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Abstract

The large amounts of proteomic data now available for cancer can
used to investigate whether the physicochemical conditions of tu-
mors are reflected in patterns of protein expression and chemical
composition. Compositional analysis of more than 250 datasets for
differentially expressed proteins compiled from the literature reveals
a clear signal of higher stoichiometric hydration state (nH2O, derived
from the theoretical formation reactions of proteins from particular
basis species) in specific cancer types compared to normal tissue;
this trend is also evident in pan-cancer transcriptomic and proteomic
datasets from The Cancer Genome Atlas and Human Protein Atlas.
In marked contrast to cancer, nH2O decreases for differentially ex-
pressed proteins in hyperosmotic stress (including high glucose) ex-
periments and 3D cell culture compared to monolayer growth. Com-
positional analysis combined with gene ages (phylostrata) taken
from the literature shows higher nH2O of human proteins earlier in
evolution. Further analyses using amino acid biosynthetic reactions
supports the conclusion that a net increase of water going into the
reactions of protein synthesis is a biochemical characteristic shared
by most cancer types. These findings raise the possibility of a ba-
sic physicochemical link between increased water content in tumors
and the atavistic or embryonic patterns of gene and protein expres-
sion in cancer.

Keywords: cancer, proteomics, chemical composition, water content,
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Introduction

Although cancer is usually regarded as primarily a genetic
disease (1), alterations in tumor microenvironments and
metabolism provide conditions crucial for malignant progres-
sion (2). Differences in the abundances of many proteins are
one manifestation of the combination of genetic, microenviron-
mental and metabolic alterations in cancer. In a gene-centric
view of metabolism, the myriad reactions underlying changes
to the proteome are catalyzed and regulated by the enzymatic
products of the genome, but an adequate biochemical descrip-
tion should also account for the chemical compositions of the
proteins themselves.

From a geochemical perspective, a natural question is to
ask whether the chemical compositions of differentially ex-
pressed proteins are shaped by the physicochemical conditions
of tumor microenvironments. Changes in water and oxygen
content are major chemical characteristics of cancer. Hypoxia,
or less than normal physiological concentration of oxygen, in
tumor microenvironments plays a major role in the biochem-
istry, physiology and progression of cancer (3). Cancer tissue
also has a relatively high water content (4), as consistently
demonstrated by early desiccation experiments (5). Cell re-
fractometry of tumor and normal tissue from livers of diseased

rats indicates that much of the increase is due to intracellular
water (6). More recent developments of spectroscopic meth-
ods further substantiate the generally higher water content of
cancer tissue (7, 8). These observations are consistent with
the hypothesis that higher cellular hydration in carcinogenesis
is a major factor that is shared with embryonic conditions (9).
Moreover, water content is a key player in other aspects of cell
biology such as entry into dormancy (10). Nevertheless, the
connections between cellular water content and biomolecular
abundances in cells are not well understood.

Oxidation reactions, in which oxygen or another electron
acceptor is a reactant, result in the formation of more oxidized
biomolecules. Hydration reactions, in which water is a reac-
tant, result in the formation of more hydrated biomolecules.
If only water is added, hydration reactions do not involve the
transfer of electrons, that is, they are redox-neutral. In a
short section on “Water as a Reactant”, a well known bio-
chemistry textbook (11) describes a few types of reactions
involving the release of H2O as a product (oxidation of glu-
cose, condensation reactions) or its consumption as a reactant
(water splitting in photosynthesis, and hydrolysis, the reverse
of condensation). Condensation reactions, in particular the
polymerization of amino acids, are fundamental to protein
synthesis, but the stoichiometry of the reactions depends only
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Fig. 1. Study overview. Abbreviations: SI – Supplementary Information; GEPIA
– Gene Expression Profiling Interactive Analysis web server; TCGA – The Cancer
Genome Atlas; GTEx – Genotype-Tissue Expression project; HPA – Human Protein
Atlas. The arrow diagram represents mean values among datasets for differences of
hydration state (DnH2O) and oxidation state (DZ C) (see Table 2).

on protein length; one water is lost for each peptide bond
formed between any two amino acids. A more specific metric
is needed to quantify the amount of H2O gained or lost in the
differential expression of proteins with different amino acid
compositions.

Without considering individual biochemical reactions, it is
still possible to use compositional metrics, which are derived
from the elemental composition of proteins, to quantify the
net differences in the degree of oxidation (oxidation state) and
hydration (hydration state) of different proteins. This choice
of variables follows from the altered oxygenation and hydra-
tion status of tumors and the observation that most biochem-
ical transformations involve some combination of oxidation-
reduction and hydration-dehydration reactions (12, 13).

The compositional analysis can be used to test the thermo-
dynamic predictions of mass-action effects, specifically that
more oxidizing or hydrating conditions favor the formation of
more oxidized or hydrated proteins, and vice versa. The sen-
sitivity of metabolic reactions to hypoxia is well documented;
for example, the reduction of metabolites under hypoxic con-
ditions is possible by running the TCA cycle in reverse (14),
and hypoxic regions in tumors accelerate the reduction of ni-
troxide, a redox-sensitive probe used in magnetic resonance
imaging (15, 16). However, hypoxia also induces the mito-
chondrial production of reactive oxygen species (17), so it
would be an oversimplification to state that hypoxia leads to
uniformly more reducing intracellular conditions. Cellular hy-
dration state also has wide-ranging effects on cell metabolism
(18), but no previous studies have systematically character-
ized chemical metrics of oxidation and hydration state at the
proteome level in cancer.

