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Abstract 26 

A novel method for deriving composite, non-redundant measures of non-rapid eye 27 

movement (NREM) sleep electroencephalogram (EEG) is developed on the basis of the 28 

power law scaling of the Fourier spectra. Measures derived are the spectral intercept, the 29 

slope (spectral exponent), as well as the maximal whitened spectral peak amplitude and 30 

frequency in the sleep spindle range. As a proof of concept, we apply these measures on a 31 

large sleep EEG dataset (N = 175; 81 females; age range: 17–60 years) with previously 32 

demonstrated effects of age, sex and intelligence. As predicted, aging is associated with 33 

decreased overall spectral slopes (increased exponents) and whitened spectral peak 34 

amplitudes in the spindle frequency range. In addition, age associates with decreased sleep 35 

spindle spectral peak frequencies in the frontal region. Women were characterized by higher 36 

spectral intercepts and higher spectral peak frequencies in the sleep spindle range. No sex 37 

differences in whitened spectral peak amplitudes of the sleep spindle range were found. 38 

Intelligence correlated positively with whitened spectral peak amplitudes of the spindle 39 

frequency range in women, but not in men. Last, age-related increases in spectral exponents 40 

did not differ in subjects with average and high intelligence. Our findings replicate and 41 

complete previous reports in the literature, indicating that the number of variables describing 42 

NREM sleep EEG can be effectively reduced in order to overcome redundancy and Type I 43 

statistical errors in future electrophysiological studies of sleep. 44 

Keywords: spectral slope; spectral intercept; spectral peak; EEG; NREM sleep, FFT 45 
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Author summary 48 

Given the tight reciprocal relationship between sleep and wakefulness, the objective 49 

description of the complex neural activity patterns characterizing human sleep is of utmost 50 

importance in understanding the several facets of brain function, like sex differences, aging 51 

and cognitive abilities. Current approaches are either exclusively based on visual impressions 52 

expressed in graded levels of sleep depth (W, N1, N2, N3, REM), whereas computerized 53 

quantitative methods provide an almost infinite number of potential metrics, suffering from 54 

significant redundancy and arbitrariness. Our current approach relies on the assumptions that 55 

the spontaneous human brain activity as reflected by the scalp-derived electroencephalogram 56 

(EEG) are characterized by coloured noise-like properties. That is, the contribution of 57 

different frequencies to the power spectrum of the signal are best described by power law 58 

functions with negative exponents. In addition, we assume, that stages N2–N3 are further 59 

characterized by additional non-random (non-noise like, sinusoidal) activity patterns, which 60 

are emerging at specific frequencies, called sleep spindles (9–18 Hz). By relying on these 61 

assumptions we were able to effectively reduce 191 spectral measures to 4: (1) the spectral 62 

intercept reflecting the overall amplitude of the signal, (2) the spectral slope reflecting the 63 

constant ratio of low over high frequency power, (3) the frequency of the maximal sleep 64 

spindle activity and (4) the amplitude of the sleep spindle spectral peak. These 4 measures 65 

were efficient in characterizing known age-effects, sex-differences and cognitive correlates of 66 

sleep EEG. Future clinical and basic studies are supposed to be significantly empowered by 67 

the efficient data reduction provided by our approach.  68 
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Introduction 69 

The frequency characteristics of sleep-dependent neuronal oscillations as recorded by 70 

scalp electroencephalography (EEG) are increasingly recognized as potent markers of aging 71 

(Pótári et al., 2017; Ujma et al., 2019), health and disease (Kaskie and Ferrarelli, 2019), 72 

typical and atypical development and maturation (Campbell et al., 2012; Bódizs et al., 2012), 73 

as well as of neurocognitive features of high practical relevance (Bódizs et al., 2005; Ujma et 74 

al., 2017; Ujma, 2018). However, many of these studies are suffering from increased 75 

susceptibility to Type I error as a result of an inherently increased level of “researcher degrees 76 

of freedom”. That is, EEG data can be analysed in almost infinite different ways, by focusing 77 

on one or another specific electrophysiological phenomenon (Ujma, 2018; Ujma et al., 2020). 78 

Instead of focusing on multiple frequencies or phenomena, our aim is to provide an overall 79 

characterization of the broadband NREM sleep EEG. Our data-driven approach is based on 80 

the statistical properties of the signal, in order to assess the intercept and the slope, as well as 81 

the most prominent/important spectral peaks of the Fourier spectrum. 82 

Evidence suggests the linear relationship between the logarithmic amplitude or power 83 

of EEG and the logarithm of frequency (Feinberg et al., 1984; Pereda et al., 1998). Such 84 

power law scaling is a general, state-independent feature of cortical EEG, suggesting that the 85 

Fourier spectrum can be reliably described by an approximation of the parameters of the 86 

following function: 87 

𝑃(𝑓) = 𝐶𝑓𝛼            (1) 88 

where P is power (P ≥ 0) as a function of frequency (0 ≤ f ≤ fNyquist), C is the constant (or the 89 

intercept) expressing the overall, frequency-independent EEG amplitude (C > 0), whereas α is 90 

the spectral exponent indicating the decay rate (slope) of power as a function of frequency. 91 

Reported values for the spectral exponent are -4 < α < -1, with lower values indicating lower 92 
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arousal/deeper sleep, but the values might depend on the EEG reference used, e.g. bipolar 93 

derivations result in higher α values as compared to referential ones, as well (Freemen et al., 94 

2006; Lázár et al., 2020). That is, instead of providing 191 values for the power spectra of 95 

0.5–48 Hz activity in bins of 0.25 Hz, we need just 2 (C and α). Most notably, if reliable, this 96 

function suggests that classical bandwise or binwise spectral analyses are not considering the 97 

frequency-determined nature of power values when applying statistical tests focusing on 98 

specific oscillatory phenomena. 99 

However, there are further specific features of the EEG spectrum, known as spectral 100 

peaks, which are upward deflections in the decreasing power law trend described by function 101 

(1) above. These peaks reflect non-random oscillatory activities of specific frequencies, which 102 

might prevent the reliable estimation of α if they are not considered (Freeman and Zhai, 2009, 103 

Colombo et al., 2019). In order to deliberately describe the power spectrum by taking into 104 

account its prominent peaks, we suggest the inclusion of a peak power function in the formula 105 

as follows: 106 

𝑃(𝑓) = 𝐶𝑓𝛼𝑃𝑃𝑒𝑎𝑘(𝑓)          (2) 107 

Peak power (PPeak) at frequency f equals 1 if there is no peak and is larger than 1 if there is a 108 

spectral peak at that frequency. Thus, the number of parameters is increased by considering 109 

spectral peaks, but is still lower than the values included in the original spectra, as putative 110 

“no peak regions” can be compressed in series of all ones. It has to be noted, that PPeak(f) is a 111 

whitened power measure, because it is independent from the spectral slope (α), which 112 

constitute the coloured part of the spectrum (Fig 1). In the following we only consider the 113 

maximal peaks, for which PPeak(f) ≤ PPeak(fmaxPeak). No multiple peaks are analysed in this 114 

report. 115 
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 116 

Fig 1. The parametrization of non-117 

rapid eye movement (NREM) sleep 118 

electroencephalogram (EEG) 119 

spectra. A. Hypnogram and steps of 120 

the spectral EEG analyses as 121 

exemplified in a representative 122 

record of a young male volunteer. 123 

Grey shaded areas represent NREM 124 

sleep, which is analysed in the 125 

present report. Blue-shaded EEG 126 

segments are magnified 4 seconds 127 

long epochs, with 2 seconds overlap 128 

and modified with a Hanning 129 

window before power spectral 130 

analysis via mixed-radix Fast 131 

Fourier Transformation (FFT). B. 132 

Average spectral power (P) is 133 

characterized by a frequency (f)-134 

dependent exponential decay (α), as 135 

well as by an overall, frequency-136 

independent amplitude multiplier 137 

(C) and a peak power multiplier at 138 

critical frequencies [PPeak(f)]. C. 139 

The natural logarithm of spectral 140 

power (P) is a linear function of the 141 

natural logarithm of frequency (f), 142 

characterized by a linear slope α 143 

(which is equal with α in panel B) 144 

and an intercept (the latter being the 145 

natural logarithm of the amplitude 146 

multiplier, C in panel B). In addition, this linear function has to be summed with the natural 147 

logarithm of the peak power multiplier [PPeak(f), equal to the same frequency-dependent 148 

function in panel B]. Please note that “no peak regions” can be compressed in series of all 149 

ones, resulting in reduced number of variables as compared to the bins in the original 150 

spectra. 151 

 152 

As a proof of concept, we apply these measures on a large sleep EEG dataset with 153 

previously demonstrated effects of individual differences. Specifically, we translate some core 154 

findings regarding age, sex, and general intelligence-related effects in NREM sleep EEG into 155 
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specific hypotheses in terms of C, α, and two indexes of spindle-range PPeak(f): whitened 156 

spectral peak amplitude PPeak(fmaxPeak) and spectral peak frequency (fmaxPeak). 157 

