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Abstract 

 

The DNA damage response is essential to maintain genomic stability, suppress replication 

stress, and protect against carcinogenesis. The ATR-CHK1 pathway is an essential component 

of this response, which regulates cell cycle progression in the face of replication stress. 

PARP14 is an ADP-ribosyltransferase with multiple roles in transcription, signaling, and DNA 

repair. To understand the biological functions of PARP14, we catalogued the genetic 

components that impact cellular viability upon loss of PARP14 by performing an unbiased, 

comprehensive, genome-wide CRISPR knockout genetic screen in PARP14-deficient cells. We 

uncovered the ATR-CHK1 pathway as essential for viability of PARP14-deficient cells, and 

identified regulation of replication fork stability as an important mechanistic contributor to the 

synthetic lethality observed. Our work shows that PARP14 is an important modulator of the 

response to ATR-CHK1 pathway inhibitors. 
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Introduction 

The DNA damage response (DDR) machinery is essential to maintain genomic stability, ensure 

cellular proliferation, and protect against carcinogenesis (1). The complex mechanisms 

employed by the DDR participate not only in repairing DNA damage, but also in attenuating 

replication stress (2,3). Arrest of the DNA polymerases at sites of replication blockades can 

result in collapse of the replication machinery and genomic instability. A crucial component of 

the DDR is the ataxia telangiectasia and Rad3-related (ATR) protein kinase, which is activated 

by single stranded DNA induced upon replication stress. This leads to downstream 

phosphorylation of Chk1, which induces a broad cellular response resulting in stabilization of the 

replication fork, suppression of origin firing, and cell cycle arrest (4-6). ATR and CHK1 inhibitors 

are currently being investigated as anti-cancer drugs, with multiple clinical trials under way (7,8).  

ADP-ribosylation is a prominent post-translational modification which regulates 

transcription, signal transduction, and DNA repair (9-12). PARP1 is the best characterized 

member of this family. In particular, PARP1 has emerged as potent target for treatment of 

tumors with deficiency in the BRCA pathway of homologous recombination (HR) DNA repair, as 

unrepairable DNA damage results in death of HR-deficient cells treated with PARP1 inhibitors 

such as olaparib (13,14). This synthetic lethal interaction between PARP1 and the BRCA 

pathway has been effectively employed for clinical treatment of ovarian cancer (15). 

Besides PARP1, the PARP family comprises 16 other members, with various and less 

understood functions (16). PARP14 (also known as ARTD8) has been associated with multiple 

cellular processes, however mechanistic details are generally sparse (17). PARP14 has been 

shown to be involved in regulation of multiple signal transduction pathways including NFkB (18-

20), and JNK (21,22). Moreover, PARP14 has been described as a transcriptional co-activator 

regulating the macrophage-specific transcriptional program (23-25). More recently, it has been 

shown that PARP14 interacts with multiple RNA regulatory proteins and may play a role in 

regulating RNA stability (23,26). PARP14 catalytic inhibitors are currently being developed and 
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targeting PARP14 has been proposed as a possible therapeutic approach for multiple cancer 

types (18,21,22,27,28). 

We previously showed that PARP14 is essential for genomic stability by promoting HR 

and alleviating replication stress (29). Mechanistically, we showed that PARP14 regulates the 

association of the RAD51 recombinase, an essential HR factor, with damaged DNA. These 

findings further indicate that PARP14 may impact the tumor response to treatment with 

genotoxic drugs. 

With the advent of the genomics era, and the concomitant development of numerous 

novel drug targets, it has become clear that identification of the genetic background that confers 

maximum drug sensitivity is paramount for advancing cancer therapy. Genome-wide genetic 

screens in human cells have proven invaluable tools to comprehensively and unbiasedly 

evaluate pharmacogenetic interactions (30-32). Moreover, such screens can provide invaluable 

insights into functions and mechanisms of human genes. Here, we describe a genome-wide 

CRISPR-based knockout screen designed to identify synthetic lethality interactions of PARP14. 

We show that the ATR-CHK1 pathway is essential for viability of PARP14-deficient cells, and 

identify regulation of replication fork stability as an important mechanistic contributor to the 

synthetic lethality observed. Our work shows that PARP14 is an important modulator of the 

response to ATR-CHK1 pathway inhibitors. 

