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Abstract 11 
The emergence of SARS-CoV-2 is responsible for the pandemic of respiratory disease known as COVID-12 
19, which emerged in the city of Wuhan, Hubei province, China in late 2019. Both vaccines and targeted 13 
therapeutics for treatment of this disease are currently lacking. Viral entry requires binding of the viral spike 14 
receptor binding domain (RBD) with the human angiotensin converting enzyme (hACE2). In an earlier 15 

paper1, we report on the specific residue interactions underpinning this event. Here we report on the de novo 16 
computational design of high affinity antibody variable regions through the recombination of VDJ genes 17 
targeting the most solvent-exposed hACE2-binding residues of the SARS-CoV-2 spike protein using the 18 

software tool OptMAVEn-2.02. Subsequently, we carry out computational affinity maturation of the 19 
designed prototype variable regions through point mutations for improved binding with the target epitope.  20 
Immunogenicity was restricted by preferring designs that match sequences from a 9-mer library of “human 21 

antibodies” based on H-score (human string content, HSC)3. We generated 106 different designs and report 22 
in detail on the top five that trade-off the greatest affinity for the spike RBD epitope (quantified using the 23 
Rosetta binding energies) with low H-scores. By grafting the designed Heavy (VH) and Light (VL) chain 24 

variable regions onto a human framework (Fc), high-affinity and potentially neutralizing full-length 25 

monoclonal antibodies (mAb) can be constructed. Having a potent antibody that can recognize the viral 26 
spike protein with high affinity would be enabling for both the design of sensitive SARS-CoV-2 detection 27 

devices and for their deployment as therapeutic antibodies.  28 
 29 

Main 30 

Over the last few weeks, several studies on using human or humanized antibodies targeted at the SARS-31 
CoV-2 spike protein have been reported4,5,6,7. In addition, multiple efforts by laboratories and companies 32 

(Cellex, GeneTex etc.) for the development of antibody-based tests for SARS-CoV-2 detection are 33 
ongoing8. At the same time, significant progress towards the isolation and design of vaccines (mRNA-1273 34 
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vaccine © 2020 Moderna, Inc) and neutralizing antibodies9 has been made. A computational study 35 

identified the structural basis for multi-epitope vaccines10,11 whereas in another study, the glycosylation 36 
patterns of the spike SARS-CoV-2 protein were computationally deduced12. In addition, fully human single 37 

domain anti-SARS-CoV-2 antibodies with sub-nanomolar affinities were identified from a phage-displayed 38 
single-domain antibody library. Naïve CDRs were grafted to framework regions of an identified human 39 

germline IGHV allele using SARS-CoV-2 RBD and S1 protein as antigens13.  In another study14, a human 40 

antibody 47D11 was identified to have cross neutralizing effect on SARS-CoV-2 by screening a library of 41 
SARS-CoV-1 antibodies. In two other studies, potent neutralizing antibodies were isolated from the sera of 42 

convalescent COVID-19 patients15,16. To the best of our knowledge, none of these neutralizing antibody 43 

sequences are publicly available. In a follow up effort17, human antibody CR3022 (which is neutralizing 44 
against SARS-CoV-118) has been shown to bind to SARS-CoV-2 RBD in a cryptic epitope but without a 45 

neutralizing effect for SARS-CoV-2 in vitro. Desautels et al19, performed a machine learning based in silico 46 
mutagenesis of SARS-CoV-1 neutralizing antibodies to bind to SARS-CoV-2 spike protein. Walter et al20 47 

generated a number of synthetic nanobodies by in vitro screening large combinatorial libraries for binding 48 
to SARS-CoV-2 spike RBD20. However, studies that perform structure guided design of high affinity 49 
antibodies against specific epitopes of SARS-CoV-2 spike protein that may interfere with hACE2 binding 50 

are still lacking.  51 
 52 
Motivated by these shortcomings, here we explore the de novo design of antibody variable regions targeting 53 
the most solvent-exposed residues of the spike protein that are also part of the residue contact map involved 54 

in hACE2 binding, and trade-off binding energy against human sequence content in the variable region. 55 
The goal here is to exhaustively explore the sequence space of all possible variable region designs and 56 
report a range of diverse solutions that can serve as potentially neutralizing antibodies (nAb). We find that 57 

many different combinations of VDJ genes followed by mutation can yield potentially high affinity variable 58 
regions (scored using the Rosetta binding energy function) against an epitope of the spike protein RBD. 59 