My previous analysis of proteomic data provided prelim-

Table 1. Average oxidation state of carbon (Z C), number of carbon
atoms (nC), and stoichiometric hydration state (nH2O) of amino acid
residues computed using the rQEC derivation (see Materials and
Methods and Ref. 20).

AA Z C nC nH2O AA Z C nC nH2O

A 0 3 0.369 M -2/5 5 0.046
C 2/3 3 -0.025 N 1 4 -0.122
D 1 4 -0.122 P -2/5 5 -0.354
E 2/5 5 -0.107 Q 2/5 5 -0.107
F -4/9 9 -2.568 R 1/3 6 0.072
G 1 2 0.478 S 2/3 3 0.575
H 2/3 6 -1.825 T 0 4 0.569
I -1 6 0.660 V -4/5 5 0.522
K -2/3 6 0.763 W -2/11 11 -4.087
L -1 6 0.660 Y -2/9 9 -2.499

inary evidence for a higher hydration state of proteomes in
colorectal and pancreatic cancer (19). That compilation of
differential expression data is expanded here to include breast,
liver, lung and prostate cancer. Proteomic data are also con-
sidered for laboratory experiments of hypoxia, because of its
relevance to cancer (3), and hyperosmotic stress, which has
not been reported for cancer cell lines, but permits testing
the sensitivity of the compositional analysis to changes in hy-
dration state (see Ref. 20). Furthermore, I separately ana-
lyze proteomic data for both cellular and secreted proteins in
hypoxia compared to normoxic controls. I also consider dif-
ferential expression data for 3D culture conditions; compared
to 2D or monolayer growth, the formation of cell aggregates,
spheroids, or organoids in 3D culture more closely represents
the tissue environment (21, 22). Finally, I combine the differ-
ential expression data with gene ages to get a picture of the
evolutionary trajectories of chemical composition, and look
at an alternative to the stoichiometric analysis using biosyn-
thetic reactions for amino acids.

Through the compositional analysis of proteomic datasets
for particular cancer types and cell culture conditions, as
well as pan-cancer transcriptomic and proteomic data, I show
that the differences in stoichiometric hydration state of pro-
teins are specifically linked with different conditions. Hyper-
osmotic and 3D culture conditions in laboratory experiments
induce the expression of proteins with a lower hydration state,
whereas a higher hydration state characterizes proteins up-
regulated in most cancer types and those coded by phyloge-
netically older genes. Therefore, the differential expression of
proteins in cancer appears to depend on the uptake of water
as a reactant.

Results

Extensive literature searches were performed to build a
database of differentially expressed proteins in primary can-
cers of six organs compared to normal tissue and four cell
culture conditions versus controls. In total, 282 datasets were
obtained from 201 studies (Fig. 1).

The carbon oxidation state (Z C) and stoichiometric hydra-
tion state (nH2O) (Table 1) are compositional metrics derived
from the chemical formulas of amino acids; therefore, they do
not denote any particular biological mechanisms for amino
acid synthesis. It should also be emphasized that all of the
calculations in this study are based on differences in the chem-
ical composition of proteins as determined by their primary
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Fig. 2. Compositional analysis of proteins identified in differential expression datasets. Median differences of stoichiometric hydration state (nH2O) and average oxidation
state of carbon (Z C) in (A) cell culture experiments and (B) cancer tissues. Color-coded circles represent individual proteomics experiments. For cell culture experiments,
open and filled symbols represent non-cancer and cancer cells, respectively; dotted symbols for hyperosmotic conditions indicate glucose treatment, and squares represent
microbial (yeast or bacterial) cells. Dashed lines indicate the 50% credible region for highest probability density for all datasets for each condition. (C) Comparison of the
50% credible regions for cell culture and cancer tissue together with pan-cancer gene and protein expression datasets (TCGA and HPA); the latter are shown in detail in Fig.
3. The point labeled “CH16” indicates the median differences for proteins corresponding to 229 up- and 68 down-regulated genes with common expression changes across
cancer types, defined by Chen and He (2016) as genes with unidirectional expression changes in at least 13 of 32 cancer data sets (data from Supplementary Table S3 of
Ref. 23). In all plots, positiveD values indicate a higher median value for the up-regulated proteins.

sequences, and do not take account of post-transcriptional
modifications, like the oxidation of cysteine to make disulfide
bonds, or the presence of water molecules in the hydration
shell of folded proteins.

Carbon oxidation state for biomolecules lies between the
extremes of -4 for CH4 and +4 for CO2 (see Figure 1 of Ref.
24). Because it is based on the relative electronegativities
of elements, it can be calculated directly from the elemen-
tal composition of proteins (25, 26). On the other hand, a
metric for hydration state depends on the stoichiometry of
water in balanced chemical reactions. Since reactions involv-
ing only water do not involve the transfer of electrons, a use-
ful metric for hydration state should not be correlated with
oxidation state for proteins in general (i.e. all those coded
by the genome). Following this reasoning, the basis species
glutamine–glutamic acid–cysteine–H2O–O2 were selected to
write theoretical formation reactions of amino acids; the num-
ber of water molecules in these reactions (Table S1) was in-
put to a residual analysis to further reduce the covariation
with Z C (Fig. S1), giving the residual-corrected stoichiomet-
ric hydration state listed in Table 1. This derivation, denoted

“rQEC”, is briefly described in the Materials and Methods;
see Ref. 20 for more details and conceptual background.

