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Abstract- Cytosolic functions of Long non-coding RNAs including mRNA translation masking and            
sponging are major regulators of biological pathways. Formation of T cell- bounded hypoxic granuloma              
is a host immune defense for containing infected Mtb-macrophages. Our study exploits the mechanistic              
pathway of Mtb-induced HIF1A silencing by the antisense lncRNA-HIF1A-AS2 in T cells. Computational             
analysis of in-vitro T-cell stimulation assays in progressors(n=119) versus latent(n=221) tuberculosis           
patients revealed the role of lncRNA mediated disruption of hypoxia adaptation pathways in progressors.              
We found 291 upregulated and 227 downregulated lncRNAs that were correlated at mRNA level with               
HIF1A and HILPDA which are major players in hypoxia response. We also report novel              
lncRNA-AC010655 (AC010655.4 and AC010655.2) in cis with HILPDA, both of which contain binding             
sites for the BARX2 transcription factor, thus indicating a mechanistic role. Detailed comparison of              
infection with antigenic stimulation showed a non-random enrichment of lncRNAs in the cytoplasmic             
fraction of the cell in progressors. The lack of this pattern in non-progressors indicates the hijacking of                 
the lncRNA dynamics by Mtb. The in-vitro manifestation of this response in the absence of granuloma                
indicates pre-programmed host-pathogen interaction between T-cells and Mtb regulated through          
lncRNAs, thus tipping this balance towards progression or containment of Mtb. Finally, we trained              
multiple machine learning classifiers for reliable prediction of latent to the active progression of patients,               
yielding a model to guide aggressive treatment. 
  
Keywords- Mycobacterium tuberculosis , Long non-coding RNAs, Hypoxia, Granuloma, Differential         
Expression  
  

 
 
Introduction  

Long non-coding RNAs (lncRNAs) are     
defined as transcripts of lengths exceeding 200       
nucleotides that are not translated into protein and        
form the major part of the non-coding       
transcriptome. Genome-wide association studies    
(GWAS) have evaluated their role in disease       
progression and development. They play a crucial       
role in gene expression by controlling the       
translational freedom of protein-coding genetic     

elements 1. Previous findings have escalated the      
role of Nuclear-enriched abundant transcript 1      
(lncRNA-NEAT1) as an important player in      
immune regulation of Tuberculosis (TB)     

prognosis 2. 2016’s Microarray studies of Mtb      
infected macrophages eluted out MIR3945HG V1      

and MIR3945HG V2, as novel biomarkers for TB        
that play a vital role in Mtb-macrophage       

interaction3. In the successive year lncRNAs role in        
the regulation of alpha-beta T cell activation and        
the T cell receptor signalling pathway have been        
actively studied making them a potent      

early-diagnosable biomarker of TB4. Experimental     
studies of the previous year have also documented        
the effects of lncPCED1B-AS on macrophage      

apoptosis 5. Moreover, lncRNA also controls CD8+      

Immune Responses 6.  
Mycobacterium tuberculosis (Mtb) first    

infects the Macrophages through vesicle trafficking      
events by disrupting the antigen processing and       
presentation pathway which includes    
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phagosome-lysosome fusion7. Once the soluble     
antigens are presented to the CD4+ T cells by the          
un-infected dendritic cells the adaptive-immune     
response is stimulated. As a result of which these         
virgin T cells become polyfunctional through      

antigen-driven differentiation8. Among all the     
antigens, diagnostic antigens ESAT and Ag85 play       
a vital role in disease progression and       

pathogenesis 9,10. ESAT-6 inhibits NF-κB    
activation that restricts myeloid differentiation,     
whereas the Ag85 prevents the formation of       

phagolysosome9,10. Hypoxia-induced dormancy of    
Mtb is one of the primary goals of the granuloma          

formation by T cells and other immune cells 11.        
However, adaptive survival of Mtb in hypoxic       

