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Abstract 

 

COVID-19 (Coronavirus disease 2019) is a respiratory illness caused by severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2). While the pathophysiology of this 

deadly virus is complex and largely unknown, we employ a network biology-fueled 

approach and integrated multiomics data pertaining to lung epithelial cells-specific co-

expression network and human interactome to generate Calu-3-specific human-SARS-

CoV-2 Interactome (CSI). Topological clustering and pathway enrichment analysis show 

that SARS-CoV-2 target central nodes of host-viral network that participate in core 

functional pathways. Network centrality analyses discover 28 high-value SARS-CoV-2 

targets, which are possibly involved in viral entry, proliferation and survival to establish 

infection and facilitate disease progression. Our probabilistic modeling framework 

elucidates critical regulatory circuitry and molecular events pertinent to COVID-19, 

particularly the host modifying responses and cytokine storm. Overall, our network 

centric analyses reveal novel molecular components, uncover structural and functional 

modules, and provide molecular insights into SARS-CoV-2 pathogenicity.  

 

Introduction  

From the epicenter of the COVID-19 (Coronavirus disease 2019) outbreak in China, the 

disease has spread globally in 185 countries/territories with over 1.4 million confirmed 

cases and almost 87,000 fatalities as of April 07, 2020, and the World Health 

Organization (WHO) warned that the pandemic is accelerating worldwide 1, 2. Apart from 

the human tragedy, COVID-19 has a growing detrimental impact on the global economy 
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and will likely cause trillions in financial losses worldwide in 2020 alone. COVID-19 is an 

infectious respiratory illness caused by a highly contagious and pathogenic SARS-CoV-

2 (severe acute respiratory syndrome coronavirus 2). This single-stranded RNA virus 

belongs to the family Coronaviridae and is closely related to another human coronavirus 

SARS-CoV with 89.1% nucleotide similarity 2, 3. SARS-CoV and another human 

coronavirus MERS-CoV (Middle East Respiratory Syndrome-CoV) caused two previous 

global epidemics in 2003 and 2012, respectively, both characterized by high fatality 

rates 2, 3. These coronaviruses mainly spread from a contagious individual to a healthy 

person through respiratory droplets derived from an infected person’s cough or sneeze, 

and from direct contact with contaminated surfaces or objects, where the virus can 

maintain its viability for period ranging from hours to days 2, 3. Unlike other 

coronaviruses, SARS-CoV-2 transmits more efficiently and sustainably in the 

community according to Center for Disease Control (CDC) 4. While majority of the 

patients infected with SARS-CoV-2 develop a mild to moderate self-resolving  

respiratory illness, infants and older adults (≥ 65 years) as well as patients with pre-

existing medical conditions such as cardiovascular disease, diabetes, chronic 

respiratory disease, renal dysfunction, obesity and cancer are more vulnerable 2, 3. The 

pathophysiology of SARS-CoV-2 is complex and largely unknown but is associated with 

an extensive immune reaction referred to as ‘cytokine storm’ triggered by the excessive 

production of interleukin 1 beta (IL-1β), interleukin 6 (IL-6) and others. The cytokine 

release syndrome leads to extensive tissue damage and multiple organ failure 2. While 

no vaccine or antiviral drugs are currently available to prevent or treat COVID-19, 

identifying molecular targets of the virus could help uncover effective treatment. 
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Towards this, generation of a human-SARS-CoV-2 interactome, integration of virus-

related transcriptome to interactome, discovery of disease-related structural and 

functional modules, and dynamic transcriptional modeling will provide insights into the 

virulent mechanisms of this deadly virus. 

 

Networks encompass a set of nodes and edges, also referred as vertices and links, 

respectively. Nodes are systems components, whereas edges represent the 

interactions or relationships among the nodes 5, 6. In biological systems, genes and their 

products perform their functions by interacting with other molecular components within 

the cell. For instance, proteins directly or indirectly interact with each other under both 

steady-state and different stress conditions to form static and dynamic complexes, and 

participate in diverse signaling cascades, distinct cellular pathways and a wide 

spectrum of biological processes. Proteome scale maps of such protein-protein 

interactions are referred to as interactomes 5, 6. Meanwhile, specialized pathogens 

including viruses, bacteria and eukaryotes employ a suite of pathogenic or virulent 

proteins, which interact with high value targets in host interactomes to extensively 

rewire the flow of information and cause disease 5, 7, 8, 9. Therefore, analyzing the 

network architecture and deciphering the structural properties of host-pathogens 

interactomes may reveal novel components in virus pathogenicity. Such analysis 

indicates that diverse cellular networks are governed by universal laws and exhibit 

scale-free network topology, whose degree distribution follows a power law distribution 

with a few nodes harboring increased connectivity 5. Given that diverse biological 

systems display similar network architecture and topology, several structural features 
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and physical characteristics within a cellular network may act as indicators of important 

nodes 5. These include degree (the number of edges of a node), and betweenness (the 

fraction of the shortest paths that include a node) 6, 10, 11. Indeed, it has been shown that 

hubs (high degree nodes) and high betweenness nodes (bottlenecks) are targets of 

numerous human–viral, human–bacterial and other human diseases 5, 7, 8, 9, 12, 13, 14, 15, 16, 

17, 18, 19, 20, 21, 22. In addition, host protein targets of diverse pathogens were demonstrated 

to be in close proximity (shortest path) with differentially expressed genes (DEGs) 23. 

Specific to viral-host pathosystem, the network analysis of several interactomes 

including human T-cell lymphotropic viruses, Epstein-Barr virus, hepatitis C virus, 

influenza virus and human papillomavirus indicate that several of the above described 

topological features are associated with viral targets 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 27, 28. 