Differences Between Cell Culture and Cancer Tissue. The
compositional analysis of differentially expressed proteins is
summarized in scatterplots of median DnH2O and DZ C for
individual datasets (Fig. 2A). The values for all datasets in
each condition were used to compute the 50% credible regions
for highest probability density using code adapted from the
“HPDregionplot” function in the R package emdbook (27),
which in turn uses 2-D kernel density estimates calculated
with “kde2d” in the R package MASS (28). Plots with ref-
erences and descriptions for all datasets are provided in Figs.
S6–S15.

Several broad trends emerge from the compositional anal-
ysis of differentially expressed proteins in cell culture condi-
tions. Differentially expressed proteins reported for cell ex-
tracts under hypoxia do not show consistent differences in
oxidation state (Fig. 2A). However, differentially expressed
proteins in many datasets for secreted proteins in hypoxia are
somewhat oxidized (DZ C > 0). Although the wider credi-
ble region for secreted proteins indicates a larger variability
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Table 2. Mean differences for all differential expression datasets in each condition, followed by log10 of p-value in parentheses. p-values less
than 0.05 (log10 < -1.3) are shown in bold.

Condition DZ C DnH2O (rQEC) DnO2 (biosynthetic) DnH2O (biosynthetic) DnAA

Cell culture
Hypoxia (cellular extracts) 0.000 (-0.0) -0.009 (-1.4) 0.002 (-0.1) 0.007 (-0.3) 7.6 (-0.1)
Hyperosmotic 0.001 (-0.1) -0.019 (-3.6) 0.016 (-0.7) -0.015 (-0.6) -0.1 (-0.0)
Secreted in hypoxia 0.011 (-1.6) 0.000 (-0.0) 0.031 (-1.1) -0.018 (-0.5) -19.6 (-0.2)
3D -0.010 (-1.9) -0.020 (-4.0) -0.007 (-0.3) 0.001 (-0.0) -4.1 (-0.0)

Cancer
Colorectal 0.006 (-1.2) 0.015 (-3.3) -0.013 (-1.0) 0.019 (-2.1) 35.9 (-0.8)
Pancreatic 0.013 (-2.1) 0.010 (-0.7) 0.014 (-0.6) -0.007 (-0.3) 29.5 (-0.5)
Breast -0.012 (-2.0) 0.016 (-2.0) -0.058 (-3.2) 0.047 (-5.9) -71.2 (-1.6)
Lung -0.006 (-1.0) 0.020 (-3.1) -0.020 (-0.9) 0.020 (-1.3) -44.6 (-0.8)
Prostate -0.024 (-11.3) 0.013 (-1.4) -0.080 (-8.8) 0.048 (-5.9) -16.1 (-0.2)
Liver 0.017 (-6.1) 0.021 (-4.5) 0.005 (-0.3) 0.004 (-0.2) 24.8 (-0.7)

Pan-cancer
HPA -0.000 (-0.0) 0.009 (-3.6) -0.008 (-0.6) 0.013 (-1.7) 12.4 (-0.8)
TCGA/GTEx -0.009 (-5.8) 0.006 (-3.3) -0.034 (-8.6) 0.029 (-8.8) -81.6 (-6.3)

Secreted in hypoxia compared to cellular extracts in hypoxia *
up-regulated 0.014 (-2.8) -0.003 (-0.2) 0.048 (-2.8) -0.034 (-1.5) 42.2 (-0.7)
down-regulated 0.003 (-0.3) -0.012 (-1.5) 0.019 (-0.7) -0.008 (-0.3) 69.4 (-1.6)

Mean differences were calculated as (mean of median values for up-regulated proteins in each dataset) - (mean of median
values for down-regulated proteins in each dataset), except * (mean of median values for [up- or down-]regulated proteins
secreted in hypoxia) - (mean of median values for [up-or down-]regulated proteins in cellular extracts in hypoxia). p-values
were calculated with the Welch two-sample t-test by using R function “t.test”(29) with default options.

(Fig. 2C ), the shift toward higher Z C is statistically signifi-
cant for these datasets (Table 2). Hyperosmotic stress results
in the formation of proteins with predominantly lower hydra-
tion state (DnH2O < 0). Lower hydration state also char-
acterizes the majority of 3D cell culture experiments, which
in addition tend to have more reduced proteins (DZ C < 0).
Note that all of the 3D cell culture experiments analyzed here
are for human or mouse cells, including some cancer cell lines,
which are represented by filled circles in Fig. 2A. The exper-
iments for cellular and secreted proteins in hypoxia include
human and other mammalian cells. In contrast, the hyper-
osmotic stress experiments include mammalian as well as mi-
crobial (non-halophilic yeast and bacteria) cells; the latter are
indicated by the squares in Fig. 2A. Hyperosmotic conditions
in the experiments are generated by the addition of inorganic
salts or organic osmolytes such as glucose or mannitol to the
culture media; see Fig. S7 for details.

There is a clear trend of increased hydration state of pro-
teins (DnH2O > 0) for five of the six cancer types considered in
detail here (Fig. 2B and C ). The exception is pancreatic can-
cer, where the datasets are distributed more evenly among
positive and negative DnH2O. There are distinct trends in
oxidation state of proteins for different cancer types: rela-
tively oxidized proteins are up-regulated in colorectal, liver,
and pancreatic cancer, whereas more reduced proteins are up-
regulated in breast, lung, and prostate cancer.

The trends described above are also visible in the arrow
diagram in Fig. 1. In this diagram, the lines are drawn from
the origin to the mean difference of Z C and nH2O in datasets
for each cancer type and laboratory condition; see Table 2 for
all mean differences and and p-values. All cancer types have
positive mean DnH2O across datasets, indicating greater hy-
dration state of the up-regulated proteins, but the difference

for pancreatic cancer is less statistically significant (p-value
> 0.05). In contrast, hyperosmotic stress and 3D cell culture
conditions, and to a lesser extent, hypoxia for cellular extracts,
lead to the up-regulation of proteins with significantly lower
hydration state.