Pareto optimal designs with respect to binding affinity vs. human content were drawn and five affinity 60 

matured designs are detailed in the results section.   61 

 62 

We first performed solvent accessibility analysis using the STRIDE21 program on the 21 hACE2-binding 63 

residues of the SARS-CoV-2 spike protein (S-protein) RBD to define our binding epitope. The top seven 64 
residues with the highest solvent accessibility scores (i.e., SAS) are (Arg346, Phe347, Ala348, Tyr351, 65 

Ala352, Asn354, and Arg355) comprising our binding epitope (see Figure 1). Furthermore, the epitope is 66 

accessible for binding to RBD in the open confirmation of the full spike protein (See Supp. Fig. S8).  67 
  68 
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 69 
Figure 1. The SARS-CoV-2 spike protein RBD in complex with Human ACE2 protein (PDB-id: 6LZG) is shown 70 
along with the most solvent accessible residues at the binding interface highlighted in purple. A zoomed view of these 71 
seven epitope residues is shown in the inset box. The numbering scheme for the S-protein residues is same as in PDB 72 
accession id 6LZG (rcsb.org/structure/6LZG or 6VW17 and 6M0J6).  73 
 74 
We next used the previously developed OptMAVEn-2.02 software to computationally identify the 75 
combination of VDJ genes forming the variable region that best binds the desired epitope. OptMAVEn22 76 
has been used before successfully to design five high affinity CDRs against a FLAG tetrapeptide23 , three 77 

thermally and conformationally stable antibody variable regions (sharing less than 75% sequence similarity 78 

to any naturally occurring antibody sequence) against a dodecapeptide mimic of carbohydrates24 and two 79 

thermostable, high affinity variable heavy chain domains (VHH) against α-synuclein peptide responsible 80 

for Parkinson’s disease25. All these designs were experimentally constructed and nanomolar affinities for 81 

their respective target antigens was demonstrated. 82 
 83 

Through a combination of rotations and translations, OptMAVEn-2.0 identified 3,234 unique antigen poses 84 

that presented the epitope to the antibody differently. The combinatorial space of different VDJ genes that 85 
upon recombination form the variable region of the prototype antibody was informed by the MAPs database 86 
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of antibody parts26. MAPs (see Supp. Info. S1 for link to full database) contains 929 modular antibody (i.e., 87 

variable-V*, complementarity determining -CDR3, and joining-J*) parts from 1,168 human, humanized, 88 
chimeric, and mouse antibody structures (last updated in 2013). MAPs follows the antibody parts residue 89 

numbering convention as listed in the International iMmunoGeneTics (IMGT)27 database.  IMGT catalogs 90 
antibody parts as variable (V), diversity (D) and joining (J) structure libraries. MAPs stores complete CDR3 91 

parts, C-terminus-shortened V parts (i.e. V* parts) and N-terminus-shortened J parts (J* parts). Note that 92 

CDR3 includes the entire D gene and also up to the C-terminus of the V gene and up to the N-terminus of 93 
the J gene. In the remainder of the manuscript, the list of parts used to design the variable region are referred 94 

to as CDR3, V* and J* parts. 95 

 96 
For each one of the 3,234 spike poses, OptMAVEn-2.0 identified a variable region combination composed 97 

of end-to-end joined V*, CDR3, and J* region parts that minimized the Rosetta binding energy between 98 
the variable region and spike epitope formed by the seven residues. As part of OptMAVEn-2.0, the 99 

combinatorial optimization problem was posed and solved as a mixed-integer linear programming (MILP) 100 
problem using the cplex solver28. The solution of this problem identifies, for each one of the spike poses, 101 
the complete design of the variable region using parts denoted as HV*, HCDR3, HJ* for the heavy chain 102 

