
Modern Hopfield Networks and Attention for
Immune Repertoire Classification

Michael Widrich∗ Bernhard Schäfl∗ Milena Pavlović‡ ,§ Hubert Ramsauer∗

Lukas Gruber∗ Markus Holzleitner∗ Johannes Brandstetter∗ Geir Kjetil Sandve§

Victor Greiff‡ Sepp Hochreiter∗ ,†

Günter Klambauer∗
∗ELLIS Unit Linz and LIT AI Lab,

Institute for Machine Learning,
Johannes Kepler University Linz, Austria

† Institute of Advanced Research in Artificial Intelligence (IARAI)
‡Department of Immunology, University of Oslo, Norway
§Department of Informatics, University of Oslo, Norway

Abstract
A central mechanism in machine learning is to identify, store, and recognize
patterns. How to learn, access, and retrieve such patterns is crucial in Hopfield
networks and the more recent transformer architectures. We show that the attention
mechanism of transformer architectures is actually the update rule of modern Hop-
field networks that can store exponentially many patterns. We exploit this high stor-
age capacity of modern Hopfield networks to solve a challenging multiple instance
learning (MIL) problem in computational biology: immune repertoire classification.
Accurate and interpretable machine learning methods solving this problem could
pave the way towards new vaccines and therapies, which is currently a very relevant
research topic intensified by the COVID-19 crisis. Immune repertoire classification
based on the vast number of immunosequences of an individual is a MIL problem
with an unprecedentedly massive number of instances, two orders of magnitude
larger than currently considered problems, and with an extremely low witness rate.
In this work, we present our novel method DeepRC that integrates transformer-like
attention, or equivalently modern Hopfield networks, into deep learning architec-
tures for massive MIL such as immune repertoire classification. We demonstrate
that DeepRC outperforms all other methods with respect to predictive performance
on large-scale experiments, including simulated and real-world virus infection data,
and enables the extraction of sequence motifs that are connected to a given disease
class. Source code and datasets: https://github.com/ml-jku/DeepRC

Introduction

Transformer architectures (Vaswani et al., 2017) and their attention mechanisms are currently used in
many applications, such as natural language processing (NLP), imaging, and also in multiple instance
learning (MIL) problems (Lee et al., 2019). In MIL, a set or bag of objects is labelled rather than
objects themselves as in standard supervised learning tasks (Dietterich et al., 1997). Examples for MIL
problems are medical images, in which each sub-region of the image represents an instance, video

Preprint. Under review.

ar
X

iv
:2

00
7.

13
50

5v
1

 [
cs

.L
G

]
 1

6
Ju

l 2
02

0
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

at
te

nt
io

n
po

ol
in

g

m
ot

if
re

co
gn

iti
on

CASSGNQQETAF
CASTCLAMPETAF
CASSTNKENER
CATSPVADVQETAF
CASSIEGNQPQHF
CASSLVADGEQF
...
CATSDGDEQFF

motif
recognition

attention
pooling

output

attention

CASTSVALAETAF

1D Conv

max
pooling

1D Conv

LSTM

a)

c)b)

Figure 1: Schematic representation of the DeepRC approach. a) An immune repertoire X is
represented by large bags of immune receptor sequences (colored). A neural network (NN) h serves
to recognize patterns in each of the sequences si and maps them to sequence-representations zi.
A pooling function f is used to obtain a repertoire-representation z for the input object. Finally,
an output network o predicts the class label ŷ. b) DeepRC uses stacked 1D convolutions for a
parameterized function h due to their computational efficiency. Potentially, millions of sequences
have to be processed for each input object. In principle, also recurrent neural networks (RNNs), such
as LSTMs (Hochreiter et al., 2007), or transformer networks (Vaswani et al., 2017) may be used but are
currently computationally too costly. c) Attention-pooling is used to obtain a repertoire-representation
z for each input object, where DeepRC uses weighted averages of sequence-representations. The
weights are determined by an update rule of modern Hopfield networks that allows to retrieve
exponentially many patterns.

classification, in which each frame is an instance, text classification, where words or sentences are
instances of a text, point sets, where each point is an instance of a 3D object, and remote sensing data,
where each sensor is an instance (Carbonneau et al., 2018; Uriot, 2019). Attention-based MIL has
been successfully used for image data, for example to identify tiny objects in large images (Ilse et al.,
2018; Pawlowski et al., 2019; Tomita et al., 2019; Kimeswenger et al., 2019) and transformer-like
attention mechanisms for sets of points and images (Lee et al., 2019).

However, in MIL problems considered by machine learning methods up to now, the number of
instances per bag is in the range of hundreds or few thousands (Carbonneau et al., 2018; Lee et al.,
2019) (see also Tab. A2). At the same time the witness rate (WR), the rate of discriminating instances
per bag, is already considered low at 1%− 5%. We will tackle the problem of immune repertoire
classification with hundreds of thousands of instances per bag without instance-level labels and with
extremely low witness rates down to 0.01% using an attention mechanism. We show that the attention
mechanism of transformers is the update rule of modern Hopfield networks (Krotov & Hopfield,
2016, 2018; Demircigil et al., 2017) that are generalized to continuous states in contrast to classical
Hopfield networks (Hopfield, 1982). A detailed derivation and analysis of modern Hopfield networks
is given in our companion paper (Ramsauer et al., 2020). These novel continuous state Hopfield
networks allow to store and retrieve exponentially (in the dimension of the space) many patterns (see
next Section). Thus, modern Hopfield networks with their update rule, which are used as an attention
mechanism in the transformer, enable immune repertoire classification in computational biology.

Immune repertoire classification, i.e. classifying the immune status based on the immune repertoire
sequences, is essentially a text-book example for a multiple instance learning problem (Dietterich
et al., 1997; Maron & Lozano-Pérez, 1998; Wang et al., 2018). Briefly, the immune repertoire
of an individual consists of an immensely large bag of immune receptors, represented as amino
acid sequences. Usually, the presence of only a small fraction of particular receptors determines
the immune status with respect to a particular disease (Christophersen et al., 2014; Emerson et al.,
2017). This is because the immune system has already acquired a resistance if one or few particular
immune receptors that can bind to the disease agent are present. Therefore, classification of immune
repertoires bears a high difficulty since each immune repertoire can contain millions of sequences
as instances with only a few indicating the class. Further properties of the data that complicate

2

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

the problem are: (a) The overlap of immune repertoires of different individuals is low (in most
cases, maximally low single-digit percentage values) (Greiff et al., 2017; Elhanati et al., 2018), (b)
multiple different sequences can bind to the same pathogen (Wucherpfennig et al., 2007), and (c)
only subsequences within the sequences determine whether binding to a pathogen is possible (Dash
et al., 2017; Glanville et al., 2017; Akbar et al., 2019; Springer et al., 2020; Fischer et al., 2019). In
summary, immune repertoire classification can be formulated as multiple instance learning with an
extremely low witness rate and large numbers of instances, which represents a challenge for currently
available machine learning methods. Furthermore, the methods should ideally be interpretable, since
the extraction of class-associated sequence motifs is desired to gain crucial biological insights.

The acquisition of human immune repertoires has been enabled by immunosequencing technology
(Georgiou et al., 2014; Brown et al., 2019) which allows to obtain the immune receptor sequences
and immune repertoires of individuals. Each individual is uniquely characterized by their immune
repertoire, which is acquired and changed during life. This repertoire may be influenced by all diseases
that an individual is exposed to during their lives and hence contains highly valuable information
about those diseases and the individual’s immune status. Immune receptors enable the immune
system to specifically recognize disease agents or pathogens. Each immune encounter is recorded
as an immune event into immune memory by preserving and amplifying immune receptors in the
repertoire used to fight a given disease. This is, for example, the working principle of vaccination.
Each human has about 107–108 unique immune receptors with low overlap across individuals and
sampled from a potential diversity of > 1014 receptors (Mora & Walczak, 2019). The ability to
sequence and analyze human immune receptors at large scale has led to fundamental and mechanistic
insights into the adaptive immune system and has also opened the opportunity for the development of
novel diagnostics and therapy approaches (Georgiou et al., 2014; Brown et al., 2019).

Immunosequencing data have been analyzed with computational methods for a variety of different
tasks (Greiff et al., 2015; Shugay et al., 2015; Miho et al., 2018; Yaari & Kleinstein, 2015; Wardemann
& Busse, 2017). A large part of the available machine learning methods for immune receptor data
has been focusing on the individual immune receptors in a repertoire, with the aim to, for example,
predict the antigen or antigen portion (epitope) to which these sequences bind or to predict sharing of
receptors across individuals (Gielis et al., 2019; Springer et al., 2020; Jurtz et al., 2018; Moris et al.,
2019; Fischer et al., 2019; Greiff et al., 2017; Sidhom et al., 2019; Elhanati et al., 2018). Recently,
Jurtz et al. (2018) used 1D convolutional neural networks (CNNs) to predict antigen binding of T-cell
receptor (TCR) sequences (specifically, binding of TCR sequences to peptide-MHC complexes) and
demonstrated that motifs can be extracted from these models. Similarly, Konishi et al. (2019) use
CNNs, gradient boosting, and other machine learning techniques on B-cell receptor (BCR) sequences
to distinguish tumor tissue from normal tissue. However, the methods presented so far predict a
particular class, the epitope, based on a single input sequence.

Immune repertoire classification has been considered as a MIL problem in the following publications.
A Deep Learning framework called DeepTCR (Sidhom et al., 2019) implements several Deep
Learning approaches for immunosequencing data. The computational framework, inter alia, allows for
attention-based MIL repertoire classifiers and implements a basic form of attention-based averaging.
Ostmeyer et al. (2019) already suggested a MIL method for immune repertoire classification. This
method considers 4-mers, fixed sub-sequences of length 4, as instances of an input object and trained
a logistic regression model with these 4-mers as input. The predictions of the logistic regression
model for each 4-mer were max-pooled to obtain one prediction per input object. This approach is
characterized by (a) the rigidity of the k-mer features as compared to convolutional kernels (Alipanahi
et al., 2015; Zhou & Troyanskaya, 2015; Zeng et al., 2016), (b) the max-pooling operation, which
constrains the network to learn from a single, top-ranked k-mer for each iteration over the input
object, and (c) the pooling of prediction scores rather than representations (Wang et al., 2018). Our
experiments also support that these choices in the design of the method can lead to constraints on the
predictive performance (see Table 1).

Our proposed method, DeepRC, also uses a MIL approach but considers sequences rather than
k-mers as instances within an input object and a transformer-like attention mechanism. DeepRC sets
out to avoid the above-mentioned constraints of current methods by (a) applying transformer-like
attention-pooling instead of max-pooling and learning a classifier on the repertoire rather than on the
sequence-representation, (b) pooling learned representations rather than predictions, and (c) using less
rigid feature extractors, such as 1D convolutions or LSTMs. In this work, we contribute the following:
We demonstrate that continuous generalizations of binary modern Hopfield-networks (Krotov &

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

Hopfield, 2016, 2018; Demircigil et al., 2017) have an update rule that is known as the attention
mechanisms in the transformer. We show that these modern Hopfield networks have exponential
storage capacity, which allows them to extract patterns among a large set of instances (next Section).
Based on this result, we propose DeepRC, a novel deep MIL method based on modern Hopfield
networks for large bags of complex sequences, as they occur in immune repertoire classification
(Section "Deep Repertoire Classification). We evaluate the predictive performance of DeepRC and
other machine learning approaches for the classification of immune repertoires in a large comparative
study (Section "Experimental Results")

Exponential storage capacity of continuous state modern Hopfield networks
with transformer attention as update rule

In this section, we show that modern Hopfield networks have exponential storage capacity, which will
later allow us to approach massive multiple-instance learning problems, such as immune repertoire
classification. See our companion paper (Ramsauer et al., 2020) for a detailed derivation and analysis
of modern Hopfield networks.

We assume patterns x1, . . . ,xN ∈ Rd that are stacked as columns to the matrixX = (x1, . . . ,xN)
and a query pattern ξ that also represents the current state. The largest norm of a pattern is M =
maxi ‖xi‖. The separation ∆i of a pattern xi is defined as its minimal dot product difference to any
of the other patterns: ∆i = minj,j 6=i

(
xTi xi − xTi xj

)
. A pattern is well-separated from the data if

∆i ≥ 2
βN + 1

β log
(
2(N − 1)NβM2

)
. We consider a modern Hopfield network with current state

ξ and the energy function E = −β−1 log
(∑N

i=1 exp(βxTi ξ)
)

+ β−1 logN + 1
2ξ
T ξ + 1

2M
2. For

energy E and state ξ, the update rule

ξnew = f(ξ;X, β) = X p = X softmax(βXT ξ) (1)

is proven to converge globally to stationary points of the energy E, which are local minima or saddle
points (see (Ramsauer et al., 2020), appendix, Theorem A2). Surprisingly, the update rule Eq. (1) is
also the formula of the well-known transformer attention mechanism.

To see this more clearly, we simultaneously update several queries ξi. Furthermore the queries ξi and
the patterns xi are linear mappings of vectors yi into the space Rd. For matrix notation, we set xi =
W T

Kyi, ξi = W T
Qyi and multiply the result of our update rule withWV . Using Y = (y1, . . . ,yN)T ,

we define the matricesXT = K = YWK ,Q = YWQ, and V = YWKWV = XTWV , where
WK ∈ Rdy×dk ,WQ ∈ Rdy×dk ,WV ∈ Rdk×dv , K ∈ RN×dk , Q ∈ RN×dk , V ∈ RN×dv , and the
patterns are now mapped to the Hopfield space with dimension d = dk. We set β = 1/

√
dk and

change softmax to a row vector. The update rule Eq. (1) multiplied byWV performed for all queries
simultaneously becomes in row vector notation:

att(Q,K,V ;β) = softmax
(
β QKT

)
V = softmax

((
1/
√
dk

)
QKT

)
V . (2)

This formula is the transformer attention.

If the patterns xi are well separated, the iterate Eq. (1) converges to a fixed point close to a pattern to
which the initial ξ is similar. If the patterns are not well separated the iterate Eq.(1) converges to a
fixed point close to the arithmetic mean of the patterns. If some patterns are similar to each other
but well separated from all other vectors, then a metastable state between the similar patterns exists.
Iterates that start near a metastable state converge to this metastable state. For details see Ramsauer
et al. (2020), appendix, Sect. A2. Typically, the update converges after one update step (see Ramsauer
et al. (2020), appendix, Theorem A8) and has an exponentially small retrieval error (see Ramsauer
et al. (2020), appendix, Theorem A9).

Our main concern for application to immune repertoire classification is the number of patterns that
can be stored and retrieved by the modern Hopfield network, equivalently to the transformer attention
head. The storage capacity of an attention mechanism is critical for massive MIL problems. We first
define what we mean by storing and retrieving patterns from the modern Hopfield network.
Definition 1 (Pattern Stored and Retrieved). We assume that around every pattern xi a sphere Si is
given. We say xi is stored if there is a single fixed point x∗i ∈ Si to which all points ξ ∈ Si converge,

4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

and Si ∩ Sj = ∅ for i 6= j. We say xi is retrieved if the iteration Eq. (1) converged to the single fixed
point x∗i ∈ Si.

For randomly chosen patterns, the number of patterns that can be stored is exponential in the
dimension d of the space of the patterns (xi ∈ Rd).

Theorem 1. We assume a failure probability 0 < p 6 1 and randomly chosen patterns on the sphere
with radius M = K

√
d− 1. We define a := 2

d−1 (1 + ln(2 β K2 p (d − 1))), b := 2 K2 β
5 ,

and c = b
W0(exp(a + ln(b)) , where W0 is the upper branch of the Lambert W function and ensure

c ≥
(

2√
p

) 4
d−1

. Then with probability 1− p, the number of random patterns that can be stored is

N ≥ √p c
d−1
4 . (3)

Examples are c ≥ 3.1546 for β = 1, K = 3, d = 20 and p = 0.001 (a + ln(b) > 1.27) and
c ≥ 1.3718 for β = 1 K = 1, d = 75, and p = 0.001 (a+ ln(b) < −0.94).

See Ramsauer et al. (2020), appendix, Theorem A5 for a proof. We have established that a modern
Hopfield network or a transformer attention mechanism can store and retrieve exponentially many
patterns. This allows us to approach MIL with massive numbers of instances from which we have to
retrieve a few with an attention mechanism.