Elevated Hydration State and Variable Oxidation State in Pan–
Cancer Datasets. Some fundamental biological questions are:
do different cancer types have similar patterns of protein ex-
pression, and are these patterns inherent in the expression of
the genes that code for the proteins? To characterize pan-
cancer transcriptomes and proteomes in terms of chemical
composition, I obtained data for differential gene expression
between normal tissue and cancer from GEPIA2 (32), which
uses pre-compiled data files from UCSC Xena (33) that are
in turn derived from the Genotype-Tissue Expression project
(GTEx) (34) and The Cancer Genome Atlas (TCGA) (35).
I used data from the Human Protein Atlas (HPA) (31, 36)
to calculate differential protein expression as described in the
Materials and Methods.

Except for prostate cancer, both pan-cancer datasets man-
ifest a positive DnH2O for the cancer types analyzed in detail
in this study (color-coded circles in Fig. 3). Differential gene
expression for all cancer types taken together corresponds to
significantly more reduced proteins (Table 2, column DZ C),
but this is not evident in the HPA proteomics data. In a pair-
wise comparison of transcriptomic and proteomic data for can-
cer types, there is very little correlation in Z C of proteins and
even less in DnH2O (Fig. S2). It is therefore remarkable that
both the pan-cancer transcriptomic and proteomic datasets
have a strong visible and statistically significant trend toward
higher hydration state of the associated proteins (Table 2, col-
umn DnH2O (rQEC)). Likewise, a set of genes with common
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Fig. 3. Changes in chemical composition and phylostrata for differentially regulated proteins associated with large-scale transcriptomics and protein antibody studies. (A)
Proteins coded by differentially expressed genes between normal tissue (GTEx) and cancer (TCGA). Abbreviations for cancer types are listed in Table S2 (from Ref. 30).
(B) Differentially expressed proteins in the Human Protein Atlas (31). Dashed lines in panels A and B indicate the 50% credible region for highest probability density. (C)
Cross-comparison of changes in mean phylostrata (PS) for differentially regulated proteins derived from TCGA and HPA (TCGA-HPA pairings used for this plot are indicated).
See Figs. S16–S17 forDPS calculated for all TCGA and HPA datasets. Color-coded circles represent cancer types analyzed in greater detail in this study (see Fig. 2).

expression changes across cancer types (23) also shows a pos-
itive DnH2O of the associated proteins (point labeled “CH16”
in Fig. 2C ).

The distribution of positive and negative DZ C in the anal-
ysis of HPA datasets for different cancer types suggests a bi-
ological origin other than the nominally reducing effects of
hypoxia. It is notable that membrane and extracellular pro-
teins in yeast are relatively reduced and oxidized, respectively
(26). Similarly, stoichiogenomic analysis of the proteomes of
twelve eukaryotic organisms indicates that extracellular pro-
teins have a relatively low hydrogen content (37), which would
tend to increase the average carbon oxidation state. Fur-
thermore, up-regulated proteins that are secreted in hypoxia
are more oxidized than their counterparts in cellular extracts
(Table 2). These fundamental subcellular differences might
explain why tissues found by Uhlén et al. (31) to be en-
riched in membrane proteins (brain and kidney) host cancers
with negative values of DZ C (glioma and renal, respectively),
while tissues with high levels of proteins known to be secreted
(pancreas) or enriched in the transcripts of secreted proteins
(liver, stomach) host cancers characterized by positive values
of DZ C. These patterns imply that the normal enrichment of
subcellular protein classes in different tissue types is pushed
to pathological levels in cancer.

It is informative to compare these results with experimen-
tal measurements of the hydration status of specific types

of cancer. For instance, NMR T1 relaxation times distin-
guish early pancreatic ductal adenocarcinoma in mice, but
not later stages; this is likely a consequence of increased wa-
ter and protein content in the early stages (38). The possible
stage-specific variation of water content may help explain why
the range of DnH2O of proteins in pancreatic cancer is closer
to zero, compared to other cancer types (Figs. 2C, 3B). In
another study, optical measurements of gliomas in rats in the
spectral range 350–1800 nm were used to infer increased water
content in early stages, but decreased amounts in advanced
stages, in conjunction with the formation of necrotic regions in
the tumor (39). This appears to be consistent with the small
decrease in DnH2O between LGG (brain lower grade glioma)
and GMB (glioblastoma multiforme) in the TCGA datasets
(Fig. 3A), but the HPA data exhibit positive DnH2O for a
single glioma type (Fig. 3B).