Recently, in SARS-CoV human interactome, nodes corresponding to hubs and 

bottlenecks including respiratory chain complex I proteins were identified as targets of 

SARS-CoV. This system-wide analysis also identified several immunophilins as direct 

physical interacting partners of the CoV non-structural protein 1 (Nsp1) 12. Importantly, 

using affinity-purification mass spectrometry (AP-MS), a proteome-scale mapping 

recently identified 332 SARS-CoV-2 Interacting Proteins (SIPs) in human 29. This 

groundbreaking study paved new avenues to investigate novel therapeutic targets using 

a systems pharmacology approach. Undoubtedly, network biology presents a next-

generation, integrative approach for drug repurposing that can predict individual or, 

more likely, combinatorial sets of drugs with high efficacy against SARS-CoV-2 30, 31.  

Here, we generated a comprehensive human-SARS-CoV-2 interactome encompassing 

12,852 nodes and 84,100 edges. We also performed a weighted co-expression network 
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analysis (WGCNA) in Cultured Human Airway Epithelial Cells (Calu-3) treated with 

SARS-CoV or MERS-CoV over time (22, 445 nodes, 10,649,854 edges). By integrating 

co-expression network with interactome, we obtained Calu-3-specific human – SARS-

CoV-2 Interactome (CSI) containing 4,123 nodes and 14,650 edges. Network analysis 

indicates that the average degree, betweenness and information centrality of SIPs are 

enriched in CSI. Module-based functional pathway analyses discovered several 

disease-related clusters that are enriched in several signaling pathways and biological 

processes including eIF2 signaling/translation, inhibition of ARE-mediated mRNA 

degradation pathway, protein ubiquitination pathway, T cell receptor regulation of 

apoptosis, NER pathway, RNA degradation and retinoic acid-mediated apoptosis 

signaling pathway. Network topology analyses identified 28 high-value targets of SARS-

CoV-2, which can form complexes with other highly influential nodes within CSI. These 

most important nodes are possibly involved in the viral entry, proliferation and survival in 

the host tissue as well as required to induce a conducive environment for viral 

sustenance and pathogenesis. Moreover, we incorporated transcriptome data of 

COVID-19 patients derived from bronchoalveolar lavage fluid (BALF) and peripheral 

blood mononuclear cells (PBMC) with our CSI data. Subsequently, we performed 

dynamic gene regulation modeling on the CSI nodes to decipher the intricate 

relationships between important transcription factors (TFs) and their target genes upon 

SARS-CoV-2 infection. Of particular of interest is the TF-regulatory relationships 

involved in host modifying processes such as protein translation, ubiquitination, and the 

cytokine storm. In summary, our integrative network topology analyses led us elucidate 

the underlying molecular mechanisms and pathways of SARS-CoV-2 pathogenesis.   
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Results 

 

Integrated interactome-transcriptome analysis to generate Calu-3-specific human-

SARS-CoV-2 Interactome (CSI) 

 

It is likely that the outcome of SARS-CoV-2 infection can largely be determined by the 

interaction patterns of host proteins and viral factors. To build the human – SARS-CoV-

2 interactome, we first assembled a comprehensive human interactome encompassing 

experimentally validated PPIs from STRING database 32. Since the STRING database 

is not fully updated, we manually curated PPIs from four additional proteomes-scale 

interactome studies, i.e. Human Interactome I and II, BioPlex, QUBIC, and CoFrac 

(reviewed in 33). This yielded us an experimentally validated high quality interactome 

containing 18,906 nodes and 444,633 edges (Fig. 1a). Subsequently, we compiled an 

exhaustive list of 394 host proteins interacting with the novel human coronavirus that 

was referred to as SARS-CoV-2 Interacting Proteins (SIPs) (Supplementary Data 1). 

This comprises 332 human proteins associated with the peptides of SARS-CoV-2 29, 

whereas the remaining 62 host proteins interact with the viral factors of other human 

coronaviruses including SARS-CoV and MERS-CoV 34, which could also be of 

significance in understanding the molecular pathogenesis of SARS-CoV-2. By querying 

these 394 SIPs in the human interactome, we generated a subnetwork of 12,852 nodes 

and 84,100 edges that covers first and second neighbors of 373 SIPs (Fig. 1a). Given 

that the SIPs-derived PPI subnetwork may not operate in all spatial or temporal 
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conditions, coronavirus-specific co-expression data is used to filter the interactions in 

the context of COVID-19. It is important to note that no exceptionally high-resolution 

SARS-CoV-2 transcriptome was available at the time of analysis (details below). 

Therefore, we took advantage of extensive temporal expression data available for 

SARS-CoV and MERS-CoV (Fig. 1b). Towards this, we performed a weighted co-

expression network analysis (WGCNA) in Human Airway Epithelial Cells (Calu-3) 

treated with SARS-CoV and MERS-CoV over time in vitro in culture. This analysis 

yielded a comprehensive co-expression network with 22,445 nodes and 10,649,854 

edges (Fig. 1b). By integrating this Calu-3 co-expression network with SIPs-derived PPI 

subnetwork, we generated Calu-3-specific human-SARS-CoV-2 Interactome (CSI) that 

contains 214 SIPs interacting with their first and second neighbors make a network of 

4,123 nodes and 14,650 edges (Fig. 1c, Supplementary Data 1). We showed that CSI 

follows a power law degree distribution with a few nodes harboring increased 

connectivity, and thus exhibits properties of a scale-free network (r2 = 0.91; (Fig. 1d, 

Supplementary Data 1), similar to the previously generated other human-viral 

interactomes 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 27, 28. Taken together, we constructed a 

robust, high quality CSI that was further utilized for network-aided architectural and 

functional pathway analyses.  