 

 

Results 

 

Genome-wide CRISPR screen identifies PARP14 synthetic lethal candidates 

In order to identify genes which are essential for cellular viability in the absence of 

PARP14, we performed a genome-wide synthetic lethality CRISPR knockout screen in 8988T 

pancreatic cancer cells (Figure 1A). First, we obtained PARP14-knockout 8988T cells by 
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CRISPR/Cas9-mediated genome editing (Figure 1B). Out of the several PARP14-knockout 

clones obtained, the KO6 clone (PARP14KO6) was used for the synthetic lethality screen. 

Wildtype and PARP14KO6 8988T cells were infected with the Brunello human CRISPR knockout 

lentiviral-based library. This library targets 19,114 genes with a total of 76,441 unique guide 

RNAs (gRNAs), thus on average covering each gene with four different gRNAs (33). To 

maintain 250-fold library coverage, 20 million library-infected cells were allowed to grow for two 

weeks. Cells were the collected, and genomic DNA was extracted. The gRNA region was 

amplified by PCR and identified by Illumina sequencing (Figure 1A).  

We next employed the Redundant siRNA Activity (RSA) algorithm (34) to generate a 

ranked list of genes that were lost in PARP14-knockout compared to wildtype control condition 

(Figure 1C; Supplemental Table S1). Biological pathway analysis of the top 500 hits revealed 

RNA-related processes as the most commonly enriched in synthetic lethal interactions with 

PARP14 loss (Figure 1D, Supplemental Table S2), perhaps in line with previously proposed 

roles for PARP14 in regulating RNA stability (23,26). Another biological process highly 

represented on the pathway analysis and previously associated with PARP14 was regulation of 

mitochondrial activity (21,27). However, cell division, chromosome biology and DNA replication 

and repair also feature prominently on the list (Figure 1D, E). In particular, among the top hits 

were multiple components of the ATR pathway, including CHK1, TOPBP1, MRE11, RPA3, and 

RAD9A (Figure 1E), suggesting an involvement of PARP14 in suppressing replication stress. 

This is broadly in line with our previous study uncovering a role for PARP14 in DNA repair (29). 

 

Loss of CHK1 or DNA2 reduces proliferation of PARP14-deficient cells 

 For screen validation, as a proof of concept we first picked two of the functionally 

relevant top candidates, namely CHK1 and DNA2. Both CHK1 and DNA2 are key players in 

DNA damage repair and represent potential therapeutic targets for cancer therapy (35-37). To 

validate these candidates, we used both the original 8988T PARP14KO6 cell line in which the 
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screen was performed, as well as two additional PARP14-knockout 8988T clones, namely 

PARP14KO14 and PARP14KO19 (Figure 2A). We employed siRNA to knockdown the candidates in 

these cells (Figure 2B), and measured their proliferation over four days using the CellTiterGlo 

ATP-based luminescence assay. Consistent with the screen results, CHK1 knockdown led to 

impaired cellular proliferation in all three 8988T PARP14-knockout clones compared to wildtype 

cells (Figure 2C). Similar findings were observed when DNA2 was knocked down (Figure 2D). 

We also measured apoptosis using Annexin V flow cytometry upon CHK1 depletion in PARP14-

knockout cells. Treatment of multiple PARP14-knockout 8988T clones with siRNA targeting 

CHK1 significantly increased apoptosis compared to control cells (Figure 2E).    

In order to rule out any cell line specific effects, we next sought to validate CHK1 and 

DNA2 in two additional cell lines, namely U2OS (human osteosarcoma) and DLD-1 (colorectal 

adenocarcinoma). For these two cell lines, we performed co-depletion of PARP14 and either 

CHK1 or DNA2 using siRNA. Western blot experiments indicated that co-depletion was efficient 

(Figure 2F). In line with the findings in 8988T cells, loss of both PARP14 and CHK1 or DNA2 

reduced cellular proliferation in U2OS (Figure 2G) and DLD-1 (Figure 2H) cell lines. These 

results indicate that CHK1 and DNA2 are essential for proliferation of PARP14-deficient cells. 