Age was reported to correlate negatively with NREM sleep EEG slow wave activity, 158 

but positively with high frequency activity in healthy adult subjects (Carrier et al., 2001). An 159 

early study based on period amplitude analysis reported that NREM sleep EEG log amplitude 160 

is a linear function of log frequency and that the slope of this linear decay is steeper in young 161 

as compared to older adults (Feinberg et al., 1984). Thus, we hypothesize (H1) that the slope 162 

of the Fast Fourier Transformation (FFT)-based spectrum of NREM sleep EEG (α) is age-163 

dependently increasing (less steep decreasing trends are indexed by higher exponents α). In 164 

addition, aging was shown to be associated with decreased sleep spindle activity (Nicolas et 165 

al., 2001; Purcell et al., 2017), thus we hypothesize (H2) a negative correlation between age 166 

and PPeak(fmaxPeak) values characterizing maximal spindle frequency spectral peaks (9 Hz < f < 167 

18 Hz). In addition to decreased spindle activity, the increase in intra-spindle oscillatory 168 

frequency (Hz) was shown to be a characteristic feature of aging according to some (Principe 169 

and Smith, 1982; Nicolas et al., 2001), but not all (Purcell et al., 2017) reports. As a 170 

consequence, we hypothesize (H3) that the maxima of the PPeak(f) function for 9 Hz < f < 18 171 

Hz (broad spindle range) emerge at higher fmaxPeak values in aged, as compared to young 172 

subjects. 173 

Reported sex differences in NREM and REM sleep EEG indicate higher spectral 174 

power in several frequency bands in women, as compared to men (Dijk et al., 1989; Carrier et 175 

al., 2001). Such broad band and state-independent differences suggest a general tendency for 176 

a higher EEG amplitude in women, due to non-neuronal factors, like skull thickness and bone 177 

mineral density (Dijk et al., 1989; Looker et al., 2009). As a consequence, we hypothesize 178 

(H4) that women are characterized by higher spectral intercepts, than men (C♀ > C♂). As a 179 

consequence of this point we will reanalyze some of the reported sex differences in sleep 180 
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spindle density/power, indicating increased sleep spindling in women as compared to men 181 

(Dijk et al., 1989; Carrier et al., 2001; Crowley, 2002; Huupponen et al., 2002), by relying on 182 

whitened spectral peak amplitudes of the spindle range (PPeak(fmaxPeak)). 183 

Another sex difference was reported in terms of sleep spindle frequency, that is 184 

women were shown to be characterized by higher oscillatory frequencies as compared to men 185 

(Ujma et al., 2014). We hypothesize (H5) that 9–18 Hz PPeak(f) maxima occurs at higher f 186 

values in women as compared to men (fmaxPeak♀ > fmaxPeak♂). 187 

Intelligence was shown to correlate positively with NREM sleep EEG sleep spindle 188 

activity (Bódizs et al., 2005). Although, a recent metaanalysis casts doubt on the sexual 189 

dimorphism of this relationship (Ujma, 2018), the dataset we analyse in our current report is 190 

characterized by a clear difference among women and men: women were characterized by 191 

positive correlation between sleep spindle amplitude/power and IQ, whereas null correlations 192 

were reported for men (Ujma et al., 2014; Ujma et al., 2017). As our current analyses are 193 

based on the same dataset, we hypothesize (H6) that PPeak(fmaxPeak) values of the sleep spindle 194 

range (9–18 Hz) correlate positively with IQ in women, but not in men. Intelligence was also 195 

reported to modulate the relationship between the decrease in NREM sleep EEG slow activity 196 

associated with aging: participants showing average IQ (AIQ) scores were characterized by 197 

significant negative correlations regarding age vs. slow wave activity, whereas no such 198 

correlations were found in individuals with high IQ (HIQ) (Pótári et al., 2017). As the original 199 

report provided overwhelming evidence for an age vs relative delta power correlation as being 200 

modulated by IQ range, whereas weaker evidence was found for absolute power (Pótári et al., 201 

2017), we do not know if this finding reflects the age-dependency of slow wave activity per 202 

se, or the combined age-dependency of slow wave activity and slow/high activity ratio. The 203 

former scenario would fit with a null effect for IQ-modulation of age vs spectral slope 204 
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correlation, whereas the latter would lead to an IQ-dependence of age vs spectral slope 205 

relationship (H7). 206 

 207 

Results 208 

Goodness of fit: Is the logarithm of spectral power a linear function of the logarithm of 209 

frequency? 210 

Linears were fitted to the equidistant log-log plots of the EEG power spectra in the 2–211 

48 Hz range, excluding the 6–18 Hz range, the latter known to be characterized by spectral 212 

peaks in NREM sleep (Fig. 1C, see details in section Methods). The sample mean of fitted 213 

slopes ( α  ) varied between -2.73 (SD = 0.22) and -2.33 (SD = 0.22) for the frontocentral (Fz) 214 

and left posterior temporal (T5) region, respectively. In turn, the sample mean of the 215 

intercepts ( ln C  ) varied between 3.74 (SD = 0.73) and 5.76 (SD = 0.69) for derivations T5 216 

and Fz, respectively. Goodness of fit (R2) of the linear model of the equidistant 2–6 Hz and 217 

18–48 Hz spectral data varied in the range of 0.8955–0.9997 across subjects and EEG 218 

derivations. The square of the Fisher Z-transformed, averaged and back-transformed Pearson 219 

correlations between the fitted linear and the spectral data is R  2 = 0.9952 (SD = 0.1578). 220 

 221 

H1: Age-associated increase in the spectral exponent (decrease in spectral slope) of 222 

NREM sleep EEG 223 

Spearman rank correlations (ρ) indicated a significant positive association between age 224 

(years) and NREM sleep EEG spectral exponents (α) at all derivations (Table 1a). The 225 

Rüger’s area including all derivations proved to be significant at both of the new critical 226 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.09.035113doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.09.035113
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

probability (p) levels (0.025 and 0.017). Thus, based on the Descriptive Data Analysis (DDA, 227 

see details in section Methods) procedure (Abt, 1987; Abt, 1990), this area can be considered 228 

as a significant one (see also Fig 2A). 229 

 230 

Table 1. Spearman rank correlations between age and spectral exponents, as well as spectral 231 

peak amplitudes and frequencies in the sleep spindle range of NREM sleep EEG 232 

D
er

iv
a-

ti
o
n

 a, slope (α) 
b, peak amplitude 

(PPeak(fmaxPeak)) 
c, peak frequency (fmaxPeak) 