granulomas has been extensively studied12. CD8+      
T cells are the major killers of dormant Mtb as they           

go deep in the granulomas 13. To withstand the        
hypoxic environment of granulomas T cells induce       
HIF-1A which is one of the pioneer genes involved         

in the hypoxic-homeostasis 14.  
The present study found the mRNA      

silencing potential of lncRNA-HIF1A-AS2 in T      
cells which disrupts the hypoxia adaptation      
pathways in progressors. According to our      
proposed hypotheses, lncRNA-HIF1A-AS2   
silences its anti-sense mRNA-HIF-1A and is      
induced by Mtb during latent to active TB        
progression. The adaptation mechanism is also      
assisted with HILPDA which is responsible for       
lipid accumulation as in low oxygen environments.       
We applied statistical procedures to find out       
differentially expressed genes in Mtb-infected T      
cells samples against Antigen-stimulated T cells      
samples, to decipher the Mtb T-cell interaction       
during active TB progression. Statistical inferences      
from our study show that 291 upregulated lncRNAs        
that were correlated at mRNA level with HIF1A        
and HILPDA which are major players in hypoxia        
response. Computational analysis of in-vitro T-cell      
stimulation assays in progressors versus latent      
tuberculosis patients also shows major differences      
in the chromosomal distribution of genes and       
sub-cellular localization of the DE lncRNAs.      
Additionally, we trained a machine learning      
classifier using Random forest statistics to predict       
the latent samples with potential to become active. 

  
Methods  
2.1 Data Collection and Curation  

The data for analysis was taken from the        
expression profiling study carried on 150      
adolescents (12-18 years), with a gap cycle of 6         

months 15. The reads were recorded using Illumina       
HiSeq 2000 (Homo sapiens) (GPL11154) and are       
available at GEO with Accession ID      

“GSE103147”15,18. 106 blood samples of     
non-progressors (Mtb infected controls) and 44      
blood samples of progressors (developed TB during       
two years of followup) constituted the initially       
reported data set. A total of 1650 raw RNASeq         
reads of all 150 blood samples were systematically        
retrieved from Gene Expression Omnibus through      

GEOquery using Bioconductor (R.3.6)16-18. We     
proceeded with 340 samples which included 119       
progressors and 221 non-progressors under the      
umbrella of “0 Day Collection”, having the four        
distinctive conditional classes as “Mtb Infected”,      
“Ag85 Stimulated”, “ESAT Stimulated” and     
“Unstimulated” as control. We only analyzed the       
RNASeq data from T cells variants as it plays a          
vital role in the adaptive immune response against        
Mtb invasion.  

 
2.2 Construction of alignment maps  

All spliced reads in FASTQ files after       
retrieval were first aligned with the human genome        
to produce the alignment maps. Hierarchical      
Indexing for Spliced Alignment of Transcript      
(HISAT) was used for the alignment of the reads         

with the GRCh37-hg19 database19. All the      
alignment maps (.SAM files) were converted into       
binary aligned maps (.BAM files) using Sam       

tools 20.  
 

2.3 Extraction of  lncRNAs and mRNAs  
Ultrafast Comprehensive Long   

Non-Coding RNA (UClncR) pipeline was     
implemented on the binary aligned maps files that        

use GENCODE to detect the lncRNA 21,22. Since       
the expression values of lncRNAs are very low,        
therefore, Reads per Kilobase per Million Mapped       
Reads (RPKM) normalized expression matrix was      

taken for further analysis after UClncR21. 68,000  
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Figure 1 (a). Clustering of the expression data classes of the lncRNAs derived through the UClncR pipeline, classes include Stimulated by                     
Ag85 in red, Stimulated by ESAT in green, Infected by Mtb in violet, Unstimulated in blue, clusters of Mtb are isolated against Stimulated                       
sets of ESAT and Ag85; (b) Clustering of the expression data classes of the mRNA derived through the Ht-Seq count pipeline, classes                      
include Stimulated by Ag85 in red, Stimulated by ESAT in green, Infected by Mtb in violet, Unstimulated in blue, clusters of Mtb are                       
isolated against Stimulated sets of ESAT and Ag85  