 

Network topology and module-based functional analyses reveal that SARS-CoV-2 

targets core signaling pathways of the host network 
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From a network biology standpoint, a viral infection as well as other pathogen attacks 

can be viewed as a set of strategic perturbations, at least in part, within the core 

components of the host interactome 24, 25, 26. Since such central nodes correspond to 

proteins that exhibit increased connectivity and/or central positions within a network, we 

addressed a question whether SARS-CoV-2 also attacks such important nodes within 

CSI. Towards this, we calculated the average degree (number of connections), 

betweenness (the fraction of all shortest paths that include a node within a network), 

load centrality (the fraction of all shortest paths that pass through a node), information 

centrality (the harmonic mean of all the information measures for a node in a connected 

network) and PageRank index (counting incoming and outgoing connections 

considering the weight of the edge) for SIPs, and compared them with their first and 

second neighbors. We demonstrated that these four topological features of SIPs were 

significantly higher than the other nodes within CSI (Fig. 2a, b, c and Supplementary 

Fig. 1a and b, Supplementary Data 2; t- test P < 0.0001). We also showed that SIPs 

were significantly enriched in CSI compared to the human interactome (Fig. 2d, 

Supplementary Data 2; hypergeometric P< 3.159E-51). These results indicate that 

SARS-CoV-2 targets core structural components of the human-viral interactome, and 

prompted another question as to whether CSI also activates common biological 

processes in response to viral infection. Since nodes within CSI not only form protein 

complexes with each other but also transcriptionally co-express, we reasoned that 

densely connected nodes within this network may participate in similar biological 

functions. Towards this, we investigated the underlying modular structures (protein 

clusters ≥ 5 nodes) in CSI followed by Ingenuity Pathway Analysis (IPA). This approach 
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allowed us to identify 27 modules ranging from 5 to 66 nodes for the smallest and 

largest modules, respectively. Subsequently, we examined the biological processes, 

cellular pathways and signaling cascades that are modulated in the top 10 modules 

(Fig. 2e-k, Supplementary Data 2). Significantly enriched signaling pathways and 

biological processes included eIF2 signaling/translation representing protein translation 

control, inhibition of ARE-mediated mRNA degradation pathway, protein ubiquitination 

pathway, T cell receptor regulation of apoptosis, NER pathway, RNA degradation and 

retinoic acid-mediated apoptosis signaling pathway (-log(P-value) ≥2; Fig. 2 e-k, 

Supplementary Fig. 1c, Supplementary Data 2). Enrichment analysis of KEGG 

pathways can be utilized to ascertain signal transduction, as well as biochemical and 

metabolic pathways. The significantly enriched pathways (P-value ≤0.05) mainly 

included the infection with a number of viruses, oxidative phosphorylation, ER protein 

processing and apoptosis (Supplementary Fig. 1d, Supplementary Data 2). Finally, we 

performed a human phenotype ontology analysis that identifies phenotypic 

abnormalities encountered in human diseases. Significantly enriched terms included 

mitochondrial inheritance, hepatic necrosis, respiratory failure and abnormality of the 

common coagulation pathway (Supplementary Fig. 1e). Collectively, we showed that 

SARS-CoV-2 proteins interact with central nodes of CSI, and these proteins are 

implicated in core molecular and cellular pathways to establish infection and continue 

disease progress.  

 

Network topology framework identifies most influential nodes in CSI 
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Human-viral interactome landscapes of several viruses have previously shown that viral 

proteins interact with nodes corresponding to high degree (hubs) and high betweenness 

(bottlenecks), and such structural features have been previously used to predict viral 

targets 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 27, 28. In addition to hubs and bottlenecks, 

PageRank algorithm was also effectively used to identify viral targets 27. Moreover, 

these physical characteristics can also be used to prioritize the most influential genes in 

CSI for biological relevance and drug target discovery. Here, we used nine different 

centrality indices to identify the most influential nodes referred to as CSI Significant 

Proteins (CSPs). This includes the above described degree, betweenness, information 

centrality, PageRank index and load centrality as well as additional features such as 

eigenvector centrality (a measure of the influence of a node in a network), closeness 

centrality (reciprocal of the sum of the length of the shortest paths between the node 

and network), harmonic centrality (reverses the sum and reciprocal operations of 

closeness centrality and weighted k-shell decomposition) (an edge weighting method 

based on adding the degree of two nodes in network partition). While weighted k-shell 

decomposition analysis was recently performed to increase the predictability of host 

targets of bacterial pathogens 35, we showed that the top 5% of nodes reside in the 

inner layers of CSI (Fig. 3a, Supplementary Data 2). For other centrality measures, we 

also maintained a stringent threshold of top 5% to be considered as a highly influential 

node or CSP. Evidently, we can expect overlapping topological features for the same 

set of nodes. Noticeably, we observed a strong positive correlation between information 

centrality and degree (Fig. 3b; r2 = 0.9), betweenness and degree (Fig. 3c; r2 = 0.51) 

and PageRank and degree (Fig. 3d; r2 = 0.84, Supplementary Data 2).  
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Collectively, we identified 28 CSPs that exhibit more than one high centrality measure 

(Fig. 3e, Supplementary Data 3). For instance, EEF1A1 that has previously been 

implicated in SARS was enriched in all the centrality measures tested in our study (Fig. 

3f, Supplementary Data 3). In addition, UBE2I, PPIA, and PHB were also associated 

with SARS and were enriched in more than five centrality measures (Fig. 3f, 

Supplementary Data 3). We categorized these 28 CSPs into three major groups based 

on their potential roles in COVID-19. While we expect some, if not all, of these proteins 

to have more than one function, the group-1 CSPs might be largely relevant to 

modifying host response following SARS-CoV-2 infection (Fig. 3e). Moreover, the 

proteins in the other two groups might be involved in viral entry, proliferation, survival 

and pathogenesis as well as cytokine storm (Fig. 3e; see details in discussion). 