 Next, we tested how long-term viability is affected when the top candidates are depleted 

in the PARP14-knockout cells. To this end, we performed clonogenic survival assays in 8988T 

cells. In all three knockout clones, siRNA-mediated depletion of CHK1 resulted in severely 

impaired colony formation (Figure 3A, B). To rule out off-target effects of the CRISPR gene 

editing system employed, we corrected the PARP14KO6 clone by exogenous, constitutive re-

expression of PARP14 cDNA. Two separate re-expression clones (#1 and #2) were obtained 

(Figure 3A). Re-expression of PARP14 in the KO6 clone restored the clonogenic survival upon 

CHK1 depletion to wildtype levels (Figure 3B). Similar to CHK1, depletion of DNA2 in all three 

8988T PARP14-knockout clones also resulted in reduced clonogenic survival, which was 

rescued upon re-expression of PARP14 cDNA in the PARP14KO6 clone (Figure 3C). Moreover, 
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the synthetic lethality interaction between PARP14 and CHK1 or DNA2 was further validated by 

crystal violet staining of plates seeded at high density with PARP14-knockout cells treated with 

siRNA targeting these factors (Figure 3D, E). These findings confirm that PARP14 is synthetic 

lethal with CHK1 and DNA2, thus validating our genome-wide synthetic lethality screen. 

 

Synthetic lethality between PARP14 and ATR pathway components 

In addition to CHK1, multiple other components of the ATR-CHK1 pathway were among 

the top hits in our PARP14 synthetic lethality screen, including RPA3, TOPBP1, RAD9A and 

MRE11 (Figure 1C, E). TOPBP1 and MRE11, which is a member of the MRN complex, co-

operate to activate ATR in response to replication stress (38-41). Thus, we decided to also 

validate these two candidates. Western blot experiments indicated that TOPBP1 can be 

efficiently depleted from 8988T cells (Figure 4A). Similar to observations made with the other 

top hits, knocking down TOPBP1 led to impaired colony formation in two different PARP14-

knockout 8988T clones (Figure 4B). Moreover, TOPBP1 depletion significantly increased 

apoptosis in these cells (Figure 4C).  

Finally, we also depleted MRE11 from 8988T cells (Figure 4D). MRE11 knockdown in 

two different PARP14-knockout clones resulted in reduced clonogenic survival (Figure 4E), and 

increased apoptosis (Figure 4F). These findings confirm that TOPBP1 and MRE11, upstream 

components of the ATR pathway, are required for viability of PARP14-deficient cells. Moreover, 

these findings further validate our CRISPR knockout screen. 

 

PARP14-knockout cells show hypersensitivity to pharmacological inhibition of the ATR-CHK1 

pathway 

Pharmacological inhibition of enzymatic activity is a key approach in personalized cancer 

therapy. Having observed that CHK1 depletion impairs cellular viability of PARP14-knockout 

cells, we wanted to confirm these observations using a pharmacological approach. Rabusertib 
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(LY2603618) is a selective CHK1 inhibitor (CHK1i). To test sensitivity of PARP14-deficient cells 

to CHK1 inhibition, we measured cellular proliferation of PARP14-knockout cells treated with 

increasing concentrations of rabusertib. Cellular viability of all three PARP14-knockout clones 

was significantly reduced compared to wildtype control (Figure 5A). Re-expression of 

exogenous PARP14 cDNA in PARP14KO6 cell line restored cellular viability (Figure 5A). Similar 

results were obtained when using clonogenic survival assays (Figure 5B, C).  

Since CHK1 is the key downstream factor in the ATR pathway (4,37), and multiple 

additional components of this pathway were top candidates in our PARP14 synthetic lethality 

screen (Figure 1C, E), we sought to investigate whether PARP14-knockout cells are also 

sensitive to ATR inhibitors (ATRi). To this end, we treated cells with VE822, a selective ATRi. All 

three PARP14-knockout clones demonstrated higher sensitivity to VE822, in both cellular 

viability (Figure 5D) and clonogenic survival (Figure 5E, F) assays. This sensitivity was 

suppressed upon re-expression of wildtype PARP14 cDNA in the PARP14KO6 clone (Figure 5D, 

E). These findings show that PARP14-deficient cells are sensitive not only to genetic depletion 

of CHK1, but also to pharmacological inhibition of the ATR-CHK1 pathway. 

We previously showed that PARP14 is involved in HR, and thus cells depleted of 

PARP14 by siRNA show slight sensitivity to the PARP1 inhibitor olaparib (29). We observed a 

similar trend for the PARP14-knockout 8988T cells in both cellular viability (Figure 5G) and 

clonogenic (Figure 5H) assays. However, co-treatment with the CHK1 inhibitor rabusertib 

dramatically increased the olaparib sensitivity of PARP14-knockout cells (Figure 5G, H). 