 
 
lncRNAs were generated by the UClncR. The       
54,837 un-annotated Ensemble Ids of 68,000      
lncRNAs were computationally removed and     
13,870 were taken for further processing. Out of        
13,870 Ensemble Ids the low expression (0       
expression count) i.e. 2,382 were systematically      
removed. Similarly, 55,190 mRNAs were     

generated using the HtSeq-count23. After mapping      
with RefSeq db through Biomart, only 17,469       

protein-coding mRNAs were obtained24,25.    
Eventually, 16,969 mRNAs were taken for      
differential gene expression studies after removal      
of 0 expression counts. 

 
2.4 Differential Expression Analysis  

DE lncRNAs were statistically filtered out      

by applying analysis of variance (ANOVA)26.      
ANOVA was applied on three classes (“Mtb       
Infected”, “Ag85 Stimulated”, and “ESAT     
Stimulated”), with all the 340 samples with the        

false discovery rate (FDR) of <0.0126. Differential       
expression analysis for lncRNA is done using       
lncDIFF, as the lncRNAs show very low       

expression as compared to mRNA 27. Similarly,      
ANOVA was applied on all the 340 samples of         
mRNA with three classes with the FDR cut-off of         

<0.0.126. Differentially expressed genes were     

calculated using EdgeR28. And similarly,     
differentially expressed mRNAs were further     
reduced on the basis of the FDR cut-off of <0.01.  

 

2.5 Gene ontology and pathway enrichment      
analysis  

ShinyGO was used for gene ontology      

enrichment and pathway enrichment analysis 29. In       
the case of differential mRNAs, we selected the        
Gene Ontology database (GO) and pathway      
enrichment analysis was done vis Kyoto      

Encyclopedia of Gene and Genome (KEGG)30,31.      
The most significant GO terms and pathways were        
filtered using the p-value cut-off of <0.05. Since        
lncRNAs have low enrichment for GO and KEGG        
pathways, therefore, Pearson-correlation test    
among differentially expressed mRNAs (DE     
mRNAs) and differentially expressed lncRNAs     
(DE lncRNAs) was performed with the filter of        
-0.5 to +0.5. The correlated mRNAs were then        
enriched using the ShinyGO with the p-value       

cut-off of <0.05 with GO and KEGG 29-31.  
 
2.6 Chromosomal Mapping and Subcellular     
localization  

Biomart service was used to map the       
chromosomal location of the differentially     
expressed lncRNAs and mRNA that were having       

correlation25. The correlated pairs with the      

heterogeneous chromosomal numbers were    
systematically dropped. Filter criteria (>1000 bp)      
was applied to lncRNA-mRNA pairs on the same        
chromosome to study co-expression relationships.     
JASPER database was used to retrieve the profiles        
of the transcription factor binding sites in the  
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Figure 2. Venn diagram for comparative analysis of the differential expression the lncRNAs in the progressive and non-progressive samples 
of tuberculosis.  

 

 
transcripts of Homo sapiens32. To map each       
transcription site to their respective chromosome      
location we used Ciiider with GRCh38.p12      
assembly33,34. For subcellular localization analysis,     
we specifically used the raw data of B-cells from         
LncATLAS database and programmatically    
mapped them to the respective DE lncRNAs 35. For        
deriving the coding potential of nuclear elements       
we used Coding Potential Calculator36. 
 
2.7 Progression Classifier Construction 

We estimated the differentially expressed     
mRNA between the latent and progressor samples       
of TB using the EdgeR28. Since the lncRNA        
profiles showed exclusive enrichment in the      
cytosol, we leveraged the signal by combining the        
DE lncRNA enriched in the cytoplasm with DE m         
RNAs. The dataset was divided into training and        
testing sets with 80:20 ratio. We implemented the        
least absolute shrinkage and selection operator      
(LASSO), K-Nearest Neighbor, Random Forest     
(RF) and Decision Tree classifiers to check the        
accuracy, sensitivity and specificity of the model.       
Hyperparameters of these models such as lambda       
(0.017, lasso) and number of trees (10000, RF        
classifier) were optimized for model selection. 
 