N 
Spearman's 

ρ 
p N 

Spearman's 

ρ 
p N 

Spearman’s 

ρ 
p 

Fp1 163 .382 <.001*** 150 -.107 .193 150 -.222 .006*** 

Fp2 171 .392 <.001*** 155 -.035 .669 155 -.215 .007*** 

F3 174 .396 <.001*** 166 -.184 .018** 166 -.279 <.001*** 

F4 173 .427 <.001*** 165 -.17 .029* 165 -.258 .001*** 

Fz 156 .447 <.001*** 151 -.288 <.001*** 151 -.378 <.001*** 

F7 153 .362 <.001*** 137 -.105 .223 137 -.292 .001*** 

F8 154 .386 <.001*** 141 -.002 .978 141 -.217 .010*** 

C3 174 .38 <.001*** 172 -.328 <.001*** 172 -.057 .46 

C4 175 .395 <.001*** 172 -.32 <.001*** 172 -.042 .586 

Cz 156 .357 <.001*** 155 -.409 <.001*** 155 -.063 .44 

P3 175 .348 <.001*** 175 -.23 .002*** 175 .107 .16 

P4 175 .378 <.001*** 174 -.227 .003*** 174 .087 .253 

T3 154 .395 <.001*** 125 -.141 .116 125 -.14 .119 

T4 156 .394 <.001*** 131 -.125 .154 131 -.3 .001*** 

T5 154 .337 <.001*** 152 -.176 .030* 152 .014 .861 

T6 155 .377 <.001*** 151 -.213 .009*** 151 -.001 .988 

O1 175 .295 <.001*** 173 -.127 .097 173 .103 .179 

O2 174 .331 <.001*** 172 -.132 .085 172 .11 .152 

* p < .05; ** p < .025; *** p < .017 233 

a, Correlation between age and spectral exponents (α) of NREM sleep EEG. Note the 234 

significance of all correlations at the descriptive level of significance (p < .05), as well as at 235 

both of the new critical p levels corresponding to p < .025 and p < .017. The minimum criteria 236 

of a significant Rüger’s area is 10 out of 18 descriptive significances to meet the p < .025 and 237 

7 out of 18 descriptive significances to meet the p < .017 criteria. 238 

b, Correlations between age and whitened maximal spectral peak amplitude PPeak(fmaxPeak) of 239 

NREM sleep EEG spindle frequency activity (9 Hz < f < 18 Hz). Note the descriptive 240 

significance of 9 correlations forming a large Rüger area in the bilateral fronto-centro-parietal 241 

and posterior temporal region. The minimum criteria for a significant Rüger area is at least 5 242 

correlations to be significant at p < .025 and 4 at p < .017. Here we found 5 and 4 correlations 243 
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meeting this criteria, respectively. Thus, the Rüger area can be considered as a global zone of 244 

significance. 245 

c, Correlations between age and NREM sleep EEG maximal spectral peak frequencies in the 246 

spindle range (fmaxPeak). Note the descriptive significance of 8 negative correlations forming a 247 

Rüger area in the bilateral frontal and right temporal region. The minimum criteria for a 248 

significant Rüger area is at least 5 correlations to be significant at p < .025 and 3 at p < .017. 249 

Here we found 8 for both, thus, the Rüger area can be considered as a global zone of 250 

significance. 251 

 252 

 253 

Fig 2. Representative scatterplots of the correlations between age and measures of the NREM 254 

sleep EEG spectra at derivation F3. A. Correlation of age with the spectral exponent (α) 255 

indicating a decrease in the spectral slope in the aged subjects. B. Correlations of age with 256 

the whitened maximal spectral peak amplitude in the sleep spindle frequency range 257 

(PPeak(fmaxPeak). Note the decrease in whitened spectral peak amplitude in the aged. C. 258 

Correlation of age with the NREM sleep EEG spectral exponent (α) as categorized by 259 

intelligence (HIQ – High Intelligence Quotient, AIQ – Average Intelligence Quotient). Note 260 

the lack of an IQ effect. D. Correlation of age with NREM sleep EEG maximal spectral peak 261 

frequency (fmaxPeak) in the spindle range. Note the age-dependent decline in frequency. Color 262 

codes are consistent with Fig 1: red –spectral slopes, blue – spectral peaks. 263 

 264 
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H2: Age-dependent decrease in whitened spectral peak amplitude of NREM sleep EEG 265 

sleep spindle frequencies 266 

Based on Spearman’s rank correlations (ρ), maximal whitened spectral peak amplitudes 267 

of NREM sleep EEG spindle frequencies (PPeak(fmaxPeak)) and age correlated negatively at 10 268 

derivations covering the frontocentral, parietal and posterior temporal areas (F3, F4, Fz, C3, 269 

Cz, C4, T5, T6, P3, and P4). Among these 10 derivations defining the Rüger area based on 270 

descriptive significances, 8 were significant at p < .025 and 7 at p < .017 (Table 1b). That is the 271 

Rüger area indicates a negative correlation between age and whitened sleep spindle spectral 272 

peak amplitude (see a representative example in Fig 2B). 273 

 274 

H3: Age-related decrease but not increase in spectral peak frequency of NREM sleep 275 

EEG spindle range activity was found 276 

Based on Spearman’s rank correlation (ρ) maximal sleep spindle spectral peak emerge 277 

at lower fmaxPeak values in the frontal region of aged, as compared to young subjects. This 278 

finding evidently contrasts our prediction. Peak frequency and age correlated negatively at 8 279 

derivations covering the frontal and the right temporal areas (Fp1, Fp2, F3, F4, Fz, F7, F8 and 280 

T4). This Rüger’s area was significant, as all correlations conformed to both of the new 281 

critical probabilities (Table 1c, Fig 3D). 282 

 283 

H4: NREM sleep EEG spectral intercepts, but not whitened spindle spectral peak 284 

amplitudes are higher in women as compared to men 285 

Mann-Whitney U test revealed that women are characterized by significantly higher 286 

spectral intercepts (the natural logarithm of C values in formula (1) and (2)) compared to men 287 
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at all derivations. After correction for multiple testing the Rüger-area remained significant 288 

(Table 2). As predicted women and men did not differ in NREM sleep EEG maximal spectral 289 

peak amplitudes of the spindle range (PPeak(fmaxPeak)) at any of the derivations (Table 2b). 290 

 291 

Table 2. Women vs men differences in NREM sleep EEG spectral intercepts and whitened 292 

peak amplitudes in the spindle range 293 

  

a, intercept (ln C) b, peak amplitude (PPeak(fmaxPeak)) 

U p N♀ Md♀ N♂ Md♂ t p N♀ x  ♀ N♂ x  ♂ 

Fp1 2455 .004*** 77 5.11 86 4.84 -.098 .924 67 1.370 83 1.379 

Fp2 2682 .003*** 81 5.14 90 4.87 .515 .619 68 1.404 87 1.361 

F3 2658 .001*** 81 5.53 93 5.22 .420 .675 75 1.731 91 1.699 

F4 2503 <.001*** 81 5.58 92 5.28 1.003 .317 76 1.760 89 1.684 

Fz 1997 .001*** 69 6.04 87 5.61 .836 .405 66 1.804 85 1.736 

F7 2295 .031* 67 4.58 86 4.28 1.474 .162 59 1.470 78 1.336 

F8 2382 .046* 69 4.56 85 4.44 .710 .493 63 1.388 78 1.327 

C3 2345 <.001*** 81 5.36 93 4.98 -.059 .953 80 1.989 92 1.994 

C4 2483 <.001*** 81 5.41 94 5.04 .225 .822 79 1.983 93 1.966 

Cz 1869 <.001*** 69 5.98 87 5.58 .434 .665 68 2.145 87 2.108 

P3 2467 <.001*** 81 4.97 94 4.69 -.397 .692 81 2.241 94 2.274 

P4 2423 <.001*** 81 5.04 94 4.56 -.704 .483 81 2.144 93 2.202 

T3 2270 .019** 67 3.99 87 3.72 1.028 .306 55 1.254 70 1.169 

T4 2428 .041* 69 4.02 87 3.83 .984 .327 57 1.197 74 1.119 

T5 2172 .006*** 68 3.92 86 3.67 -1.095 .275 68 1.545 84 1.631 

T6 2021 .001*** 68 3.91 87 3.65 -.460 .646 66 1.475 85 1.509 

O1 2182 <.001*** 81 4.51 94 3.97 -1.072 .285 80 1.692 93 1.783 

O2 2102 <.001*** 81 4.53 93 4.04 -1.938 .054 80 1.592 92 1.748 

a. Mann-Whitney U tests indicate higher spectral intercepts (ln C values) in the female (♀) as 294 

compared to the male (♂) subgroup. Descriptive significance was observed at all (18) 295 

recording locations. Minimum criteria of a significant Rüger area requires at least 10 of 296 

these p values to be lower than .025 and 7 of them to be less than .017. Observed values are 297 

15 and 14, respectively. Thus, the Rüger area characterizing the sex differences in NREM 298 

sleep EEG spectral intercepts is significant. Md – median; * p < .05; ** p < .025; *** p < 299 

.017. 300 

b. Whitened maximal spectral peak amplitudes in the sleep spindle range of NREM sleep EEG 301 