Furthermore, we found that these 28 CSPs are targets of some of the well-known 

SARS-CoV-2 viral proteins. SARS-CoV-2 nsp7 targets most of the CSPs (i.e. seven in 

total), SARS-CoV2 nsp8 targets five CSPs, and SARS-CoV-2 M has four CSPs targets, 

while other SARS-CoV-2 nsps’ (2,4,10) and SARS-CoV-2 orfs’ (3b, 6,8,9c) possess 

relatively fewer targets. Intriguingly, three of our CSPs (PPIA, RPS20, and NDUFA10) 

are targets of more than one SARS-CoV2 protein (Fig 3g, Supplementary Fig. 2), while 

PHB is the target of several viral proteins tested as bait at low threshold. It is also 

important to note that PHB is also targeted by viral proteins of SARS-CoV 34. These 

data support previous findings that an individual viral factor can target multiple host 

nodes and several viral proteins can interact with the same host protein 12, 13, 14, 15, 16, 17, 

18, 19, 20, 24, 25, 26, 27, 28. Collectively, these data strengthen our notion that centrality 
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measures can be an effective method to predict highly influential nodes, leading us to 

discover 28 such CSPs.  

 

Dynamic gene regulation modeling elucidates core transcriptional circuitry and 

regulatory signatures pertinent to SARS-CoV-2 infection  

 

To further understand the biological characteristics, regulatory relationships and 

molecular events associated with the nodes in CSI, we incorporated transcriptome data 

of COVID-19 patients derived from bronchoalveolar lavage fluid (BALF) and peripheral 

blood mononuclear cells (PBMC) with our CSI data 36. Overall, SARS-CoV-2 infection 

exhibited largely different transcriptional signatures for BALF and PBMC 36. We 

identified a set of 228 and 215 differentially expressed genes (DEGs) in BALF and 

PBMC, respectively (p≤ 0.05, FC ≥2.0, Fig. 4a, b, Supplementary Data 4). Thus, CSI 

constitutes over 25% of transcriptomes pertaining to both BALF and PBMC. Intriguingly, 

in BALF, we observed that the upregulated cluster A is enriched with eIF2 

signaling/translation pathway, while the two down-regulated clusters (B and C) are 

enriched in retinoic acid-mediated apoptosis signaling pathway (Fig. 4a). Conversely, 

one major cluster that is significantly upregulated in PBMC is enriched in T cell receptor 

regulation of apoptosis and protein ubiquitination pathway (Fig. 4b). These data further 

support the notion that significantly enriched protein modules in CSI are involved in 

SARS-CoV-2 pathogenesis.  
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To reveal the regulatory circuitry and molecular events pertinent to SARS-CoV-2 

infection, we performed probabilistic modeling using iDREM (interactive Dynamic 

Regulatory Events Miner) framework that incorporates protein-DNA interaction data with 

transcriptomics 37. Given that iDREM requires time-course transcriptional profiling data, 

and in vivo or in vitro temporal SARS-CoV-2 transcriptome data is currently lacking, we 

made use of a high-resolution temporal SARS-CoV dataset (11 time points) 38. 

However, we only focused on those upstream transcriptional factors (TFs) and 

downstream target genes that were also present in BALF and PBMC, which allowed us 

to mimic SARS-CoV-2-mediated dynamic regulatory networks. This dynamic regulatory 

modeling identified several bifurcation points, where a set of TFs regulates their 

potential co-expressed and downstream target genes (Fig. 4c, Supplementary Fig. 3, 

Supplementary Data 4). Based on the expression trajectories and path expression 

patterns, we identified a total of 84 and 94 significant regulators that were expressed in 

BALF and PBMC COVID-19 patients’ samples, respectively (P< 0.05, Supplementary 

Data 4). Among them, we observed the first major wave of differential regulation and 

activation of TFs at 12-hour post infection. At this bifurcation transcriptional event, we 

found a set of 4 TFs (YY1, STAT1, STAT2, and SREBF2), which were also expressed 

in BALF transcriptome. The next major bifurcation occurred at 24-hour post infection, 

comprising 39 and 43 TFs expressed in BALF and PBMC, respectively (Supplementary 

Data 4). While we found similar sets of target genes regulated by diverse sets of TFs at 

different stages of infection, we also discovered multiple combinations of TFs regulating 

similar sets of downstream genes (Fig. 4c). This reflects the intricate nature of dynamic 

regulatory relationships between TFs and their targets.  
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Next, we primarily focused on four major pathways/signaling events, i.e. cytokine storm, 

eIF2 signaling/translation, protein ubiquitination pathway and T cell receptor regulation 

of apoptosis. In the first example of cytokine storm, we identified a total of 10 TFs 

(STAT2, SUZ12, JUN, STAT1, MEF2A, RAD21, STAT3, BCL11A, NFE2, and BATF) 

expressed in BALF and PBMC COVID-19 patients’ samples (Supplementary Data 4). 

Predominantly, we found that two TFs (STAT1 and STAT2) and one master regulator 

(JUN) are early transcriptional players activated at 12- and 24-hour post infection. In 

particular, we found CSI genes CXCL1 and TNFAIP3 co-regulated with CXCL2 and 

CXCL3, and IL-1A and IL-6, respectively, indicating that members of CSI participate in 

cytokine storm. Majority of these TFs are related to inflammatory/immune regulatory 

processes.  