Moreover, co-treatment with rabursetib and olaparib significantly increased apoptosis in 

PARP14-knockout cells compared to control cells (Figure 5I). These findings further attest to the 

importance of the PARP14 status as an important genetic determinant of the cellular response 

to cancer drugs targeting the DNA repair system. 
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Replication fork stability defects underlie the synthetic lethality between PARP14 and the ATR 

pathway  

Upon replication stress, the ATR-CHK1 pathway promotes replication fork stability, 

preventing fork collapse and chromosome breakage (42-44). Thus, we investigated replication 

fork stability by employing the DNA fiber combing assay to measure the progress of individual 

replication forks, upon consecutive incubations with thymidine analogs IdU and CldU. 

Immunofluorescence microscopy-based detection of replication tracts indicated that, under 

normal growth conditions, loss of PARP14 does not affect replication tract length (Figure 6A). 

However, CHK1 depletion significantly reduced replication tract length in PARP14-knockout 

cells (Figure 6B). We further validated the knockdown studies by employing pharmaceutical 

inhibitors of the ATR1-CHK1 pathway. Similar to the knockdown studies, CHK1 inhibition in 

PARP14-knockout cells resulted in a stronger reduction in replication tract length in PARP14-

knockout cells compared to control cells (Figure 6C). Similar results were observed for ATR 

inhibition (Figure 6D). These results indicate an increased necessity for ATR activation to 

maintain viability of PARP14-deficient cells, perhaps reflecting increased endogenous 

replication stress in these cells. In line with this, we observed increased gH2AX in PARP14-

knockout cells, both under normal growth conditions and in particular upon ATR inhibition 

(Figure 6E), indicating that ATR-mediated fork protection suppresses accumulation of abnormal 

DNA structures in PARP14-deficient cells.  

The decreased replication fork tracts in PARP14-deficient cells upon ATR inhibition 

suggest that replication is deficient in these cells, possibly because of fork arrest at endogenous 

lesions. The ATR pathway is also important for suppressing cell cycle progression in the 

presence of DNA damage, and its inhibition results in premature mitotic entry of cells with DNA 

damage (45,46). Histone H3 phosphorylation at Ser10 is a marker of chromosome condensation 

in mitosis. We observed an increase in G1-S cells positive for H3-Ser10 phosphorylation upon 

ATR inhibition in PARP14-knockout cells (Figure 6F). Overall, these findings indicate that, upon 
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concomitant loss of PARP14 and the ATR pathway, DNA replication is defective, and cells with 

incompletely replicated DNA enter mitosis resulting in mitotic catastrophe, thereby explaining 

the loss of viability. 

 

 

Discussion 

 

Genome-wide screens are powerful tools to investigate biological roles of the gene of interest in 

an unbiased manner. The PARP14 synthetic lethality screen described here identified a number 

of biological processes with which PARP14 activity has been previously associated. The most 

highly represented biological processes involved RNA metabolism, in line with previously 

published work indicating a role for PARP14 in RNA stability (23,26). In addition, this may also 

reflect a possible activity of PARP14 in directly binding RNA, as PARP14 contains two RRM 

domains, which are known to bind RNA (16). In addition, biological processes highly enriched 

among the top hits which were previously associated with PARP14 functions include 

mitochondrial activity (21,27) and the DDR (29).  

Understanding how the specific molecular make-up of the tumor modulates its response 

to therapy allows improved utilization of cancer drugs. This is relevant for both classic genotoxic 

chemotherapeutics such as DNA damaging compounds (eg. cisplatin) and replication inhibitors 

(eg. hydroxyurea), as well as for the new generation of chemical inhibitors such as those 

targeting the DDR, including PARP1 inhibitors and inhibitors of the ATR-CHK1 pathway. By 

employing a genome-wide CRISPR knockout screen aimed at unbiased identification of 

synthetic lethal interactors of PARP14, we found that the ATR-CHK1 pathway was essential for 

viability of PARP14-deficient cells, in multiple cell lines. PARP14-deficient cells were 

hypersensitive to both genetic depletion, and pharmacological inhibition of this pathway. Multiple 

components of the pathway were identified, including the upstream components TOPBP1, 
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MRE11, RPA3 and RAD9A, and the downstream kinase CHK1. Although not a direct 

component of the ATR pathway, the DNA2 nuclease-helicase, another top hit we validated, has 

been found to participate in ATR activation under certain conditions, at least in yeast (36,47). 