(PPeak(fmaxPeak)) do not significantly differ between females and males. 302 

 303 
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H5: Women are characterized by higher NREM sleep EEG spectral peak frequencies in 304 

the spindle range 305 

According to Mann-Whitney U Tests, women were characterized by significantly 306 

higher fmaxPeak values as compared to men, except derivations T3 and T4. The area remained 307 

significant after the correction for multiple testing (Table 3). 308 

 309 

Table 3. Women vs men differences in NREM sleep EEG spindle spectral peak frequencies 310 

 U p N♀ Md♀ N♂ Md♂ 

Fp1 1888 .001*** 67 11.97 83 11.32 

Fp2 1864 .000*** 68 12.00 87 11.29 

F3 2191 .000*** 75 12.80 91 11.86 

F4 2217 .000*** 76 12.98 89 11.80 

Fz 2259 .041* 66 13.06 85 12.51 

F7 1492 .000*** 59 12.23 78 11.59 

F8 1608 .000*** 63 12.14 78 11.49 

C3 2651 .002*** 80 13.53 92 13.26 

C4 2502 .000*** 79 13.60 93 13.28 

Cz 1830 .000*** 68 13.68 87 13.33 

P3 2290 .000*** 81 13.71 94 13.36 

P4 2368 .000*** 81 13.70 93 13.38 

T3 1829 .635 55 12.80 70 12.91 

T4 1942 .440 57 12.94 74 12.93 

T5 1893 .000*** 68 13.62 84 13.32 

T6 1730 .000*** 66 13.63 85 13.33 

O1 2282 .000*** 80 13.65 93 13.33 

O2 2253 .000*** 80 13.65 92 13.35 

Mann-Whitney U test indicates that women as compared to men are characterized by higher 311 

fmaxPeak values at which spindle range PPeak(f) maxima emerge. The Rüger area containes 16 312 

nominally significant effects. 15 of these women vs men differences were significant at both of 313 

the more stringent criteria (p < .025 and p < .017), which supports the significance of the 314 

area. Md – median; * p < .05; ** p < .025; *** p < .017. 315 

 316 

 317 
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H6: IQ correlates positively with NREM sleep EEG spindle range whitened spectral 318 

peak amplitude in women 319 

Pearson correlations revealed significant associations of whitened maximal spectral 320 

peak amplitudes (PPeak(fmaxPeak)) pertaining to NREM sleep EEG spindle activity with IQ at 321 

derivations C3 (N = 67, r = .33, p = .007), C4 (N = 66, r = .34, p = .005), Cz (N = 55,  r = .34, 322 

p = .010), P3 (N = 68, r = .26, p = .031), P4 (N = 68, r = .28, p = .020), and T3 (N = 45, r = 323 

.32, p = .031) in women (Table 4; Fig 3). The Rüger area at this centroparietal-left temporal 324 

region remained significant after the control for multiple testing (4/6 correlations are 325 

significant at .05/2 and 3/6 correlations at .05/3). No significant correlations of whitened 326 

spectral peak amplitude and IQ were found in men. 327 

 328 

Table 4. Correlation of whitened spectral peak amplitudes with IQ in women and men 329 

Derivation r♀ p♀ N♀ r♂ p♂ N♂ 

Fp1 .24 .067 55 .02 .830 72 

Fp2 .16 .231 55 .01 .985 77 

F3 .15 .216 62 -.01 .920 78 

F4 .17 .178 63 -.01 .989 76 

Fz .22 .101 53 .08 .499 72 

F7 .11 .432 48 .02 .858 67 

F8 .02 .880 52 .03 .759 66 

C3 .32 .006*** 67 .02 .842 79 

C4 .34 .004*** 66 .03 .746 81 

Cz .34 .010*** 55 .09 .426 74 

P3 .26 .030* 68 -.07 .531 81 

P4 .28 .020** 68 -.05 .627 81 

T3 .32 .030* 45 .09 .484 58 

T4 .23 .118 46 -.04 .718 62 

T5 .19 .147 55 .03 .771 72 

T6 .15 .266 54 .06 .609 73 

O1 .22 .061 67 .03 .731 81 

O2 .23 .057 67 .01 .888 80 

The Rüger area at the centroparietal-left temporal region characterized by descriptive 330 

significances (p < .05) in the female subgroup (♀) remained significant after the control for 331 

multiple testing (4/6 correlations are significant at .05/2 and 3/6 at .05/3). No significant 332 
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correlations of whitened spectral peak amplitude and IQ were found in the male subgroup 333 

(♂).* p < .05; ** p < .025; *** p < .017. 334 

 335 

 336 

Fig 3. Correlations 337 

between NREM sleep 338 

EEG spindle frequency 339 

whitened spectral peak 340 

amplitudes and IQ in 341 

females and males. A. 342 

Categorized scatterplot 343 

representing the 344 

correlation between 345 

whitened spectral peak 346 

amplitude of the NREM 347 

sleep EEG spindle 348 

frequency range 349 

(recording site: F4) and 350 

IQ in women and men. 351 

B. Pearson r-values 352 

were transformed to Z-353 

values and represented 354 

on topographical maps. 355 

C. Significance 356 

probability maps of the 357 

correlations presented 358 

in B. 359 

 360 

 361 

 362 

 363 

 364 
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H7: Do age-related declines in NREM sleep EEG spectral slopes differ among subjects 365 

with average and high IQ? 366 

As already presented in the former subheadings (H1) an age-associated increase in 367 

spectral exponents (less steep spectral slopes) characterizes the NREM sleep EEG of adult 368 

volunteers. This effect was separately assessed in subjects with average and high IQ, and 369 

results were compared. Age and slopes of the NREM sleep EEG spectra (α) were significantly 370 

associated in both subgroups (AIQ and HIQ). We found no significant difference between 371 

these correlations, however (Table 5). That is, age-associated decreases in the steepness of the 372 

slopes of the NREM sleep EEG spectra are independent of the subjects’ IQ. 373 

 374 

Table 5. Comparison of the correlations between age and the slope of the NREM sleep EEG 375 

spectrum in subjects with average and high intelligence (AIQ vs HIQ) 376 

 

Spearman’s  

ρAIQ 
NAIQ pAIQ 

Spearman’s 

ρHIQ 
NHIQ pHIQ pdifference 

Fp1 .44 79 <.001*** .40 60 .001*** .787 

Fp2 .44 85 <.001*** .45 63 <.001*** .901 

F3 .48 84 <.001*** .41 64 .001*** .622 

F4 .52 83 <.001*** .42 64 .001*** .476 

Fz .57 70 <.001*** .45 60 <.001*** .370 

F7 .39 70 .001*** .45 58 <.001*** .660 

F8 .45 69 <.001*** .43 59 .001*** .900 

C3 .44 84 <.001*** .45 64 <.001*** .956 

C4 .45 85 <.001*** .43 64 <.001*** .896 

Cz .47 70 <.001*** .37 60 .004*** .507 

P3 .39 85 <.001*** .42 64 .001*** .801 

P4 .42 85 <.001*** .41 64 .001*** .927 

T3 .43 70 <.001*** .49 59 <.001*** .640 

T4 .51 70 <.001*** .42 60 .001*** .507 

T5 .32 70 .007*** .45 58 <.001*** .412 

T6 .40 70 .001*** .42 60 .001*** .896 

O1 .31 85 .004*** .40 64 .001*** .549 

O2 .34 84 .002*** .41 64 .001*** .610 

Correlations were significant in both intelligence groups, however, the differences between 377 

the higher (HIQ) and average (AIQ) intelligence groups was not significant (p difference). 378 
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The table contains correlation coefficients (Spearman’s R), sample sizes (N) and the values of 379 

significance (p) in both groups. ***p < .017 380 

 381 

Overcoming model redundancy by determining the alternative intercept of the spectra 382 