Compared to other cancer types, prostate cancer has dis-
tinct trends in the chemical composition of differentially ex-
pressed proteins. The negative DnH2O of proteins for prostate
cancer in the TCGA and HPA datasets (Fig. 3) may be
related to the lower water content of prostate cancer than
surrounding normal tissue as measured using near infrared
spectroscopy (40); this trend is not apparent in the compiled
proteomic datasets (Fig. 2B), perhaps because of their lower
number of proteins. Furthermore, the highly negative DZ C of
the proteins in many proteomic datasets (Fig. 2B) and those
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Fig. 4. Mean values of (A) Z C, (B) nH2O, and (C) nAA of proteins for all protein-coding genes in each phylostratum (PS) in the study of Trigos et al. (44). The points stand for
the mean value in each phylostratum, and the red line indicates the cumulative mean starting from PS 1. The plot in (D) shows the 50% credible region for mean differences
of PS and median differences of protein length (nAA) for differential expression datasets compiled in this study for six types of cancer. Negative values ofDPS correspond to
older genes. Plots in (E)–(H) as above, except phylostrata assignments are based on gene ages given by Liebeskind et al. (45).

coded by differentially expressed genes in prostate cancer (Fig.
3A) might somehow be related to the hypoxic characteristics
of normal prostate tissue (41) and the unusual metabolic pro-
file of prostate cancer, in which the Warburg effect is absent
except in late stages (42). Interestingly, the proteome of PC-3
prostate cancer cells under hypoxia is considerably reduced,
unlike most other cell types under hypoxia, but combined
treatment with sulindac (a non-steroidal anti-inflammatory
drug) and radiation (43) reverses the trend (Fig. S6).

Relations between Phylostrata, Chemical Composition, and
Protein Length. Several studies have linked gene expression in
cancer to phylogenetically earlier genes (44, 46). The phy-
lostratigraphic analysis used in these studies assigns ages of
genes based on the latest common ancestor whose descendants
have all the computationally detected homologs of that gene.
To analyze the evolutionary trends of oxidation and hydra-
tion state of proteins, I used two sets of gene ages for human
protein-coding genes: 16 phylostrata given by Trigos et al.
(44), and eight gene ages based on consensus among different
methods given by Liebeskind et al. (45). The phylostrata
numbers are not identical in the two studies; the Liebeskind
study has three steps between cellular organisms and Eukary-
ota, providing a greater resolution in earlier evolution, and
stops at Mammalia, which corresponds to PS 10 in the Tri-
gos phylostrata. In addition, the category named Euk+Bac
in the Liebeskind compilation is not a phylogenetic lineage,
but refers to genes present in eukaryotes and bacteria but
not archaea; this category therefore represents the horizontal
transfer of genes from bacteria to eukaryotes after the latter

diverged from archaea (45).
Fig. 4 A–B shows distinct patterns of oxidation state and

hydration state for proteins coded by genes aggregated accord-
ing to the Trigos phylostrata. Z C forms a strikingly smooth
hump between PS 1 and 11 then increases rapidly to the maxi-
mum at PS 14, followed by a smaller decline to Homo sapiens.
nH2O shows an overall decrease through time, but exhibits con-
siderable small-scale variability. Keeping in mind the different
resolutions and scales of the Trigos and Liebeskind gene ages,
the two datasets show similar early maxima for Z C and pro-
tein length and an overall evolutionary decrease of nH2O (Fig.
4 A–C and E–G).

Trigos et al. (44) used gene expression levels as weights to
calculate the transcriptome age index (TAI), which was lower
for seven cancer types compared to normal tissue, indicating
higher expression of older genes. I used a different calculation,
where DPS represents non-weighted mean differences between
all up- and down-expressed genes, and obtained negative val-
ues for the same cancer types using the TCGA/GTEx data
(Fig. S16). As shown in Fig. 3C, most cancer transcrip-
tomes (TCGA/GTEx) are characterized by higher expression
of older genes (DPS < 0), whereas most proteomes (HPA)
exhibit younger ages of the corresponding differentially ex-
pressed genes (DPS > 0). The positive DPS for KIRC, which
was not analyzed by Trigos et al. (44), is consistent with the
large enrichment of vertebrate genes in this cancer type (46).
The agreement with previous work suggests that DPS pro-
vides a reasonable metric for comparing gene ages in different
cancer types.

Given the trends of mean protein length for phylostrata
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Fig. 5. Comparison of biosynthetic reaction coefficients and stoichiometric hydration
state for calculatingDnH2O: (A) TCGA and (B) HPA data.

(Fig. 4C ), the positive correlation between DPS and DnAA
for differential expression in cancer (Fig. 4D) indicates that
the corresponding genes are mostly present in Trigos PS 1
(cellular organisms) to 4 (metazoa). This agrees with pre-
vious studies in which differential gene expression in cancer
was largely associated with genes spanning the unicellular–
multicellular transition (44, 46).

The rise in protein length leading up to Eukaryota in both
the Trigos and Liebeskind phylostrata is consistent with ear-
lier reports that median protein length is greater in eukaryotes
than prokaryotes (47). The decrease of protein length in later
phylostrata is probably an artifact of BLAST-based homol-
ogy searches (48), but does not greatly affect ages inferred for
cancer-related genes. Fig. S3 shows that younger gene ages
(i.e. higher DPS) in cancer are associated with relatively high
oxidation state, as expected from the trends for the earliest
phylostrata shown in Fig. 4; however, there is not a strong
association between PS and hydration state for differentially
expressed proteins in cancer.

Oxygen and Water in Amino Acid Biosynthetic Reactions.
The analysis just described used compositional metrics that
were formulated independently of any information about
biosynthetic mechanisms. For comparison, it is useful to de-
rive estimates of the amounts of water and oxygen in actual
biosynthetic pathways for amino acid synthesis.

To examine simplified biosynthetic mechanisms, I used a
standard depiction of pathways in the synthesis of amino acids
(49) to identify six immediate precursor molecules for the
amino acids: a-ketoglutarate (Glu, Gln, Pro, Arg), oxaloac-
etate (Asp, Asn, Met, Thr, Lys, Ile), pyruvate (Ala, Val, Leu),
chorismate (Phe, Tyr, Trp), ribose-5-phosphate (His), and 3-
phosphoglycerate (Ser, Gly, Cys). I wrote balanced reactions
between the precursors and the amino acids in a 1:1 molar ra-
tio by adding the appropriate amounts of CO2, H2O, NH4

+,
H2PO4

-, HS-, O2, and H+. The derived reaction coefficients
of H2O and O2 are listed in Table S3. The number of O2
involved in the amino acid biosynthetic reactions is positively
correlated with the Z C of amino acids, but there is a weaker
correlation between the number of H2O in the biosynthetic
reactions and in the rQEC derivation (Fig. S1 C–D).