Deep Repertoire Classification

Problem setting and notation. We consider a MIL problem, in which an input object X is a bag of
N instancesX = {s1, . . . , sN}. The instances do not have dependencies nor orderings between them
and N can be different for every object. We assume that each instance si is associated with a label
yi ∈ {0, 1}, assuming a binary classification task, to which we do not have access. We only have
access to a label Y = maxi yi for an input object or bag. Note that this poses a credit assignment
problem, since the sequences that are responsible for the label Y have to be identified and that the
relation between instance-label and bag-label can be more complex (Foulds & Frank, 2010).

A model ŷ = g(X) should be (a) invariant to permutations of the instances and (b) able to cope
with the fact that N varies across input objects (Ilse et al., 2018), which is a problem also posed
by point sets (Qi et al., 2017). Two principled approaches exist. The first approach is to learn an
instance-level scoring function h : S 7→ [0, 1], which is then pooled across instances with a pooling
function f , for example by average-pooling or max-pooling (see below). The second approach is to
construct an instance representation zi of each instance by h : S 7→ Rdv and then encode the bag, or
the input object, by pooling these instance representations (Wang et al., 2018) via a function f . An
output function o : Rdv 7→ [0, 1] subsequently classifies the bag. The second approach, the pooling
of representations rather than scoring functions, is currently best performing (Wang et al., 2018).

In the problem at hand, the input object X is the immune repertoire of an individual that consists
of a large set of immune receptor sequences (T-cell receptors or antibodies). Immune receptors are
primarily represented as sequences si from a space si ∈ S. These sequences act as the instances in
the MIL problem. Although immune repertoire classification can readily be formulated as a MIL
problem, it is yet unclear how well machine learning methods solve the above-described problem
with a large number of instances N � 10, 000 and with instances si being complex sequences. Next
we describe currently used pooling functions for MIL problems.

Pooling functions for MIL problems. Different pooling functions equip a model g with the prop-
erty to be invariant to permutations of instances and with the ability to process different num-
bers of instances. Typically, a neural network hθ with parameters θ is trained to obtain a func-
tion that maps each instance onto a representation: zi = hθ(si) and then a pooling function
z = f({z1, . . . ,zN}) supplies a representation z of the input object X = {s1, . . . , sN}. The
following pooling functions are typically used: average-pooling: z = 1

N

∑N
i=1 zi, max-pooling:

z =
∑dv
m=1 em(maxi,16i6N{zim}), where em is the standard basis vector for dimension m and

attention-pooling: z =
∑N
i=1 aizi, where ai are non-negative (ai ≥ 0), sum to one (

∑N
i=1 ai = 1),

and are determined by an attention mechanism. These pooling functions are invariant to permutations

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

of {1, . . . , N} and are differentiable. Therefore, they are suited as building blocks for Deep Learning
architectures. We employ attention-pooling in our DeepRC model as detailed in the following.

Modern Hopfield networks viewed as transformer-like attention mechanisms. The modern Hop-
field networks, as introduced above,have a storage capacity that is exponential in the dimension of the
vector space and converge after just one update (see (Ramsauer et al., 2020), appendix).Additionally,
the update rule of modern Hopfield networks is known as key-value attention mechanism, which
has been highly successful through the transformer (Vaswani et al., 2017) and BERT (Devlin et al.,
2019) models in natural language processing. Therefore using modern Hopfield networks with the
key-value-attention mechanism as update rule is the natural choice for our task. In particular, modern
Hopfield networks are theoretically justified for storing and retrieving the large number of vectors
(sequence patterns) that appear in the immune repertoire classification task.

Instead of using the terminology of modern Hopfield networks, we explain our DeepRC architecture
in terms of key-value-attention (the update rule of the modern Hopfield network), since it is well
known in the deep learning community. The attention mechanism assumes a space of dimension
dk in which keys and queries are compared. A set of N key vectors are combined to the matrixK.
A set of dq query vectors are combined to the matrixQ. Similarities between queries and keys are
computed by inner products, therefore queries can search for similar keys that are stored. Another
set of N value vectors are combined to the matrix V . The output of the attention mechanism is
a weighted average of the value vectors for each query q. The i-th vector vi is weighted by the
similarity between the i-th key ki and the query q. The similarity is given by the softmax of the inner
products of the query q with the keys ki. All queries are calculated in parallel via matrix operations.
Consequently, the attention function att(Q,K,V ;β) maps queries Q, keys K, and values V to
dv-dimensional outputs: att(Q,K,V ;β) = softmax(βQKT)V (see also Eq. (2)). While this
attention mechanism has originally been developed for sequence tasks (Vaswani et al., 2017), it can
be readily transferred to sets (Lee et al., 2019; Ye et al., 2018). This type of attention mechanism will
be employed in DeepRC.

The DeepRC method. We propose a novel method Deep Repertoire Classification (DeepRC) for
immune repertoire classification with attention-based deep massive multiple instance learning and
compare it against other machine learning approaches. For DeepRC, we consider immune repertoires
as input objects, which are represented as bags of instances. In a bag, each instance is an immune
receptor sequence and each bag can contain a large number of sequences. Note that we will use zi to
denote the sequence-representation of the i-th sequence and z to denote the repertoire-representation.
At the core, DeepRC consists of a transformer-like attention mechanism that extracts the most
important information from each repertoire. We first give an overview of the attention mechanism
and then provide details on each of the sub-networks h1, h2, and o of DeepRC. (Overview: Fig. 1;
Architecture: Fig. 2; Implementation details: Sect. A2; DeepRC variations: Sect. A10.)

Attention mechanism in DeepRC. This mechanism is based on the three matrices K (the keys),
Q (the queries), and V (the values) together with a parameter β. Values. DeepRC uses a 1D
convolutional network h1 (LeCun et al., 1998; Hu et al., 2014; Kelley et al., 2016) that supplies
a sequence-representation zi = h1(si), which acts as the values V = Z = (z1, . . . ,zN) in the
attention mechanism (see Figure 2). Keys. A second neural network h2, which shares its first layers
with h1, is used to obtain keysK ∈ RN×dk for each sequence in the repertoire. This network uses 2
self-normalizing layers (Klambauer et al., 2017) with 32 units per layer (see Figure 2). Query. We
use a fixed dk-dimensional query vector ξ which is learned via backpropagation. For more attention
heads, each head has a fixed query vector. With the quantities introduced above, the transformer
attention mechanism (Eq. (2)) of DeepRC is implemented as follows:

z = att(ξT ,K,Z;
1√
dk

) = softmax

(
ξTKT

√
dk

)
Z, (4)

where Z ∈ RN×dv are the sequence–representations stacked row-wise,K are the keys, and z is the
repertoire-representation and at the same time a weighted mean of sequence–representations zi. The
attention mechanism can readily be extended to multiple queries, however, computational demand
could constrain this depending on the application and dataset. Theorem 1 demonstrates that this
mechanism is able to retrieve a single pattern out of several hundreds of thousands.

Attention-pooling and interpretability. Each input object, i.e. repertoire, consists of a large number
N of sequences, which are reduced to a single fixed-size feature vector of length dv representing
the whole input object by an attention-pooling function. To this end, a transformer-like attention

6

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

mechanism adapted to sets is realized in DeepRC which supplies ai – the importance of the sequence
si. This importance value is an interpretable quantity, which is highly desired for the immunological
problem at hand. Thus, DeepRC allows for two forms of interpretability methods. (a) A trained
DeepRC model can compute attention weights ai, which directly indicate the importance of a
sequence. (b) DeepRC furthermore allows for the usage of contribution analysis methods, such
as Integrated Gradients (IG) (Sundararajan et al., 2017) or Layer-Wise Relevance Propagation
(Montavon et al., 2018; Arras et al., 2019). See Sect. A8 for details.

Classification layer and network parameters. The repertoire-representation z is then used as input
for a fully-connected output network ŷ = o(z) that predicts the immune status, where we found it
sufficient to train single-layer networks. In the simplest case, DeepRC predicts a single target, the
class label y, e.g. the immune status of an immune repertoire, using one output value. However, since
DeepRC is an end-to-end deep learning model, multiple targets may be predicted simultaneously in
classification or regression settings or a mix of both. This allows for the introduction of additional
information into the system via auxiliary targets such as age, sex, or other metadata.

amino acid features
shape=(N,dl,20)

position features
shape=(N,dl,3)

concatenation
shape=(N,dl,23)

keys

output

values
Z=(z1,...,zN)

z

queries keysT

n_features=1
shape=(N,1)

softmax

sequence-attention
elementwise multiplication

shape=(N,dv)

sum over sequences
shape=(dv)

h2

o

1D-CNN
n_layers=1

n_kernels=dv
shape=(N,dl,dv)

maximum over sequence positions
shape=(N,dv)

attention SNN
n_layers=2

n_features=32
shape=(N,32)

fully connected
n_features=1

shape=(1)

X=(x1,...,xN)

h1

Figure 2: DeepRC architecture as used in
Table 1 with sub-networks h1, h2, and o. dl
indicates the sequence length.

Network parameters, training, and inference.
DeepRC is trained using standard gradient descent
methods to minimize a cross-entropy loss. The net-
work parameters are θ1,θ2,θo for the sub-networks
h1, h2, and o, respectively, and additionally ξ. In
more detail, we train DeepRC using Adam (Kingma
& Ba, 2014) with a batch size of 4 and dropout of
input sequences.

Implementation. To reduce computational time, the
attention network first computes the attention weights
ai for each sequence si in a repertoire. Subsequently,
the top 10% of sequences with the highest ai per
repertoire are used to compute the weight updates
and prediction. Furthermore, computation of zi is
performed in 16-bit, others in 32-bit precision to en-
sure numerical stability in the softmax. See Sect. A2
for details.

Experimental Results

In this section, we report and analyze the predictive
power of DeepRC and the compared methods on
several immunosequencing datasets. The ROC-AUC
is used as the main metric for the predictive power.

Methods compared. We compared previous meth-
ods for immune repertoire classification, (Ostmeyer
et al., 2019) (“Log. MIL (KMER)”, “Log. MIL
(TCRB)”) and a burden test (Emerson et al., 2017),
as well as the baseline methods Logistic Regres-
sion (“Log. Regr.”), k-nearest neighbour (“KNN”),
and Support Vector Machines (“SVM”) with kernels
designed for sets, such as the Jaccard kernel (“J”)
and the MinMax (“MM”) kernel (Ralaivola et al.,
2005). For the simulated data, we also added base-
line methods that search for the implanted motif ei-
ther in binary or continuous fashion (“Known motif
b.”, “Known motif c.”) assuming that this motif was
known (for details, see Sect. A4).

Datasets. We aimed at constructing immune repertoire classification scenarios with varying degree
of difficulties and realism in order to compare and analyze the suggested machine learning methods.
To this end, we either use simulated or experimentally-observed immune receptor sequences and we
implant signals, specifically, sequence motifs or sets thereof (Akbar et al., 2019; Weber et al., 2020),

7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

at different frequencies into sequences of repertoires of the positive class. These frequencies represent
the witness rates and range from 0.01% to 10%. Overall, we compiled four categories of datasets: (a)
simulated immunosequencing data with implanted signals, (b) LSTM-generated immunosequencing
data with implanted signals, (c) real-world immunosequencing data with implanted signals, and (d)
real-world immunosequencing data with known immune status, the CMV dataset (Emerson et al.,
2017). The average number of instances per bag, which is the number of sequences per immune
repertoire, is ≈300,000 except for category (c), in which we consider the scenario of low-coverage
data with only 10,000 sequences per repertoire. The number of repertoires per dataset ranges from
785 to 5,000. In total, all datasets comprise ≈30 billion sequences or instances. This represents the
largest comparative study on immune repertoire classification (see Sect. A3).

Hyperparameter selection. We used a nested 5-fold cross validation (CV) procedure to estimate the
performance of each of the methods. All methods could adjust their most important hyperparameters
on a validation set in the inner loop of the procedure. See Sect. A5 for details.

Real-world Real-world data with implanted signals LSTM-generated data Simulated

CMV OM 1% OM 0.1% MM 1% MM 0.1% 10% 1% 0.5% 0.1% 0.05% avg.

DeepRC 0.831 ± 0.022 1.00 ± 0.00 0.98± 0.01 1.00± 0.00 0.94±0.01 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.846± 0.223

SVM (MM) 0.825 ± 0.022 1.00 ± 0.00 0.58± 0.02 1.00± 0.00 0.53±0.02 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.99± 0.01 0.827± 0.210

SVM (J) 0.546 ± 0.021 0.99 ± 0.00 0.53± 0.02 1.00± 0.00 0.57±0.02 0.98± 0.04 1.00± 0.00 1.00± 0.00 0.90± 0.04 0.77± 0.07 0.550± 0.080

KNN (MM) 0.679 ± 0.076 0.74 ± 0.24 0.49± 0.03 0.67± 0.18 0.50±0.02 0.70± 0.27 0.72± 0.26 0.73± 0.26 0.54± 0.16 0.52± 0.15 0.634± 0.129

KNN (J) 0.534 ± 0.039 0.65 ± 0.16 0.48± 0.03 0.70± 0.20 0.51±0.03 0.70± 0.29 0.61± 0.24 0.52± 0.16 0.55± 0.19 0.54± 0.19 0.501± 0.007

Log. regr. 0.607 ± 0.058 1.00 ± 0.00 0.54± 0.04 0.99± 0.00 0.51±0.04 1.00± 0.00 1.00± 0.00 0.93± 0.15 0.60± 0.19 0.43± 0.16 0.826± 0.211

Burden test 0.699 ± 0.041 1.00 ± 0.00 0.64± 0.05 1.00± 0.00 0.89±0.02 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.79± 0.28 0.549± 0.074

Log. MIL (KMER) 0.582 ± 0.065 0.54 ± 0.07 0.51± 0.03 0.99± 0.00 0.62±0.15 1.00± 0.00 0.72± 0.11 0.64± 0.14 0.57± 0.15 0.53± 0.13 0.665± 0.224

Log. MIL (TCRβ) 0.515 ± 0.073 0.50 ± 0.03 0.50± 0.02 0.99± 0.00 0.78±0.03 0.54± 0.09 0.57± 0.16 0.47± 0.09 0.51± 0.07 0.50± 0.12 0.501± 0.016

Known motif b. – 1.00 ± 0.00 0.70± 0.03 0.99± 0.00 0.62±0.04 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.890± 0.168

Known motif c. – 0.92 ± 0.00 0.56± 0.03 0.65± 0.03 0.52±0.03 1.00± 0.00 1.00± 0.00 0.99± 0.01 0.72± 0.09 0.63± 0.09 0.738± 0.202

Table 1: Results in terms of AUC of the competing methods on all datasets. The reported errors
are standard deviations across 5 cross-validation (CV) folds (except for the column “Simulated”).
Real-world CMV: Average performance over 5 CV folds on the CMV dataset (Emerson et al., 2017).
Real-world data with implanted signals: Average performance over 5 CV folds for each of the
four datasets. A signal was implanted with a frequency (=witness rate) of 1% or 0.1%. Either a
single motif (“OM”) or multiple motifs (“MM”) were implanted. LSTM-generated data: Average
performance over 5 CV folds for each of the 5 datasets. In each dataset, a signal was implanted with
a frequency of 10%, 1%, 0.5%, 0.1%, or 0.05%, respectively. Simulated: Here we report the mean
over 18 simulated datasets with implanted signals and varying difficulties (see Tab. A9 for details).
The error reported is the standard deviation of the AUC values across the 18 datasets.

Results. In each of the four categories, “real-world data”, “real-world data with implanted signals”,
“LSTM-generated data”, and “simulated immunosequencing data”, DeepRC outperforms all compet-
ing methods with respect to average AUC. Across categories, the runner-up methods are either the
SVM for MIL problems with MinMax kernel or the burden test (see Table 1 and Sect. A6).