 

Results  
3.1 Expression Data  

Visualization of 4 classes (“Mtb Infected”,      
“Ag85 Stimulated”, “ESAT Stimulated” and     
“Unstimulated”), showed the isolated clusters of      
“Mtb infected” against the other 3 classes, in case         
of both mRNAs and lncRNAs (Figure 1).       
Unstimulated sets acted as the control for the other         
three classes. To generate insights on the       
underlying mechanisms of the key lncRNAs we       
dropped the set of “Unstimulated T cells” and        
proceeded with the “Infection Set” vs “Stimulated       
Set” for different gene analysis in both the        
progressors and non-progressor samples.  

 
3.2 Differential Expression analysis  

For lncRNA, after lncDIFF, a total of       
11,488 differentially expressed lncRNAs were     
isolated in the stimulus set of progressors. 10,964        
lncRNAs were dropped from a total of 1,148 based         
on the FDR cut-off of <0.01. Similarly, for        
mRNAs, a total of 1,148 based on the FDR cut-off          
of <0.01 were taken for further analysis. In the case          
of non-progressors, 1595 lncRNAs and 5859      
mRNAs were eluted out (Fig. 2). 
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Figure 3 ((a) lncRNA distribution across the human genome; Chromosome 19 being the smaller chromosome holds a higher number of                    
lncRNA as compared to the chromosome 1,2 and 3; (b) Transcription factor binding site of lncRNA AC010655.4 and lncRNA AC010655.2                    
in close proximity of mRNA HILPDA on the same chromosome location. Designed using Ciiider and JASPER profiles) 

 
 

3.3 GO and pathway enrichment analysis  
KEGG pathway analysis of the DE      

mRNA-DE lncRNAs correlation pairs were     
enriched with Thermogenesis (20 gene hits),      
Parkinson’s Disease (14 gene hits) and Systemic       
lupus erythematosus (13 gene hits) (Supp. Table 1,        
Appendix II). However, for DE mRNA, only       
Parkinson’s Disease pathway with 34 gene hits and        
Thermogenesis with 46 gene hits were enriched       
(Supp. Table 1, Appendix II). GO term enrichment        
analysis upvoted 190 for molecular functions as       
Nucleic-acid binding, 184 for cellular     
compartments as Nucleosome and 116 for      
Phosphorylation as biological processes in case of       
DE mRNA-DE lncRNAs correlation pairs (Supp.      
Table 1, Appendix II). In the case of DE mRNAs,          
27 for cellular compartment “Nucleosome” and 340       
for biological processes as “Phosphorylation” were      
enriched using GO (Supp. Table 1, Appendix II).        
Surprisingly, the gene set enrichment analysis of       
the non-progressive DE mRNA-DE lncRNAs     
correlation pairs yielded only basic cellular      
pathways like “RNA transport” (155 hits) and       
“Metabolic pathways” (298 hits), that clearly      
shows the cell is trying to maintain its natural         
metabolism. 

