deposited within 
broader domains (H3K36me3 and H3K27me3) we enlarged the bin size to 1kb spanning 30kb 
adjacent to the CTCF peaks. To account for differences in IP efficiency and MNase accessibility 
due to biases in chromatin accessibility, we then ranked CTCF peaks by their DNase-I 
hypersensitivity (DHS) and summed up the counts in each bin into 10 deciles.  
 

 
Box 1: Notations: 

 
I = window ID (where I ∈ [1,11] for H3K27ac, H3K4me1, and H3K4me3  

            OR 
            I ∈ [1,30] for H3K36me3, H3K27me3) 

i = sample name (where i ∈{  H3K27ac, H3K4me1, H3K4me3,  H3K36me3, H3K27me3}) 
j = time point (where j ∈{ 0h, 1h, 4h }) 
 
 
(1)  𝜑(𝑟𝑒𝑎𝑑𝑠)𝐼, 𝑖, 𝑗 = sum of reads in background  
(2)  δ(𝑟𝑒𝑎𝑑𝑠)𝐼, 𝑖, 𝑗 = The expected number of IP reads based on the background 
(𝜑(𝑟𝑒𝑎𝑑𝑠)𝐼, 𝑖, 𝑗) using the calculated linear regression equation 
(3) 𝜔(𝑟𝑒𝑎𝑑𝑠)𝐼, 𝑖, 𝑗 = reads counted from the true IP samples 
(4) 𝑅𝑒𝑠𝐼, 𝑖, 𝑗 = residuals computed between (2) - (3) 
(5) 𝑁𝑜𝑟𝑚 = positive residuals (from 4) divided by the total number of spike-in reads in 
a given (I,i,j)  samples 

 
 
 
We denote the raw, observed signal in each window as:  
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Let 𝜑(𝑟𝑒𝑎𝑑𝑠)𝐼, 𝑖, 𝑗 represent the raw signal per background window (I) in each IP sample or its 
corresponding input control (i) and time point (j). 
 
SAP assumes that reads in each IP sample should be proportional to the input sample in 
background regions. To estimate the expected signal between input and IP, we fit a linear 
regression between the 10 deciles in the background regions of input and IP, resulting in 
estimates of two regression coefficients, α and β. Next, we fixed α and β and used those 
parameters to estimate the expected IP signal within given sets of MACS2-called peaks 
(δ(𝑟𝑒𝑎𝑑𝑠)𝐼, 𝑖, 𝑗) as a function of the input: 
 
 δ(𝑟𝑒𝑎𝑑𝑠)𝐼, 𝑖, 𝑗	 = 	𝛼	 ∗ 𝜑(𝑟𝑒𝑎𝑑𝑠)𝐼, 𝑖 = 𝐼𝑛𝑝𝑢𝑡, 𝑗j+	𝛽   
 
To estimate the contribution of histone mark to the signal in each IP sample in each window of 
interest (e.g., a MACS2 peak), we then computed the residual (𝑅𝑒𝑠𝐼, 𝑖, 𝑗) between the number of 
reads expected based on the linear regression equation ( δ(𝐼)𝑖, 𝑗) and the number of IP reads 
observed experimentally within the same regions (𝜔(𝑟𝑒𝑎𝑑𝑠)𝐼, 𝑖, 𝑗). 
 
𝑅𝑒𝑠𝐼, 𝑖, 𝑗	 =	   𝜔(𝑟𝑒𝑎𝑑𝑠)𝐼, 𝑖, 𝑗 - δ(𝑟𝑒𝑎𝑑𝑠)𝐼, 𝑖, 𝑗 
 
As residuals can be negative, and it does not make sense to have a negative signal for a mark, 
we set all negative residuals to zero, as in SAP. We note that the vast majority of loci we expected 
to have signals (e.g., because they were in ENCODE peaks) had residuals that were larger than 
0.  
 