These findings highlight an important role of PARP14 in the response to replication stress. 

Mechanistically, we identified the control of DNA replication fork stability as a potential 

contributor to the synthetic lethality between the ATR-CHK1 pathway and PARP14. We show 

that DNA replication is compromised upon concomitant loss of PARP14 and the ATR pathway, 

and cells with incompletely replicated DNA undergo premature mitotic entry, thereby explaining 

the synthetic lethality observed. 

The ATR-CHK1 pathway suppresses origin firing, thus its inhibition increases the 

number of replication forks and decreases the nucleotide pools in the cell, resulting in slower 

replication fork speed (6,42-44). In PARP14-deficient cells this slowing is accentuated, resulting 

in severe replication deficiency. We hypothesize that this occurs because of increased stalling 

of the replication forks at sites of DNA lesions, resulting in accumulation of abnormal DNA 

structures. However, it is also possible that this reflects a role of PARP14 in replication origin 

firing. Indeed, another top candidate from the synthetic lethality screen is CDC7 (Figure 1E), a 

kinase which regulates origin firing (48).  

In conclusion, we identified an unexpected role for the ATR-CHK1 pathway in promoting 

cellular viability in the context of PARP14 deficiency. Our work indicates that the status of the 

PARP14 gene in the tumor is an important determinant of the tumor response to DDR inhibitors, 

which are emerging as a powerful class of cancer drugs. 

 

 

Materials and Methods 
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Cell culture. Human 8988T and U2OS cells were grown in Dulbecco’s modified Eagle’s medium 

(DMEM). DLD-1 cells were grown in Roswell Park memorial Institute (RPMI) 1640 medium. 

DMEM and RPMI were both supplemented with 10% FBS and penicillin/streptomycin. To 

generate the 8988T PARP14-knockout cells, the commercially available PARP14 CRISPR/Cas9 

KO plasmid was used (Santa Cruz Biotechnology sc-402812). Transfected cells were FACS-

sorted into 96-well plates using a BD FACSAria II instrument. Resulting colonies were screened 

by Western blot. To re-express exogenous PARP14 in the knockout cell lines, cells were 

infected with the lentiviral construct pLV-Puro-SV40>Flag/hPARP14 (Cyagen) was used, 

constitutively expressing Flag-tagged PARP14 under the control of the SV40 promoter. 

Gene knockdown was performed using Lipofectamine RNAiMAX transfection reagent. 

AllStars Negative Control siRNA (Qiagen 1027281) was used as control. The following 

oligonucleotide sequences (Stealth siRNA, ThermoFisher) were used: 

PARP14: AGGCCGACTGTGACCAGATAGTGAA 

DNA2: TTAGAATGCAGGCAACTGTATCCTT 

MRE11: CATTACATACCTGCCTCGAGTTATT  

TOPBP1: Silencer Select ID s2183 

CHK1: Silencer Select ID s504  

Denatured whole cell extracts were prepared by boiling cells in 100 mM Tris, 4% SDS, 

0.5M b-mercaptoethanol. Antibodies used for Western blot were: PAPR14 (Santa Cruz 

Biotechnology sc-377150); Chk1 (Cell signaling Technology 2360); DNA2 (Abcam ab96488); 

MRE11 (Santa Cruz Biotechnology sc-135992); TOPBP1 (Novus NB100-217); GAPDH (Santa 

Cruz Biotechnology sc-47724); gH2AX (Abcam ab-2893). 