 

Similarly, during eIF2 signaling/translation, we identified a total of 14 TFs (MXI1, 

BRCA1, ELF1, SIN3A, E2F4, IRF1, GABPB1, HMGN3, ETS1, SP2, POLR2A, ELK4, 

CHD2, and CCNT2) expressed in BALF and PBMC (Supplementary Fig. 3, 

Supplementary Data 4). This set of proteins is involved in the dynamic regulation of 

eIF2 signaling/translation-related genes over the course of time. Predominantly, we 

found that 12 master regulators (CHD2, SIN3A, ETS1, MXI1, CCNT2, E2F4, ELK4, 

IRF1, GABPB1, ELF1, POLR2A, and HMGN3) of eIF2 signaling/translation are involved 

in dynamic transcriptional regulation at 24-hour post infection. Interestingly, we revealed 

that 12 TFs also regulated 9 CSPs (AP2M1, NDUFA10, PHB, PPIA, PPP1CA, RPS20, 

RTN4, SCCPDH, and UBE2I) along with eIF2 signaling/translation-related genes. 
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Correspondingly, during protein ubiquitination, we identified a total of nine TFs (IRF1, 

CCNT2, BRCA1, MXI1, CHD2, POLR2A, SIN3A, E2F4, and HEY1) expressed in BALF 

and PBMC (Supplementary Data 4). Interestingly, in the gene subset related to T cell 

receptor regulation of apoptosis, we identified a total of 11 TFs (E2F4, ELF1, CCNT2, 

ETS1, ELK4, HMGN3, SP2, IRF1, GABPB1, MXI1, and SIN3A) expressed in BALF and 

PBMC that participate in the regulation of this pathway genes including members of  

CSPs (Supplementary Data 4). Overall, we demonstrated the dynamic transcription 

patterns of CSI genes and CSPs that participate in cytokine storm, eIF2 

signaling/translation, protein ubiquitination pathway and T cell receptor regulation of 

apoptosis (Supplementary Fig. 3, Supplementary Data 4). Finally, we identified a set of 

TFs that potentially regulate the above mentioned pathways’ genes at various stages of 

SARS-CoV-2 infection in COVID-19 patients. 

 

Discussion 

In the last two decades, intra- and inter-species interactomes have been generated in a 

number of prokaryotes and eukaryotes including human, mouse, worm and plant 

models 5, 6, 10, 33. Investigating such interactomes has indicated that diverse cellular 

networks are governed by universal laws, and led to the discovery of shared and distinct 

molecular components and signaling pathways implicated in viral pathogenicity. In the 

present study, we constructed a Calu-3-specific human-SARS-CoV-2 Interactome (CSI) 

by integrating the lung epithelial cells-specific co-expression network with the human 

interactome. We determined that CSI displayed features of scale-freeness and was 

enriched in different centrality measures. Identification of structural modules displayed 
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the relationships with a set of functional pathways in CSI. In-depth network analyses 

revealed 28 most influential nodes. Additional noteworthy findings pertain to SARS-

CoV-2 transcriptional signatures, regulatory relationships among diverse pathways in 

CSI and overall SARS-CoV-2 pathogenesis including the cytokine storm.  

 

We constructed a comprehensive and robust CSI, a human-viral interactome that 

displayed scale free properties (r2= 0.91; Fig. 1d). We also showed that the SARS-CoV-

2 interacting proteins (SIPs) exhibit increased average centrality indices compared to 

the remaining proteins in the network (Fig. 1d, Supplementary Fig. 1a, b). Numerous 

human-viral interactomes have previously been generated to uncover global principles 

of viral entry, infection and disease progression. These include human T-cell 

lymphotropic viruses, Epstein-Barr virus, hepatitis C virus, influenza virus, human 

papillomavirus, dengue virus, Ebola virus, HIV-1, and SARS-CoV 12, 13, 14, 15, 16, 17, 18, 19, 20, 

24, 25, 26, 27, 28, and all of these interactomes exhibited a power law distribution. Another 

significant tenet of interactomes is the existence of modular structures or modules, 

defined as sets of densely connected clusters within a network that exhibit heightened 

connectivity among nodes within a module. Such nodes within a module have 

previously been deemed to possess similar biological function or belong to the same 

functional pathways 39. Since nodes in CSI not only form protein complexes but also co-

express specifically to coronavirus infection, we extracted several functional modules 

from our network (Fig. 2 e-k). The mostly highly connected module pertains to eIF2 

signaling, and is comprised of protein translation-related proteins such as RPS and 

RPLs. Indeed, these ribosomal proteins have been shown to interact with viral RNA for 
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viral proteins biosynthesis, and are subsequently required for viral replication in the host 

cells 40. Noteworthy, two ribosomal proteins, RPL36 and RPS20, found to interact with 

several SARS-CoV-2 viral factors. Moreover, both of these proteins are also CSI 

Significant Proteins (CSPs) that harbor increased centrality measures (Fig. 3e). 

Intriguingly, RPS20 has been demonstrated to operate as an immune factor that 

activates TLR3-mediated antiviral. It remains to be addressed whether RPS20 is a 

“double whammy” target of SARS-CoV-2 for (1) hijacking this important factor for viral 

translation and replication, and (2) suppressing a critical immune signaling pathway. 

Regardless, ribosomal proteins are critical targets of numerous viruses and play equally 

essential roles in developing antiviral therapeutics 40.     