𝑅𝑒𝑠′𝐼, 𝑖, 𝑗	 = 	𝑚𝑎𝑥(0, 𝑅𝑒𝑠𝐼, 𝑖, 𝑗) 
 
Last, to account for global changes, we divide each normalized region by the total number of 
spike-in reads (𝑆𝑖, 𝑗) in a given sample (i) of time point (j). 
 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝐶ℎ𝐼𝑃	𝑠𝑖𝑔𝑛𝑎𝑙	 = 	𝑅𝑒𝑠′	𝑖, 𝑡	 ∗ 	
1
𝑆𝑖, 𝑗

 

 

 
CUT&RUN normalization strategy: A total of 2.5pg/mL final concentration of S.cerevisiae MNase-
fragmented DNA was added as spike-in control to each CUT&RUN experiment. After aligning all 
reads to a merged human and yeast genome, we determined the total number of yeast reads in 
each sample. For normalization purposes, we divided the human tags by the total number of yeast 
tags in each particular sample. 
 
ATAC-seq normalization strategy: To account for changes during handling and sequencing of 
ATAC-seq libraries, we consider a constant background level between conditions. The 
background was estimated as the total number of tags mapping to gene-desserts, PRO-seq 
untranscribed, and Tn5-inaccessible coordinates in the human genome. To normalize, we divided 
the tags in a given sample by its respective background tags. 
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PRO-seq normalization strategy: Chromatin from D.melanogaster S2 was spike-in as internal 
control in a 1:10,000 [ng : ng] human:fly ratio. As normalization, we divided the human tags in 
each sample by the total number of tags aligning to the fly genome from that particular sample.  
 
Maximum transcription start sites, as defined in Tome and Tippens, 2018 15, were used to draw 
meta profiles of ChIP-seq, PRO-seq, CUT&RUN, and ATAC-seq signals.   
 
Training dHIT SVRs to predict histone marks using PRO-seq, GRO-seq or ChRO-seq data 
Overview: The primary goal of dHIT is to map the signal intensity and “shape” in a run-on and 
sequencing dataset (PRO-seq, GRO-seq or ChROseq; henceforth referred to simply as PRO-
seq) to the specific quantity of a histone modification at each position in the reference genome. 
The dHIT algorithm passes standardized read count data to a support vector regression (SVR) 
classifier. During a training phase, the SVR model optimized an objective function which mapped 
PRO-seq signal to the quantity of ChIP-seq signal at each position of the genome. Once a dHIT 
model is trained using existing ChIP-seq data, it can impute steady state histone modifications in 
any cell type, provided that the relationship between histone modification and transcription is 
preserved. The dHIT software package is provided at https://github.com/Danko-Lab/histone-
mark-imputation.  
 
Training dataset: All data used for training were evaluated for quality content using PEPPRO122. 
We trained each model using five different run-on and sequencing datasets that were generated 
by different laboratories, thereby reducing the potential for overfitting to batch-specific features of 
a single dataset (see Supplementary Table 2) 56. Training data was distributed between PRO-
seq and GRO-seq data. Sequencing depth of the training data ranged from 18 to 374 million 
uniquely mapped reads, and all five training datasets were highly correlated when comparing 
RPKM normalized read counts in gene bodies 56.  

We trained SVR models for ten different histone modifications in K562 cells, primarily 
using data from the ENCODE project16, all of which passed the ENCODE 2 data quality 
standards123. Data for H3K122ac ChIP-seq in K562 cells was obtained from a recent paper52. 
Lastly, we trained models to recognize high-resolution ChIP-seq data using an MNase ChIP-seq 
protocol for H3K4me1, H3K4me2, H3K4me3, H3K27ac, and H3K36me3. For validation in holdout 
cell types, we obtained ChIP-seq data from six additional cell types from a variety of sources. All 
training and validation analyses used sequencing depth normalized read counts, where possible 
using bigWig or bedGraph files provided by the original authors as input. All ChIP-seq data used 
in training or for validation is listed in Supplementary Tables 1 and 2. 
 