 Although our model resulted in good fit with empirical data in terms of random (non-383 

oscillatory) activity or coloured noise and the majority of our hypotheses (including the ones 384 

regarding peak power features) were supported by parameters derived from equation (2), the 385 

spectral slope and the intercept are far from being independent in statistical terms. That is, 386 

although women vs men differences emerged in our spectral intercepts (ln C♀ > ln C♂) as 387 

predicted in H4 (see Table 2), and no sex differences in NREM sleep EEG spectral slopes (α) 388 

were observed (Table 6a), the intercepts and the slopes are negatively correlated in our 389 

database (Table 6b): subjects with steeper spectral slopes (lower α exponents) are 390 

characterized by higher intercepts (apparently higher EEG amplitudes). This might reflect the 391 

position of the intercept, which is at ln f = 0 (f = 1 Hz). The interpolated 1 Hz power (based on 392 

the fitted line in the double logarithmic plots) partially reflects the steepness of the slope of 393 

the spectrum. 394 

In order to overcome the above issue of parameter-interdependency, we derived 395 

alternative intercepts with the aim of determining parts of the interpolated coloured spectrum 396 

at which our parameter do not reflects the steepness of the slope (α). We based our search for 397 

this alternative intercept on two assumptions: (1) the alternative (“slope-free”) intercept is 398 

situated at the border of low and high frequency activities, delineated by the reported sleep 399 

deprivation-induced increases and decreases of spectral power, respectively; (2) intercepts 400 

below the border mentioned in point 1. correlate negatively with the spectral slopes, whereas 401 

intercepts above this border correlate positively with slopes. Extended wakefulness of human 402 
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Table 6. Data on the lack of sex differences in spectral slopes and the relationship between 403 

spectral slopes and intercepts 404 

 a, sex differences in α b, α vs ln C0 

 t p N♀ α♀   N♂ α♂   r p N 

Fp1 1.452 .148 77 -2.613 86 -2.563 -.83 <.001*** 163 

Fp2 1.477 .141 81 -2.624 90 -2.575 -.84 <.001*** 171 

F3 1.578 .116 81 -2.682 93 -2.629 -.83 <.001*** 174 

F4 1.585 .114 81 -2.689 92 -2.634 -.85 <.001*** 173 

Fz 1.308 .192 69 -2.760 87 -2.713 -.85 <.001*** 156 

F7 1.307 .192 67 -2.510 86 -2.460 -.85 <.001*** 153 

F8 1.276 .203 69 -2.512 85 -2.465 -.83 <.001*** 154 

C3 2.044 .042* 81 -2.658 93 -2.594 -.78 <.001*** 174 

C4 1.558 .120 81 -2.664 94 -2.612 -.81 <.001*** 175 

Cz .878 .381 69 -2.701 87 -2.672 -.81 <.001*** 156 

P3 1.407 .161 81 -2.558 94 -2.516 -.79 <.001*** 175 

P4 1.398 .163 81 -2.553 94 -2.510 -.80 <.001*** 175 

T3 1.112 .267 67 -2.404 87 -2.362 -.80 <.001*** 154 

T4 1.031 .303 69 -2.400 87 -2.361 -.81 <.001*** 156 

T5 .951 .343 68 -2.352 86 -2.317 -.80 <.001*** 154 

T6 1.358 .176 68 -2.359 87 -2.312 -.76 <.001*** 155 

O1 1.991 .048* 81 -2.425 94 -2.362 -.79 <.001*** 175 

O2 2.038 .043* 81 -2.430 93 -2.369 -.77 <.001*** 174 

a. Sex differences in NREM sleep EEG spectral slopes as revealed by independent sample t-405 

tests. The 3 descriptive significances do not survive the control of Type I error. b. The 406 

correlation of NREM sleep EEG spectral slopes (α) and intercepts at ln f = 0 (ln C0). 407 

Correlations are significant over the whole registered area and survive the control of multiple 408 

testing. Fisher z-transformed, averaged and back-transformed correlation value is -0.811. 409 

 410 

adults is known to increase the NREM sleep EEG spectral power below the sleep spindle 411 

frequencies, that is the power of 1–9, 1–12 or 1–13 Hz according to different studies (Borbély 412 

et al., 1981; Finelli et al., 2001; Tinguely et al., 2006; Olbrich et al., 2014; Tarokh et al., 413 

2015), whereas power above 10 or 13 Hz was shown to be decreased during recovery sleep 414 

(Finelli et al., 2001; Tinguely et al., 2006; Tarokh et al., 2015). Thus, we used our fitted 415 

model parameters α and ln C to determine the interpolated coloured power at frequencies of 416 

7.4, 10, 12.2, 13.5, 15 and 20 Hz corresponding to natural logarithm values of 2, 2.3, 2.5, 2.6, 417 
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2.7, and 3, respectively. These alternative intercepts were tested for their independence from 418 

the slopes (α) by Pearson correlations (Fig 4). The pattern of correlations supported our  419 

 420 

Fig 4. Determining the optimal alternative intercept for the NREM sleep EEG spectra. A. 421 

Linear fitted to the double logarithmic plot of an average NREM sleep EEG spectral power 422 

(P) derived from right frontopolar location (Fp2) in a young female volunteer. Beside the 423 

original, violet-colored intercept at ln f = 0 (f = 1 Hz), alternative intercepts are depicted at 424 

7.4, 10, 12.2, 13.5, 15 and 20 Hz. B. Between-subject correlations of the potential intercepts 425 

(ln C) with the slopes of the spectra (α) in a location-dependent manner. Note the negative 426 

correlations for low and the positive correlation for high frequencies, respectively. Zero-427 
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correlations are seen in the middle of the sleep spindle frequency range (at 12.2 and 13.5 Hz), 428 

although occipital derivations are characterized by a slightly different pattern. 429 

 430 

assumptions: alternative intercepts below 12.2 Hz were found to correlate negatively with 431 

spectral slopes, whereas above 12.2 or 13.5 Hz (depending on electrode location) positive 432 

correlations were found. That is the best “slope-free” intercepts in the coloured part of the 433 

parametrized NREM sleep EEG spectra are emerging at 12.2 Hz and the 13.5 Hz for anterior 434 

and posterior derivations, respectively (ln C2.5 and ln C2.6). The original intercept derived at ln 435 

f = 0 could be termed as ln C0, according to this terminology. We reanalyzed H4 in terms of ln 436 

C2.5 and ln C2.6. The analyses resulted in increased mean effects sizes from η^2  = 0.084 to 437 

η^2  = 0.118 (both averaged over recording locations). 438 

 439 

Discussion 440 

When analyzing the Fourier spectra of EEG records performed for long periods of 441 

sleep, researchers and clinicians rely on statistics. That is, the periodograms of short modified 442 

EEG segments are averaged in order to obtain the averaged spectra (Welch, 1967). As a 443 

consequence, the spectral profiles are inherently statistical in nature. The set of measures 444 

building up this statistical product conform to the power law functions characterized by 445 

negative exponents (Pereda et al., 1998; Freeman and Zhai, 2009), mixed up with a few 446 

positive deflections corresponding to non-random, oscillatory activity patterns (Lázár et al., 447 

2020). In our view, the characterization of the Fourier spectrum by taking into account its 448 

electrophysiological and statistical regularities might result in an integrated characterization 449 

of NREM sleep EEG, which is superior in terms of construct validity and accuracy. First of 450 

all, a frequency-independent amplitude measure potentially reflecting non-neuronal factors, 451 
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like skull anatomy, can be reliably separated and is not mixed up in power spectral values 452 

focusing on specific oscillatory phenomena. Although the natural logarithm of term C derived 453 

from formula (1) and (2) (ln C0) reliably reflects the hypothesized sex differences, the model 454 

could be refined by using alternative intercepts, which were independent from the slopes (ln 455 

C2.5 and ln C2.6) (Fig 4). The latter might constitute an ideal normalization value for NREM 456 

sleep EEG (spectra) in future basic and clinical studies.  457 

In addition to the spectral intercepts, the power law functions describing the sleep 458 

EEG spectra appropriately address the issue of the ratio of EEG power at different 459 

frequencies, providing a single measure (α), instead of several ones scattered redundantly in 460 

all frequency bins and bands.  461 

Last, but not least, spectral peak amplitudes (PPeak(f)) are whitened in our approach, 462 

that is, the coloured part of the spectrum is effectively controlled, which might enable 463 

researchers to differentiate random and non-random/oscillatory activities at specific 464 

frequencies. 465 

The findings derived from our approach of parametrizing the NREM sleep EEG 466 

spectra clearly supports the robustness and validity of the method presented in this paper, 467 

which was inspired by studies aiming to whiten the spectral power in the sleep spindle 468 

frequency (Gottselig et al., 2002; Geiger et al., 2011). As predicted (H1), age correlates 469 

positively with NREM sleep EEG spectral exponents (Table 1a), indicating that aging is 470 

associated with less steep exponential decay slopes of the Fourier spectra (i.e. less negative 471 

exponents) (Fig 2A). This finding coheres with reports of bandwise power spectral analyses 472 

of NREM sleep EEG, indicating decreased low and increased high frequency activity in the 473 