Results on simulated immunosequencing data. In this setting the complexity of the implanted signal
is in focus and varies throughout 18 simulated datasets (see Sect. A3). Some datasets are challenging
for the methods because the implanted motif is hidden by noise and others because only a small
fraction of sequences carries the motif, and hence have a low witness rate. These difficulties become
evident by the method called “known motif binary”, which assumes the implanted motif is known.
The performance of this method ranges from a perfect AUC of 1.000 in several datasets to an AUC
of 0.532 in dataset ’17’ (see Sect. A6). DeepRC outperforms all other methods with an average AUC
of 0.846± 0.223, followed by the SVM with MinMax kernel with an average AUC of 0.827± 0.210
(see Sect. A6). The predictive performance of all methods suffers if the signal occurs only in an
extremely small fraction of sequences. In datasets, in which only 0.01% of the sequences carry the
motif, all AUC values are below 0.550. Results on LSTM-generated data. On the LSTM-generated
data, in which we implanted noisy motifs with frequencies of 10%, 1%, 0.5%, 0.1%, and 0.05%,
DeepRC yields almost perfect predictive performance with an average AUC of 1.000± 0.001 (see
Sect. A6 and A7). The second best method, SVM with MinMax kernel, has a similar predictive

8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

performance to DeepRC on all datasets but the other competing methods have a lower predictive
performance on datasets with low frequency of the signal (0.05%). Results on real-world data with
implanted motifs. In this dataset category, we used real immunosequences and implanted single
or multiple noisy motifs. Again, DeepRC outperforms all other methods with an average AUC
of 0.980 ± 0.029, with the second best method being the burden test with an average AUC of
0.883 ± 0.170. Notably, all methods except for DeepRC have difficulties with noisy motifs at a
frequency of 0.1% (see Tab. A11). Results on real-world data. On the real-world dataset, in which
the immune status of persons affected by the cytomegalovirus has to be predicted, the competing
methods yield predictive AUCs between 0.515 and 0.825 (see Table 1). We note that this dataset is
not the exact dataset that was used in Emerson et al. (2017). It differs in pre-processing and also
comprises a different set of samples and a smaller training set due to the nested 5-fold cross-validation
procedure, which leads to a more challenging dataset. The best performing method is DeepRC with
an AUC of 0.831 ± 0.002, followed by the SVM with MinMax kernel (AUC 0.825 ± 0.022) and
the burden test with an AUC of 0.699± 0.041. The top-ranked sequences by DeepRC significantly
correspond to those detected by Emerson et al. (2017), which we tested by a Mann-Whitney U-test
with the null hypothesis that the attention values of the sequences detected by Emerson et al. (2017)
would be equal to the attention values of the remaining sequences (p-value of 1.3 · 10−93). The
sequence attention values are displayed in Tab. A14.

Conclusion. We have demonstrated how modern Hopfield networks and attention mechanisms enable
successful classification of the immune status of immune repertoires. For this task, methods have
to identify the discriminating sequences amongst a large set of sequences in an immune repertoire.
Specifically, even motifs within those sequences have to be identified. We have shown that DeepRC, a
modern Hopfield network and an attention mechanism with a fixed query, can solve this difficult task
despite the massive number of instances. DeepRC furthermore outperforms the compared methods
across a range of different experimental conditions.

Broader Impact

Impact on machine learning and related scientific fields. We envision that with (a) the increasing
availability of large immunosequencing datasets (Kovaltsuk et al., 2018; Corrie et al., 2018; Christley
et al., 2018; Zhang et al., 2020; Rosenfeld et al., 2018; Shugay et al., 2018), (b) further fine-tuning
of ground-truth benchmarking immune receptor datasets (Weber et al., 2020; Olson et al., 2019;
Marcou et al., 2018), (c) accounting for repertoire-impacting factors such as age, sex, ethnicity,
and environment (potential confounding factors), and (d) increased GPU memory and increased
computing power, it will be possible to identify discriminating immune receptor motifs for many
diseases, potentially even for the current SARS-CoV-2 (COVID-19) pandemic (Raybould et al., 2020;
Minervina et al., 2020; Galson et al., 2020). Such results would greatly benefit ongoing research
on antibody and TCR-driven immunotherapies and immunodiagnostics as well as rational vaccine
design (Brown et al., 2019).

In the course of this development, the experimental verification and interpretation of machine-learning-
identified motifs could receive additional focus, as for most of the sequences within a repertoire
the corresponding antigen is unknown. Nevertheless, recent technological breakthroughs in high-
throughput antigen-labeled immunosequencing are beginning to generate large-scale antigen-labeled
single-immune-receptor-sequence data thus resolving this longstanding problem (Setliff et al., 2019).

From a machine learning perspective, the successful application of DeepRC on immune repertoires
with their large number of instances per bag might encourage the application of modern Hopfield
networks and attention mechanisms on new, previously unsolved or unconsidered, datasets and
problems.

Impact on society. If the approach proves itself successful, it could lead to faster testing of individuals
for their immune status w.r.t. a range of diseases based on blood samples. This might motivate
changes in the pipeline of diagnostics and tracking of diseases, e.g. automated testing of the immune
status in regular intervals. It would furthermore make the collection and screening of blood samples
for larger databases more attractive. In consequence, the improved testing of immune statuses
might identify individuals that do not have a working immune response towards certain diseases
to government or insurance companies, which could then push for targeted immunisation of the
individual. Similarly to compulsory vaccination, such testing for the immune status could be made

9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

compulsory by governments, possibly violating privacy or personal self-determination in exchange
for increased over-all health of a population.

Ultimately, if the approach proves itself successful, the insights gained from the screening of indi-
viduals that have successfully developed resistances against specific diseases could lead to faster
targeted immunisation, once a certain number of individuals with resistances can be found. This might
strongly decrease the harm done by e.g. pandemics and lead to a change in the societal perception of
such diseases.

Consequences of failures of the method. As common with methods in machine learning, potential
danger lies in the possibility that users rely too much on our new approach and use it without reflecting
on the outcomes. However, the full pipeline in which our method would be used includes wet lab tests
after its application, to verify and investigate the results, gain insights, and possibly derive treatments.
Failures of the proposed method would lead to unsuccessful wet lab validation and negative wet lab
tests. Since the proposed algorithm does not directly suggest treatment or therapy, human beings are
not directly at risk of being treated with a harmful therapy. Substantial wet lab and in-vitro testing
and would indicate wrong decisions by the system.

Leveraging of biases in the data and potential discrimination. As for almost all machine learning
methods, confounding factors, such as age or sex, could be used for classification. This, might lead to
biases in predictions or uneven predictive performance across subgroups. As a result, failures in the
wet lab would occur (see paragraph above). Moreover, insights into the relevance of the confounding
factors could be gained, leading to possible therapies or counter-measures concerning said factors.

Furthermore, the amount of data available with respec to relevant confounding factors could lead to
better or worse performance of our method. E.g. a dataset consisting mostly of data from individuals
within a specific age group might yield better performance for that age group, possibly resulting in
better or exclusive treatment methods for that specific group. Here again, the application of DeepRC
would be followed by in-vitro testing and development of a treatment, where all target groups for the
treatment have to be considered accordingly.

Availability

All datasets and code is available at https://github.com/ml-jku/DeepRC. The CMV dataset is
publicly available at https://clients.adaptivebiotech.com/pub/Emerson-2017-NatGen.

Acknowledgments

The ELLIS Unit Linz, the LIT AI Lab and the Institute for Machine Learning are supported by
the Land Oberösterreich, LIT grants DeepToxGen (LIT-2017-3-YOU-003), and AI-SNN (LIT-
2018-6-YOU-214), the Medical Cognitive Computing Center (MC3), Janssen Pharmaceutica, UCB
Biopharma, Merck Group, Audi.JKU Deep Learning Center, Audi Electronic Venture GmbH, TGW,
Primal, Silicon Austria Labs (SAL), FILL, EnliteAI, Google Brain, ZF Friedrichshafen AG, Robert
Bosch GmbH, TÜV Austria, DCS, and the NVIDIA Corporation. Victor Greiff (VG) and Geir
Kjetil Sandve (GKS) are supported by The Helmsley Charitable Trust (#2019PG-T1D011, to VG),
UiO World-Leading Research Community (to VG), UiO:LifeSciences Convergence Environment
Immunolingo (to VG and GKS), EU Horizon 2020 iReceptorplus (#825821, to VG) and Stiftelsen
Kristian Gerhard Jebsen (K.G. Jebsen Coeliac Disease Research Centre, to GKS).

10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://github.com/ml-jku/DeepRC
https://clients.adaptivebiotech.com/pub/Emerson-2017-NatGen
https://doi.org/10.1101/2020.04.12.038158

Appendix

In the following, the appendix to the paper “Modern Hopfield Networks and Attention for Immune
Repertoire Classification” is presented. Here we provide details on DeepRC, the compared methods,
and the experimental setup and results. Furthermore, the generation of the immune repertoire
classification data using an LSTM network, the interpretation of DeepRC and the extraction of found
motifs, and the ablation study using different variants of DeepRC are described.

11

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

Contents of Appendix
1 Immune Repertoire Classification . 13

A1 Introduction . 13
A2 DeepRC implementation details . 13
A3 Datasets . 15

A3.1 Simulated immunosequencing data . 15
A3.2 LSTM-generated data . 16
A3.3 Real-world data with implanted signals . 16
A3.4 Real-world data: CMV dataset . 17
A3.5 Comparison to other MIL datasets . 17

A4 Compared methods . 19
A4.1 Known motif . 19
A4.2 Support Vector Machine (SVM) . 19
A4.3 K-Nearest Neighbor (KNN) . 19
A4.4 Logistic regression . 20
A4.5 Burden test . 20
A4.6 Logistic MIL (Ostmeyer et al) . 20

A5 Hyperparameter selection . 21
A6 Results . 23
A7 Repertoire generation via LSTM . 26
A8 Interpreting DeepRC . 28
A9 Attention values for previously associated CMV sequences 31
A10 DeepRC variations and ablation study . 32

List of figures
A1 Position encoding . 14
A2 Distribution of AAs and k-mers . 27
A3 Interpretation of the DeepRC classifier . 29
A4 Visualization of the contributions of AA . 30

List of tables
A1 Properties of simulated repertoires, variations of motifs, and motif frequencies . . . 17
A2 Overview of MIL datasets and their characteristics 18
A3 DeepRC hyperparameter search space . 21
A5 Hyperparameter search of the KNN baseline . 21
A6 Hyperparameter search of the logistic regression 22
A7 Hyperparameter search of the burden test . 22
A8 Hyperparameter search of the logistic MIL baseline 22
A9 AUC estimates for all 18 datasets in "simulated immunosequencing data" 23
A10 AUC estimates for all 5 datasets in “LSTM-generated data” 24
A11 AUC estimates for all 4 datasets in “real-world data with implanted signals” 25
A12 Results on the CMV dataset given by AUC, F1 score, balanced accuracy, and accuracy 25
A13 Visualization of extracted motifs . 28
A14 TCRβ sequences re-discovered by DeepRC . 31
A15 Hyperparameter search space for DeepRC variations 32
A16 Hyperparameter search space for DeepRC variations with LSTM embedding 33
A17 Impact of hyperparameters on DeepRC with LSTM 33
A18 Impact of hyperparameters on DeepRC with 1D CNN 34

12

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

Immune Repertoire Classification
Michael Widrich Bernhard Schäfl Milena Pavlović Geir Kjetil Sandve
Sepp Hochreiter Victor Greiff Günter Klambauer

A1 Introduction

In Section A2 we provide details on the architecture of DeepRC, in Section A3 we present details on
the datasets, in Section A4 we explain the methods that we compared, in Section A5 we elaborate on
the hyperparameters and their selection process. Then, in Section A6 we present detailed results for
each dataset category in tabular form, in Section A7 we provide information on the LSTM model that
was used to generate antibody sequences, in Section A8 we show how DeepRC can be interpreted, in
Section A9 we show the correspondence of previously identified TCR sequences for CMV immune
status with attention values by DeepRC, and finally we present variations and an ablation study of
DeepRC in Section A10.

A2 DeepRC implementation details

Input layer. For the input layer of the CNN, the characters in the input sequence, i.e. the amino
acids (AAs), are encoded in a one-hot vector of length 20. To also provide information about the
position of an AA in the sequence, we add 3 additional input features with values in range [0, 1] to
encode the position of an AA relative to the sequence. These 3 positional features encode whether
the AA is located at the beginning, the center, or the end of the sequence, respectively, as shown
in Figure A1. We concatenate these 3 positional features with the one-hot vector of AAs, which
results in a feature vector of size 23 per sequence position. Each repertoire, now represented as a
bag of feature vectors, is then normalized to unit variance. Since the cytomegalovirus dataset (CMV
dataset) provides sequences with an associated abundance value per sequence, which is the number of
occurrences of a sequence in a repertoire, we incorporate this information into the input of DeepRC.
To this end, the one-hot AA features of a sequence are multiplied by a scaling factor of log(ca) before
normalization, where ca is the abundance of a sequence. We feed the sequences with 23 features per
position into the CNN. Sequences of different lengths were zero-padded to the maximum sequence
length per batch at the sequence ends.

1D CNN for motif recognition. In the following, we describe how DeepRC identifies patterns
in the individual sequences and reduces each sequence in the input object to a fixed-size feature
vector. DeepRC employs 1D convolution layers to extract patterns, where trainable weight kernels
are convolved over the sequence positions. In principle, also recurrent neural networks (RNNs) or
transformer networks could be used instead of 1D CNNs, however, (a) the computational complexity
of the network must be low to be able to process millions of sequences for a single update. Addition-
ally, (b) the learned network should be able to provide insights in the recognized patterns in form
of motifs. Both properties (a) and (b) are fulfilled by 1D convolution operations that are used by
DeepRC.

We use one 1D CNN layer (Hu et al., 2014) with SELU activation functions (Klambauer et al.,
2017) to identify the relevant patterns in the input sequences with a computationally light-weight

13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

AA position in sequence

fe
a
tu

re
 v

a
lu

e

1

0

sequence
start

sequence
end

sequence
center

feature 2
feature 3

feature 1

Figure A1: We use 3 input features with values in range [0, 1] to encode the relative position of each
AA in a sequence with respect to the sequence. “feature 1” encodes if an AA is close to the sequence
start, “feature 2” to the sequence center, and “feature 3” to the sequence end. For every position in
the sequence, the values of all three features sum up to 1.

operation. The larger the kernel size, the more surrounding sequence positions are taken into account,
which influences the length of the motifs that can be extracted. We therefore adjust the kernel size
during hyperparameter search. In prior works (Ostmeyer et al., 2019), a k-mer size of 4 yielded
good predictive performance, which could indicate that a kernel size in the range of 4 may be a
proficient choice. For dv trainable kernels, this produces a feature vector of length dv at each sequence
position. Subsequently, global max-pooling over all sequence positions of a sequence reduces the
sequence-representations zi to vectors of the fixed length dv . Given the challenging size of the input
data per repertoire, the computation of the CNN activations and weight updates is performed using
16-bit floating point values. A list of hyperparameters evaluated for DeepRC is given in Table A3. A
comparison of RNN-based and CNN-based sequence embedding for motif recognition in a smaller
experimental setting is given in Sec. A10.

Regularization. We apply random and attention-based subsampling of repertoire sequences to
reduce over-fitting and decrease computational effort. During training, each repertoire is subsampled
to 10, 000 input sequences, which are randomly drawn from the respective repertoire. This can
also be interpreted as random drop-out (Hinton et al., 2012) on the input sequences or attention
weights. During training and evaluation, the attention weights computed by the attention network
are furthermore used to rank the input sequences. Based on this ranking, the repertoire is reduced
to the 10% of sequences with the highest attention weights. These top 10% of sequences are then
used to compute the weight updates and the prediction for the repertoire. Additionally, one might
employ further regularization techniques, which we only partly investigated further in a smaller
experimental setting in Sec. A10 due to high computational demands. Such regularization techniques
include l1 and l2 weight decay, noise in the form of random AA permutations in the input sequences,
noise on the attention weights, or random shuffling of sequences between repertoires that belong
to the negative class. The last regularization technique assumes that the sequences in positive-class
repertoires carry a signal, such as an AA motif corresponding to an immune response, whereas
the sequences in negative-class repertoires do not. Hence, the sequences can be shuffled randomly
between negative class repertoires without obscuring the signal in the positive class repertoires.

Hyperparameters. For the hyperparameter search of DeepRC for the category “simulated im-
munosequencing data”, we only conducted a full hyperparameter search on the more difficult datasets
with motif implantation probabilities below 1%, as described in Table A3. This process was repeated
for all 5 folds of the 5-fold cross-validation (CV) and the average score on the 5 test sets constitutes
the final score of a method.

Table A3 provides an overview of the hyperparameter search, which was conducted as a grid search
for each of the datasets in a nested 5-fold CV procedure, as described in Section A4.

Computation time and optimization. We took measures on the implementation level to address
the high computational demands, especially GPU memory consumption, in order to make the large
number of experiments feasible. We train the DeepRC model with a small batch size of 4 samples and

14

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

perform computation of inference and updates of the 1D CNN using 16-bit floating point values. The
rest of the network is trained using 32-bit floating point values. The Adam parameter for numerical
stability was therefore increased from the default value of ε = 10−8 to ε = 10−4. Training was
performed on various GPU types, mainly NVIDIA RTX 2080 Ti. Computation times were highly
dependent on the number of sequences in the repertoires and the number and sizes of CNN kernels.
A single update on an NVIDIA RTX 2080 Ti GPU took approximately 0.0129 to 0.0135 seconds,
while requiring approximately 8 to 11 GB GPU memory. Taking these optimizations and GPUs
with larger memory (≥ 16 GB) into account, it is already possible to train DeepRC, possibly with
multi-head attention and a larger network architecture, on larger datasets (see Sec. A10). Our network
implementation is based on PyTorch 1.3.1 (Paszke et al., 2019).