The TCGA/GTEx and HPA datasets both exhibit predom-
inantly positive values of DnH2O calculated using either the
biosynthetic reactions or stoichiometric hydration state, but
the two metrics show little correlation with each other (Fig.
5). On the other hand, values of DnO2 in the biosynthetic

reactions are positively correlated with DZ C (Fig. S4 A–B),
as expected for alternative metrics for oxidation state. More
importantly, the biosynthetic reaction coefficients are charac-
terized by a strong covariation of O2 and H2O (Fig. S4 C–D),
which calls into question the uniqueness of hydration state
calculated using this method. This covariation is reduced in
the rQEC derivation of stoichiometric hydration state (20),
making it more useful to distinguish condition-specific trends
of oxidation and hydration state in differentially expressed
proteins.

Further developments of genome-scale metabolic and
macromolecular expression models (50) may lead to more pre-
cise estimates of the net water and oxygen demands for amino
acid synthesis, uptake and incorporation into proteomes in
different conditions. For the time being, the results of the
present analyses of hydration state using both the rQEC sto-
ichiometric derivation and biosynthetic reactions support the
novel hypothesis that differential protein expression in most
cancer types involves the consumption of water as a reactant.

Discussion

Despite the hypoxic nature of tumors, previous authors
did not find significantly lower oxygen contents of proteins
in glioma and stomach cancer compared to normal tissue
(51, 52). Therefore, it is not surprising that in this study a
range of differences in carbon oxidation state was documented,
from very negative values for prostate cancer to positive val-
ues for colorectal, pancreatic, and liver cancer. These indepen-
dent observations of biomolecular oxidation state should be
compared with actual oxygen and redox measurements in tu-
mors (e.g. 15, 16). Monitoring the levels of hypoxia-inducible
factor (HIF-1) or its downstream targets (e.g. GLUT1 and
VEGF) (53) or “hypoxia scores” for gene expression (54) is
less suitable for these comparisons as they are not physico-
chemical measurements. Median hypoxia scores reported for
19 tumor types (55) are not correlated with differences of
Z C or nH2O from TCGA or HPA data (Fig. S5); therefore,
hypoxia scores and chemical compositions of proteins likely
reflect distinct physiological characteristics.

In marked contrast to the diverse trends of oxidation state,
most cancer types are characterized by a higher stoichiometric
hydration state of proteins. These results are complementary
to experimental observations of elevated water content in tu-
mors (7, 56, 57), and provide another line of evidence for a
primary role for cellular hydration state in cancer (9). The
results imply that sensitivity to water activity, as a thermody-
namic indicator of of hydration potential, is deeply embedded
in the network of metabolic reactions that maintains a dy-
namic proteome. More work is needed to elucidate the effects
of water activity, which is modulated by solution composition
and macromolecular crowding (58), on cellular metabolism
in cancer. For instance, one question that can be asked is
whether the proposed cancer-specific differences in water ac-
tivity, which would affect the Gibbs energy of hydrolysis of
ATP (59), may alter the extent of hydrolysis reactions that
are thought to contribute to the production of protons in can-
cer (60). Similarly, a physicochemical link between protein
length and water activity can be expected, as shorter proteins
have more H2O incorporated into the terminal groups in pro-
portion to their mass. Interestingly, the compiled differential
expression datasets for breast cancer and the pan-cancer tran-
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scriptomes (TCGA/GTEx) both show a significant decrease
in protein length (Table 2).

The general applicability of the compositional analysis is
supported by proteomic data for cell culture in controlled lab-
oratory experiments. In particular, the hydration state of
differentially expressed proteins is significantly lower in the
majority of hyperosmotic stress experiments (Fig. 2C and
Table 2). In response to changing salinities, the interiors of
most cells must be at least isosmotic with the environment to
maintain a physiological water content (61). Nevertheless, the
water content of cells grown in hyperosmotic NaCl solutions
is actually substantially lowered, as shown for E. coli (62).
The present results support the hypothesis that osmotically
induced dehydration provides a thermodynamic drive for the
preferential expression of proteins with lower stoichiometric
hydration state.

Because many of the hyperosmotic stress experiments an-
alyzed here are for yeast and microbial cells, more data are
needed to ascertain whether these findings extend to tissue
environments. It is notable that the hydration state of epider-
mal proteins decreases for wild-type mice kept in low humid-
ity (40%) compared to high humidity (70%), but the trend is
reversed (see Fig. S7) in mice that have a deficiency in fibrob-
last growth factor receptor (FGFR1/FGFR2) in keratinocytes
(63), which is associated with a dysfunctional epidermal bar-
rier. This suggests that not only physicochemical conditions
but also tissue environments can influence the hydration state
of cellular proteins.

An unexpected finding is that the hydration state of pro-
teins is substantially lower in 3D culture, including spheroids
and aggregates, compared to traditional 2D culture in mono-
layers (Fig. 2 A and C ; see also Fig. S9). This finding
might be linked with the less liquid-like state of the cyto-
plasm in 3D culture (64). These results are also congruent
with metagenomes of particle-sized fractions compared to free-
living microbes in river and marine samples; the former, which
are more likely to harbor multicellular communities, are asso-
ciated with lower nH2O of the coded proteins (20). In ad-
dition, up-regulated proteins in 3D culture also tend to be
more reduced (Table 2), which might be a reflection of the
hypoxic conditions that develop in the interiors of spheroids
(21, 22, 65).