NREM sleep EEG of healthy aged subjects (Carrier et al., 2001). Moreover, the steepness of 474 

the slope of the linear describing the relationship between the log-amplitude and the log-475 

frequency of NREM sleep EEG revealed the same age-dependency (Feinberg et al., 1984). 476 
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Thus, our method is capable of extracting spectral slope information with sufficient precision 477 

and is a valid and simple approach to be used in future (translational) studies. The slope of the 478 

spectrum is basically a measure of the constant ratio between low and high frequency 479 

activities, which was hypothesized to reflect the ratio between inhibition and excitation, the 480 

depth of sleep and/or the level of conscious awareness (Weiss et al., 2011; Gao et al., 2017; 481 

Colombo et al., 2019). Findings might indicate that aged subjects have lower sleep depth, but 482 

might also open new avenues beyond the exclusive focus on sleep slow waves/oscillation 483 

when studying the relationship between aging and sleep. The latter point is supported by our 484 

finding on the lack of a difference in the age-dependency of the NREM sleep EEG spectral 485 

slopes in subjects with average and high intelligence (Table 5). This finding apparently 486 

contrasts the outcomes of our previous report on the significant differences in age-dependent 487 

declines in NREM sleep EEG slow wave/oscillation of average and high IQ subjects. That is 488 

in terms of NREM sleep EEG slow waves high IQ subjects tend to age at a slower pace than 489 

average IQ subjects (Pótári et al., 2017). In spite of the fact that the database we used in the 490 

two studies are the same, the methods (classical spectral analysis vs. spectral exponent 491 

extraction) yield different results. That is, our present findings indicate that average and high 492 

IQ subjects tend to age at a same pace, at least in terms of their NREM sleep EEG spectral 493 

exponents. These contrasting results indicate that our former findings are preferentially 494 

reflecting the age- and IQ-dependency of the NREM sleep EEG slow oscillatory mechanism 495 

per se, but not the random activity and/or the constant ratio of slow and high frequency 496 

activities. The latter could be a subject of aging which is at least partially independent from 497 

the well characterized age-dependent decreases in slow oscillations (Mander et al., 2013) and 498 

is equally present in average and high IQ subjects. Recent findings and considerations suggest 499 

that the spectral slope derived from an electrophysiological signal indicates the ratio of 500 

excitation and inhibition in the underlying neural tissue (Gao et al., 2017). Thus, according to 501 
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our current findings and previously published modeling data (Gao et al., 2017) aging is 502 

characterized by a relative increase in excitation over inhibition during the state of night time 503 

NREM sleep, and this effect seems to be relatively independent from the decreased slow 504 

oscillation reported in former studies (Mander et al., 2013; Pótári et al., 2017). 505 

Aging was also shown to be associated with decreased sleep spindle frequency activity 506 

and decreased phasic sleep spindles in former studies (Purcell et al., 2017). These findings 507 

cohere with our current report of an age-associated decrease in whitened spectral peak 508 

amplitudes of NREM sleep EEG spindle frequency range (Table 1b). Reports suggest that the 509 

age-dependent decrease in sleep spindles recorded over the prefrontal regions mediates the 510 

cognitive decline in later ages (Mander et al., 2014). Moreover, it was suggested that this 511 

effect reflects the disruption of thalamocortical regulatory mechanisms involved in sleep 512 

spindle rhythmogenesis (Clawson et al., 2017). Thus, our index of whitened NREM sleep 513 

EEG spectral peak amplitude in the spindle frequency range could serve as a simple 514 

biomarker of the neurocognitive aspects of aging.  515 

The age-associated increases in the frequency of sleep spindle oscillations (also known 516 

as intraspindle frequencies) were reported in several former reports (e.g. Principe and Smith, 517 

1982), although the largest study did not reveal such changes in adulthood (Purcell et al., 518 

2017). Our present findings reveal a non-predicted decrease in maximal frontal spectral peak 519 

amplitude in the spindle frequency range of NREM sleep EEG. The range of the spindle 520 

frequency changes clearly indicate a change from the predominant fast (~14 Hz) to 521 

predominant slow (~12 Hz) sleep spindle spectral peaks during aging. That is, our finding 522 

indicates a decrease in relative frontal emergence of fast sleep spindles during aging, rather 523 

than a deceleration of sleep spindles at a rate of 0.5 Hz/decade (Fig 2D). That is, our 524 

minimalistic goals to capture sleep spindle oscillatory activity with just one maximal spectral 525 
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peak instead of two, resulted in the unexpected deceleration of sleep spindle frequency during 526 

aging in adult subjects. 527 

Women were shown to be characterized by significantly higher NREM sleep EEG 528 

spectral intercepts as compared to men. This difference is not seen in the spectral slopes and is 529 

sharpened when using the alternative (“slope-free”) intercepts (ln C2.5 and ln C2.6 instead of ln 530 

C0). To the best of our knowledge this is the first report explicitly targeting these issues. We 531 

based our hypothesis on findings suggesting that women vs men differences in EEG power 532 

are largely frequency-independent (Carrier et al., 2001), thus indicating an overall amplitude 533 

effect captured by the term C in formula (1) and (2). That is, previous reports focusing on 534 

specific frequency ranges and oscillatory phenomena are confounded by overall amplitude 535 

differences in the EEG of women and men. Examples for such potentially confounded 536 

findings are reports on women vs men differences in sleep spindle densities/occurrences. 537 

Spindles detected by fixed thresholds (Crowley et al., 2002; Huupponene et al., 2002) or raw 538 

(non-whitened) spectral power values of the spindle frequency range (Dijk et al., 1989; 539 

Carrier et al., 2001) indicate sex differences (increased sleep spindle density/activity in 540 

women), but are not controlled for overall amplitude differences. It has to be noted however, 541 

that one of the early publications cited above hypothesized that women vs men differences in 542 

sleep EEG spectral power might reflect sex differences in skull thickness (Dijk et al., 1989), 543 

but - at least to our best knowledge - this hypothesis remained largely unexplored from the 544 

electrophysiological point of view. Our current approach considers this issue and provides a 545 

reliable and potentially useful method for controlling non-specific, non-neuronal effects in 546 

EEG amplitude. The estimation of the spectral intercept provides a simple index in the study 547 

of the skull-thickness-EEG power issue in future biophysical, electrophysiological-modeling 548 

studies. Our current findings clearly indicate the lack of sex differences in sleep spindle power 549 

when overall amplitude women vs men differences are controlled (Table 2). 550 
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Women were shown to be characterized by higher frequency sleep spindle oscillations 551 

as compared to men according to our former study based on the individual adjustment of sleep 552 

spindle frequencies and amplitudes (Ujma et al., 2014). This finding was strengthened by our 553 

current report based on the detection of whitened spectral peak location with .0052 Hz 554 

resolution (Table 3). That is, our current finding strengthens the validity of our spectral 555 

parametrization approach. In addition, the hypotheses suggesting that sleep spindle frequency 556 

is accelerated by either progesterone and its neuroactive, indirect GABA-agonist metabolite 557 

allopregnanolone (Driver et al., 1996) or the progesterone-induced hyperthermia (Deboer, 558 

1998) during the follicular phase of the menstrual cycle in women are indirectly supported by 559 

our present findings. Although our participants were not controlled for menstrual cycle phases 560 

and oral contraceptive use, we can assume that at least some of the female subjects were 561 

examined during the follicular phase of their menstrual cycle. Furthermore, oral contraceptive 562 

use involve the intake of progestagenic compounds, which might induce some of the neural 563 

effects of endogenous progesterone in naturally cycling women. 564 

Here we reveal a positive correlation between whitened spectral peak amplitude of 565 

sleep spindle frequency activity during NREM sleep and IQ in women, but not in men (Table 566 