The ubiquitin proteasome system (UPS) constitutes the major protein degradation   

system of eukaryotic cells that participate in a wide range of cellular processes, and 

another critical target of diverse viruses 41. UPS plays an indispensable role in fine-

tuning the regulation of inflammatory responses. For instance, proteasome-mediated 

activation of NF-κB regulates the expression of proinflammatory cytokines including 

TNF-α, IL-1β, IL-8. Similarly, UPS is indispensable in the regulation of leukocyte 

proliferation 41. The UPS is generally considered a double-edged sword in viral 

pathogenesis. For example, UPS is a powerhouse that eliminates viral proteins to 

control viral infection, but at the same time viruses hijack UPS machinery for their 

propagation 41. In case of herpes simplex virus type 1, Varicella-zoster virus and Simian 

varicella virus, induction of NF-κB – mediated host innate immunity is suppressed by the 

manipulation of UPS components 42. Moreover, it was revealed that UPS plays crucial 

roles at multiple stages of coronaviruses’ infection 43. In our study, the ubiquitin 
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proteasome module was composed of several members of 26S proteasome ATPase or 

non-ATPase regulatory subunits, which includes two CSPs, PSMD8 and PSMA2 (Fig. 

3e). It still needs to be determined whether these two CSPs play important roles in the 

expression of proinflammatory cytokines and are potentially involved in the cytokine 

storm. While the mechanistic evaluation of SARS-CoV-2 interaction with these two high-

value targets needs to be explored, both the mRNA and protein expression 

corresponding to PSMD8 was recently shown to be decreased up to 30% in aged 

keratinocytes 44. Since reduced proteasome activity results in aggregation of aberrant 

proteins that perturb cellular functions, we hypothesized that SARS-CoV-2 targets these 

CSPs to interfere with ER-mediated cellular responses. Another noteworthy module is 

the T cell receptor regulation of apoptosis. Indeed, it was recently reported that SARS-

CoV-2 infection may cause lymphocyte apoptosis demonstrated by overall cell count 

and transcriptional signatures in PBMC of COVID-19 patients 36, 45. Another significant 

CSP in this pathway is MTCH1 (Fig. 3e), a proapoptotic protein that triggers apoptosis 

independent of BAX and BAK 46. We hypothesized that cytokines-mediated induction of 

cytokine storm is partially dependent on the SARS-CoV-2 interaction with MTCH1. 

Taken together, our module-based functional analyses identified several novel 

molecular components, structural and functional modules, and overall provided insights 

into the pathogenesis of SARS-CoV-2.  

Our network topology analyses discovered 28 CSI Significant Proteins (CSPs) that have 

been implicated in several above described modules and pathways (Fig. 3e). To provide 

a system-wide perspective of the importance of these CSPs in COVID-19, we 

categorized these CSPs into three groups based on their possible functionality. Group-1 
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includes CSPs that are potentially relevant to modifying host response following SARS-

CoV-2 infection. These include EEF1A1, ETFA, MRPS27, MRPS5, MTCH1, NDUFA10, 

RAB1A, RAB2A, RAB5C, RAB7A and RHOA (Fig. 3e). We hypothesized that such 

CSPs are important in creating protective environment in host tissue following the viral 

infection. For example, RAB and RHO group of ras proteins may be involved in 

augmenting inflammatory signaling pathways. While antioxidants regulating 

mitochondrial and cytoplasmic proteins are possibly important in regulating and 

maintaining redox homeostasis 47, another CSP, SCCPDH, is involved in the metabolic 

production of lysine (Lys) and α-ketoglutarate (α-kg) 48. Intriguingly, L-lysine 

supplementation appears to be ineffective for prophylaxis or treatment of herpes 

simplex lesions 49. We hypothesized that SARS-CoV-2 may target SCCPDH to hijack 

the biosynthesis of this essential amino acid for its benefit. Group-2 CSPs that we 

identified are likely to be hijacked by SARS-CoV-2 for its entry, proliferation and survival 

in the host tissue. In this category, one of the most important CSPs is prohibitin (PHB; 

Fig. 3e). PHB is an important protein shown to be a receptor for dengue and 

Chikungunya viruses 50, 51. Although it has been shown that ACE2 serves as the main 

receptor for SARS-CoV-2 entry into the cells 52, it is quite interesting that pathogenesis 

of the viral infection is not significantly different between the populations of hypertensive 

patients who receive or don’t receive ACE2 inhibitors 53, 54, 55, 56. Therefore, it is plausible 

that under certain physiological conditions when SARS-CoV-2 does not engage with the 

ACE2 receptor for its entry into the cell, PHB serves as an alternative receptor. Another 

CSP Integrin β1 encoded by ITGB1 was recently shown to be required for the entry of 

Rabies Virus 57. Whether ITGB1 could also promote the entry of SARS-CoV-2 is 
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another question that needs to be addressed. MEPCE is another important enzyme 

involved in RNA stabilization by capping the 5´ end of RNA with methyl phosphate 58. It 

is also likely that MEPCE is utilized by the COVID-19 virus for stabilization of its RNA in 

the host tissue. Similarly, PPP1CA was shown to regulate HIV-1 transcription by 

modulating CDK9 phosphorylation 59, and thus is potentially involved in the gene 

regulation of SARS-CoV-2. As discussed above, PSMA2 and PSMD8 are the two 

proteasomal CSPs 42, 43, 44. While infecting the lung epithelium, SARS-CoV-2 may utilize 

these UPS proteins for the fusion with the host cell membrane (Fig. 3e). Similarly, 

NUP98 can also be utilized for viral entry into the nucleus. Additional three CSPs in this 

category, RPL36 and RPS20 40, 60 as well as SRP72 61, could be employed for viral 

transcription and protein synthesis (Fig. 3e). Finally, Group-3 CSPs are proteins, which 

SARS-CoV-2 may utilize both to facilitate its proliferation as well as to induce a 

conducive environment in the host tissue for its sustenance and pathogenesis (Fig. 3e). 

These CSPs include AP2M1, CSNK2B, EEF1A1, ETFA, LARP1, RTN4 and UBE2I. 