The chemical inhibitors used in this study were obtained from Selleck Chemicals: 

rabusertib (CHK1i); VE822 (ATRi); olaparib (PARP1i). 
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CRISPR screens. For CRISPR knockout screens, the Brunello Human CRISPR knockout 

pooled lentiviral library (Addgene 73179) was used (33). This library targets 19,114 genes with 

76,411 gRNAs. 100 million 8988T (wildype and PARP14KO6) cells were infected with this library 

at a multiplicity of infection (MOI) of 0.4 to achieve 500x coverage and selected for 4 days with 

1.25 µg/mL puromycin. For each condition, 20 million cells freshly infected with the library (to 

maintain 250x coverage) were seeded and allowed to grow for two weeks. Genomic DNA was 

isolated using the DNeasy Blood and Tissue Kit (Qiagen 69504) per the manufacturer’s 

instructions. gRNAs were amplified using PCR primers with Illumina adapters. Genomic DNA 

from 20 million cells (250-fold library coverage) was used as template for PCR. The PCR 

reaction contained 10µg of gDNA, with 20µl 5X HiFi Reaction Buffer, 4µl of P5 primer, 4µl of P7 

primer, 3µl of Radiant HiFi Ultra Polymerase (Stellar Scientific), and water. The P5 and P7 

primers used were determined using the user guide provided with the CRISPR libraries 

(https://media.addgene.org/cms/filer_public/61/16/611619f4-0926-4a07-b5c7-

e286a8ecf7f5/broadgpp-sequencing-protocol.pdf). The purified PCR product was sequenced 

with Illumina HiSeq 2500 single read for 50 cycles.  

For bioinformatic analysis of the screen results, the custom python script provided 

(count_spacers.py) (49) was used to calculate sgRNA representation. The difference between 

the number of guides present in the PARP14-knockout condition compared to the wildtype 

condition was determined. Specifically, one read count was added to each sgRNA, and then the 

reads from the PARP14-knockout condition were normalized to the wildtype condition. The 

values obtained were then used as input in the Redundant siRNA Activity (RSA) algorithm (50). 

For RSA, the Bonferroni option was used and guides that were at least 2-fold enriched in the 

PARP14-knockout condition compared to the wildtype condition were considered hits. The p-

values are determined by the RSA algorithm for the genes that are most enriched in the 

PARP14-knockout condition compared to the wildtype condition. Analyses of the Gene Ontology 

pathways enriched among the top hits was performed using DAVID (51,52).  
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Functional cellular assays. For clonogenic survival assays, 500 cells were seeded per well in 6-

well plates and treated with siRNA or drug as indicated. Media was changed after 3 days and 

cells were allowed to grow for 10-14 days. Colonies formed were then washed with PBS, fixed 

with a solution of 10% methanol + 10% acetic acid and stained with crystal violet (2%, Aqua 

solutions). 

For crystal violet imaging, 50,000 cells were seeded per well in 12-well plates and 

treated with the appropriate drug concentrations. Staining was performed 3 days later as 

described above.  

To assess cellular proliferation, a luminescent ATP-based assay was performed using 

the CellTiterGlo reagent (Promega G7572) as per manufacturer’s instructions. Following 

treatment with siRNA, 1500 cells were seeded per well (day 0) and plates were read daily for 5 

days. For drug sensitivity, 1500 cells were seeded per well in 96-well plated and treated with the 

indicated drug doses. Plates were read 3 days later.  

For apoptosis assays, cells were treated with siRNA for 2 days, followed by media 

change. Cells were prepared for flow cytometry two days after media change using the FITC 

Annexin V kit (Biolegend, 640906). Quantification was performed using a BD FACSCanto 10 

flow cytometer. 

For quantification of G1-S cells positive for histone H3 phosphorylated at Ser10, the 

Click-iT Plus EdU Alexa Fluor 488 Flow Cytometry Assay Kit (ThermoFisher) was used to 

measure cell cycle distribution, according to the manufacturer’s instruction. Concomitantly, cells 

were stained with the Phospho-Histone H3 (Ser10) Alexa Fluor 594 conjugated antibody. Cells 

were subsequently analyzed by flow cytometry. 

 

DNA fiber assays. For the experiments with gene knockdown, cells were treated with siRNA for 

2 days, then incubated with 100µM IdU for 30 min, washed with PBS and incubated with 100 
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µM CldU. For the experiments with drug treatment, cells were incubated with 100µM IdU for 

30mins, washed with PBS, and incubated within the drugs and/or CldU as indicated. Next, cells 

were collected and processed using the the FiberPrep kit (Genomic Vision EXT-001) according 

to the manufacturer’s instructions. DNA molecules were stretched onto coverslips (Genomic 

Vision COV-002-RUO) using the FiberComb Molecular Combing instrument (Genomic Vision 

MCS-001). Slides were stained with antibodies detecting CldU (Abcam 6236), IdU (BD 347580), 

and DNA (Millipore Sigma MAD3034). Slides were then incubated with secondary Cy3, Cy5, or 

BV480-conjugated antibodies (Abcam 6946, Abcam 6565, and BD Biosciences 564879). 