Incorporation of additional inputs and metadata. Additional metadata in the form of sequence-
level or repertoire-level features could be incorporated into the input via concatenation with the
feature vectors that result from taking the maximum of the 1D CNN outputs w.r.t. the sequence
positions. This has the benefit that the attention mechanism and output network can utilize the
sequence-level or repertoire-level features for their predictions. Sparse metadata or metadata that is
only available during training could be used as auxiliary targets to incorporate the information via
gradients into the DeepRC model.

Limitations. The current methods are mostly limited by computational complexity, since both
hyperparameter and model selection is computationally demanding. For hyperparameter selection, a
large number of hyperparameter settings have to be evaluated. For model selection, a single repertoire
requires the propagation of many thousands of sequences through a neural network and keeping
those quantities in GPU memory in order to perform the attention mechanism and weight update.
Thus, increased GPU memory would significantly boost our approach. Increased computational
power would also allow for more advanced architectures and attention mechanisms, which may
further improve predictive performance. Another limiting factor is over-fitting of the model due to
the currently relatively small number of samples (bags) in real-world immunosequencing datasets in
comparison to the large number of instances per bag and features per instance.

A3 Datasets

We aimed at constructing immune repertoire classification scenarios with varying degree of realism
and difficulties in order to compare and analyze the suggested machine learning methods. To this
end, we either use simulated or experimentally-observed immune receptor sequences and we implant
signals, which are sequence motifs (Akbar et al., 2019; Weber et al., 2020), into sequences of
repertoires of the positive class. It has been shown previously that interaction of immune receptors
with antigens occur via short sequence stretches (Akbar et al., 2019). Thus, implantation of short
motif sequences simulating an immune signal is biologically meaningful. Our benchmarking study
comprises four different categories of datasets: (a) Simulated immunosequencing data with implanted
signals (where the signal is defined as sets of motifs), (b) LSTM-generated immunosequencing
data with implanted signals, (c) real-world immunosequencing data with implanted signals, and (d)
real-world immunosequencing data. Each of the first three categories consists of multiple datasets
with varying difficulty depending on the type of the implanted signal and the ratio of sequences with
the implanted signal. The ratio of sequences with the implanted signal, where each sequence carries
at most 1 implanted signal, corresponds to the witness rate (WR). We consider binary classification
tasks to simulate the immune status of healthy and diseased individuals. We randomly generate
immune repertoires with varying numbers of sequences, where we implant sequence motifs in the
repertoires of the diseased individuals, i.e. the positive class. The sequences of a repertoire are also
randomly generated by different procedures (detailed below). Each sequence is composed of 20
different characters, corresponding to amino acids, and has an average length of 14.5 AAs.

A3.1 Simulated immunosequencing data

In the first category, we aim at investigating the impact of the signal frequency, i.e. the WR, and
the signal complexity on the performance of the different methods. To this end, we created 18
datasets, whereas each dataset contains a large number of repertoires with a large number of random
AA sequences per repertoire. We then implanted signals in the AA sequences of the positive class

15

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

repertoires, where the 18 datasets differ in frequency and complexity of the implanted signals. In
detail, the AAs were sampled randomly independent of their respective position in the sequence, while
the frequencies of AAs, distribution of sequence lengths, and distribution of the number of sequences
per repertoire, i.e. the number of instances per bag, are following the respective distributions observed
in the real-world CMV dataset (Emerson et al., 2017). For this, we first sampled the number of
sequences for a repertoire from a Gaussian N (µ = 316k, σ = 132k) distribution and rounded to
the nearest positive integer. We re-sampled if the size was below 5k. We then generated random
sequences of AAs with a length of N (µ = 14.5, σ = 1.8), again rounded to the nearest positive
integers. Each simulated repertoire was then randomly assigned to either the positive or negative
class, with 2, 500 repertoires per class. In the repertoires assigned to the positive class, we implanted
motifs with an average length of 4 AAs, following the results of the experimental analysis of antigen-
binding motifs in antibodies and T-cell receptor sequences by (Akbar et al., 2019). We varied the
characteristics of the implanted motifs for each of the 18 datasets with respect to the following
parameters: (a) ρ, the probability of a motif being implanted in a sequence of a positive repertoire,
i.e. the average ratio of sequences containing the motif, which is the witness rate. (b) The number
of wildcard positions in the motif. A wildcard position contains a random AA, which is randomly
sampled for each sequence. Wildcard positions are located in the center of the implanted motif. (c)
The number of deletion positions in the implanted motif. A deletion position has a probability of 0.5
of being removed from the motif. Deletion positions are located in the center of the implanted motifs.

In this way, we generated 18 different datasets of variable difficulty containing in total roughly 28.7
billion sequences. See Table A1 for an overview of the properties of the implanted motifs in the 18
datasets.

A3.2 LSTM-generated data

In the second dataset category, we investigate the impact of the signal frequency and complexity in
combination with more plausible immune receptor sequences by taking into account the positional
AA distributions and other sequence properties. To this end, we trained an LSTM (Hochreiter &
Schmidhuber, 1997) in a standard next character prediction (Graves, 2013) setting to create AA
sequences with properties similar to experimentally observed immune receptor sequences.

In the first step, the LSTM model was trained on all immuno-sequences in the CMV dataset (Emerson
et al., 2017) that contain valid information about sequence abundance and have a known CMV label.
Such an LSTM model is able to capture various properties of the sequences, including position-
dependent probability distributions and combinations, relationships, and order of AAs. We then used
the trained LSTM model to generate 1, 000 repertoires in an autoregressive fashion, starting with a
start sequence that was randomly sampled from the trained-on dataset. Based on a visual inspection
of the frequencies of 4-mers (see Section A7), the similarity of LSTM generated sequences and real
sequences was deemed sufficient for the purpose of generating the AA sequences for the datasets in
this category. Further details on LSTM training and repertoire generation are given in Section A7.

After generation, each repertoire was assigned to either the positive or negative class, with 500
repertoires per class. We implanted motifs of length 4 with varying properties in the center of the
sequences of the positive class to obtain 5 different datasets. Each sequence in the positive repertoires
has a probability ρ to carry the motif, which was varied throughout 5 datasets and corresponds to
the WR (see Table A1). Each position in the motif has a probability of 0.9 to be implanted and
consequently a probability of 0.1 that the original AA in the sequence remains, which can be seen as
noise on the motif.

A3.3 Real-world data with implanted signals

In the third category, we implanted signals into experimentally obtained immuno-sequences, where
we considered 4 dataset variations. Each dataset consists of 750 repertoires for each of the two classes,
where each repertoire consists of 10k sequences. In this way, we aim to simulate datasets with a low
sequencing coverage, which means that only relatively few sequences per repertoire are available.
The sequences were randomly sampled from healthy (CMV negative) individuals from the CMV
dataset (see below paragraph for explanation). Two signal types were considered: (a) One signal
with one motif. The AA motif LDR was implanted in a certain fraction of sequences. The pattern
is randomly altered at one of the three positions with probabilities 0.2, 0.6, and 0.2, respectively.
(b) One signal with multiple motifs. One of the three possible motifs LDR, CAS, and GL-N was

16

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

Simulated LSTM gen. Real-world

seq. per bag N(316k, 132k) N(285k, 156k) 10k
repertoires 5, 000 1, 000 1, 500
motif noise 0% 10% ∗
wildcards {0; 1; 2} 0 0
deletions {0; 1} 0 0
mot. freq. ρ {1; 0.1; {10; 1; 0.5; {1; 0.1}
(in %) 0.01} 0.1; 0.05}

Table A1: Properties of simulated repertoires, variations of motifs, and motif frequencies, i.e. the
witness rate, for the datasets in categories “simulated immunosequencing data”, “LSTM-generated
data”, and “real-world data with implanted signals”. Noise types for ∗ are explained in paragraph
“real-world data with implanted signals”.

implanted with equal probability. Again, the motifs were randomly altered before implantation. The
AA motif LDR changed as described above. The AA motif CAS was altered at the second position
with probability 0.6 and with probability 0.3 at the first position. The pattern GL-N, where - denotes
a gap location, is randomly altered at the first position with probability 0.6 and the gap has a length
of 0, 1, or 2 AAs with equal probability.

Additionally, the datasets differ in the values for ρ, the average ratio of sequences carrying a signal,
which were chosen as 1% or 0.1%. The motifs were implanted at positions 107, 109, and 114
according to the IMGT numbering scheme for immune receptor sequences (Lefranc et al., 2003) with
probabilities 0.3, 0.35 and 0.2, respectively. With the remaining 0.15 chance, the motif is implanted
at any other sequence position. This means that the motif occurrence in the simulated sequences is
biased towards the middle of the sequence.

A3.4 Real-world data: CMV dataset

We used a real-world dataset of 785 repertoires, each of which containing between 4, 371 to 973, 081
(avg. 299, 319) TCR sequences with a length of 1 to 27 (avg. 14.5) AAs, originally collected
and provided by Emerson et al. (2017). 340 out of 785 repertoires were labelled as positive for
cytomegalovirus (CMV) serostatus, which we consider as the positive class, 420 repertoires with
negative CMV serostatus, considered as negative class, and 25 repertoires with unknown status. We
changed the number of sequence counts per repertoire from −1 to 1 for 3 sequences. Furthermore,
we exclude a total of 99 repertoires with unknown CMV status or unknown information about the
sequence abundance within a repertoire, reducing the dataset for our analysis to 686 repertoires, 312
of which with positive and 374 with negative CMV status.

A3.5 Comparison to other MIL datasets

We give a non-exhaustive overview of previously considered MIL datasets and problems in Table A2.
To our knowledge the datasets considered in this work pose the most challenging MIL problems with
respect to the number of instances per bag (column 5).

17

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

D
at

as
et

To
ta

ln
um

be
r

To
ta

ln
um

be
r

A
pp

ro
x.

nu
m

be
ro

f
A

vg
.n

um
be

ro
f

So
ur

ce
D

at
as

et
of

ba
gs

of
in

st
an

ce
s

fe
at

ur
es

pe
ri

ns
ta

nc
e

in
st

an
ce

s
pe

rb
ag

re
fe

re
nc

e

Si
m

ul
at

ed
im

m
un

o-
5,

00
0

1,
59

7,
02

4,
31

0
14

.5
x2

0
A

A
se

qu
en

ce
31

6,
00

0
th

is
w

or
k

se
qu

en
ci

ng
da

ta
(o

ur
s)

x
18

da
ta

se
ts

L
ST

M
-g

en
er

at
ed

da
ta

(o
ur

s)
1,

00
0

30
4,

82
5,

67
1

14
.5

x2
0

A
A

se
qu

en
ce

28
5,

00
0

th
is

w
or

k
x

5
da

ta
se

ts

R
ea

l-
w

or
ld

da
ta

w
ith

1,
50

0
14

,7
15

,4
21

14
.5

x2
0

A
A

se
qu

en
ce

10
,0

00
th

is
w

or
k

im
pl

an
te

d
si

gn
al

s
(o

ur
s)

x
4

da
ta

se
ts

C
M

V
(p

re
-p

ro
ce

ss
ed

by
us

)
78

5
23

4,
96

5,
72

9
14

.5
x2

0
A

A
se

qu
en

ce
29

9,
00

0
th

is
w

or
k

E
m

er
so

n
et

al
.(

20
17

)

M
N

IS
T

ba
gs

50
–5

00
50

0–
50

,0
00

28
x2

8x
1

im
ag

e
10

0
Il

se
et

al
.(

20
18

)

B
re

as
tC

an
ce

r
58

ap
pr

ox
.3

9,
00

0
32

x3
2x

3
H

&
E

im
ag

e
67

2
Il

se
et

al
.(

20
18

)
G

el
as

ca
et

al
.(

20
08

)

B
as

al
ce

ll
ca

rc
in

om
as

82
0

7,
58

8,
76

7
10

24
x1

02
4x

3
H

&
E

im
ag

e
9,

05
6

K
im

es
w

en
ge

r e
ta

l.
(2

01
9)

B
ir

ds
54

8
10

,2
32

38
9

R
ui

z
et

al
.(

20
18

)
B

ri
gg

s
et

al
.(

20
12

)

Sc
en

e
2,

00
0

18
,0

00
15

9
R

ui
z

et
al

.(
20

18
)

Z
ha

ng
&

Z
ha

ng
(2

00
7)

R
eu

te
rs

2,
00

0
7,

11
9

24
3

4
R

ui
z

et
al

.(
20

18
)

Se
ba

st
ia

ni
(2

00
2)

C
K

+
43

0
7,

91
5

4,
39

1
18

R
ui

z
et

al
.(

20
18

)
L

uc
ey

et
al

.(
20

10
)

U
ni

Pr
ot

(G
eo

ba
ct

er
su

lf
ur

re
du

ce
ns

)
37

9
1,

25
0

21
6

3
R

ui
z

et
al

.(
20

18
)

W
u

et
al

.(
20

14
)

M
O

D
IS

(a
er

os
ol

da
ta

)
1,

36
4

13
6,

40
0

12
10

0
U

ri
ot

(2
01

9)
ht

tp
s:

//
ae

ro
ne

t.
gs

fc
.n

as
a.

go
v

M
IS

R
1

(a
er

os
ol

da
ta

)
80

0
80

,0
00

16
10

0
U

ri
ot

(2
01

9)
ht

tp
s:

//
ae

ro
ne

t.
gs

fc
.n

as
a.

go
v

M
IS

R
2

(a
er

os
ol

da
ta

)
80

0
80

,0
00

12
54

U
ri

ot
(2

01
9)

ht
tp

s:
//

ae
ro

ne
t.

gs
fc

.n
as

a.
go

v

C
O

R
N

(c
ro

p
yi

el
d)

52
5

52
,5

00
92

10
0

U
ri

ot
(2

01
9)

ht
tp

s:
//

ae
ro

ne
t.

gs
fc

.n
as

a.
go

v

W
H

E
A

T
(c

ro
p

yi
el

d)
52

5
52

,5
00

92
10

0
U

ri
ot

(2
01

9)
ht

tp
s:

//
ae

ro
ne

t.
gs

fc
.n

as
a.

go
v

Ta
bl

e
A

2:
M

IL
da

ta
se

ts
w

ith
th

ei
rn

um
be

rs
of

ba
gs

an
d

nu
m

be
rs

of
in

st
an

ce
s.

“t
ot

al
nu

m
be

ro
fi

ns
ta

nc
es

”
re

fe
rs

to
th

e
to

ta
ln

um
be

ro
fi

ns
ta

nc
es

in
th

e
da

ta
se

t.
T

he
si

m
ul

at
ed

an
d

re
al

-w
or

ld
im

m
un

os
eq

ue
nc

in
g

da
ta

se
ts

co
ns

id
er

ed
in

th
is

w
or

k
co

nt
ai

n
a

by
or

de
rs

of
m

ag
ni

tu
de

s
la

rg
er

nu
m

be
ro

fi
ns

ta
nc

es
pe

rb
ag

th
an

M
IL

da
ta

se
ts

th
at

w
er

e
co

ns
id

er
ed

by
m

ac
hi

ne
le

ar
ni

ng
m

et
ho

ds
up

to
no

w
.

18

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://aeronet.gsfc.nasa.gov
https://aeronet.gsfc.nasa.gov
https://aeronet.gsfc.nasa.gov
https://aeronet.gsfc.nasa.gov
https://aeronet.gsfc.nasa.gov
https://doi.org/10.1101/2020.04.12.038158

A4 Compared methods

We evaluate and compare the performance of DeepRC against a set of machine learning methods that
serve as baseline, were suggested, or can readily be adapted to immune repertoire classification. In
this section, we describe these compared methods.