H and L/KV*, L/KCDR3 and L/KJ* for the light chain-L/K. Only 173 antigen-presenting poses out of 103 
3,234 explored, yielded non-clashing antigen-antibody complexes. These 173 poses were ranked on the 104 
basis of their Rosetta binding energies with the spike epitope and classified into 27 clusters (using k-105 
means29) in a 19-dimensional space defined by quantitative descriptors of sequence similarity, three-106 

dimensional spatial pose, and the angle at which they bind to the target epitope (see details in original 107 
paper2). The top five prototype designs with the highest Rosetta binding energies were present in four 108 
clusters and spanned a highly diverse set of choices of MAPs parts (see Table 1) with minimal conservation 109 

of the same part among the five prototype designs. The number entries in Table 1 correspond to the id of 110 
the gene in the MAPs database (which are identical to the ids used in IMGT). Note that design P5 uses a 111 

lambda (L) light chain instead of a kappa (K). Figure 1a plots the pairwise sequence similarity scores of the 112 

five antibody variable domains that were used in the top five designs. As expected, the top five prototype 113 

designs P1, P2, P3, P4, and P5 are the most dissimilar in their respective CDR3 domains in both light L, 114 

heavy H and HV* domain (but not LV*). They are the most similar in the choice of parts for the J* domains 115 

(see Figure 2a) reflecting the lack of diversity among possible choices for the J* domains in the MAPs 116 
database. 117 

 118 

 119 
 120 
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Table 1. V*, CDR3, J* gene ids for the top five prototype variable region designs and corresponding Rosetta 121 
binding energies30,31.Antigen poses are described with the angle that the vertical axis through the epitope (shown in 122 
pink) centroid and the Cβ carbon of the residue with greatest z-axis coordinate forms. 123 

 Modular Antibody Parts number chosen in each design Antigen pose 

(rotation of epitope 

about vertical axis) 

Rosetta 
binding 
energy 

(kcal/mol) 

Prototype 

design 
HV* HCDR3 HJ* L/KV* L/KCDR3 L/KJ* 

P1 82 315 5 61(K) 4(K) 3(K) 
 

0° 

-36.77 

P2 52 94 1 61(K) 17(K) 3(K) 
 

0° 

-27.57 

P3 105 12 5 6(K) 23(K) 4(K) 

300° 

-29.20 

P4 79 204 1 2(K) 1(K) 4(K) 

240° 

-19.78 

P5 108 212 1 37 (L) 5 (L) 5 (L) 

360° 

-38.62 

 124 

Inspection of the interaction of design P1 with the spike epitope reveals strong electrostatic contacts 125 
between the S-protein residues Tyr351, Asn354, and Arg355 (see Figure 1c) all of which have been deemed 126 

important for hACE2 binding1. The strongest contacts with the three epitope residues are established by 127 

five antibody residues spanning both the heavy and light chains (shown in yellow in Figure 2b). Spike 128 
Tyr351 interacts with Ser64 in the HV* domain, Asn354 interacts with Glu38 and Tyr114 in HV* and KV* 129 

domains respectively, while spike Arg355 interacts with Asn37 and Asp110 of HV* and HCDR3 domains, 130 

respectively, in the stable spike-antibody complex (see Figure 2c). 131 
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 132 
Figure 2. (a) Pairwise sequence similarity percentages between the members of the six parts that were used to 133 
construct the top five prototype variable regions with the lowest Rosetta binding energies with the viral spike epitope. 134 
(b) The amino acid sequence of prototype design P1 with the different domain parts highlighted in different colors.  135 
Spike epitope binding residues are highlighted in yellow. (c) Structural view of the strongest epitope-prototype 136 
variable region interactions for P1. They imply strong electrostatic capture of three epitope residues by five variable 137 
region residues spanning both heavy (H) and light (K) chains.  138 
 139 
We next applied Rosetta-based in silico affinity maturation (see Methods) for each one of the top five 140 

prototype designs shown in Table 1 to further enhance the non-covalent binding between the antibody 141 
variable domains and the SARS-CoV-2 spike RBD. This computationally mimics the process of somatic 142 
hypermutation leading to eventual affinity maturation of antibodies in B cells. This procedure identified a 143 

total of 124 unique variable designs by introducing mutations in the five prototypes (see Figure 3a). We 144 
retained 106 designs which achieved both an improvement in the Rosetta binding energy over their 145 

respective prototype sequences and also further stabilization (i.e., lower overall Rosetta energy) of the 146 

spike-antibody complex (see upper right quadrant of Figure 3a). On average, upon affinity maturation, the 147 
binding energy was improved by ~14 kcal/mol and the overall energy was improved by ~37 kcal/mol. 148 