It is somewhat surprising that hypoxia experiments as a
whole do not induce the up-regulation of more reduced pro-
teins. Moreover, secreted proteins in hypoxia are more often
relatively oxidized (Table 2). Hypoxia is often associated with
the downregulation of mitochondrial proteins (66, 67). These
have a relatively low Z C compared to other subcellular frac-
tions such as cytoplasm and nucleus (26), so their downregu-
lation would tend to produce overall more oxidized proteins.
The proteomes of specific subcellular fractions should be ana-
lyzed to better understand the complete cellular response. As
noted above for PC-3 prostate cancer cells, treatment with
drugs and radiation also strongly influences the differences in
oxidation state of differentially expressed proteins.

Cancer has often been regarded as a reversion of both de-
velopmental (68, 69) and evolutionary (46) processes. The
hypothesis of a major component of atavism in cancer (70)
is supported by the up-regulation of older genes (44, 46). I
obtained similar results from analysis of pan-cancer transcrip-
tomic data, but found an opposite trend in many proteomics

datasets (Fig. 3C ), which may be an indication that post-
transcriptional regulation masks the atavism signal. However,
the issue is not settled, as among the six cancer types ana-
lyzed in detail here, only pancreatic cancer and to a lesser
extent liver cancer are characterized by younger gene ages of
the differentially expressed proteins (Fig. 4 D and H ). In
particular, the causes for the large discrepancy for prostate
cancer between HPA data (DPS > 0) and the compilation of
differential expression datasets (DPS < 0) are not clear.

An important area for future work is to document the rela-
tions between chemical composition of proteins and physiolog-
ical oxygenation and hydration levels through development;
according to the hypothesis that “oncogenesis recapitulates
ontogenesis” (46), this might uncover deeper links among the
patterns described above for cell culture and cancer datasets.
The high water content characteristic of early fetuses in mam-
mals declines significantly through gestation and continues to
decline post-birth (71, 72). I would therefore predict that the
hydration state of embryonic proteins is higher than that in
adults; this can be tested using recent proteomic datasets for
model organisms (73).

Concluding Remarks

This paper reports the first large-scale analysis of chemical
compositions of proteins using differential expression data
spanning multiple types of cancer and laboratory experiments.
Differentially expressed proteins in hyperosmotic and 3D cell-
culture experiments are on average shifted toward lower stoi-
chiometric hydration state, but an increase in stoichiometric
hydration state characterizes up-regulated proteins in five of
six cancer types considered in detail (except pancreatic can-
cer) and most pan-cancer proteomic and transcriptomic data.

In contrast to hydration state, differences of carbon oxida-
tion state calculated for pan-cancer proteomes are distributed
more evenly among positive and negative values. This pro-
vides evidence against the hypothesis that hypoxic conditions
in tumors drive changes in the oxidation state of proteins; in-
stead, the compositional differences might be driven by the en-
richment in different tissues of secreted (relatively oxidized) or
membrane (reduced) proteins. On the other hand, pan-cancer
transcriptomes are associated with generally more reduced
proteins, so tumor hypoxia may have a stronger influence on
chemical composition at the gene expression level.

The focus on oxidation and hydration state in this study
was shaped by the dual observations that tumor microenviron-
ments are typically hypoxic and have a relatively high water
content, and that both oxidation-reduction and hydration-
dehydration reactions have a major role in metabolism
(12, 13). However, it remains challenging to interpret the
proteome-level differences in chemical composition within the
framework of molecular biology, structural biology and bio-
chemistry, which are mainly concerned with the coding and
regulation, structure, and enzymatic functions of proteins.
As a counterpart to these established fields of investigation,
further developments in the area of compositional biology
are needed to advance our understanding of the genome–
cell–environment interactions that drive changes in the abun-
dances of biomacromolecules through the progression of can-
cer, including metastasis.
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Materials and Methods

Proteomics Datasets. Differential protein expression data for cell
culture experiments and cancer compared to normal tissue were
located through literature searches and include studies using any
proteomics techniques. Several review articles were also consulted
in order to locate experimental data for breast cancer (74), lung
cancer (75, 76) and 3D cell culture (65). In general, datasets were
selected that have a minimum of 30 up-regulated and 30 down-
regulated proteins in order to reduce random variation associated
with small sample sizes, but smaller datasets (at least ca. 20 up-
regulated and 20 down-regulated proteins) were included for hy-
perosmotic stress, secreted in hypoxia, lung cancer, and prostate
cancer due to limited availability of data.

Previous compilations for hypoxia and and colorectal and pan-
creatic cancer (19) were updated in this study using more recently
located datasets. Datasets related to prognosis, conditioned media,
stromal samples, and adenoma were removed from the updated
compilation for colorectal cancer. In addition, datasets for cellu-
lar and secreted proteins in hypoxia were considered separately,
and datasets for reoxygenation after hypoxia were excluded. The
previous compilation of data for hyperosmotic stress (19) was also
expanded in this study, but a fish gill proteome and two transcrip-
tomic datasets were excluded, and more high-glucose datasets were
included.