3.4 Chromosomal Mapping  
Upon chromosomal mapping of all the      

progressive DE mRNA-DE lncRNAs correlation     
pairs, we found out the pairs that were located in          
the close proximity of 1000 base pairs.       
Interestingly the mRNA-PBX2 and    
lncRNA-AL662884.1 reside on the same location      
on chromosome 6. Hypoxia-Inducible Lipid     
Droplet Associated (HILPDA) was mapped in      
close proximity to AC010655.4 and AC010655.2      
on chromosome 5 (Supp. Table 2). It is also         
interesting to see that chromosome 19, being the        
smaller in size, holds more lncRNA than larger        
chromosomes like 1, 2, and 3 [Figure 3(a)]. After         
the transcription factor binding site prediction on       
the HILPDA- AC010655.4 and AC010655.2 trio      
we found 10 (ATOH7, BARX2, GSC2, NFIC,       
NFKB2, NFYA, NHLHI, SOX10, VAX1) common      
transcription factors among them [Figure 3(b)].      
Comparatively, the chromosomal mapping of all      
the non-progressive DE mRNA-DE lncRNAs     
correlation pairs found no pairs that were located in         
the close proximity of 1000 base pairs. Moreover,        
the chromosomal distribution of the     
non-progressive DE lncRNA was significantly     
different in comparison to the progressive DE       
lncRNA’s [Suppp. Figure 3]. Chromosome 1 is the        
largest chromosome that holds a higher number of        
lncRNA as expected.  

 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 13, 2020. ; https://doi.org/10.1101/2020.04.11.037176doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.11.037176
http://creativecommons.org/licenses/by-nc/4.0/


Table 1. Model Performance Indicators for Prediction of Progression 

 LASSO Classifier KNN Classifier Random Forest Decision Tree 

Accuracy 72.46% 63.76% 69.56% 60.86% 

Sensitivity 45.45% 38.46% 57.14% 36.84% 

Specificity 85.11% 69.64% 70.96% 70.0% 

F 1 Score 0.50 0.61 0.64 0.60 

 
 
 
3.5 Subcellular localization  

Localization signal analysis revealed the     
location of 175 lncRNAs from our set of        
upregulated lncRNAs in the Mtb-infected set. Out       
of 175 lncRNA, 125 lncRNA were enriched in the         
nucleus with random expression value distribution      
i.e. 63 upregulated and 62 downregulated      
(Appendix III). However, in the case of cytosol 40         
lncRNAs were upregulated in the cytosol in       
comparison to only 11 being downregulated      
(Appendix III). This major upregulation of      
lncRNAs clearly shows the evidence for cytosolic       
activity. Interestingly our finding enriched     
lncRNA-HIF1A-AS2 in the cytosol which is an       
anti-sense to HIF1A. The subcellular localization      
of the DE lncRNAs from non-progressive samples       
showed random distribution both in nucleus and       
cytosol. We also compared the DE genes (both of         
progressors and non-progressors) with the human      
housekeeping gene data set and found that the        
number of housekeeping genes in non-progressor      
DE (4 genes) expression set was more in        
comparison to progressor DE expression set (1       
gene). This shows that in case of progression        
normal functions of T cells are downgraded as they         
move towards hypoxic stress. 
 
3.6 Classifier Predictions  

Random forest and lasso classifiers were      
found to be independently useful on the basis of         
model performance indicators (Table 1), While RF       
had a highest F1 score(64%) and      
sensitivity(57.14%) for predicting progressors,    
lasso had the best specificity(85.11%) and overall       
accuracy(72.46%). Therefore, the lasso model can      
be used for decisions to aggressively treat with a         
low false positive rate whereas Random Forest can        
be used to triage for treatment escalation. 
 

Discussion  
Our study shows that 291 upregulated and       

227 downregulated lncRNAs in Mtb infected T       
cells progressive samples are the major key players.        
Upon validating with KEGG pathway enrichment      
analysis, 34 of the DE lncRNA were enriched with         
Parkinson’s Disease pathway and Thermosgeneis     
pathway combined. What is more interesting to see        
is that both pathways have DE lncRNA sets        
enriched within the lumen of Mitochondria whereas       
non-progressive showed no such shreds of evidence       
of mitochondria. Concrete evidence for many      
mitochondria-associated lncRNAs in the regulation     
of mitochondrial bioenergetics and cross-talk with      

nuclei has already existed in literature37. Our       
experimental design also enriched NEAT1 as an       
upregulated gene in the antigen-stimulated set of       
progressive samples. Role of NEAT1 is widely       
studied for its paraspeckle formation and      