Supplementary S2 lists first the starting prototype design (i.e., P1, P2, P3, P4 or P5) followed by the 106 149 

affinity matured designs (labeled as P1.D1, P1.D2, etc). On average, there were 4.5 mutations (Supp. info. 150 
S3) between computational affinity matured and prototype variable region designs.     151 

 152 
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We next assessed the departure of the 106 designed variable regions from fully-human antibody sequences 153 

using H-Score3. H-score is defined as the sum of the minimum edit distance between all possible 9-mer 154 
fragments in the designed variable region from a library of all 9-mer sequences observed in human 155 

antibodies22. The value of H-score is scaled to 100 and normalized by the length of the sequence. An 156 
antibody sequence with all 9-mers exactly matching 9-mers of human antibodies will have a perfect H-157 

score of 100. Figure 3b illustrates the trade-off between the Rosetta binding energy vs. H-score for these 158 

affinity matured variable region designs. For comparison, we calculated the H-score for the human 159 
antibodies CR302232, 80R33, S23034 and M39635 which are known to be neutralizing against SARS-CoV-160 

1. These antibodies (including only Fv regions) have an average H-score of 62.98 (stdev: 4.9) which are in 161 

the same range as our most human designs (e.g., P3.D1 and P3.D3).  162 
 163 

We selected five designs that were on the Pareto optimum curve shown in Figure 3b. The Pareto optimum 164 
curve is defined as the collection of designs for which no other design exists that can simultaneously 165 

improve upon both criteria (i.e., Rosetta binding energy and H-score). Designs P1.D1 and P1.D2 shown in 166 
blue (in Fig. 3b) have the lowest Rosetta binding energies whereas P3.D1 and P3.D3 shown in yellow 167 
correspond to the ones with the highest H-scores. Design P4.D1 is an intermediate design that balances 168 

both binding energy and H-score.  The lowest binding energy designs (P1.D1, P1.D2), irrespective of H-169 
score, would be relevant in ELISA-based in vitro detection assays whereas the lowest H-score designs 170 

Figure 3. (a) The 106 out of 124 Rosetta-affinity matured designs that improve upon both energy criteria fall in 
the top right quadrant. (b) Plot of the Rosetta binding energy vs. H-score for the 106 retained affinity-matured 
sequences. The blue line connects the designs on the Pareto optimum curve between these two design objectives.  
The three best-binding affinity matured designs (emerging from P1) – P1.D1 and P1.D2 are shown in blue whereas 
the two most human designs (emerging from P3) – P3.D1 and P3.D3 are shown in yellow. An intermediate design 
P4.D1 (emerging from P4) is shown in red. 
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(P3.D1, P3.D3) may offer the highest potential as therapeutic antibodies. In addition, we calculated the 171 

Rosetta binding energy between the human CR302217 (anti-SARS-CoV-1 antibody) and the SARS-CoV-2 172 
spike protein RBD using complex structure (PDB-id:6W41) to be -56.4 kcal/mol which is very close to the 173 

Rosetta binding energy of designs P1.D1 and P1.D2. However, P1.D1 and P1.D2 bind a different epitope 174 
on the spike RBD than the one that CR3022 targets (see Supp. Fig S7). 175 

 176 

Figure 4 shows the sequence alignment of these five selected affinity matured sequences (i.e., P1.D1, 177 
P1.D2, P4.D2, P3.D1, and P3.D3). Shown in red boxes are the conserved positions and in red font the 178 

positions with different but of similar type residues. A total of 156 out of 226 aligned positions are 179 

conserved among all designs. Table 2 lists the most important (strongest) contacts with the spike protein as 180 
informed by an in silico alanine scanning (Supp. info. S4) on the spike-binding residues of the variable 181 

region designs. In essence, the alanine scanning analysis identifies the loss in binding energy that is incurred 182 

upon mutating each residue (one at a time) to alanine.  183 

Figure 4. Sequence alignment of Heavy chain sequences (panel A) and light chain sequences (panel B) of the five 184 
pareto optimal affinity matured sequences. Conserved positions are outlined in blue boxes. Positions with same 185 
residues across designs are highlighted in red and positions with different amino acid but similar residue type are 186 
highlighted in white with red text.   187 
 188 
Table 2. List of important contacts between the spike protein epitope residues and residues of each of the selected 189 
affinity matured designs. For each contact, the loss in binding energy upon mutation of antibody residue from the 190 
interface to alanine is tabulated. The corresponding interacting spike residue is also shown.  191 
 192 
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Matured 
antibody  
Design id 