Finally, the cells were mounted onto coverslips and imaged using a confocal microscope (Leica 

SP5).  

 

Statistical analyses. For CellTiter-Glo cellular proliferation assays, the 2-way ANOVA statistical 

test was used. This test was also used for drug sensitivity clonogenic assay. For clonogenic 

survival assays upon gene knockdown by siRNA, as well as for the Annexin V assay, the t-test 

(two-tailed, unequal variance unless indicated) was used. For the DNA fiber assay, the Mann-

Whitney statistical test was performed. Statistical significance is indicated for each graph (ns = 

not significant, for P>0.05; * for P≤0.05; ** for P≤0.01; *** for P≤0.001, **** for P≤0.0001). 
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Figure Legends 

 

Figure 1. Genome-wide CRISPR knockout screen identified genes essential for viability 

of PARP14-knockout cells. (A) Schematic representation of CRISPR knockout screen. 8988T 

wild type (WT) and PARP14-knockout (PARP14KO6) were infected with the Brunello CRISPR 

knockout library and allowed to grow for two weeks. Genomic DNA was then extracted from 

both groups of cells and gRNAs were identified using Illumina sequencing. (B) Western blot 

showing loss of PARP14 protein in the 8988T PARP14KO6 cells. (C) Scatterplot ranking the 

genes targeted by library according to P-values is shown. RSA analysis was used to obtain 

gene ranking. (D) Pathway analysis showing the biological process that were significantly 

enriched in the top 500 hits (genes lost in the PARP14KO6 cells compared to wildtype). The top 

25 Gene Ontology (GO) terms are shown. (E) Multiple DNA damage response (DDR) genes 

were among the top hits. The highlighted candidates, namely CHK1, DNA2, TOPBP1 and 

MRE11, were validated in this study. 

 

Figure 2. Knockdown of CHK1 or DNA2 reduces proliferation of PARP14-deficient cells. 

(A) Western blot showing the loss of PARP14 protein in multiple 8988T knockout clones. (B) 

Western blot showing efficient siRNA-mediated downregulation of CHK1 and DNA2 in 8988T 

cells. (C) Cellular proliferation assay showing that CHK1 knockdown reduced proliferation of all 

three PARP14-knockout 8988T clones compared to control. The average of three experiments 

is presented, with standard deviations shown as error bars. Asterisks indicate statistical 
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significance. (D) Cellular proliferation assay showing that DNA2 knockdown reduced 

proliferation of all three PARP14-knockout 8988T clones compared to control. The average of 

three experiments is presented, with standard deviations shown as error bars. Asterisks indicate 

statistical significance. (E) Annexin V assays demonstrating increased apoptosis in multiple 

PARP14-knockout 8988T clones upon CHK1 knockdown. The average of three experiments is 

presented, with standard deviations shown as error bars. Asterisks indicate statistical 

significance. (F) Western blot showing efficient siRNA-mediated co-depletion of PARP14 and 

CHK1 or DNA2 in DLD-1 cells. (G, H) Co-depletion of CHK1 or DNA2 reduces proliferation of 

PARP14-knockdown U2OS (G) and DLD-1 (H) cells. The average of three experiments is 

presented for U2OS cells and average of four experiments is presented for DLD-1 cells, with 

standard deviations shown as error bars. Asterisks indicate statistical significance. 

 

Figure 3. Reduced viability of PARP14-knockout cells upon depletion of CHK1 or DNA2. 

(A) Western blot showing re-expression of PARP14 in the 8988T knockout cells corrected with 

PARP14 cDNA. Two different clones were obtained and are investigated here. (B, C) 

Clonogenic survival assays showing reduced survival of PARP14-knockout 8988T cells upon 

CHK1 (B) or DNA2 (C) knockdown. All three PARP14-knockout clones were investigated and 

showed similar phenotypes. Re-expression of exogenous PARP14 in the knockout cells 

rescued the survival. The average of three experiments is presented, with standard deviations 

shown as error bars. Asterisks indicate statistical significance. (D, E) Representative images of 

crystal violet staining showing the reduced viability of PARP14-knockout 8988T cells upon 

depletion of CHK1 (D) or DNA2 (E). Two different knockout clones show the same phenotype.  