paraspeckle dependent cell differentiation38.    
Upregulated levels of NEAT1 could manipulate the       
cytokine expression through the JNK/ERK MAPK      

signalling pathway in Macrophages 39. It has also       
been reported as a potential biomarker in the        

previous studies 40. Our study proposes 118      
downregulated DE mRNAs which are highly      
correlated with the low expressions of NEAT1 in        
the Mtb-infection set. Since NEAT1 is involved in        
nuclear retention of A-I mRNAs, therefore, it might        
be responsible architecturally blocking the     
expression of 118 DE mRNAs in the nucleus.  
 

After the formation of hypoxic granuloma      
by the host immune system, T cells surround the         
infected macrophages to contain the infection.      
CD8+ cells being cytotoxic digs deep inside the        

granuloma to kill the infected macrophages 13. For       
effective cytotoxic functions, T cells undergo      
hypoxic reprogramming which results in the      
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secretion of hypoxic genes such as HILPDA and        
HI1FA. Our study on non-progressors samples      
shows the overexpression of lncRNA-HIF1A-AS2     
in the cytosol as well, which is antisense to HIF1A.          
This clearly shows that T cells undergo hypoxic        
stress even during non-progression. Interestingly     
there was no expression of HILPDA which is        
mainly responsible for lipid accumulation during      
the hypoxic condition. To withstand the hypoxic       
environment HIF1A is induced by the T cells. Our         
finding enriched lncRNA-HIF1A-AS2 in the     
cytosol which is an anti-sense to HIF1A. Coding        
potential of lncRNA-HIF1A-AS2 was very low,      
which clearly indicated it’s non-protein coding      
nature. Thus, expression and localization of      
lncRNA-HIF1A-AS2 in the cytosol are clearly due       
to the regulation of cytosolic functions of lncRNAs        
such as RNAi. In our expression set, the levels of          
HIF1A fail to pass the cut-off criteria of P-value         
but were majorly upregulated across the samples.       
Therefore, it is very much evident from our data         
that lncRNA-HIF1A-AS2 could mask the     
translation of HIF1A in the cytosol through RNAi.  

 
We also report novel lncRNA-AC010655     

(AC010655.2 and AC010655.4) for their consensus      
binding to HILPDA linked transcription factors in       
the nucleus. This competitive binding to      
transcription factors of HILPDA such as BARX2 to        
lncRNA-AC010655. HILPDA is responsible for     
lipid accumulation as the cell slowly changes its        
metabolism towards low oxygen environments.     
This change in metabolism is reflected in       
mitochondrial pathways, which are actively     
enriched in our data set of differentially expressed        
lncRNAs. It is clear that non-progressors of TB        
also show the formation of granuloma as well,        
which contain infection inside the macrophage.      
Therefore, we report HILPDA as one of the major         
biomarkers of progressive TB.  

 
In order to exploit these mechanistic      

insights, we chose to construct machine learning       
models that leverage the exclusive presence of a        
cytosolic signal in lncRNAs in combination with       
the differentially expressed mRNAs.    
Mechanistically enhanced machine learning models     
have not been applied to predict tuberculosis       
progression to the best of our knowledge and may         
avoid the pitfalls of black-box predictions which       
may not be actionable in the real world settings.         