SVR feature vector: We passed dHIT PRO-seq data from non-overlapping windows of multiple 
sizes that were centered on the position for which ChIP-seq signal intensity was being imputed. 
We have previously optimized the number of window sizes and the window sizes for optimal 
classification of TIRs using dREG 56,91. Since the imputation of histone modifications uses signals 
in the PRO-seq data that are similar to dREG, we used the values that were optimal for dREG 
without modification. Like for dREG, we passed data from windows at multiple size scales, 
including 10, 25, 50, 500, and 5,000 bp windows (n = 10, 10, 30, 20, and 20 windows, 
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respectively), representing read data as far as 100 KB from the genomic region in question. PRO-
seq data was standardized across each length scale in a similar fashion as we use for dREG91, 
using a logistic function, F(t), to transform raw read counts using two free parameters, α and β: 
 

F(t) = 1/ (1 + e-α(t-β)) 
 
Where t denotes the read counts in each window. Tuning parameters α and β were defined in 
terms of two parameters, x and y. Intuitively, y gives the value of the logistic function at a read 
count of 0, and x represents the fraction of the maximal read count at which the logistic function 
approaches 1. Values of x and y are related to the parameters α and β by the following equations:  
 

β = x max(t) 
 

α = ( 1 / β ) log( 1 / y - 1) 
 
We have previously found that x = 0.05 and y = 0.01 optimized the discovery of transcription 
initiation regions (TIRs)91, and these values were used throughout this study.  
 
Selecting training positions: We trained models using 3 million training examples divided evenly 
among five K562 training datasets (n = 600 thousand positions in each dataset). In all cases, 
human chromosome 22 was excluded from training to use as a holdout.  

We found it convenient to use heuristics that identify regions with a high PRO-seq signal 
intensity when choosing training samples. We defined regions of potential PRO-seq signal, which 
we call “informative positions” using the same heuristics we described previously for dREG 91.  
Each window was defined as an “informative position” when the window had more than 3 reads 
within 100 bp on the single strand or at least one read within 1000 bp on both the positive and 
negative strands. These heuristics were selected as a way to optimize the tradeoff between the 
number of positions analyzed and the fraction of real TIRs that were scored based on the overlap 
with GRO-cap peaks. Within the five training datasets, informative positions accounted for 27.3% 
(855.9M), 6.7% (209.4M), 14.7% (460.0M), 13.8% (433.9M), and 9.4% (294.0M) of 10 bp 
windows, respectively.  

Training examples were selected at random, according to the following criteria: In order to 
increase the frequency of windows with a strong signal intensity in the training dataset, we 
selected 5% of the training data from positions in the informative positions pool (defined above) 
that also intersected a transcription start site (TSS), defined using GRO-cap 11, and a DNase-I 
hypersensitive site16, 93% from the non-TSS informative sites, and the remaining 2% from the 
non-informative position pool. This was done to enrich the frequency of GRO-cap TSSs (these 
were 0.78% of hg19), and to increase the frequency of regions with substantial PRO-seq signal 
intensity, in the training dataset.  

Training computations were conducted using Rgtsvm, a fast, GPU-based SVR 
implementation124. We trained 3M samples with 360 features for each sample from 5 data sets 
with an average training time of 27.9 hours (18.0~37.8 hours) on an NVIDIA Tesla TITAN XP 
GPU. Training achieved an average Pearson correlation of 0.48 (0.109~0.725) on holdout 
positions that matched the training dataset at 10bp resolution. 
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SVR imputation: We imputed histone modifications every 10 bp using the run-on and sequencing 
datasets outlined in Supplementary Table 2. We tested the accuracy of imputation on human 
chr22 (which was withheld during training) in four holdout cell lines HCT116, HeLa, and CD4+ T-
cells125–127. Imputation was conducted using ChRO-seq data from 20 primary glioblastoma 
cases54. We also imputed data from two additional mammals: mouse embryonic stem cells 
(mESCs)68 and horse liver (new data). Computing imputed values on human chr22 (5.1M loci) 
took 3-5 hours on a Tesla TITAN XP GPU.  
 