Interface 
residue from 

antibody 

Interacting 
spike 

residue(s) 

Loss in binding energy 
upon mutation to 
alanine (kcal/mol) 

Corresponding 
variable region 

 G62 A352 9.69 HV* 
 

P1.D1 
G63 
L65 

Y351 
Y489 

2.13 
1.26 

HV* 
HV* 

 Y66 S349 0.53 HV* 
 I56 C488 0.94 HV* 
 F109 K356 2.77 HCDR3 
 

P1.D2 
T65 
Y66 

Y351 
A348,S349 

1.42 
1.06 

HV* 
HV* 

 I56 C488 0.94 HV* 
 S57 A352 0.71 HV* 
 A56 L452 0.573 KV* 
 D35 R357 0.08 HV* 

P4.D1 G28 T478,G482 0.01 KV* 
 T85 N481 0.00 KV* 
 L67 V445 0.00 KV* 
 W64 

N57 
A352 
N354 

2.30 
0.65 

HV* 
HV* 

P3.D1 F107 T345 0.57 KCDR3 
 S29 E340 0.14 HV* 
 S108 R346 0.12 KCDR3 
 N57 N354 0.99 HV* 
 F107 T345 0.33 KCDR3 

P3.D3 D38 R346 0.18 KV* 
 S29 E340 0.22 HV* 
 Q106 R346 0.03 KCDR3 

 193 
 194 
Antibodies that strongly bind to the RBD but do not inhibit hACE2 binding have been shown to be 195 

neutralizing for SARS-CoV-2 (47D1114) and for SARS-CoV-1 (CR3022 in combination with CR301432). 196 
The mechanisms of neutralization of such antibodies are not completely known14. It is possible that upon 197 
binding, these antibodies perturb the interaction network of the RBD with hACE2 thereby rendering RBD-198 

hACE2 binding less effective. In addition, Daniel et al36 showed that nanobody VHH-72 raised against 199 

SARS-CoV-1 had a neutralizing effect despite binding to an epitope that does not overlap with the hACE2 200 

residue binding domain. By fusing VHH-72 with a human IgG1 they demonstrated SARS-CoV-2 201 

neutralizing activity. They hypothesized that binding of the nanobody with the trimeric spike protein may 202 
disrupt conformational dynamics and consequently prevent binding to hACE2.  203 

 204 

In comparison, our design P1.D1 forms strong contacts (see Table 2) with many residues of the RBD which 205 
in turn also indirectly interact with hACE2 (see Figure 5). For example, residues L455 and T470 of the 206 

RBD are in contact with both hACE2 contacting RBD residues Y449, F490 and P1.D1 contacting RBD 207 
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residues Y351, I465. By perturbing the inter-residue interaction network of RBD-hACE2 it is plausible that 208 

a neutralizing effect can be achieved.  209 

 210 

We also carried out an all-atom Molecular Dynamics (MD) simulation of the best binding design P1.D1 in 211 
complex with the RBD of the SARS-CoV-2 spike protein to assess the stability of the complex. Preliminary  212 

 results for a 50ns trajectory counted an average of ~4 hydrogen bonds (st. dev: 1.5) present at the antibody-213 

antigen interface (Supp. Info. S5 for further details). This is quite encouraging, as in an earlier study37, MD 214 
simulation of the hACE2 receptor in complex with the spike protein RBD reported an average of only 2.7 215 

hydrogen bonds at the interface. This implies that this design has the potential to competitively bind the 216 

RBD of the SARS-CoV-2 spike protein potentially sequestering it from hACE2. This is also corroborated 217 
by the Rosetta binding energy value of around -48.3 kcal/mol1 calculated for the spike protein RBD with 218 

hACE2 (from PDB-id: 6lzg) which is weaker by over 7 kcal/mol compared to designs P1.D1 and P1.D2. 219 