Our models also revealed an interesting conflict       
between the decision to choose between the overall        
best model and the potential to pivot clinical        
decision making and therapeutic implications. RF,      
though the best performing model based upon F1        
score was more sensitive, but not high enough to         
change decisions. On the other hand, LASSO       
classifier had a high sensitivity (85%) but a        
marginally lower F1 score. We propose the use of         
LASSO classifier, which has low false positive rate        
for informing decisions to escalate treatment in       
predicted progressors. On the other hand, RF may        
be useful for triaging predicted progressors for       
treatment escalation as it has higher sensitivity.       
This study has several limitations. The mechanistic       
insights are derived from the correlation between       
lncRNA and mRNAs and using mRNA enrichment       
in pathways as a surrogate for lncRNA function.        
We have attempted to mitigate some of the false         
associations by restricting ourselves to the      
lncRNAs that are present in cis with the correlated         
mRNA. However this may have led to missing out         
on the trans acting lncRNAs. We also enriched for         
this effect by investigating the transcription factor       
binding sites that are common to the       
lncRNA-mRNA pairs thus increasing the     
probability of a functional interaction, which can be        
confirmed only through wet-lab experiments.     
Nonetheless, our study revealed a strong signal for        
the modulation of the hypoxic response pathway       
which is evident in Mtb infection but not in         
antigenic stimulation, thus indicating the hijacking      
of this machinery by Mtb specifically through       
cytoplasmically enriched lncRNAs. Finally, our     
prediction models are highly specific, but these can        
guide decisions in persons who may already be        
suspect for progression (confirmation) as opposed      
to a sensitive screen. 

 
Conclusion  

Our study concludes that a non-random      
enrichment of lncRNAs in the cytoplasm,      
specifically those associated with the hypoxic      
response pathways dictates the progression of Mtb       
from latent to active state. Our analyses indicate the         
mechanisms of such regulation and its potential to        
predict progression using machine learning models. 
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Figure 1 Volcano plot of expression type i.e. overexpressed/ underexpressed in progressor samples. Over-expressed genes are depicted in                  
green (log2 (Fold Change)>1), Under-expressed genes are depicted in red(log2( Fold Change)<-1); (a) Volcano plot for differentially                 
expressed lncRNAs; (b) Volcano Plot for differentially expressed mRNAs.  
 

  
Figure 2 Volcano plot of expression type i.e. overexpressed/ underexpressed in non-progressor samples. Over-expressed genes are depicted                 
in green (log2 (Fold Change)>1), Under-expressed genes are depicted in red(log2( Fold Change)<-1); (a) Volcano plot for differentially                  
expressed lncRNAs; (b) Volcano Plot for differentially expressed mRNAs.  
 

  
Figure 3 lncRNA distribution across the human genome for non-progressors; Chromosome 1 is the largest chromosome holds a higher                   
number of lncRNA as expected  
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Figure 4 Comparative analysis of sub-cellular localization of the DE lncRNAs in progressor and non-progressor samples. The comparison 
shows the randomized expression of the DE lncRNAs in non-progressors (in cytosol and nucleus). The DE lncRNAs in progressive samples 
show more expression in the cytosol than the nucleus.  
 

Supp. Table 1 (Gene Set Enrichment Analysis ) 
FDR Enrichment Type Enrichment Term Count 

0.006757268 KEGG  Thermogenesis 20 

0.013159226 KEGG  Parkinson’s Disease 14 

0.015379000 KEGG  Systemic Lupus Erythematosus 13 

0.000358735 GO: Molecular Function Nucleic Acid Binding 190 

0.000358735 GO: Molecular Function Enzyme Binding 112 

0.000840228 GO: Molecular Function DNA Binding 123 

0.000000001 GO: Biological Process Organelle Organization 201 

0.005500517 GO: Biological Process Regulation of Gene Expression 198 

0.005500517 GO: Biological Process Phosphorylation 116 

0.000000006 GO: Cellular Compartment Nuclear Lumen 211 

0.000000006 GO: Cellular Compartment Nuclear Part 227 

0.000000017 GO: Cellular Compartment Nucleoplasm 184 
 

 
Supp. Table 2 (Chromosomal Locations of the closely related lncRNA and mRNA ) 

mRNA Symbol lncRNA Symbol Chromosome Distance 

PNN AL132639.3 14 298 

HILPDA AC010655.4 7 9 

PBX2 AL662884.1 6 0 

HILPDA AC010655.2 7 -88 

MNT AC006435.1 17 -774 
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