Training models that impute histone marks using other histone marks 
We selected 1M samples from chromosome 1 to train SVR models in which histone marks were 
used to predict other histone marks. In order to make a fair comparison with models trained to 
predict histone marks using PRO-seq data, we also trained new models from PRO-seq (using the 
dataset G1) using 1M samples. To select training positions when training models using histone 
marks, we calculated the maximum read count in every 50 bp windows on chr1 (4.99M regions), 
and selected 1/3 of the samples from regions that contain more read counts than median value 
in either the training or the experimental data (for instance, if using H3K4me1 to predict H3K4me3, 
we selected 33% of training positions that had higher read counts than the median H3K4me1 or 
H3K4me3 signal). We selected another 1/3 from regions which contained read counts that were 
less than 20% of the median value in either the training or the experimental data. We selected 
the last 1/3 of the training regions from remaining regions at random. To obtain training datasets 
when multiple histone marks were used to jointly predict a histone mark, we merged multiple 
experimental histone mark data together and sampled windows as described above. The feature 
vector and standardization for histone marks were identical to those used for PRO-seq data (see 
above). When generating the feature vectors for multiple histone marks, we concatenated the 
feature vectors extracted from multiple experimental histone marks together.  

We compared the difference between imputation and original experimental data using the 
L1 norm, by median centering and scaling each dataset, as follows: 
 

L1_norm === abs(((xi - median(x)) / sd(x)) - ((yi - median(y)) / sd(y))) 
 
Where xi is the imputed signal, and yi is the experimental signal for a particular comparison, and i 
represents the set of all genomic positions on chr22. We use sd() to denote the standard deviation 
of the mark.  
 
Computing performance metrics using dHIT SVRs  
Imputed profiles for 10 histone modifications in seven cell lines were compared to a variety of 
publicly available and newly generated ChIP-seq data available from ENCODE, Epigenome 
Roadmap, and a variety of other sources, as outlined in Supplementary Table 1. When 
measuring correlations, we subtracted the background (median) value from all positions, and 
applied a series of filters that were designed to remove artifacts of mappability or repeat content. 
Filters used to compute correlations include: 1) We masked all positions in which 30bp, the size 
of many of the older ENCODE ChIP-seq datasets, can not map uniquely to the reference genome; 
2) We removed ENCODE blacklist regions annotated on hg19128; 3) We identified and masked 
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“spikes” in the data, caused by putative experimental or mapping artifacts, that were not filtered 
by the above two criteria. Our filter identified blocks with a high signal intensity (top 2%) for which 
the sum of the absolute value of the two maximal derivatives was higher than the number of read 
counts in the region (i.e., [abs(d1) + abs(d2)] > h, where d1 and d2 are the maximal and second 
highest change in ChIP-seq signal intensity, and h is the total read density between the positions 
at which d1 and d2 occur). When comparing performance metrics between two experimental 
datasets, this filter was applied to both ChIP-seq datasets. 

After masking the types of regions indicated above, we divided the whole genome or the 
entire chromosome into four granularities, 10 bp windows, 100 bp windows, 1,000 bp windows, 
and 10,000 bp windows.  After collecting the sum of the read counts from experimental data and 
imputed data in each window, we compared the relationship between two datasets using four 
statistics: Pearson correlation, Spearman correlation, MAD, and JSD. Windows with 0 counts 
were removed from estimates of Pearson and Spearman correlation when using 10kb windows, 
as large regions without any ChIP-seq signal were likely driven by mappability issues.  