 

Figure 4. Reduced viability of PARP14-knockout cells upon inactivation of TOPBP1 or 

MRE11. (A) Western blot showing efficient siRNA-mediated downregulation of TOPBP1 in 

8988T cells. (B) Clonogenic survival assays showing reduced survival of PARP14-knockout 
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8988T cells upon TOPBP1 knockdown. The average of three experiments is presented, with 

standard deviations shown as error bars. Asterisks indicate statistical significance. (C) Annexin 

V assays demonstrating increased apoptosis in PARP14-knockout 8988T cells upon TOPBP1 

knockdown. The average of four experiments is presented, with standard deviations shown as 

error bars. Asterisks indicate statistical significance. (D) Western blot showing efficient siRNA-

mediated downregulation of MRE11 in 8988T cells. (E) Clonogenic survival assays showing 

reduced survival of PARP14-knockout 8988T cells upon MRE11 knockdown. The average of 

three experiments is presented, with standard deviations shown as error bars. Asterisks indicate 

statistical significance. (F) Annexin V assays demonstrating increased apoptosis in PARP14-

knockout 8988T cells upon MRE11 knockdown. The average of three experiments is presented, 

with standard deviations shown as error bars. Asterisks indicate statistical significance. 

 

Figure 5. Loss of PARP14 sensitizes cells to inhibitors of the ATR-CHK1 pathway. (A, B) 

Increased sensitivity of 8988T PARP14-knockout cells to the CHK1 inhibitor rabusertib, in both 

cellular viability (A) and clonogenic (B) assays. Multiple knockout clones show the same 

phenotype. Re-expression of PARP14 in the knockout cells restores CHK1i resistance. The 

average of three experiments is presented, with standard deviations shown as error bars. 

Asterisks indicate statistical significance. (C) Crystal violet staining showing increased 

rabusertib sensitivity of 8988T PARP14-knockout cells. (D, E) Increased sensitivity of 8988T 

PARP14-knockout cells to the ATR inhibitor VE822, in both cellular viability (D) and clonogenic 

(E) assays. Multiple knockout clones show the same phenotype. Re-expression of PARP14 in 

the knockout cells restores ATRi resistance. The average of three experiments is presented, 

with standard deviations shown as error bars. Asterisks indicate statistical significance. (F) 

Crystal violet staining showing increased VE822 sensitivity of 8988T PARP14-knockout cells. 

(G, H) CHK1 inhibition potentiates the olaparib sensitivity of PARP14-knockout 8988T cells in 

both cellular viability (G) and clonogenic (H) assays. The average of three experiments is 
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presented, with standard deviations shown as error bars. Asterisks indicate statistical 

significance. (I) Annexin V assays demonstrating increased apoptosis in PARP14-knockout 

8988T cells upon concomitant treatment with CHK1 and PARP1 inhibitors. The average of three 

experiments is presented, with standard deviations shown as error bars. Asterisks indicate 

statistical significance. 

 

 

Figure 6. Impact of ATR-CHK1 pathway inhibition on replication dynamics of PARP14-

knockout cells. (A) DNA fiber combing assay showing normal replication tract length in 

multiple PARP14-knockout clones. (B) Knockdown of CHK1 reduces replication tract length in 

PARP14-knockout 8988T cells. (C, D) Inhibition of CHK1 (C) or ATR (D) reduces replication 

tract length in PARP14-knockout 8988T cells. For all DNA fiber experiments (A-D), the median 

values are indicated for each sample, and the asterisks indicate statistical significance. At least 

100 fibers were quantified. A schematic representation of the assay is shown at the top. (E) 

Western blot showing that H2AX phosphorylation is increased in PARP14-knockout cells upon 

treatment with 0.25µM VE822 for 24h. (F) Quantification of G1 and S cells with phosphorylated 

histone H3 at Ser10 as detected by flow cytometry. The fold increase normalized to wildtype is 

shown upon treatment with 0.25µM VE822 for the indicated number of days (n=1). 

 

 

Legends to Supplemental Tables 

 

Supplemental Table S1. Lists of all genes in the CRISPR knockout screen ranked by p-value. 

Supplemental Table S2. List of the top 25 Gene Ontology terms from the pathway analysis of 

the top 500 hits. 
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