4; Fig 3). Intelligence was shown to be reflected in the intensity (amplitude and/or density) of 567 

phasic sleep spindle events or alternatively in the spectral power of sleep spindle frequency 568 

activity during NREM sleep (Bódizs et al., 2005; Ujma et al., 2014, Ujma et al., 2017; Ujma, 569 

2018). In the database we use in our present study a marked sexual dimorphism of this effect 570 

was also revealed: women but not men were shown to be characterized by the sleep spindle 571 

amplitude/power vs IQ correlations (Ujma et al., 2014; Ujma et al., 2017). Although this latter 572 

effect was not unequivocally reflected in a significant meta-regression between effect size and 573 

% female in the sample in a subsequent metaanalysis, here we refer to it because convergent 574 

findings obtained by different methods used on the same dataset are an issue of validity of the 575 
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methods. That is, we reproduced the positive sleep spindle vs. IQ correlation in women by 576 

using a linear fitting approach to the log-log spectra of NREM sleep and a concurrent 577 

whitening of spectral peaks, without assumptions on time-domain sleep spindle features. 578 

Again, this finding might strengthen our views on the reliability of the method of analyzing 579 

the constant, the slope and the (whitened) peak attributes of the NREM sleep EEG in human 580 

subjects. 581 

Among the shortcomings of our work we would emphasize the lack of slow vs fast 582 

sleep spindle differentiation by the current version of our method, as well as the fact that we 583 

disregarded low frequency power (< 2 Hz) when fitting the slopes. Fitting of two slightly 584 

overlapping spectral peaks instead of just one, would increase considerably the complexity of 585 

the approach, whereas our intention was to keep the process as simple and intuitive as 586 

possible. Moreover, we intended to follow the already published method of finding the 587 

maximal peak in the spindle frequency range and correlating its amplitude/power with 588 

neurological-clinical and cognitive data (Gottselig et al., 2002; Geiger et al., 2011).  Similarly, 589 

the potential and largely unpredictable contamination of low frequency power with sweating 590 

artefacts, as well as the high-pass filtering effects of gold-coated electrodes (Vanhatalo et al., 591 

2005) we used in our studies precluded us from a precise measurement of the power law 592 

scaling at low frequencies below 2 Hz. 593 

In sum, the parametrization of NREM sleep EEG of healthy adult subjects by relying 594 

on the power law scaling behavior of the electrical activity of the brain, as well as by 595 

completing this statistical property with the prominent spectral peak at the sleep spindle 596 

range, provides an integral method of describing and characterizing individual differences in 597 

sleep and cognition. Here we show, that most of the features of NREM sleep EEG can be 598 

efficiently compressed in the spectral intercepts, slopes and peaks, at least in terms of 599 

demographic (age, sex) and cognitive (IQ) correlates of sleep. It remains to be determined, if 600 
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state-dependent changes, like overnight sleep dynamics and or sleep regulatory mechanisms 601 

can be appropriately described by these integrative parameters of NREM sleep. In addition, 602 

further studies are needed for an adequate handling of multiple spectral peaks and low 603 

frequency (< 2 Hz) oscillations in the non-full-band EEG. 604 

 605 

Methods 606 

Subjects/databases 607 

Data was combined from multiple databases (Max Planck Institute of Psychiatry, 608 

Munich, Germany; Institute of Behavioural Sciences of Semmelweis University, Budapest, 609 

Hungary) for this retrospective multicenter study (Ujma et al., 2017; Ujma et al., 2019). 610 

Polysomnography data were recorded from 175 participants 81 females, 94 males, mean age 611 

29.57 years, age range 17–60 years) and IQ scores were measured for 149 participants (68 612 

females, 81 males, mean age 29.23 years, age range 17–60 years). Volunteers were recruited 613 

also via Mensa Germany and Mensa Hungary to increase the number of highly intelligent 614 

individuals. As some of the participants have missing data of some electrodes and/or IQ 615 

scores the data numbers from which the statistical analysis was conducted are always reported 616 

in the results.  617 

Based on self-reports, none of the participants had a history of psychiatric or 618 

neurological disorders. Alcohol consumption was restricted before recording, but a small 619 

amount of caffeine (max. 2 cups of coffee before noon) was allowed to the participants. Based 620 

on self reports 8 participants were light or moderate smokers. Data were combined from 621 

multiple databases (Max Planck Institute of Psychiatry, Munich, Germany; Institute of 622 

Behavioural Sciences of Semmelweis University, Budapest, Hungary). The experiment was 623 

conducted in full accordance with the World Medical Association Helsinki Declaration and 624 
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all applicable national laws and it was approved by the institutional review board, the Ethical 625 

Committee of the Semmelweis University, Budapest, or the Ludwig Maximilian University, 626 

Munich. 627 

 628 

Psychometric intelligence 629 

Standardized nonverbal intelligence tests were recorded from 149 participants: 70 of 630 

them completed the Culture Fair Test (CFT) and 39 of them completed the Raven Advanced 631 

Progressive Matrices (Raven APM) test. 40 participants completed both tests. These tests 632 

have been shown to similarly measure abstract pattern completion and are particularly good 633 

measures of the general factor of intelligence. A composite raw intelligence test score was 634 

calculated, expressed as a Raven equivalent score (RES). RES for Raven APM tests was 635 

equal to the actual raw test score, whereas RES of the CFT test raw scores were equal to the 636 

Raven APM score corresponding to the IQ percentile derived from CFT performance and the 637 

age of the participant. Scores were averaged for participants who completed both tests. 638 

Standardization of APM was applied according to 1993 Des Moines (Iowa). Based on their 639 

mean IQ score, the sample was split into an average (AIQ: 88 < IQ < 120; IQ  = 106.9; N = 640 

85) and a high intelligence (HIQ: 120 ≤ IQ < 156; IQ  = 130.38; N = 64) subgroup (see 641 

Pótári et al., 2017). 642 

 643 

Polysomnography recordings 644 

Detailed data recording procedures and power spectral analysis are also reported in the 645 

study of Ujma et al. (2019). Sleep data were recorded on two consecutive nights by standard 646 

polysomnography including EEG, electro-occulography (EOG), electrocardiography (ECG) 647 
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and bipolar submental electromyography (EMG). EEG channels were placed according to the 648 

international 10–20 system (Fp1, Fp2, F3, F4, Fz, F7, F8, C3, C4, Cz, P3, P4, T3, T4, T5, T6, 649 

O1, O2 and left and right mastoids). Impedances for the EEG electrodes were kept below 8 650 

kΩ. The sampling frequency was either 249 Hz, 250 Hz or 1024 Hz, depending on recording 651 

site (Supplementary table 1). All recordings were referenced to the mathematically linked 652 

mastoids. Data were offline re-referenced to the average of the mastoid signals and notch 653 

filtered at 50 Hz. Electrodes excluded from the analysis due to artifacts and/or recording 654 

failures were treated as missing data. The number missing data for the total 175 participants is 655 

reported in Supplementary Table 2, separately for each electrode. Recordings of the first night 656 

were used for habituation and therefore were not included in further analyses. Sleep data of 657 

the second night in the laboratory were scored for sleep-waking states and stages according to 658 

standard AASM criteria on a 20-sec basis (Iber et al., 2007) by an expert. Furthermore, 659 

artefactual segments were marked on a 4-sec basis and excluded from further analyses. 660 

 661 

Power spectral analysis 662 

Power spectral densities were calculated for the NREM (N2 and N3) sleep, in .25 Hz 663 

bins from 0 Hz to the Nyquist frequency (fNyquist) by relying on 4 s Hanning-tapered, non-664 

artefactual windows. A 50% overlap was used for consecutive windows, whereas mixed-radix 665 

FFT calculating power spectral densities. Power spectral densities from all 4 s windows were 666 

then averaged. As data were recorded with different EEG devices producing different analog 667 

filter characteristics, average power spectral densities were corrected as follows: An analog 668 

waveform generator was connected to the C3 and C4 electrode positions of all EEG devices 669 

and sinusoid signals of various frequencies (0.05 Hz, every 0.1 Hz between 0.1–2 Hz, every 1 670 