Finally, it is important to stress that our designs rely on the accuracy of the Rosetta energy function to 220 

Figure 5.  Space filling plot of the P1.D1-RBD complex superimposed on the hACE2-RBD complex. In blue 
are shown the RBD residues in contact with hACE2 and in green the RBD residues in contact with the P1.D1 
designed antibody. In pink are shown all the RBD residues that are in contact with both hACE2 contacting 
RBD residues and P1.D1 contacting RBD residues. A few residues that are a part of these inter-residue contacts 
are labelled.  
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recapitulate experimental affinities and that carrying out experimental binding assays are needed to confirm 221 

or refute these findings.  222 
 223 

Summary 224 

 225 
In summary, the goal of this computational analysis was to assess the range of possible antibody designs 226 
that can affect binding with the viral spike protein by interacting with residues involved in hACE2 binding. 227 

We reported on de novo prototype variable regions targeting the most solvent accessible seven-residue 228 

epitope in the spike and their (computationally) affinity matured sequences with the lowest Rosetta binding 229 
energies. Designs were rank ordered not only in terms of their Rosetta binding energy but also their 230 

humanness score metric H-score. We reported complete amino acid sequences for the 106 affinity matured 231 
designs as well as the five prototype sequences and V*, CDR3, and J* parts used. Importantly, we would 232 
like to note that high affinities of designed antibodies, as modeled using the Rosetta binding energy 233 

function, need not necessarily translate to therapeutic effectiveness. The exact mechanisms underlying the 234 
therapeutic action of monoclonal antibodies are quite complex and often only partially understood. 235 
Nevertheless, we hope that this analysis and data will contribute an important piece to help inform the 236 

discovery of high affinity mAb against SARS-CoV-2.  237 
 238 
Methods 239 
 240 

Antibody design in OptMAVEn-2.0 241 
 242 

The initial antibody variable domain sequences were predicted using de novo antibody design software tool, 243 
OptMAVEn-2.02. Using an interatomic clash-cutoff of 1.25 Å, 173 antigen poses were sampled, and each 244 

of which yielded a successful (not necessarily unique) antibody design targeted at the seven most solvent 245 

accessible hACE2-binding residues of SARS-CoV-2 spike RBD. 246 
 247 

Prior to identifying antibody sequences complimentary to the epitopes, OptMAVEn-2.0 first minimizes the 248 

z-coordinate of the epitopes, with their collective centroid set at origin, to allow the de novo designed 249 
antibody regions (see Supp. Info. S1 for link to entire MAPs fragment library) to bind from the bottom. 250 

Next, an ensemble of starting antigen poses is generated by a combination of discrete rotations (about the 251 

z-axis) and translations (in x, y, and z) – each of which are subsequently passed into the antibody design 252 
step. We started out with 3234 such antigen poses for the SARS-CoV-2 spike protein with the epitopes 253 

occupying the most negative z-axis coordinates. 254 
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 255 

 256 
 257 

Affinity maturation design in Rosetta  258 
 259 

The affinity maturation protocol consisted of an initial refinement of the complex by RosettaDock38 260 

followed by three iterations of backbone perturbation using RosettaBackrub39, interface design using 261 
RosettaDesign40 and rotamer repacking of the complex using a Monte Carlo based simulated annealing 262 

algorithm41,42. During the Rosetta affinity maturation, only amino acids in the variable region within 5 Å 263 

from any epitope residue are allowed to mutate. Each affinity matured designed complex was relaxed using 264 
FastRelax (with constraints) 10 times and energy minimized (using Minimize). For each of these relaxed 265 

poses, the binding energy (dG_separated) was calculated using the InterfaceAnalyzer31 application. The 266 
entire protocol was implemented in RosettaScripts43 using the REF2015 energy function30 (see Supp. info. 267 

S6 for further details). This computational protocol was executed for 8,000 affinity matured sequence-268 
design cycles. The top five variable region designs which show strong interaction energy scores with the 269 
viral spike and low immunogenicity (high H-scores) were further investigated to glean insight on the 270 

biophysics of interactions at the residue level.  271 
 272 
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