Among these CSPs, EEF1A1, PPIA, PSMA2, PSMD8, RAB1A, RAB2A, RAB5C, 

RAB7A, RHOA and UBE2I are identified as the ones that are potentially associated with 

the pathogenesis of the cytokine storm as observed in some severely affected patient 

populations. Intriguingly, EEF1A1, a target of several viruses, is known to be activated 

upon inflammation 62. This CSP is independently identified as one of the major 

regulators in human-SARS-CoV-2 predicted interactome 63. The CSPs, which regulate 

protein folding and translation, for example EIAF1, could be utilized by SARS-CoV-2 to 

halt host protein translation, folding and protein quality control. In addition, we also 

identified E2F4, TBX3 and SMARCB as first neighbors of some of these CSPs. These 
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CSPs complexes play key roles in promoting cell death, causing inflammation and 

acting enzymatically as viral integrases. Collectively, these CSPs and their first 

neighbors could directly and indirectly perform intricate pathopysiological functions but 

those mentioned here could be the key effects of COVID-19 on host tissue 

dysregulation. This classification is also crucial for the design of effective therapeutic 

interventions against COVID-19. Finally, we presented transcriptional modeling of CSI 

genes including CSPs that participate in cytokine storm, eIF2 signaling/translation, 

protein ubiquitination pathway and T cell receptor regulation of apoptosis. Thus, these 

signaling pathways and TFs discovered through our analyses could provide important 

clues about effective drug targets and their combinations that can be administered at 

different stages of COVID-19.  

In conclusion, we generated a human-SARS-CoV-2 interactome, integrated virus-

related transcriptome to interactome, discover COVID-19 pertinent structural and 

functional modules, identify high-value viral targets, and perform dynamic transcriptional 

modeling. Thus, our integrative network biology-based framework led us uncover the 

underlying molecular mechanisms and pathways of SARS-CoV-2 pathogenesis.  

 

Materials and methods 

 

Human-SARS-CoV-2 interactome data acquisition 

To build human interactome, we assembled a comprehensive protein-protein 

interactions (PPIs) comprising experimentally validated PPIs from STRING database 32 

and four additional proteomes-scale interactome studies i.e. Human Interactome I and 
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II, BioPlex, QUBIC, and CoFrac (reviewed in 33. The resulted human interactome have 

18,906 nodes (proteins) with 444,633 edges (interactions). Our human interactome 

have 1,200 more proteins and 93,189 interactions which was not included in previous 

study 37. We collected a total of 394 SARS-CoV-2 interacting proteins (SIPs) from two 

recent studies encompassing 332 proteins of SARS-CoV-2-human interactions 32, and 

62 proteins of SARS-CoV- and MERS-CoV- human interactions 37 (Supplementary Data 

1).  

Differential gene expression analysis on SARS-CoV, MERS-CoV and SARS-CoV-2 

datasets 

We obtained microarray data for GSE33267, GSE37827, GSE56677 from GEO 

database 64 and used GEO2R, an interactive web tool to generate differential gene 

expression between infection and mock treatments at their respective time points. 

Briefly, GEO2R utilizes limma R package. Limma is an R package for the analysis of 

gene expression microarray data. Specifically, it uses the linear model for analyzing 

designed experiments and the assessment of differential expression. A threshold of 2 

log fold change and FDR ≤ 0.05 was set for differential expression analysis of all 

microarray experiments. For comparative study of SARS-CoV-2 expression pattern, we 

downloaded expression data set of RNAs isolated from the bronchoalveolar lavage fluid 

(BALF) and peripheral blood mononuclear cells (PBMC) of COVID-19 patients 36. The 

criteria for filtering out significant genes were kept as adjusted p-value < 0.05 and fold-

change > 2 

Generation of Calu-3 Cells-specific Co-expression Networks in response to 

SARS-CoV and MERS-CoV infection 
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We mined Calu-3 Cells-specific datasets from GEO database 64, and downloaded 

GSE33267 (Wild type), GSE37827 (icSARSCoV) and GSE56677(LoCov). We 

performed  individual weighted gene co-expression network analysis (WGCNA) 65 

package (R version 3.6.1), and constructed three co-expression networks. Moreover, 

we also generated topological overlap measure (TOM) plots to compute a numerical 

entity that reflects interconnectedness among genes within a co-expression network. A 

cut-off of 0.75 was used to export the networks.  Subsequently, we merged these 

networks to generate a comprehensive Calu-3 cells-specific co-expression to study the 

network connectivity pattern of interactome.  

Network Integration and Topology Analysis 

To extract the Calu-3-specific human-SARS-CoV-2 Interactome (CSI) we integrated the 

merged transcriptomics co-expression network (22, 445 nodes with 10,649,854 edges) 

and SARS-CoV-2–Human Interactions (12,852 nodes with 84,100 edges) including 373 

SIPs. The resulted CSI network has 4,123 nodes with 14,650 edges including 214 SIPs 

with all possible interactions including their first and second neighbors (Supplementary 

Data 1). Network topology analyses was performed using NetworkX 66 (version 2.4) 

Python (version 3.7.6) package was used except weighted k-shell-decomposition for 

which we downloaded wk-shell-decomposition Cystoscope App (version 1.0). 

Cytoscape (Version 7.3.2) was used to visualize all the networks.  

Gene Ontology Functional Enrichment Analysis 

The functional enrichment analysis was done by Kyoto Encyclopedia of Genes and 

Genomes (KEGG), ingenuity pathway analysis (IPA), WikiPathways, GO biological 
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process, ClueGO, and enricher for human phenotype ontology and rare diseases term 

with their statistically significant parameters 67.  