Hz between 2–20 Hz, every 10 Hz between 10–100 Hz) were generated with 40 and 355 μV 671 

amplitudes. The amplitude reduction rate of each recording system at each frequency was 672 
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determined by calculating the proportion between digital (measured) and analog (generated) 673 

amplitudes of sinusoid signals at the corresponding frequency. The amplitude reduction rate 674 

was averaged for the 40 and 355 μV at each frequency. The reduction rate at the intermediate 675 

frequencies were interpolated by spline interpolation. The measured power spectral density 676 

values were corrected with the device-specific amplitude reduction rate by dividing the 677 

original value with the squared amplitude reduction rate at the corresponding frequency 678 

according to previous suggestions (Achermann and Borbély, 1997; Vasko et al., 1997). 679 

 680 

Estimation of the spectral intercepts and slopes 681 

The power law function (formula (2)) was transformed to one which fits in the double 682 

logarithmic plots as follows (Fig. 1C): 683 

ln 𝑃 (𝑓) =  ln 𝐶 +  𝛼 ln 𝑓 +  ln 𝑃𝑃𝑒𝑎𝑘(𝑓)        (3) 684 

This means that the natural logarithm of spectral power (P) is expressed as a linear function of 685 

the natural logarithm of frequency (f). In addition, there are two terms in the equation: the 686 

natural logarithm of the constant (C) and the natural logarithm of peak power (PPeak, see Fig 687 

1). If the latter equals 1 (PPeak = 1), that is, there is no peak at a given frequency f, the value is 688 

0 (ln 1 = 0). The logarithmic frequency scale inherently induces increasing data density at 689 

higher frequencies. Thus, a linear fit to this data would induce a strong bias against low 690 

frequency bins, which would contribute less to the determination of slopes compared to the 691 

higher frequency bins. In order to manage this problem and obtain an equal distribution of the 692 

data points, power values were interpolated up to the smallest frequency step (.0052 Hz) by 693 

the piecewise cubic Hermite interpolation method. In the next step a linear was fitted to the 2–694 

48 Hz frequency range of this equidistant log-log plot, excluding the 6.0052–17.9948 Hz 695 

frequency range corresponding to the alpha and spindle bands (in order to avoid those parts of 696 
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the NREM sleep EEG spectra which are characterized by non-random, oscillatory activities as 697 

well). This part of our procedure was inspired by two former studies using a similar approach 698 

for whitening of the sleep spindle spectra (Gottselig et al., 2002; Geiger et al., 2011). The 699 

slope of the linear is α, whereas its intercept is ln C. 700 

 701 

Estimation of the spectral peak frequencies 702 

Spectral peak frequency was determined in the 9–18 Hz range, separately for each 703 

EEG derivation by automatically defining local maxima in mathematical terms. That is, we 704 

used the first derivative test in order to find the critical points, followed by the second 705 

derivative test to differentiate local maxima and minima. A spectral peak was accepted if the 706 

first order derivative was zero and the second order derivative was negative. Calculations 707 

were performed as follows: a second-degree polynomial curve fitting was performed using all 708 

sets of successive bin triplets (.75 Hz), with an overlap of 2 bins (.5 Hz) in the 9–18 Hz range 709 

resulting in equations of the following type:  710 

𝑃(𝑓) =  𝑎𝑓2 + 𝑏𝑓 + 𝑐          (4) 711 

P: power 712 

f: frequency (9–18 Hz) 713 

a, b, and c: fitted parameters. 714 

The first derivative of these functions were calculated for each triplet, resulting in:  715 

𝑃′(𝑓) = 2𝑎𝑓 + 𝑏           (5) 716 

The slope of the function described in formula (5) is 2a, which was considered as the 717 

derivative at the middle of the triplets, resulting in the first derivative function of the spectra. 718 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.09.035113doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.09.035113
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

The procedure was repeated for calculating the second derivatives: in this case the first order 719 

derivative function served as an input for fitting the quadratic polynomials. 720 

Zero-crossings of the first derivatives were determined by spline interpolation 721 

(interpolating the series between the bins of .25 Hz). In addition, the second derivative was 722 

interpolated by the spline method at each detected zero crossing of the first derivatives. The 723 

cases which were characterized by the co-ocurrences of the two criteria below were 724 

considered as spectral peak frequencies: 725 

𝑃′(𝑓) = 0           (6.1) 726 

𝑃′′(𝑓) < 0            (6.2) 727 

 728 

Estimation of the spectral peak amplitudes 729 

Spectral power at peak frequencies were estimated by spline interpolation of the 730 

double logarithmic plots of the power spectra. The spectral peak amplitude was then whitened 731 

by subtracting the estimated power based on the fitted linear function from the coloured peak 732 

power:  733 

ln 𝑃𝑃𝑒𝑎𝑘(𝑓) =  ln 𝑃(𝑓) −  (ln 𝐶 +  𝛼 ln 𝑓)        (7) 734 

In order to avoid negative amplitudes due to the logarithmic scale, the power values were 735 

shifted for being all positive before this subtraction by adding a constant. This latter step was 736 

applied for the calculation of the amplitude measures only. As multiple spectral peaks were 737 

detected for some of the participants/EEG derivations, the one with the largest amplitude was 738 

determined and used in this study. If no spectral peak was found in the spindle frequency 739 

range, peak values were considered as missing data (see Table 5.). Data analysis was 740 

performed by Matlab R2018b (Mathworks Inc.). 741 
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 742 

Statistical analyses 743 

Goodness of fit of the linear to the equidistant log-log spectral data was assessed by 744 

Pearson product moment correlations, which were Fisher Z-transformed, averaged and back-745 

transformed according to Silver and Dunlap (1987). Last, but not least the resulting average 746 

R-value were squared in order to determine the shared variance. Standard deviation (SD) was 747 

assessed from the Fisher-Z-transformed dataset, and the resulting value was back-transformed 748 

as well. 749 

We used parametric tests (Pearson correlation, independent sample t-test) on normally 750 

distributed data and non-parametric tests (Spearman’s rank correlation, Mann-Whitney U test) 751 

when the distribution of the data was not Gaussian. The normality of the distributions was 752 

analysed by Shapiro-Wilk tests. In order to control Type 1 statistical errors due to multiple 753 

electrodes/hypothesis, we used a version of the Descriptive Data Analysis (DDA) protocol 754 

(Abt, 1987) adapted for neurophysiological data (Abt, 1990; Duffy, 1990). This procedure 755 

tests the global null hypothesis (“all individual null hypotheses in the respective region are 756 

true”) at level .05, against the alternative that at least one of the null hypotheses is wrong. 757 

DDA considers the intercorrelations between the different electrodes and is based on defining 758 

Rüger’s areas (Rüger, 1978), which are sets of spatially contingent conventionally 759 

(descriptively) significant (p < .05) results. The global significance of the Rüger area means 760 

that at least 1/3 of the descriptive significances are significant at a p = .05/3 = .017 and/or ½ 761 

of the descriptive significances are significant at p = .05/2 = .025. We used both criteria 762 

simultaneously (the “and” operator) in this study. In order to obtain a better localization of 763 

regions with significant correlations, associations between NREM sleep EEG spindle 764 

frequency whitened spectral peak amplitudes and IQ were represented by significant 765 

probability maps (Hassainia et al., 1994). 766 
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Supporting information 922 

Supplementary table 1. Technical details of the recordings in different subsamples included in 923 

the present investigation  924 

Subsample Recording apparatus Precision 

(bit) 

Hardware 

(firmware) 

filtering 

(Hz) 

Sampling 

frequency 

(Hz/channel) 

N 

Budapest-I Flat Style Lamont Headbox, 

HBX32-SLP preamplifier 

12 0.5–70 249 43 

Budapest-

II 

Brain-Quick BQ132S 

Headbox and EEG 

Amplifier 

12 0.33–1500 

(0.33–450) 

4096 

(decimated to 

1024 Hz after 

filtering by 

firmware) 

19 

Münich Comlab 32 Digital Sleep 

Lab 

8 0.53–70 Hz 250 113 

 925 

Supplementary table 2. The number of missing/artefactual records (EEG) and peak power 926 

values (PPeak), separately for each electrode 927 

 Fp1 Fp2 F3 F4 Fz F7 F8 C3 C4 Cz P3 P4 T3 T4 T5 T6 O1 O2 

E
E

G
 

19 13 10 10 28 31 30 10 9 28 9 9 30 28 30 29 9 10 

P
P

ea
k
 

32 29 18 18 33 45 43 12 12 29 9 10 59 53 32 33 11 12 

 928 
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