A4.1 Known motif

This method serves as an estimate for the achievable classification performance using prior knowledge
about which motif was implanted. Note that this does not necessarily lead to perfect predictive
performance since motifs are implanted with a certain amount of noise and could also be present
in the negative class by chance. The known motif method counts how often the known implanted
motif occurs per sequence for each repertoire and uses this count to rank the repertoires. From this
ranking, the Area Under the receiver operator Curve (AUC) is computed as performance measure.
Probabilistic AA changes in the known motif are not considered for this count, with the exception
of gap positions. We consider two versions of this method: (a) Known motif binary: counts the
occurrence of the known motif in a sequence and (b) Known motif continuous: counts the maximum
number of overlapping AAs between the known motif and all sequence positions, which corresponds
to a convolution operation with a binary kernel followed by max-pooling. Since the implanted signal
is not known in the experimentally obtained CMV dataset, this method cannot be applied to this
dataset.

A4.2 Support Vector Machine (SVM)

The Support Vector Machine (SVM) approach uses a fixed mapping from a bag of sequences to the
corresponding k-mer counts. The function hkmer maps each sequence si to a vector representing the
occurrence of k-mers in the sequence. To avoid confusion with the sequence-representation obtained
from the CNN layers of DeepRC, we denote ui = hkmer(si), which is analogous to zi. Specifically,
uim = (hkmer(si))m = #{pm ∈ si}, where #{pm ∈ si} denotes how often the k-mer pattern pm
occurs in sequence si. Afterwards, average-pooling is applied to obtain u = 1/N

∑N
i=1 ui, the

k-mer representation of the input object X . For two input objects X(n) and X(l) with representations
u(n) and u(l), respectively, we implement the MinMax kernel (Ralaivola et al., 2005) as follows:

k(X(n), X(l)) = kMinMax(u(n),u(l))

=

∑du
m=1 min(u

(n)
m , u

(l)
m)∑du

m=1 max(u
(n)
m , u

(l)
m)

,
(A1)

where u(n)m is them-th element of the vector u(n). The Jaccard kernel (Levandowsky & Winter, 1971)
is identical to the MinMax kernel except that it operates on binary u(n). We used a standard C-SVM,
as introduced by Cortes & Vapnik (1995). The corresponding hyperparameter C is optimized by
random search. The settings of the full hyperparameter search as well as the respective value ranges
are given in Table A4a.

A4.3 K-Nearest Neighbor (KNN)

The same k-mer representation of a repertoire, as introduced above for the SVM baseline, is used for
the K-Nearest Neighbor (KNN) approach. As this method clusters samples according to distances
between them, the previous kernel definitions cannot be applied directly. It is therefore necessary to
transform the MinMax as well as the Jaccard kernel from similarities to distances by constructing the
following (Levandowsky & Winter, 1971):

dMinMax(u(n),u(l)) = 1− kMinMax(u(n),u(l)),

dJaccard(u(n),u(l)) = 1− kJaccard(u(n),u(l)).
(A2)

The amount of neighbors is treated as the hyperparameter and optimized by an exhaustive grid search.
The settings of the full hyperparameter search as well as the respective value ranges are given in
Table A5.

19

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

A4.4 Logistic regression

We implemented logistic regression on the k-mer representation u of an immune repertoire. The
model is trained by gradient descent using the Adam optimizer (Kingma & Ba, 2014). The learning
rate is treated as the hyperparameter and optimized by grid search. Furthermore, we explored
two regularization settings using combinations of l1 and l2 weight decay. The settings of the full
hyperparameter search as well as the respective value ranges are given in Table A6.

A4.5 Burden test

We implemented a burden test (Emerson et al., 2017; Li & Leal, 2008; Wu et al., 2011) in a machine
learning setting. The burden test first identifies sequences or k-mers that are associated with the
individual’s class, i.e., immune status, and then calculates a burden score per individual. Concretely,
for each k-mer or sequence, the phi coefficient of the contingency table for absence or presence and
positive or negative immune status is calculated. Then, J k-mers or sequences with the highest phi
coefficients are selected as the set of associated k-mers or sequences. J is a hyperparameter that
is selected on a validation set. Additionally, we consider the type of input features, sequences or
k-mers, as a hyperparameter. For inference, a burden score per individual is calculated as the sum
of associated k-mers or sequences it carries. This score is used as raw prediction and to rank the
individuals. Hence, we have extended the burden test by Emerson et al. (2017) to k-mers and to
adaptive thresholds that are adjusted on a validation set.

A4.6 Logistic MIL (Ostmeyer et al)

The logistic multiple instance learning (MIL) approach for immune repertoire classification (Ostmeyer
et al., 2019) applies a logistic regression model to each k-mer representation in a bag. The resulting
scores are then summarized by max-pooling to obtain a prediction for the bag. Each amino acid
of each k-mer is represented by 5 features, the so-called Atchley factors (Atchley et al., 2005). As
k-mers of length 4 are used, this gives a total of 4×5 = 20 features. One additional feature per 4-mer
is added, which represents the relative frequency of this 4-mer with respect to its containing bag,
resulting in 21 features per 4-mer. Two options for the relative frequency feature exist, which are (a)
whether the frequency of the 4-mer (“4MER”) or (b) the frequency of the sequence in which the 4-mer
appeared (“TCRβ”) is used. We optimized the learning rate, batch size, and early stopping parameter
on the validation set. The settings of the full hyperparameter search as well as the respective value
ranges are given in Table A8.

20

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

A5 Hyperparameter selection

For all competing methods a hyperparameter search was performed, for which we split each of the 5
training sets into an inner training set and inner validation set. The models were trained on the inner
training set and evaluated on the inner validation set. The model with the highest AUC score on the
inner validation set is then used to calculate the score on the respective test set. Here we report the
hyperparameter sets and search strategy that is used for all methods.

DeepRC. The set of hyperparameters of DeepRC is shown in Table A3. These hyperparameter
combinations are adjusted via a grid search procedure.

learning rate 10−4

number of kernels (dv) {8; 16; 32; 64∗; 128∗; 256∗}
number of CNN layers {1}
number of layers in key-NN {2}
number of units in key-NN {32}
kernel size {5; 7; 9}
subsampled seqences 10, 000
batch size 4

Table A3: DeepRC hyperparameter search space. Every 5 · 103 updates, the current model
was evaluated against the validation fold. The early stopping hyperparameter was determined by
selecting the model with the best loss on the validation fold after 105 updates. ∗: Experiments for
{64; 128; 256} kernels were omitted for datasets with motif implantation probabilities ≥ 1% in the
category “simulated immunosequencing data”.

Known motif. This method does not have hyperparameters and has been applied to all datasets
except for the CMV dataset.

SVM. The corresponding hyperparameter C of the SVM is optimized by randomly drawing 103

values in the range of [−6; 6] according to a uniform distribution. These values act as the exponents
of a power of 10 and are applied for each of the two kernel types (see Table A4a).

C 10{−6;6}

type of kernel {MinMax; Jaccard}
number of trials 103

(a)

Settings used in the hyperparameter search of the SVM baseline approach. The number of trials
defines the quantity of random values of the C penalty term (per type of kernel).

KNN. The amount of neighbors is treated as the hyperparameter and optimized by grid search
operating in the discrete range of [1; max{N, 103}] with a step size of 1. The corresponding tight
upper bound is automatically defined by the total amount of samples N ∈ N>0 in the training set,
capped at 103 (see Table A5).

number of neighbors {1; max{N, 103}}
type of kernel {MinMax; Jaccard}

Table A5: Settings used in the hyperparameter search of the KNN baseline approach. The number of
trials (per type of kernel) is automatically defined by the total amount of samples N ∈ N>0 in the
training set, capped at 103.

Logistic regression. The hyperparameter optimization strategy that was used was grid search
across hyperparameters given in Table A6.

21

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

learning rate 10−{2;3;4}

batch size 4
max. updates 105

coefficient β1 (Adam) 0.9
coefficient β2 (Adam) 0.999
weight decay weightings {(l1 = 10−7, l2 = 10−3); (l1 = 10−7, l2 = 10−5)}

Table A6: Settings used in the hyperparameter search of the logistic regression baseline approach.

Burden test. The burden test selects two hyperparameters: the number of features in the burden set
and the type of features, see Table A7.

number of features in burden set {50, 100, 150, 250}
type of features {4MER; sequence}

Table A7: Settings used in the hyperparameter search of the burden test approach.

Logistic MIL. For this method, we adjusted the learning rate as well as the batch size as hyperpa-
rameters by randomly drawing 25 different hyperparameter combinations from a uniform distribution.
The corresponding range of the learning rate is [−4.5;−1.5], which acts as the exponent of a power
of 10. The batch size lies within the range of [1; 32]. For each hyperparameter combination, a model
is optimized by gradient descent using Adam, whereas the early stopping parameter is adjusted
according to the corresponding validation set (see Table A8).

learning rate 10{−4.5;−1.5}

batch size {1; 32}
relative abundance term {4MER; TCRβ}
number of trials 25
max. epochs 102

coefficient β1 (Adam) 0.9
coefficient β2 (Adam) 0.999

Table A8: Settings used in the hyperparameter search of the logistic MIL baseline approach. The
number of trials (per type of relative abundance) defines the quantity of combinations of random
values of the learning rate as well as the batch size.

22

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

A6 Results

In this section, we report the detailed results on all four categories of datasets (a) simulated immunose-
quencing data (Table A9) (b) LSTM-generated data (Table A10), (c) real-world data with implanted
signals (Table A11), and (d) real-world data on the CMV dataset (Table A12), as discussed in the
main paper.

ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 avg.

motif freq. ρ 1% 0.1% 0.01% 1% 0.1% 0.01% 1% 0.1% 0.01% 1% 0.1% 0.01% 1% 0.1% 0.01% 1% 0.1% 0.01% –

implanted motif SFEN SFEN SFEN SFdEN SFdEN SFdEN SFZN SFZN SFZN SFdZN SFdZN SFdZN SZZN SZZN SZZN SZdZN SZdZN SZdZN –

DeepRC 1.000 1.000 0.703 1.000 1.000 0.600 1.000 1.000 0.509 1.000 1.000 0.492 1.000 0.997 0.487 0.999 0.942 0.492 0.864

± 0.000 ± 0.000 ± 0.271 ± 0.000 ± 0.000 ± 0.218 ± 0.000 ± 0.000 ± 0.029 ± 0.000 ± 0.001 ± 0.017 ± 0.001 ± 0.002 ± 0.023 ± 0.001 ± 0.048 ± 0.013 ± 0.223

SVM (MinMax) 1.000 1.000 0.764 1.000 1.000 0.603 1.000 0.998 0.539 1.000 0.994 0.529 1.000 0.741 0.513 1.000 0.706 0.503 0.827

± 0.000 ± 0.000 ± 0.016 ± 0.000 ± 0.000 ± 0.021 ± 0.000 ± 0.002 ± 0.024 ± 0.000 ± 0.004 ± 0.016 ± 0.000 ± 0.024 ± 0.006 ± 0.000 ± 0.013 ± 0.013 ± 0.210

SVM (Jaccard) 0.783 0.505 0.500 0.656 0.504 0.492 0.629 0.499 0.505 0.594 0.508 0.497 0.620 0.496 0.506 0.595 0.507 0.505 0.550

± 0.010 ± 0.009 ± 0.010 ± 0.009 ± 0.018 ± 0.018 ± 0.011 ± 0.010 ± 0.009 ± 0.007 ± 0.017 ± 0.013 ± 0.007 ± 0.006 ± 0.019 ± 0.013 ± 0.012 ± 0.017 ± 0.080

KNN (MinMax) 0.669 0.802 0.503 0.722 0.757 0.493 0.766 0.678 0.496 0.762 0.652 0.489 0.797 0.512 0.498 0.796 0.511 0.503 0.634

± 0.204 ± 0.265 ± 0.038 ± 0.214 ± 0.255 ± 0.017 ± 0.241 ± 0.165 ± 0.014 ± 0.237 ± 0.139 ± 0.015 ± 0.271 ± 0.023 ± 0.014 ± 0.270 ± 0.037 ± 0.006 ± 0.129

KNN (Jaccard) 0.516 0.493 0.497 0.506 0.500 0.492 0.509 0.493 0.497 0.495 0.504 0.500 0.502 0.497 0.500 0.502 0.503 0.513 0.501

± 0.035 ± 0.020 ± 0.013 ± 0.015 ± 0.019 ± 0.014 ± 0.017 ± 0.011 ± 0.018 ± 0.013 ± 0.004 ± 0.017 ± 0.011 ± 0.017 ± 0.022 ± 0.015 ± 0.020 ± 0.012 ± 0.007

Logistic regression 1.000 1.000 0.786 1.000 1.000 0.607 1.000 0.997 0.527 1.000 0.992 0.526 1.000 0.719 0.505 1.000 0.694 0.510 0.826

± 0.000 ± 0.000 ± 0.009 ± 0.000 ± 0.000 ± 0.025 ± 0.000 ± 0.002 ± 0.018 ± 0.000 ± 0.004 ± 0.019 ± 0.000 ± 0.019 ± 0.015 ± 0.001 ± 0.021 ± 0.017 ± 0.211

Logistic MIL (KMER) 1.000 1.000 0.509 1.000 0.783 0.489 1.000 0.544 0.517 1.000 0.529 0.483 0.579 0.498 0.502 0.550 0.488 0.498 0.665

± 0.000 ± 0.000 ± 0.039 ± 0.000 ± 0.216 ± 0.023 ± 0.000 ± 0.038 ± 0.018 ± 0.000 ± 0.043 ± 0.007 ± 0.042 ± 0.017 ± 0.018 ± 0.051 ± 0.009 ± 0.005 ± 0.224

Logistic MIL (TCRβ) 0.544 0.505 0.493 0.487 0.476 0.500 0.520 0.495 0.510 0.492 0.506 0.503 0.509 0.505 0.500 0.475 0.489 0.500 0.501

± 0.078 ± 0.014 ± 0.018 ± 0.021 ± 0.019 ± 0.022 ± 0.053 ± 0.009 ± 0.022 ± 0.014 ± 0.019 ± 0.010 ± 0.034 ± 0.009 ± 0.011 ± 0.013 ± 0.024 ± 0.019 ± 0.016

Burden test 0.770 0.523 0.510 0.666 0.510 0.509 0.652 0.508 0.505 0.583 0.508 0.509 0.564 0.508 0.507 0.536 0.508 0.504 0.549

± 0.013 ± 0.013 ± 0.014 ± 0.011 ± 0.009 ± 0.007 ± 0.008 ± 0.011 ± 0.012 ± 0.012 ± 0.007 ± 0.014 ± 0.017 ± 0.010 ± 0.020 ± 0.012 ± 0.016 ± 0.016 ± 0.074

Known motif b. 1.000 1.000 0.973 1.000 1.000 0.865 1.000 1.000 0.700 1.000 0.989 0.609 1.000 0.946 0.570 1.000 0.834 0.532 0.890

± 0.000 ± 0.000 ± 0.004 ± 0.000 ± 0.000 ± 0.004 ± 0.000 ± 0.000 ± 0.020 ± 0.000 ± 0.002 ± 0.017 ± 0.000 ± 0.010 ± 0.024 ± 0.000 ± 0.016 ± 0.020 ± 0.168

Known motif c. 0.999 0.720 0.529 0.999 0.698 0.534 0.999 0.694 0.532 1.000 0.696 0.527 0.997 0.666 0.520 0.998 0.668 0.509 0.738

± 0.001 ± 0.014 ± 0.020 ± 0.001 ± 0.013 ± 0.017 ± 0.001 ± 0.012 ± 0.012 ± 0.001 ± 0.018 ± 0.018 ± 0.002 ± 0.010 ± 0.009 ± 0.002 ± 0.012 ± 0.013 ± 0.202

Table A9: AUC estimates based on 5-fold CV for all 18 datasets in category “simulated immunose-
quencing data”. The reported errors are standard deviations across the 5 cross-validation folds
except for the last column “avg.”, in which they show standard deviations across datasets. Wildcard
characters in motifs are indicated by Z, characters with 50% probability of being removed by d.