Reconstructing SARS-CoV Responsive Dynamic Regulatory Events 

Interactive visualization of dynamic regulatory networks (iDREM) is a method which 

incorporates static and time series expression data to reconstruct condition-specific 

reaction network in an unsupervised manner 28. Additionally, the regulatory model 

identifies specific stimulated pathways and genes, which uses statistical analysis to 

recognize TFs that vary in activity among models. We implemented iDREM on 4,952 

cumulative differentially expressed genes across 72 hours of SARS-CoV infection with 

log2 normalization for dynamic regulatory event mining with all human 954,377 

TFs/targets collections from encode database 68. The dynamic activated pathways 

regulated by TFs was generated by EBI human gene ontology function.  

Statistical analyses 

Hypergeometric test, linear regression (r2), and Student t-test were performed using R 

version 3.3.1 as well as online Stat Trek tool.  

 

Data Availability 

All datasets used for this study are accessible through Supplementary Data files.  
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Figure legends 

Figure 1: Integrative multi-omics analysis identified Calu-3-specific human-SARS-

CoV-2 Interactome (CSI). 

a Human interactomes (HI-II-14, BioPlex , QUBIC, CoFrac, and STRING) connections 

and 373 SARS-CoV-2 Interacting Proteins (SIPs) were used to extract the “SARS-CoV-

2::Human PPI” (12,852 Nodes and 84,100 Edges) including all possible interactions. b 

Weighted gene co-expression network (WGCNA) construction of SARS and MERS 

Infected Calu-3 cells gene expressions profiles from NCBI GEO datasets. The merged 

co-expression network has 22,445 Nodes and 10,649,854 Edges. c Calu-3-specific 
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human-SARS-CoV-2 Interactome (CSI) with 4,123 Nodes and 14,650 Edges (Red: 214 

SIPs, Green: 1st Neighbor of SARS-CoV-2 Interacting Proteins (SIPs), Yellow: other 

proteins). d Degree of CSI nodes displays power law (r2=0.91) distribution and follow 

scale free property. 

Figure 2: SARS-CoV-2 Interacting Proteins (SIPs) structural and functional 

properties in Calu-3-specific human-SARS-CoV-2 Interactome (CSI). 

a Average degree of SIPs (8.61) is significantly higher than other interacting proteins 

(7.03) in CSI network (t- test, P < 0.0005). b Average information centrality (IC) of SIPs 

(0.000284) is significantly heighted compared to remaining proteins (0.000269) in CSI 

network (t- test, P < 7.73E-81). c SIPs exhibit significantly increased average 

betweenness centrality (BW; 0.00105) compared to other interacting proteins (0.00067) 

in CSI network (t- test, P < 0.00033). d SIPs are significantly enriched in CSI network 

than the human interactome (hypergeometric test, P < 3.159E-51). e-k CSI subnetworks 

of highly clustered modules obtained with the application of MCODE Cytoscape app 

and K-means clustering. The significant functional annotation was done by Ingenuity 

Pathway Analysis (IPA) (Red= SARS-CoV-2 targets, Olive Blue= CSI nodes). 

Figure 3: Identification of most influential nodes in Calu-3-specific human-SARS-

CoV-2 Interactome (CSI) using Network biology framework 

a Weighted k-shell decomposition identifies inner and peripheral layers of CSI. 33% of 

all shells are considered as inner layers. Top 5% of inner layer proteins are considered 

as significant (Red= Inner layer, Blue= peripheral layer). b-d. Correlation between 

information centrality and degree (b, r2 = 0.9), betweenness and degree (c, r2 = 0.51) 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 11, 2020. ; https://doi.org/10.1101/2020.04.09.033910doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.09.033910


34 
 

and PageRank and degree (d, r2 = 0.84). e 28 CSI Significant Proteins (CSPs) that 

exhibit more than one high significant centrality measures (Degree, information 

centrality (IC), betweenness centrality (BW), eigenvector centrality (EV), closeness 

centrality (CC), load centrality (LC), harmonic centrality (HC), and PageRank). The size 

of blue spot determines the significant central node in a centrality indices. f Enrichr 

identified significantly enriched rare disease enriched CSPs in SARS, listeria infection, 

and pulmonary sequestration (P-value <0.0001). g Network representation of significant 

SARS-CoV-2 viral protein interaction with 28 CSPs (Nodes: Red= viral proteins, Blue= 

CSPs significantly targeted by viral protein, grey= CSPs with insignificant viral protein 

interaction; edge width= MIST score, edge color= AvgSpec).  

Figure 4: Dynamic gene regulation modeling of transcriptional signatures 

pertinent to SARS-CoV-2 infection 

 

a Heatmap of 228 Differentially expressed genes (DEGs) in COVID-19 patients derived  

bronchoalveolar lavage fluid (BALF) transcriptome and Calu-3-specific human-SARS-

CoV-2 Interactome (CSI). The heatmap was clustered based on k-mean with cluster 

with maximum genes are enriched in eIF2 Signaling/Translation pathways. Two out of 

three remaining clusters are enriched in Apoptosis. P and N denote patients and 

controls, respectively. b Heatmap of 215 DEGs common between transcriptome of 

peripheral blood mononuclear cells (PMBC) derived from P (patients) and N (controls) 

and Calu-3-specific human-SARS-CoV-2 Interactome (CSI). The heatmap was 

clustered based on k-mean with cluster with maximum genes are enriched in protein 

ubiquitination and apoptosis. e Dynamic regulatory event mining of 4,952 cumulative 
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DEGs in SARS-CoV across 72 hours of infection  reconstructed by incorporating static 

protein-DNA interaction data with time series (GSE33267).  The regulators only 

expressed in BALF and PBMC transcriptomes are highlighted. Significant regulators 

(TFs) control the regulation dynamics (P< 0.05). Major bifurcation of pathways occurs at 

24- hour with a total of 46 TFs involved in dynamic modulation. 
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