To evaluate the accuracy of dHIT, we computed alternative performance metrics including 
MSE quantification at different subsets of genomic sites, as well as ROC and PRC curves for the 
recovery of peak calls. We added precision recall curves (PRC) following the setup introduced by 
Nair et. al. (see ref129), in which we divided the holdout chromosome into 500 bp non-overlapping 
windows from which we exacted ground truth labels using cell type specific peak calls generated 
by ENCODE. We generated PRCs or ROC curves by thresholding the imputed histone 
modification signal intensity to divide the same windows into those predicted to be enriched/ not 
enriched for each histone mark. To provide additional context for the PRC or ROC curves, we 
also computed PRC/ ROC curves in the same manner from experimental data. All analyses focus 
on the holdout chromosome (chr21) in the holdout cell type (GM12878).  

We computed mean-squared errors (MSE) following performance metrics similar to those 
presented by Durham et. al. and Schreiber et. al. (see ref44,57). We computed MSE in different 
genomic regions, including the top 1% of imputed windows (MSEimp); and the top 1% of 
experimental windows (MSEobs), two independent definitions of promoter and enhancer, using 
either proximity to gene annotations (GENCODE) or the stability of the transcription unit produced 
by each annotation following the nomenclature detailed in ref11.  
 
ChromHMM analysis 
Chromatin state annotations were generated using ChromHMM69. We used the 18 state core 
model (model_18_core_K27ac) trained using ENCODE data55, because we had already imputed 
all of the histone modifications used in this model. To convert imputed histone modifications into 
data that met the requirements of ChromHMM, we fit the sum of imputed signal in 200 bp windows 
to a Poisson distribution, and identified windows with values higher than the 0.999th quantile. 
Chromatin segmentation was performed using the MakeSegmentation command, following the 
instructions from the authors70. We also made chromatin segmentations using an alternative 
source of experimental data for six histone marks, including H3K27ac, H3K27me3, H3K36me3, 
H3K4m1, H3K4me3,  and H3K9me3 from ENCODE and other sources, as outlined in 
Supplementary Table 1. Chromatin segmentations were compared between experimental 
datasets, and between imputed and experimental data, using the Jaccard distance between each 
pair of states130. All computations were performed with bedtools115. When comparing enrichments 
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of each state to those expected at random, we randomized the position of each state using 
bedtools random.  
 
Predicting bivalent TSSs 
Bivalent genes in mESCs were identified using data from ref 65 and converted into mm9 
coordinates using liftOver. Bivalent transcription start sites were predicted using a random forest. 
We used features representing H3K4me3 within 1,000 bp in 250 bp bins and H3K27me3 within 
60,000 bp in 15,000 bp bins surrounding each promoter. All imputed histone modification data 
was based on models trained in K562 cells. We trained on a matched set of 100 bivalent and 100 
non-bivalent promoters. The model was tested on a random set of 100 bivalent and 100 non-
bivalent promoters that excluded promoters held out during training.  
 
Classification of H3K27me3 distribution 
We obtained data from 86 H3K27me3 datasets from the Roadmap Epigenome Project (Data 
sources listed in Supplementary Table 4). Data from each sample was classified using a 
systematic approach designed to represent the degree to which each sample appeared to fit 
either the broad or punctate distribution of H3K27me3. Briefly, data from chromosome 21 was 
split into 10kb non-overlapping bins. The amount of H3K27me3 signal was counted in each bin. 
Bins from each sample were placed in descending order based on the read counts in that bin. 
The top and bottom 0.5% of bins were removed from each dataset and data was normalized to 
the total number of reads. Finally, we conducted a principal component analysis. We confirmed 
by manual inspection that principle component 1, accounting for 95.56% of the variance in the 
data, corresponded to the degree to which each sample showed a “punctate” or “broad” pattern. 
The value of principal component 1 in each sample was used in downstream analyses as a 
surrouge for the punctate and broad pattern. To compare the differences in patterns through 
differentiation, we manually categorized each of the 86 datasets as either pluripotent, multipotent, 
fetal, or adult/ somatic primary cells. We compared values of principal component 1 across these 
groups using a two-sided Wilcoxon rank sum test in R.  
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