23

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

ID 0 1 2 3 4 avg.

motif freq. ρ 10% 1% 0.5% 0.1% 0.05% –

implanted motif GrSrArFr GrSrArFr GrSrArFr GrSrArFr GrSrArFr –

DeepRC 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.998 ± 0.002 1.000 ± 0.001

SVM (MinMax) 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.001 0.999 ± 0.002 0.985 ± 0.014 0.997 ± 0.007

SVM (Jaccard) 0.981 ± 0.041 1.000 ± 0.000 1.000 ± 0.000 0.904 ± 0.036 0.768 ± 0.068 0.931 ± 0.099

KNN (MinMax) 0.699 ± 0.272 0.717 ± 0.263 0.732 ± 0.263 0.536 ± 0.156 0.516 ± 0.153 0.640 ± 0.105

KNN (Jaccard) 0.698 ± 0.285 0.606 ± 0.237 0.523 ± 0.164 0.550 ± 0.186 0.539 ± 0.194 0.583 ± 0.071

Logistic regression 1.000 ± 0.000 1.000 ± 0.000 0.934 ± 0.147 0.604 ± 0.193 0.427 ± 0.156 0.793 ± 0.262

Logistic MIL (KMER) 0.997 ± 0.004 0.718 ± 0.112 0.637 ± 0.144 0.571 ± 0.146 0.528 ± 0.129 0.690 ± 0.186

Logistic MIL (TCRβ) 0.541 ± 0.086 0.566 ± 0.162 0.468 ± 0.086 0.505 ± 0.067 0.500 ± 0.121 0.516 ± 0.038

Burden test 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.003 0.792 ± 0.280 0.958 ± 0.093

Known motif b. 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.003 0.999 ± 0.003 1.000 ± 0.001

Known motif c. 1.000 ± 0.000 1.000 ± 0.000 0.989 ± 0.011 0.722 ± 0.085 0.626 ± 0.094 0.867 ± 0.180

Table A10: AUC estimates based on 5-fold CV for all 5 datasets in category “LSTM-generated data”.
The reported errors are standard deviations across the 5 cross-validation folds except for the last
column “avg.”, in which they show standard deviations across datasets. Characters affected by noise,
as described in A3, paragraph “LSTM-generated data”, are indicated by r.

24

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

OM 1% OM 0.1% MM 1% MM 0.1% Avg.

DeepRC 1.000 ± 0.000 0.984 ± 0.008 0.999 ± 0.001 0.938 ± 0.009 0.980 ± 0.029

SVM (MinMax) 1.000 ± 0.000 0.578 ± 0.020 1.000 ± 0.000 0.531 ± 0.019 0.777 ± 0.258

SVM (Jaccard) 0.988 ± 0.003 0.527 ± 0.016 1.000 ± 0.000 0.574 ± 0.019 0.772 ± 0.257

KNN (MinMax) 0.744 ± 0.237 0.486 ± 0.031 0.674 ± 0.182 0.500 ± 0.022 0.601 ± 0.128

KNN (Jaccard) 0.652 ± 0.155 0.484 ± 0.025 0.695 ± 0.200 0.508 ± 0.025 0.585 ± 0.104

Logistic regression 1.000 ± 0.000 0.544 ± 0.035 0.991 ± 0.003 0.512 ± 0.035 0.762 ± 0.270

Logistic MIL (KMER) 0.541 ± 0.074 0.506 ± 0.034 0.994 ± 0.004 0.620 ± 0.153 0.665 ± 0.224

Logistic MIL (TCRβ) 0.503 ± 0.032 0.501 ± 0.016 0.992 ± 0.003 0.782 ± 0.030 0.695 ± 0.238

Burden test 1.000 ± 0.000 0.640 ± 0.048 1.000 ± 0.000 0.891 ± 0.016 0.883 ± 0.170

Known motif b. 1.000 ± 0.000 0.704 ± 0.028 0.994 ± 0.003 0.620 ± 0.038 0.830 ± 0.196

Known motif c. 0.920 ± 0.004 0.562 ± 0.028 0.647 ± 0.030 0.515 ± 0.031 0.661 ± 0.181

Table A11: AUC estimates based on 5-fold CV for all 4 datasets in category “real-world data with
implanted signals”. The reported errors are standard deviations across the 5 cross-validation folds
except for the last column “avg.”, in which they show standard deviations across datasets. OM 1%:
In this dataset, a single motif with a frequency of 1% was implanted. OM 0.1%: In this dataset, a
single motif with a frequency of 0.1% was implanted. MM 1%: In this dataset, multiple motifs with
a frequency of 1% were implanted. MM 0.1%: In this dataset, multiple motifs with a frequency
of 0.1% were implanted. A detailed description of the motifs is provided in Section A3, paragraph
“Real-world data with implanted signals.”.

AUC F1 score Balanced accuracy Accuracy

DeepRC 0.831 ± 0.002 0.726 ± 0.050 0.741 ± 0.043 0.727 ± 0.049

SVM (MinMax) 0.825 ± 0.022 0.680 ± 0.056 0.734 ± 0.037 0.742 ± 0.031

SVM (Jaccard) 0.546 ± 0.021 0.272 ± 0.184 0.523 ± 0.026 0.542 ± 0.032

KNN (MinMax) 0.679 ± 0.076 0.000 ± 0.000 0.500 ± 0.000 0.545 ± 0.044

KNN (Jaccard) 0.534 ± 0.039 0.073 ± 0.101 0.508 ± 0.012 0.551 ± 0.042

Logistic regression 0.607 ± 0.058 0.244 ± 0.206 0.552 ± 0.049 0.590 ± 0.019

Logistic MIL (KMER) 0.582 ± 0.065 0.118 ± 0.264 0.503 ± 0.007 0.515 ± 0.058

Logistic MIL (TCRβ) 0.515 ± 0.073 0.000 ± 0.000 0.496 ± 0.008 0.541 ± 0.039

Burden test 0.699 ± 0.041 - - -

Table A12: Results on the CMV dataset (real-world data) in terms of AUC, F1 score, balanced
accuracy, and accuracy. For F1 score, balanced accuracy, and accuracy, all methods use their default
thresholds. Each entry shows mean and standard deviation across 5 cross-validation folds.

25

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

A7 Repertoire generation via LSTM

We trained a conventional next-character LSTM model (Graves, 2013) based on the implementation in
https://github.com/spro/practical-pytorch (access date 1st of May, 2020) using PyTorch
1.3.1 (Paszke et al., 2019). For this, we applied an LSTM model with 100 LSTM blocks in 2 layers,
which was trained for 5, 000 epochs using the Adam optimizer (Kingma & Ba, 2014) with learning
rate 0.01, an input batch size of 100 character chunks, and a character chunk length of 200. As
input we used the immuno-sequences in the CDR3 column of the CMV dataset, where we repeated
sequences according to their counts in the repertoires, as specified in the templates column of the
CMV dataset. We excluded repertoires with unknown CMV status and unknown sequence abundance
from training.

After training, we generated 1, 000 repertoires using a temperature value of 0.8. The number of
sequences per repertoire was sampled from a Gaussian N (µ = 285k, σ = 156k) distribution, where
the whole repertoire was generated by the LSTM at once. That is, the LSTM can base the generation
of the individual AA sequences in a repertoire, including the AAs and the lengths of the sequences,
on the generated repertoire. A random immuno-sequence from the trained-on repertoires was used as
initialization for the generation process. This immuno-sequence was not included in the generated
repertoire.

Finally, we randomly assigned 500 of the generated repertoires to the positive (diseased) and 500 to
the negative (healthy) class. We then implanted motifs in the positive class repertoires as described in
Section A3.2.

As illustrated in the comparison of histograms given in Fig. A2, the generated immuno-sequences
exhibit a very similar distribution of 4-mers and AAs compared to the original CMV dataset.

26

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://github.com/spro/practical-pytorch
https://doi.org/10.1101/2020.04.12.038158

Real-world data LSTM-generated data

a) b)

c) d)

e) f)

Figure A2: Distribution of AAs and k-mers in real-world CMV dataset and LSTM-generated data.
Left: Histograms of real-world data. Right: Histograms of LSTM-generated data. a) Frequency of
AAs in sequences of the CMV dataset. b) Frequency of AAs in sequences of the LSTM-generated
datasets. c) Frequency of top 200 4-mers in sequences of the CMV dataset. d) Frequency of top 200
4-mers in sequences of the LSTM-generated datasets. e) Frequency of top 20 4-mers in sequences
of the CMV dataset. f) Frequency of top 20 4-mers in sequences of the LSTM-generated datasets.
Overall the distributions of AAs and 4-mers are similar in both datasets.

27

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

A8 Interpreting DeepRC

DeepRC allows for two forms of interpretability methods. (a) Due to its attention-based design, a
trained model can be used to compute the attention weights of a sequence, which directly indicates
its importance. (b) DeepRC furthermore allows for the usage of contribution analysis methods,
such as Integrated Gradients (IG) (Sundararajan et al., 2017) or Layer-Wise Relevance Propagation
(Montavon et al., 2018; Arras et al., 2019; Montavon et al., 2019; Preuer et al., 2019). We apply
IG to identify the input patterns that are relevant for the classification. To identify AA patterns
with high contributions in the input sequences, we apply IG to the AAs in the input sequences.
Additionally, we apply IG to the kernels of the 1D CNN, which allows us to identify AA motifs with
high contributions. In detail, we compute the IG contributions for the AAs and positional features
in the kernels for every repertoire in the validation and test set, so as to exclude potential artifacts
caused by over-fitting. Averaging the IG values over these repertoires then results in concise AA
motifs. We include qualitative visual analyses of the IG method on different datasets below.

Here, we provide examples for the interpretation of trained DeepRC models using Integrated Gradients
(IG) (Sundararajan et al., 2017) as contribution analysis method. The following illustrations were
created using 50 IG steps, which we found sufficient to achieve stable IG results.

A visual analysis of DeepRC models on the simulated datasets, as illustrated in Tab. A13 and Fig. A3,
shows that the implanted motifs can be successfully extracted from the trained model and are straight-
forward to interpret. In the real-world CMV dataset, DeepRC finds complex patterns with high
variability in the center regions of the immuno-sequences, as illustrated in figure A4.

Simulated

extracted motif

implanted motif(s) SFEN SFdEN SZZN SZdZN

motif freq. ρ 0.01% 0.01% 0.1% 0.1%

LSTM-generated Real-world data with implanted signals

extracted motif

implanted motif(s) GrSrArFr LrDrRr {LrDrRr; CrArS; GrL-N}

motif freq. ρ 0.05% 0.1% 0.1%

Table A13: Visualization of motifs extracted from trained DeepRC models for datasets from categories
“simulated immunosequencing data”, “LSTM-generated data”, and “real-world data with implanted
signals”. Motif extraction was performed using Integrated Gradients on the 1D CNN kernels over
the validation set and test set repertoires of one CV fold. Wildcard characters are indicated by Z,
random noise on characters by r, characters with 50% probability of being removed by d, and gap
locations of random lengths of {0; 1; 2} by -. Larger characters in the extracted motifs indicate
higher contribution, with blue indicating positive contribution and red indicating negative contribution
towards the prediction of the diseased class. Contributions to positional encoding are indicated by
< (beginning of sequence), ∧ (center of sequence), and > (end of sequence). Only kernels with
relatively high contributions are shown, i.e. with contributions roughly greater than the average
contribution of all kernels.

28

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

a)

b)

c)

Figure A3: Integrated Gradients applied to input sequences of positive class repertoires. Three
sequences with the highest contributions to the prediction of their respective repertoires are shown.
a) Input sequence taken from “simulated immunosequencing data” with implanted motif SZdZdN
and motif implantation probability 0.1%. The DeepRC model reacts to the S and N at the 5th and
8th sequence position, thereby identifying the implanted motif in this sequence. b) and c) Input
sequence taken from “real-world data with implanted signals” with implanted motifs {LrDrRr; CrArS;
GrL-N} and motif implantation probability 0.1%. The DeepRC model reacts to the fully implanted
motif CAS (b) and to the partly implanted motif AAs C and A at the 5th and 7th sequence position (c),
thereby identifying the implanted motif in the sequences. Wildcard characters in implanted motifs are
indicated by Z, characters with 50% probability of being removed by d, and gap locations of random
lengths of {0; 1; 2} by -. Larger characters in the sequences indicate higher contribution, with blue
indicating positive contribution and red indicating negative contribution towards the prediction of the
diseased class.

29

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

Figure A4: Visualization of the contributions of characters within a sequence via IG. Each sequence
was selected from a different repertoire and showed the highest contribution in its repertoire. The
model was trained on CMV dataset, using a kernel size of 9, 32 kernels and 137 repertoires for early
stopping. Larger characters in the extracted motifs indicate higher contribution, with blue indicating
positive contribution and red indicating negative contribution towards the prediction of the disease
class.

30

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

A9 Attention values for previously associated CMV sequences

Table A14 lists sequences of the CMV dataset that were previously associated with CMV immune
status and their assigned high attention values by DeepRC.

index sequence attention quantile index sequence attention quantile index sequence attention quantile index sequence attention quantile

1 CASSGQGAYEQYF 1.000 0.999 42 CASSLGGAGDTQYF 1.000 1.000 83 CASSYVRTGGNYGYTF 0.967 0.932 124 CASSLTGGNSGNTIYF 0.991 0.977

2 CASSIGPLEHNEQFF 0.947 0.900 43 CASNRDRGRYEQYF 0.991 0.978 84 CASSLAGVDYEQYF 0.999 0.996 125 CASSRNRGQETQYF 0.978 0.952

3 CASSPDRVGQETQYF 0.995 0.987 44 CSVRDNHNQPQHF 0.965 0.929 85 CASSLGAGNQPQHF 1.000 0.999 126 CASSLGQGLAEAFF 0.996 0.989

4 CASSLEAEYEQYF 0.992 0.980 45 CASSAQGAYEQYF 0.998 0.995 86 CASSRDRNYGYTF 0.998 0.995 127 CASRTGESGYTF 0.985 0.965

5 CASSIEGNQPQHF 0.993 0.983 46 CATSRGTVSYEQYF 0.990 0.975 87 CASGRDTYEQYF 0.999 0.997 128 CASSSDSGGTDTQYF 0.951 0.906

6 CATSDGDEQFF 0.998 0.996 47 CASSPPSGLTDTQYF 0.978 0.951 88 CAWSVSDLAKNIQYF 0.954 0.911 129 CASSVDGGRGTEAFF 0.995 0.987

7 CASSLVAGGRETQYF 0.988 0.971 48 CASSGDRLYEQYF 0.998 0.994 89 CASSPNQETQYF 0.999 0.996 130 CSVEVRGTDTQYF 0.955 0.912

8 CASSRGRQETQYF 0.997 0.993 49 CASSLNRGQETQYF 0.996 0.988 90 CSASDHEQYF 0.995 0.986 131 CASSESGDPSSYEQYF 0.980 0.955

9 CASSAGQGVTYEQYF 0.998 0.995 50 CASSLGVGPYNEQFF 0.986 0.967 91 CASSWDRDNSPLHF 0.918 0.855 132 CASSEEAGGSGYTF 0.982 0.959

10 CASSQNRGQETQYF 0.995 0.987 51 CATSDSVTNTGELFF 0.989 0.973 92 CASSPGQEAGANVLTF 0.823 0.728 133 CAISESQDRGHEQYF 0.823 0.728

11 CASSPQRNTEAFF 1.000 0.999 52 CASSRNRESNQPQHF 0.968 0.934 93 CASSLVAAGRETQYF 0.959 0.919 134 CASSPTGGELFF 0.989 0.974

12 CASSLAPGATNEKLFF 0.976 0.949 53 CASSEARTRAFF 0.927 0.869 94 CASSPHRNTEAFF 0.999 0.998 135 CASSVETGGTEAFF 0.995 0.986

13 CASSLIGVSSYNEQFF 0.983 0.961 54 CASSYNPYSNQPQHF 0.892 0.819 95 CASRGQGWDEKLFF 0.994 0.984 136 CASASANYGYTF 0.816 0.720

14 CSVRDNFNQPQHF 0.915 0.851 55 CASSLGHRDSSYEQYF 0.987 0.969 96 CASSQVETDTQYF 0.994 0.984 137 CASSSRTGEETQYF 0.996 0.988

15 CASSQTGGRNQPQHF 0.997 0.992 56 CASSRLAASTDTQYF 0.992 0.979 97 CASRDWDYTDTQYF 0.994 0.984 138 CASSLGRGYEKLFF 0.985 0.965

16 CASSLVIGGDTEAFF 0.966 0.931 57 CASSVTGGTDTQYF 1.000 0.999 98 CASSSDRVGQETQYF 0.980 0.955 139 CASSGLNEQFF 0.994 0.984

17 CASSLRREKLFF 0.998 0.993 58 CASSPPGQGSDTQYF 0.975 0.946 99 CASSLGDRPDTQYF 0.940 0.889 140 CASSRNRAQETQYF 0.994 0.984

18 CASSFHGFNQPQHF 0.991 0.978 59 CATSDSRTGGQETQYF 0.900 0.829 100 CASSLEGQGFGYTF 0.944 0.895 141 CASTPGDEQFF 0.988 0.971

19 CATSRDTQGSYGYTF 0.917 0.854 60 CASSSPGRSGANVLTF 0.995 0.986 101 CASSSGQVYGYTF 0.999 0.996 142 CASSLGIDTQYF 0.997 0.991