Lists of significantly differentially expressed proteins were taken
directly from the original publications if possible. In cases of
datasets where mass spectrometric data but not lists of differen-
tially expressed proteins were reported, quantile normalization us-
ing function “normalize.quantiles” in the R package preprocessCore
(77) was performed on the intensities or peak areas in order to ob-
tain normalized values that were used for differential expression
analysis. Where needed, reported protein or gene identifiers were
converted to UniProt IDs using the UniProt mapping tool (78).
Protein sequences downloaded from UniProt were used to generate
amino acid compositions using function “read.fasta” in the R pack-
age CHNOSZ (79). The canonical protein sequences in UniProt
were used, unless isoforms were identified in the data sources. Ref-
erences for all data sources and details of additional processing
steps are given with Figs. S6–S15.

Differential Expression from Pan-Cancer Datasets.
Immunohistochemistry-based expression profiles of proteins
in normal tissue and pathology samples were downloaded from
the Human Protein Atlas version 19 (31, 36). Pathology and
normal tissue datasets were paired based on information from
the HPA web site (80): breast cancer / breast; cervical cancer
/ cervix, uterine; colorectal cancer / colon; endometrial cancer /
endometrium 1; glioma / cerebral cortex; head and neck cancer /
salivary gland; liver cancer / liver; lung cancer / lung; lymphoma
/ lymph node; melanoma / skin 1; skin cancer / skin 1; ovarian
cancer / ovary; pancreatic cancer / pancreas; prostate cancer /
prostate; renal cancer / kidney; stomach cancer / stomach 1; testis
cancer / testis; thyroid cancer / thyroid gland; urothelial cancer /
urinary bladder. Antibody staining intensities were converted to a
semi-quantitative scale (not detected: 0, low: 1, medium: 3, high:
5). The expression level score for each protein was calculated by
averaging the score for available samples, including “not detected”
but excluding unavailable (NA) observations, and, for normal
tissues, observations in all available cell types. Differences in
expression score between normal and cancer ≥ 2.5 or ≤ -2.5 were
considered to be differentially expressed proteins.

Differential gene expression values were obtained using version
2 of the Gene Expression Profiling Interactive Analysis web server
(GEPIA2) (32) with default settings (ANOVA, log2 fold change
cutoff = 1, q-value cutoff = 0.01). Pairings between source datasets
for cancer (TCGA) and normal tissue (GTEx), as described on the
GEPIA2 website (81) are: ACC / adrenal gland; BLCA / bladder;
BRCA / breast; CESC / cervix uteri; COAD / colon; DLBC /
blood; ESCA / esophagus; GBM / brain; KICH / kidney; KIRC
/ kidney; KIRP / kidney; LAML / bone marrow; LGG / brain;
LIHC / liver; LUAD / lung; LUSC / lung; OV / ovary; PAAD /
pancreas; PRAD / prostate; READ / colon; SKCM/ skin; STAD /
stomach; TGCT / testis; THCA / thyroid; THYM / blood; UCEC

/ uterus; UCS / uterus. Gene expression data for both tumor and
normal tissue for HNSC are from TCGA. Differential expression
data were not available on GEPIA2 for five other cancer types
in TCGA (CHOL, MESO, PCPG, SARC, UVM). Ensembl Gene
IDs used in HPA and GEPIA were converted to UniProt accession
numbers using the UniProt mapping tool (78).

Compositional Metrics. Values of average oxidation state of carbon
(ZC) of amino acids (Table 1) were calculated from the chemical
formulas of the amino acids (25, 26). Values for ZC of proteins were
computed by combining the amino acid compositions of proteins
with ZC of amino acids and also weighting by carbon number (20).
That is, ZC = S ZC,ininC,i / S ninC,i , where the summation is
over i = 1..20 amino acids and ZC,i , ni , and nC,i are the carbon
oxidation state, frequency in the protein sequence, and number of
carbon atoms of the ith amino acid, respectively.

Values of stoichiometric hydration state (nH2O) for amino acids
(Table 1) were calculated using the rQEC derivation described by
Dick et al. (20). Briefly, the numbers of H2O in theoretical forma-
tion reactions for the 20 amino acid residues were obtained by pro-
jecting the elemental compositions of the amino acids into the ba-
sis species glutamine, glutamic acid, cysteine, H2O, and O2 (QEC
basis species; see Table S1 and Fig. S1A). The stoichiometric hy-
dration state was then obtained by calculating the residuals of a
linear model fit to nH2O and ZC for the amino acid residues, then
subtracting a constant from the residuals to make the mean value
for all human proteins equal to zero. The residual analysis ensures
that there is no correlation between nH2O and ZC of amino acids
(Fig. S1B). To compute per-residue values for proteins, the values
of nH2O for amino acid residues from Table 1 were combined with
the amino acid compositions of the proteins. That is, nH2O = S

nH2O,ini / S ni , where nH2O,i and ni are the stoichiometric hydra-
tion state and frequency of the ith amino acid residue, respectively.
Accordingly, DnH2O = 0.01 corresponds to a difference of approx-
imately 3 water molecules in the theoretical formation reaction of
a typical 300-residue protein from the QEC basis species.

Phylostrata. Phylostrata were obtained from the supporting infor-
mation of Trigos et al. (44) and the “main_HUMAN.csv” file of
Liebeskind et al. (45, 82). Liebeskind et al. did not give phy-
lostrata numbers, so Phylostrata 1–8 were assigned here based on
the names in the “modeAge” column of the source file (see Fig.
4). The Ensembl gene identifiers in the Trigos dataset were con-
verted to UniProt accession numbers (78); in the case of duplicate
UniProt accession numbers, the first matching phylostratum was
used. Phylostrata differences were not computed for non-human
organisms.
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