20 CASSRLAGGTDTQYF 0.999 0.998 61 CASSPLSDTQYF 0.998 0.994 102 CASSEEGIQPQHF 0.998 0.994 143 CASSIRTNYYGYTF 0.996 0.990

21 CASSFPTSGQETQYF 0.982 0.959 62 CASSLTGGRNQPQHF 0.999 0.997 103 CASSLETYGYTF 0.998 0.995 144 CASSPISNEQFF 0.967 0.933

22 CASSPGDEQYF 0.998 0.993 63 CASSIQGYSNQPQHF 0.993 0.983 104 CASSFPGGETQYF 0.992 0.979 145 CASSQNRAQETQYF 0.984 0.962

23 CASSLPSGLTDTQYF 0.994 0.985 64 CASSTTGGDGYTF 0.978 0.952 105 CASSSGQVQETQYF 0.997 0.993 146 CASSALGGAGTGELFF 0.985 0.964

24 CASSEIPNTEAFF 0.997 0.992 65 CASSVLAGPTDTQYF 0.951 0.906 106 CASSEGARQPQHF 0.999 0.998 147 CASSLAVLPTDTQYF 0.996 0.989

25 CASSIWGLDTEAFF 0.959 0.919 66 CASSHRDRNYEQYF 0.987 0.969 107 CSALGHSNQPQHF 0.926 0.867 148 CASSLQAGANEQFF 0.969 0.935

26 CASSPGDEQFF 0.999 0.997 67 CASSPSRNTEAFF 0.999 0.998 108 CASSLLWDQPQHF 0.986 0.967 149 CASSTGGAQPQHF 0.998 0.993

27 CATSRDSQGSYGYTF 0.980 0.955 68 CASSLGGPGDTQYF 0.993 0.982 109 CASSLVGDGYTF 1.000 1.000 150 CASSLGASGSRTDTQYF 0.932 0.876

28 CASSYGGLGSYEQYF 0.995 0.987 69 CASSEARGGVEKLFF 0.989 0.974 110 CASSSRGTGELFF 0.999 0.997 151 CASSRGTGATDTQYF 0.999 0.998

29 CASSPSTGTEAFF 0.997 0.992 70 CASSTGTSGSYEQYF 0.999 0.998 111 CATSRVAGETQYF 0.980 0.955 152 CASSYPGETQYF 0.997 0.992

30 CSVEEDEGIYGYTF 0.964 0.927 71 CASRSDSGANVLTF 0.973 0.942 112 CASRGQGAGELFF 0.987 0.969 153 CASSLTDTGELFF 0.994 0.984

31 CASSPAGLNTEAFF 0.996 0.988 72 CASSLEAENEQFF 0.973 0.943 113 CASSPGGTQYF 0.999 0.996 154 CASRPQGNYGYTF 0.998 0.996

32 CASSLGLKGTQYF 0.964 0.928 73 CASSEAPSTSTDTQYF 0.989 0.973 114 CASSLQGINQPQHF 0.999 0.997 155 CASSTSGNTIYF 1.000 0.999

33 CASMGGASYEQYF 0.991 0.978 74 CASSLQGADTQYF 0.997 0.991 115 CASSQGRHTDTQYF 0.960 0.921 156 CASSSGTGDEQYF 1.000 1.000

34 CASSQVPGQGDNEQFF 0.983 0.961 75 CASSLEGQQPQHF 0.994 0.984 116 CASSPRWQETQYF 0.991 0.978 157 CASSPPAGTNYGYTF 0.947 0.900

35 CATSDGDTQYF 0.996 0.989 76 CASSYGGEGYTF 0.999 0.996 117 CASRDRDRVNTEAFF 0.970 0.938 158 CASSPLGGTTEAFF 0.995 0.988

36 CATSDGETQYF 0.998 0.994 77 CASSLRGSSYNEQFF 0.999 0.998 118 CASSWDRGTEAFF 0.999 0.999 159 CASSLGWTEAFF 0.999 0.997

37 CSVRDNYNQPQHF 0.998 0.993 78 CASSISAGEAFF 0.992 0.979 119 CASSRPGQGNTEAFF 0.994 0.984 160 CATSREGSGYEQYF 0.987 0.969

38 CASSLVASGRETQYF 0.997 0.991 79 CASRPTGYEQYF 0.987 0.969 120 CASSPGSGANVLTF 0.999 0.997 161 CASSYAGDGYTF 0.992 0.980

39 CSASPGQGASYGYTF 0.987 0.969 80 CAWRGTGNSPLHF 0.964 0.927 121 CASRRGSSYEQYF 0.999 0.998 162 CASSDRGNTGELFF 0.995 0.986

40 CASSESGHRNQPQHF 0.999 0.997 81 CASSLGDRAYNEQFF 0.996 0.988 122 CASRTDSGANVLTF 0.994 0.986 163 CSARRGPGELFF 0.839 0.749

41 CASSLGHRDPNTGELFF 0.981 0.958 82 CASSLQGYSNQPQHF 1.000 0.999 123 CASSQDPRGTEAFF 0.950 0.905 164 CASSQGLQETQYF 0.996 0.990

Table A14: TCRβ sequences that had been discovered by Emerson et al. (2017) with their associated
attention values by DeepRC. These sequences have significantly (p-value 1.3e-93) higher attention
values than other sequences. The column "quantile" provides the quantile values of the empiricial
distribution of attention values across all sequences in the dataset.

31

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

A10 DeepRC variations and ablation study

In this section we investigate the impact of different variations of DeepRC on the performance on
the CMV dataset. We consider both a CNN-based sequence embedding, as used in the main paper,
and an LSTM-based sequence embedding. In both cases we vary the number of attention heads and
the β parameter for the softmax function the attention mechanism (see Eq. 2 in main paper). For the
CNN-based sequence embedding we also vary the number of CNN kernels and the kernel sizes used
in the 1D CNN. For the LSTM-based sequence embedding we use one one-directional LSTM layer,
of which the output values at the last sequence position (without padding) are taken as embedding of
the sequence. Here we vary the number of LSTM blocks in the LSTM layer. To counter over-fitting
due to the increased complexity of these DeepRC variations, we added a l2 weight penalty to the
training loss. The factor with which the l2 weight penalty contributes to the training loss is varied
over 3 orders of magnitudes, where suitable value ranges were manually determined on one of the
training folds beforehand.

To reduce the computational effort, we do not consider all numbers of kernels that were considered
in the main paper. Furthermore, we only compute the AUC scores on 3 of the 5 cross-validation
folds. The hyperparameters, which were used in a grid search procedure, are listed in Tab. A15 for
the CNN-based sequence embedding and Tab. A16 for the LSTM-based sequence embedding.

Results. We show performance in terms of AUC score with single hyperparameters set to fixed
values so as to investigate their influence in Tab. A18 for the CNN-based sequence embedding and
Tab. A17 for the LSTM-based sequence embedding. We note that due to restricted computational
resources this study was conducted with fewer different numbers of CNN kernels, with the AUC
estimated from only 3 of the 5 cross-validation folds, which leads to a slight decrease of performance
in comparison to the full hyperparameter search and cross-validation procedure used in the main
paper. As can be seen in Tab. A18 and A17, the LSTM-based sequence embedding generalizes
slightly better than the CNN-based sequence embedding. The performance of DeepRC, however,
remains rather robust w.r.t. the different hyperparameter settings.

learning rate 10−4

number of attention heads {1; 16; 64}
β of attention softmax {0.1; 1.0; 10.0}
l2 weight penalty {1.0; 0.1; 0.01}
number of kernels {8; 32; 128}
number of CNN layers {1}
number of layers in key-NN {2}
number of units in key-NN {32}
kernel size {5; 7; 9}
subsampled seqences 10, 000

batch size 4

Table A15: Hyperparameter search space for DeepRC variations with CNN-based sequence embed-
ding. Every 5 · 103 updates, the current model was evaluated against the validation fold. The early
stopping hyperparameter was determined by selecting the model with the best loss on the validation
fold after 2 · 105 updates.

32

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

learning rate 10−4

number of attention heads {1; 16; 64}
β of attention softmax {0.1; 1.0; 10.0}
l2 weight penalty {0.01; 0.001; 0.0001}
number of LSTM blocks {8; 32; 128}
number of CNN layers {1}
number of layers in key-NN {2}
number of units in key-NN {32}
subsampled seqences 10, 000

batch size 4

Table A16: Hyperparameter search space for DeepRC variations with LSTM-based sequence embed-
ding. Every 5 · 103 updates, the current model was evaluated against the validation fold. The early
stopping hyperparameter was determined by selecting the model with the best loss on the validation
fold after 2 · 105 updates.

Fixed parameter Test set Validation set Training set

mean std mean std mean std

beta=0.1 0.827 ± 0.02 0.846 ± 0.033 0.976 ± 0.015

beta=1.0 0.82 ± 0.012 0.853 ± 0.031 0.979 ± 0.016

beta=10.0 0.823 ± 0.014 0.858 ± 0.033 0.934 ± 0.026

heads=1 0.838 ± 0.033 0.856 ± 0.029 0.966 ± 0.012

heads=16 0.817 ± 0.015 0.853 ± 0.028 0.972 ± 0.026

heads=64 0.823 ± 0.014 0.858 ± 0.033 0.934 ± 0.026

lstms=8 0.818 ± 0.011 0.837 ± 0.025 0.881 ± 0.013

lstms=32 0.814 ± 0.015 0.853 ± 0.029 0.948 ± 0.033

lstms=128 0.818 ± 0.018 0.859 ± 0.032 0.943 ± 0.028

Table A17: Impact of hyperparameters on DeepRC with LSTM for sequence encoding. Mean
(“mean”) and standard deviation (“std”) for the area under the ROC curve over the first 3 folds of a
5-fold nested cross-validation for different sub-sets of hyperparameters (“sub-set”) are shown. The
following sub-sets were considered: “full”: Full grid search over hyperparameters; “beta=*”: Grid
search over hyperparameters with reduction to specific value ∗ of beta value of attention softmax;
“heads=*”: Grid search over hyperparameters with reduction to specific number ∗ of attention heads;
“lstms=*”: Grid search over hyperparameters with reduction to specific number ∗ of LSTM blocks
for sequence embedding.

33

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

Fixed parameter Test set Validation set Training set

mean std mean std mean std

beta=0.1 0.833 ± 0.031 0.86 ± 0.025 0.94 ± 0.018

beta=1.0 0.799 ± 0.007 0.873 ± 0.017 0.954 ± 0.005

beta=10.0 0.817 ± 0.02 0.87 ± 0.022 0.962 ± 0.034

heads=1 0.822 ± 0.036 0.869 ± 0.022 0.943 ± 0.032

heads=16 0.808 ± 0.01 0.871 ± 0.025 0.965 ± 0.019

heads=64 0.796 ± 0.039 0.864 ± 0.018 0.927 ± 0.024

ksize=5 0.822 ± 0.036 0.866 ± 0.021 0.926 ± 0.026

ksize=7 0.817 ± 0.02 0.87 ± 0.022 0.962 ± 0.034

ksize=9 0.821 ± 0.016 0.869 ± 0.025 0.95 ± 0.031

kernels=8 0.825 ± 0.024 0.86 ± 0.027 0.928 ± 0.019

kernels=32 0.801 ± 0.001 0.877 ± 0.018 0.974 ± 0.017

kernels=128 0.824 ± 0.027 0.864 ± 0.023 0.931 ± 0.062

Table A18: Impact of hyperparameters on DeepRC with 1D CNN for sequence encoding. Mean
(“mean”) and standard deviation (“std”) for the area under the ROC curve over the first 3 folds of a
5-fold nested cross-validation for different sub-sets of hyperparameters (“sub-set”) are shown. The
following sub-sets were considered: “full”: Full grid search over hyperparameters; “beta=*”: Grid
search over hyperparameters with reduction to specific value ∗ of beta value of attention softmax;
“heads=*”: Grid search over hyperparameters with reduction to specific number ∗ of attention heads;
“ksize=*”: Grid search over hyperparameters with reduction to specific kernel size ∗ of 1D CNN
kernels for sequence embedding; “kernels=*”: Grid search over hyperparameters with reduction to
specific number ∗ of 1D CNN kernels for sequence embedding.

34

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

Bibliography

Akbar, R., Robert, P. A., Pavlović, M., Jeliazkov, J. R., Snapkov, I., Slabodkin, A., Weber, C. R.,
Scheffer, L., Miho, E., Haff, I. H., et al. A compact vocabulary of paratope-epitope interactions
enables predictability of antibody-antigen binding. bioRxiv, 2019.

Alipanahi, B., Delong, A., Weirauch, M. T., and Frey, B. J. Predicting the sequence specificities of
DNA- and RNA-binding proteins by deep learning. Nature Biotechnology, 33(8):831–838, 2015.

Arras, L., Arjona-Medina, J., Widrich, M., Montavon, G., Gillhofer, M., Müller, K.-R., Hochreiter, S.,
and Samek, W. Explaining and interpreting LSTMs. In Explainable AI: Interpreting, Explaining
and Visualizing Deep Learning, pp. 211–238. Springer, 2019.

Atchley, W. R., Zhao, J., Fernandes, A. D., and Drüke, T. Solving the protein sequence metric
problem. Proceedings of the National Academy of Sciences, 102(18):6395–6400, 2005.

Briggs, F., Fern, X. Z., and Raich, R. Rank-loss support instance machines for miml instance
annotation. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 534–542, 2012.

Brown, A. J., Snapkov, I., Akbar, R., Pavlović, M., Miho, E., Sandve, G. K., and Greiff, V. Augment-
ing adaptive immunity: progress and challenges in the quantitative engineering and analysis of
adaptive immune receptor repertoires. Molecular Systems Design & Engineering, 4(4):701–736,
2019.

Carbonneau, M.-A., Cheplygina, V., Granger, E., and Gagnon, G. Multiple instance learning: a
survey of problem characteristics and applications. Pattern Recognition, 77:329–353, 2018.

Christley, S., Scarborough, W., Salinas, E., Rounds, W. H., Toby, I. T., Fonner, J. M., Levin, M. K.,
Kim, M., Mock, S. A., Jordan, C., et al. VDJServer: a cloud-based analysis portal and data
commons for immune repertoire sequences and rearrangements. Frontiers in Immunology, 9:976,
2018.

Christophersen, A., Ráki, M., Bergseng, E., Lundin, K. E., Jahnsen, J., Sollid, L. M., and Qiao, S.-W.
Tetramer-visualized gluten-specific CD4+ T cells in blood as a potential diagnostic marker for
coeliac disease without oral gluten challenge. United European Gastroenterology Journal, 2(4):
268–278, 2014.

Corrie, B. D., Marthandan, N., Zimonja, B., Jaglale, J., Zhou, Y., Barr, E., Knoetze, N., Breden, F. M.,
Christley, S., Scott, J. K., et al. iReceptor: a platform for querying and analyzing antibody/B-cell
and T-cell receptor repertoire data across federated repositories. Immunological Reviews, 284(1):
24–41, 2018.

Cortes, C. and Vapnik, V. Support-vector networks. Machine learning, 20(3):273–297, 1995.

Dash, P., Fiore-Gartland, A. J., Hertz, T., Wang, G. C., Sharma, S., Souquette, A., Crawford, J. C.,
Clemens, E. B., Nguyen, T. H., Kedzierska, K., et al. Quantifiable predictive features define
epitope-specific T cell receptor repertoires. Nature, 547(7661):89–93, 2017.

Demircigil, M., Heusel, J., Löwe, M., Upgang, S., and Vermet, F. On a model of associative memory
with huge storage capacity. Journal of Statistical Physics, 168(2):288–299, 2017.

35

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT: pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, 2019.

Dietterich, T. G., Lathrop, R. H., and Lozano-Pérez, T. Solving the multiple instance problem with
axis-parallel rectangles. Artificial Intelligence, 89(1-2):31–71, 1997.

Elhanati, Y., Sethna, Z., Callan Jr, C. G., Mora, T., and Walczak, A. M. Predicting the spectrum of
TCR repertoire sharing with a data-driven model of recombination. Immunological Reviews, 284
(1):167–179, 2018.

Emerson, R. O., DeWitt, W. S., Vignali, M., Gravley, J., Hu, J. K., Osborne, E. J., Desmarais, C.,
Klinger, M., Carlson, C. S., Hansen, J. A., et al. Immunosequencing identifies signatures of
cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire. Nature
Genetics, 49(5):659, 2017.

Fischer, D. S., Wu, Y., Schubert, B., and Theis, F. J. Predicting antigen-specificity of single T-cells
based on TCR CDR3 regions. bioRxiv, 2019.

Foulds, J. and Frank, E. A review of multi-instance learning assumptions. The Knowledge Engineering
Review, 25(1):1–25, 2010.

Galson, J. D., Schaetzle, S., Bashford-Rogers, R. J. M., Raybould, M. I. J., Kovaltsuk, A., Kilpatrick,
G. J., Minter, R., Finch, D. K., Dias, J., James, L., Thomas, G., Lee, W.-Y. J., Betley, J., Cavlan,
O., Leech, A., Deane, C. M., Seoane, J., Caldas, C., Pennington, D., Pfeffer, P., and Osbourn, J.
Deep sequencing of B cell receptor repertoires from COVID-19 patients reveals strong convergent
immune signatures. bioRxiv, 2020.

Gelasca, E. D., Byun, J., Obara, B., and Manjunath, B. Evaluation and benchmark for biological
image segmentation. In 2008 15th IEEE International Conference on Image Processing, pp.
1816–1819. IEEE, 2008.

Georgiou, G., Ippolito, G. C., Beausang, J., Busse, C. E., Wardemann, H., and Quake, S. R. The
promise and challenge of high-throughput sequencing of the antibody repertoire. Nature Biotech-
nology, 32(2):158, 2014.

Gielis, S., Moris, P., Bittremieux, W., De Neuter, N., Ogunjimi, B., Laukens, K., and Meysman, P.
TCRex: detection of enriched T cell epitope specificity in full T cell receptor sequence repertoires.
bioRxiv, 2019.

Glanville, J., Huang, H., Nau, A., Hatton, O., Wagar, L. E., Rubelt, F., Ji, X., Han, A., Krams, S. M.,
Pettus, C., et al. Identifying specificity groups in the T cell receptor repertoire. Nature, 547(7661):
94–98, 2017.

Graves, A. Generating sequences with recurrent neural networks. ArXiv, 1308.0850, 2013.

Greiff, V., Bhat, P., Cook, S. C., Menzel, U., Kang, W., and Reddy, S. T. A bioinformatic framework
for immune repertoire diversity profiling enables detection of immunological status. Genome
Medicine, 7(1):49, 2015.

Greiff, V., Weber, C. R., Palme, J., Bodenhofer, U., Miho, E., Menzel, U., and Reddy, S. T. Learning
the high-dimensional immunogenomic features that predict public and private antibody repertoires.
The Journal of Immunology, 199(8):2985–2997, 2017.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R. Improving
neural networks by preventing co-adaptation of feature detectors. ArXiv, 1207.0580, 2012.

Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

Hochreiter, S., Heusel, M., and Obermayer, K. Fast model-based protein homology detection without
alignment. Bioinformatics, 23(14):1728–1736, 2007.

36

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the National Academy of Sciences, 79(8):2554–2558, 1982.

Hu, B., Lu, Z., Li, H., and Chen, Q. Convolutional neural network architectures for matching natural
language sentences. In Advances in Neural Information Processing Systems, pp. 2042–2050, 2014.

Ilse, M., Tomczak, J. M., and Welling, M. Attention-based deep multiple instance learning. Interna-
tional Conference on Machine Learning (ICML), 2018.

Jurtz, V. I., Jessen, L. E., Bentzen, A. K., Jespersen, M. C., Mahajan, S., Vita, R., Jensen, K. K.,
Marcatili, P., Hadrup, S. R., Peters, B., et al. NetTCR: sequence-based prediction of TCR binding
to peptide-MHC complexes using convolutional neural networks. bioRxiv, 2018.

Kelley, D. R., Snoek, J., and Rinn, J. L. Basset: learning the regulatory code of the accessible genome
with deep convolutional neural networks. Genome Research, 26(7):990–999, 2016.

Kimeswenger, S., Rumetshofer, E., Hofmarcher, M., Tschandl, P., Kittler, H., Hochreiter, S., Hötze-
necker, W., and Klambauer, G. Detecting cutaneous basal cell carcinomas in ultra-high resolution
and weakly labelled histopathological images. ArXiv, 1911.06616, 2019.

Kingma, D. P. and Ba, J. Adam: a method for stochastic optimization. ArXiv, 1412.6980, 2014.

Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S. Self-normalizing neural networks. In
Advances in Neural Information Processing Systems, pp. 971–980, 2017.

Konishi, H., Komura, D., Katoh, H., Atsumi, S., Koda, H., Yamamoto, A., Seto, Y., Fukayama,
M., Yamaguchi, R., Imoto, S., et al. Capturing the differences between humoral immunity in the
normal and tumor environments from repertoire-seq of B-cell receptors using supervised machine
learning. BMC Bioinformatics, 20(1):1–11, 2019.

Kovaltsuk, A., Leem, J., Kelm, S., Snowden, J., Deane, C. M., and Krawczyk, K. Observed antibody
space: a resource for data mining next-generation sequencing of antibody repertoires. The Journal
of Immunology, 201(8):2502–2509, 2018.

Krotov, D. and Hopfield, J. J. Dense associative memory for pattern recognition. In Lee, D. D.,
Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, pp. 1172–1180. Curran Associates, Inc., 2016.

Krotov, D. and Hopfield, J. J. Dense associative memory is robust to adversarial inputs. Neural
Computation, 30(12):3151–3167, 2018.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and Teh, Y. W. Set transformer: a framework for
attention-based permutation-invariant neural networks. In International Conference on Machine
Learning, pp. 3744–3753, 2019.

Lefranc, M.-P., Pommié, C., Ruiz, M., Giudicelli, V., Foulquier, E., Truong, L., Thouvenin-Contet, V.,
and Lefranc, G. Imgt unique numbering for immunoglobulin and t cell receptor variable domains
and ig superfamily v-like domains. Developmental & Comparative Immunology, 27(1):55–77,
2003.

Levandowsky, M. and Winter, D. Distance between sets. Nature, 234(5323):34–35, 1971.

Li, B. and Leal, S. M. Methods for detecting associations with rare variants for common diseases:
application to analysis of sequence data. The American Journal of Human Genetics, 83(3):311–321,
2008.

Lucey, P., Cohn, J. F., Kanade, T., Saragih, J., Ambadar, Z., and Matthews, I. The extended cohn-
kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression. In
2010 ieee computer society conference on computer vision and pattern recognition-workshops, pp.
94–101. IEEE, 2010.

37

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

Marcou, Q., Mora, T., and Walczak, A. M. High-throughput immune repertoire analysis with IGoR.
Nature Communications, 9(1):1–10, 2018.

Maron, O. and Lozano-Pérez, T. A framework for multiple-instance learning. In Advances in Neural
Information Processing Systems, pp. 570–576, 1998.

Miho, E., Yermanos, A., Weber, C. R., Berger, C. T., Reddy, S. T., and Greiff, V. Computational
strategies for dissecting the high-dimensional complexity of adaptive immune repertoires. Frontiers
in Immunology, 9:224, 2018.

Minervina, A. A., Komech, E. A., Titov, A., Koraichi, M. B., Rosati, E., Mamedov, I. Z., Franke, A.,
Efimov, G. A., Chudakov, D. M., Mora, T., Walczak, A. M., Lebedev, Y. B., and Pogorelyy, M. V.
Longitudinal high-throughput TCR repertoire profiling reveals the dynamics of T cell memory
formation after mild COVID-19 infection. bioRxiv, 2020.

Montavon, G., Samek, W., and Müller, K.-R. Methods for interpreting and understanding deep neural
networks. Digital Signal Processing, 73:1–15, 2018.

Montavon, G., Binder, A., Lapuschkin, S., Samek, W., and Müller, K.-R. Layer-wise relevance
propagation: an overview. In Explainable AI: Interpreting, Explaining and Visualizing Deep
Learning, pp. 193–209. Springer, 2019.

Mora, T. and Walczak, A. M. How many different clonotypes do immune repertoires contain?
Current Opinion in Systems Biology, 18:104 – 110, 2019.

Moris, P., De Pauw, J., Postovskaya, A., Ogunjimi, B., Laukens, K., and Meysman, P. Treating
biomolecular interaction as an image classification problem – a case study on T-cell receptor-
epitope recognition prediction. bioRxiv, 2019.

Olson, B. J., Moghimi, P., Schramm, C., Obraztsova, A., Ralph, D. K., Vander Heiden, J. A., Shugay,
M., Shepherd, A. J., Lees, W. D., Matsen, I., et al. sumrep: a summary statistic framework for
immune receptor repertoire comparison and model validation. Frontiers in Immunology, 10:2533,
2019.

Ostmeyer, J., Christley, S., Toby, I. T., and Cowell, L. G. Biophysicochemical motifs in T-cell receptor
sequences distinguish repertoires from tumor-infiltrating lymphocyte and adjacent healthy tissue.
Cancer Research, 79(7):1671–1680, 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., et al. Pytorch: an imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems, pp. 8024–8035, 2019.

Pawlowski, N., Bhooshan, S., Ballas, N., Ciompi, F., Glocker, B., and Drozdzal, M. Needles in
haystacks: on classifying tiny objects in large images. ArXiv, 1908.06037, 2019.

Preuer, K., Klambauer, G., Rippmann, F., Hochreiter, S., and Unterthiner, T. Interpretable deep
learning in drug discovery. In Explainable AI: Interpreting, Explaining and Visualizing Deep
Learning, pp. 331–345. Springer, 2019.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. Pointnet: deep learning on point sets for 3D classification
and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 652–660, 2017.

Ralaivola, L., Swamidass, S. J., Saigo, H., and Baldi, P. Graph kernels for chemical informatics.
Neural Networks, 18(8):1093–1110, 2005.

Ramsauer, H., Schäfl, B., Lehner, J., Seidl, P., Widrich, M., Gruber, L., Holzleitner, M., Pavlović, M.,
Sandve, G. K., Greiff, V., Kreil, D., Kopp, M., Klambauer, G., Brandstetter, J., and Hochreiter, S.
Hopfield networks is all you need. ArXiv, 2020.

Raybould, M. I. J., Kovaltsuk, A., Marks, C., and Deane, C. M. CoV-AbDab: the coronavirus
antibody database. bioRxiv, 2020.

38

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

Rosenfeld, A. M., Meng, W., Luning Prak, E. T., and Hershberg, U. Immunedb, a novel tool for
the analysis, storage, and dissemination of immune repertoire sequencing data. Frontiers in
Immunology, 9:2107, 2018.

Ruiz, A. T., Thiam, P., Schwenker, F., and Palm, G. A $$k$$-nearest neighbor based algorithm
for multi-instance multi-label active learning. In Pancioni, L., Schwenker, F., and Trentin, E.
(eds.), Artificial Neural Networks in Pattern Recognition, pp. 139–151, Cham, 2018. Springer
International Publishing.

Sebastiani, F. Machine learning in automated text categorization. ACM computing surveys (CSUR),
34(1):1–47, 2002.

Setliff, I., Shiakolas, A. R., Pilewski, K. A., Murji, A. A., Mapengo, R. E., Janowska, K., Richardson,
S., Oosthuysen, C., Raju, N., Ronsard, L., et al. High-throughput mapping of B cell receptor
sequences to antigen specificity. Cell, 179(7):1636–1646, 2019.

Shugay, M., Bagaev, D. V., Turchaninova, M. A., Bolotin, D. A., Britanova, O. V., Putintseva, E. V.,
Pogorelyy, M. V., Nazarov, V. I., Zvyagin, I. V., Kirgizova, V. I., et al. VDJtools: unifying
post-analysis of T cell receptor repertoires. PLOS Computational Biology, 11(11), 2015.

Shugay, M., Bagaev, D. V., Zvyagin, I. V., Vroomans, R. M., Crawford, J. C., Dolton, G., Komech,
E. A., Sycheva, A. L., Koneva, A. E., Egorov, E. S., et al. VDJdb: a curated database of T-cell
receptor sequences with known antigen specificity. Nucleic Acids Research, 46(D1):D419–D427,
2018.

Sidhom, J.-W., Larman, H. B., Ross-MacDonald, P., Wind-Rotolo, M., Pardoll, D. M., and Baras,
A. S. DeepTCR: a deep learning framework for understanding T-cell receptor sequence signatures
within complex T-cell repertoires. bioRxiv, 2019.

Springer, I., Besser, H., Tickotsky-Moskovitz, N., Dvorkin, S., and Louzoun, Y. Prediction of specific
TCR-peptide binding from large dictionaries of TCR-peptide pairs. bioRxiv, 2020.

Sundararajan, M., Taly, A., and Yan, Q. Axiomatic attribution for deep networks. In Proceedings of
the 34th International Conference on Machine Learning-Volume 70, pp. 3319–3328. JMLR, 2017.

Tomita, N., Abdollahi, B., Wei, J., Ren, B., Suriawinata, A., and Hassanpour, S. Attention-based deep
neural networks for detection of cancerous and precancerous esophagus tissue on histopathological
slides. JAMA Network Open, 2(11), 2019.

Uriot, T. Learning with sets in multiple instance regression applied to remote sensing. ArXiv,
1903.07745, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. Attention is all you need. In Advances in Neural Information Processing Systems,
pp. 5998–6008, 2017.

Wang, X., Yan, Y., Tang, P., Bai, X., and Liu, W. Revisiting multiple instance neural networks.
Pattern Recognition, 74:15–24, 2018.

Wardemann, H. and Busse, C. E. Novel approaches to analyze immunoglobulin repertoires. Trends
in Immunology, 38(7):471–482, 2017.

Weber, C. R., Akbar, R., Yermanos, A., Pavlović, M., Snapkov, I., Sandve, G. K., Reddy, S. T., and
Greiff, V. immuneSIM: tunable multi-feature simulation of B- and T-cell receptor repertoires for
immunoinformatics benchmarking. Bioinformatics, 03 2020.

Wu, J.-S., Huang, S.-J., and Zhou, Z.-H. Genome-wide protein function prediction through multi-
instance multi-label learning. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics, 11(5):891–902, 2014.

Wu, M. C., Lee, S., Cai, T., Li, Y., Boehnke, M., and Lin, X. Rare-variant association testing
for sequencing data with the sequence kernel association test. The American Journal of Human
Genetics, 89(1):82–93, 2011.

39

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

Wucherpfennig, K. W., Allen, P. M., Celada, F., Cohen, I. R., De Boer, R., Garcia, K. C., Goldstein,
B., Greenspan, R., Hafler, D., Hodgkin, P., et al. Polyspecificity of T cell and B cell receptor
recognition. In Seminars in Immunology, volume 19, pp. 216–224. Elsevier, 2007.

Yaari, G. and Kleinstein, S. H. Practical guidelines for B-cell receptor repertoire sequencing analysis.
Genome Medicine, 7(1):121, 2015.

Ye, H.-J., Hu, H., Zhan, D.-C., and Sha, F. Learning embedding adaptation for few-shot learning.
ArXiv, 1812.03664, 2018.

Zeng, H., Edwards, M. D., Liu, G., and Gifford, D. K. Convolutional neural network architectures
for predicting DNA–protein binding. Bioinformatics, 32(12):i121–i127, 2016.

Zhang, W., Wang, L., Liu, K., Wei, X., Yang, K., Du, W., Wang, S., Guo, N., Ma, C., Luo, L., et al.
PIRD: pan immune repertoire database. Bioinformatics, 36(3):897–903, 2020.

Zhang, Z.-L. and Zhang, M.-L. Multi-instance multi-label learning with application to scene
classification. In Advances in neural information processing systems, pp. 1609–1616, 2007.

Zhou, J. and Troyanskaya, O. G. Predicting effects of noncoding variants with deep learning–based
sequence model. Nature Methods, 12(10):931–934, 2015.

40

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.04.12.038158doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.12.038158

	1 Immune Repertoire Classification
	A1 Introduction
	A2 DeepRC implementation details
	A3 Datasets
	A3.1 Simulated immunosequencing data
	A3.2 LSTM-generated data
	A3.3 Real-world data with implanted signals
	A3.4 Real-world data: CMV dataset
	A3.5 Comparison to other MIL datasets

	A4 Compared methods
	A4.1 Known motif
	A4.2 Support Vector Machine (SVM)
	A4.3 K-Nearest Neighbor (KNN)
	A4.4 Logistic regression
	A4.5 Burden test
	A4.6 Logistic MIL (Ostmeyer et al)

	A5 Hyperparameter selection
	A6 Results
	A7 Repertoire generation via LSTM
	A8 Interpreting DeepRC
	A9 Attention values for previously associated CMV sequences
	A10 DeepRC variations and ablation study

